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Plan for the talks

This talk: Introduction and applications.

Tomorrow: In-depth survey.



Classical Boolean function analysis

Central object of study: real-valued functions on the Boolean
cube {±1}n.

Often, but not always, the functions themselves are also
Boolean.

The Boolean cube can be regarded as a Cayley graph of Zn
2, a

distance-regular graph, a differential poset, ...

Distance-regularity: #{z : d(x , z) = a, d(y , z) = b} depends
only on d(x , y).



Fundamental theorem of Boolean function analysis

Fundamental theorem of Boolean function analysis

Every function f : {±1}n → R has a unique expansion as a
multilinear polynomial in the n inputs x1, . . . , xn ∈ {±1}.

The coefficients of the monomials are the Fourier coefficients.

f̂ (S) is coefficient of xS :=
∏

i∈S xi .

The monomials form an orthonormal basis
with respect to the inner product 〈f , g〉 = E[fg ].

The monomials are also all characters of Zn
2.

Important for linearity testing.



Degree

Spectral degree:

The degree of the unique representation is the degree of f .

Aside: deg f = O((d̃egf )6) for Boolean f .

Spatial degree:

A d-junta is a function depending on d coordinates.

deg f ≤ d iff f is a linear combination of d-juntas.



Influence

Spatial definition:

Laplacian: Lf (x) = 1
2

∑
y∼x [f (x)− f (y)].

Total influence: Inf[f ] = 〈f , Lf 〉.
Spectral formula:

Lf =
∑
S

|S |f̂ (S)xS =
∑
d

df =d .

At least V[f ] (Poincaré inequality).

At most (deg f )V[f ]

At most deg f if f is Boolean.

Also have influences in given direction (= generator).



Noise

Spatial definition:

Markov process on the cube: flip each coordinate with rate 1.

Nρ(x) is state after 1
2 ln 1

ρ steps, starting at x .

Tρf (x) = E[f (Nρ(x))].

Noise stability: Stabρ[f ] = 〈f ,Tρf 〉.
Spectral formula:

Tρf =
∑
S

ρ|S |f̂ (S)xS =
∑
d

ρd f =d .



Coarse decomposition

Spectral definition:

f =d is homogeneous degree d part of Fourier expansion of f .

f =
∑n

d=0 f
=d . Orthogonal decomposition of R[{±1}n].

Spatial definition:

Function is homogeneous degree d if it has degree d and is
orthogonal to all (d − 1)-juntas.

Theory of differential posets: there exists unique
decomposition f =

∑
d f

=d .

Theory of association schemes: If A(x , y) depends only on d(x , y)
then

Af =
∑
d

λd f
=d .

Examples: Lf ,Tρf .



Structure theorems

Notions of simplicity for Boolean functions:

d-junta.

Degree d .

Total influence d .

Fundamental theorems:

FKN: Almost degree 1 −→ almost 1-junta.

Kindler–Safra: Almost degree d −→ almost O(2d)-junta.

Friedgut: Total influence d −→ almost 2O(d)-junta.



Other highlights

Invariance principle: extending functions from Boolean cube
to Gaussian space.

Small-set expansion: Prx∈A[Nρ(x) /∈ A] ≈ 1 for small A.

Hypercontractivity: ‖Tρf ‖q ≤ ‖f ‖p for q > p.

KKL: Every balanced function has an influential coordinate.



Other domains

p-biased cube: important in random graph theory (via sharp
threshold theorems).

Johnson scheme (slice): all k-subsets of [n].

Setting of Erdős–Ko–Rado theorem.
Used by O’Donnell–Wimmer in statistical learning theory.

KKL on the slice implies robust Kruskal–Katona.

Grassmann scheme: all k-dimensional subspaces of Fn
q.

(In the application, q = 2.)

Used recently to prove 2-to-1 conjecture.

Other groups (Zn
k , Sn), other association schemes, Gaussian

space, Cayley graphs of codes, high-dimensional expanders, ...



2-to-1 conjecture

Label cover

Given: edge-weighted bipartite graph (A,B,E ) and constraints
πe ⊆ ΣA × ΣB .
Goal: find assignment to vertices which satisfies maximum weight
of constraints.

a-to-b constraints: πe =
⋃

i Ai × Bi , where |Ai | = a, |Bi | = b
are partitions of ΣA,ΣB .

a-to-b conjectures: for every ε > 0, if |ΣA|, |ΣB | are large
enough, NP-hard to distinguish between val ≥ 1− ε and
val ≤ ε when all constraints are a-to-b.

Unique games conjecture: a = b = 1.
Variant: perfect completeness (not for UGC!).
Stronger version when a = b: ΣA = ΣB = Zn

2 and all
constraints are linear, i.e. `1(x) + `2(y) ∈ S for |S | = a.



2-to-1 theorem

Recently proved by Dinur, Khot, Kindler, Minzer, Safra.
Corollaries:

√
2-hardness for vertex cover (improving over Dinur–Safra’s

1.36-hardness).

Max-cut-gain: distinguishing 1/2 + ε and 1/2 + ε/ log(1/ε).

Distinguishing almost 4-colorable to not almost 1/ε-colorable.

Hard to color more than 1− 1/k + O( ln k
k2 ) vertices of almost

k-colorable graphs.

Lasserre integrality gaps.



