Boolean function analysis beyond the Boolean cube

Yuval Filmus

Technion
5 March 2018
Institute for Advanced Study

Plan for the talks

- This talk: Introduction and applications.
- Tomorrow: In-depth survey.

Classical Boolean function analysis

- Central object of study: real-valued functions on the Boolean cube $\{ \pm 1\}^{n}$.
- Often, but not always, the functions themselves are also Boolean.
- The Boolean cube can be regarded as a Cayley graph of \mathbb{Z}_{2}^{n}, a distance-regular graph, a differential poset, ...
■ Distance-regularity: $\#\{z: d(x, z)=a, d(y, z)=b\}$ depends only on $d(x, y)$.

Fundamental theorem of Boolean function analysis

Fundamental theorem of Boolean function analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ has a unique expansion as a multilinear polynomial in the n inputs $x_{1}, \ldots, x_{n} \in\{ \pm 1\}$.

- The coefficients of the monomials are the Fourier coefficients.
- $\hat{f}(S)$ is coefficient of $x_{S}:=\prod_{i \in S} x_{i}$.

■ The monomials form an orthonormal basis with respect to the inner product $\langle f, g\rangle=\mathbb{E}[f g]$.

- The monomials are also all characters of \mathbb{Z}_{2}^{n}.
- Important for linearity testing.

Degree

Spectral degree:

- The degree of the unique representation is the degree of f.
- Aside: $\operatorname{deg} f=O\left((\widetilde{\operatorname{deg}} f)^{6}\right)$ for Boolean f.

Spatial degree:

- A d-junta is a function depending on d coordinates.

■ $\operatorname{deg} f \leq d$ iff f is a linear combination of d-juntas.

Influence

Spatial definition:

- Laplacian: $\operatorname{Lf}(x)=\frac{1}{2} \sum_{y \sim x}[f(x)-f(y)]$.

■ Total influence: $\operatorname{Inf}[f]=\langle f, L f\rangle$.
Spectral formula:

$$
L f=\sum_{S}|S| \hat{f}(S) x_{S}=\sum_{d} d f=d
$$

- At least $\mathbb{V}[f]$ (Poincaré inequality).
- At most $(\operatorname{deg} f) \mathbb{V}[f]$
- At most $\operatorname{deg} f$ if f is Boolean.

Also have influences in given direction (= generator).

Noise

Spatial definition:
■ Markov process on the cube: flip each coordinate with rate 1.

- $N_{\rho}(x)$ is state after $\frac{1}{2} \ln \frac{1}{\rho}$ steps, starting at x.
- $T_{\rho} f(x)=\mathbb{E}\left[f\left(N_{\rho}(x)\right)\right]$.

■ Noise stability: $\operatorname{Stab}_{\rho}[f]=\left\langle f, T_{\rho} f\right\rangle$.
Spectral formula:

$$
T_{\rho} f=\sum_{S} \rho^{|S|} \hat{f}(S) x_{S}=\sum_{d} \rho^{d} f^{=d}
$$

Coarse decomposition

Spectral definition:

- $f^{=d}$ is homogeneous degree d part of Fourier expansion of f.

■ $f=\sum_{d=0}^{n} f^{=d}$. Orthogonal decomposition of $\mathbb{R}\left[\{ \pm 1\}^{n}\right]$.
Spatial definition:

- Function is homogeneous degree d if it has degree d and is orthogonal to all $(d-1)$-juntas.
- Theory of differential posets: there exists unique decomposition $f=\sum_{d} f=d$.
Theory of association schemes: If $A