Grassmann encoding

Traditional PCPs use the Long Code:

x ∈ {0, 1}k encoded by a table Tx : {0, 1}{0,1}k → {0, 1}.
Encoding is Tx [f ] = f (x).

Proof of 2-to-1 conjecture using Grassmann Code:

x ∈ {0, 1}k identified with linear function Λx on Zk
2 .

Λx encoded by a table Fx with input an `-dim subspace L and
output a linear function on L.

Encoding is Fx [L] = Λx |L.

Similar in spirit to the Short Code of Barak, Gopalan, Håstad,
Meka, Raghavendra, and Steurer.



Grassmann agreement test

How do we test that F is a valid encoding?

Grassmann agreement test

Input: For every `-dim subspace L, a linear function F [L] on L.

Choose L1, L2 of dim ` with dim(L1 ∩ L2) = `− 1.

Verify that F [L1]|L1∩L2 = F [L2]|L1∩L2 .

(Cf. Long Code test, which uses 3 queries.)
Some properties:

Completeness: test always passes if F [L] = Λ|L.

Test is 2-to-2: F [Li ]|L1∩L2 can be extended to F [Li ] in 2 ways.

Can be converted to 2-to-1 using two tables.



Soundness of Grassmann agreement test

Grassmann agreement test

Input: For every `-dim subspace L, a linear function F [L] on L.

Choose L1, L2 of dim ` with dim(L1 ∩ L2) = `− 1.

Verify that F [L1]|L1∩L2 = F [L2]|L1∩L2 .

Soundness:

If test passes w.p. 1− δ then F [L] = Λ|L w.p. 1− ε(δ).

What happens if test passes with constant probability δ?

Guess: can “list decode” into C (δ) many Λ’s.
Counterexample 1: F [L] = Λmin L|L.
Counterexample 2: F [L] = Λmin L⊥ |L.



Reduction to small-set expansion

An idea of Barak, Kothari, and Steurer.

Grassmann agreement test

Input: For every `-dim subspace L, a linear function F [L] on L.

Choose L1, L2 of dim ` with dim(L1 ∩ L2) = `− 1.

Verify that F [L1]|L1∩L2 = F [L2]|L1∩L2 .

Suppose F passes the test w.p. δ. For random Λ, let

S = {L : F [L] = Λ|L}.

If L1 ∈ S and dim(L1 ∩ L2) = `− 1 then Pr[L2 ∈ S ] = δ/2.

Hence S has expected expansion 1− δ/2.
=⇒ can find non-empty S with “small” expansion.

On the Boolean cube, small sets have expansion ≈ 1.
What about the Grassmann scheme?



Small-set expansion on Grassmann scheme

Do all small sets have expansion ≈ 1?

Counterexample 1: {L : x ∈ L} has expansion 1/2.

Counterexample 2: {L : y ⊥ L} has expansion 1/2.

Grassmann expansion hypothesis

If S has expansion 1− δ then S has density ε(δ) inside

{L : x1, . . . , xC(δ) ∈ L, y1, . . . , yC(δ) ⊥ L}.

Implies soundness of Grassmann agreement test:

If F passes test w.p. δ then F agrees with Λ on ε(δ) points of
{L : x1, . . . , xC(δ) ∈ L, y1, . . . , yC(δ) ⊥ L}.
Can cover more of the domain by repeated randomization.



Proof of Grassmann expansion hypothesis

Recently proved by Khot, Minzer, and Safra.

Grassmann expansion hypothesis

If S has expansion 1− δ then S has density ε(δ) inside

{L : x1, . . . , xC(δ) ∈ L, y1, . . . , yC(δ) ⊥ L}.

Proof idea:

By assumption, 〈1S ,Lap1S 〉〈1S ,1S 〉 = δ.

Can only happen if ‖1=d
S ‖/‖1S‖ ≥ γ for some small d .

This implies some lower bound on E[(1=d
S )4].

Hypothesis follows by expanding E[(1=d
S )4]. (Hard!)

Actual proof uses the bilinear scheme graph with self-loops.



Robust version of Kruskal–Katona

Kruskal–Katona theorem

If 0� k/n� 1 and A ⊆
([n]
k

)
satisfies 0� |A|/

(n
k

)
� 1 then

|∂A|( n
k+1

) ≥ |A|(n
k

) + Ω

(
1

n

)
.

Extremal example: xi .

Robust Kruskal–Katona (O’Donnell–Wimmer)

Either A has correlation Ω(1/nε) with some xi , or

|∂A|( n
k+1

) ≥ |A|(n
k

) + Ω

(
log n

n

)
.

Follows from KKL on the slice.



Monotone nets (O’Donnell–Wimmer)

Implication: Every monotone function on {0, 1}n has correlation

1/2 + Ω
(
log n
n

)
with one of:

0, 1, x1, . . . , xn,Maj.

In fact, for every monotone function f on {0, 1}n, either

f has 1− ε correlation with 0 or 1; or

f has 1/2 + 1/nε correlation with one of x1, . . . , xn; or

f has 1/2 + Ω
(
log n
n

)
correlation with majority.

Correlation 1/2 + Ω
(
log n
n

)
is optimal for polynomial size nets

(Blum–Burch–Langford).
Can improve size of net to O(n/ log n) using local majorities.


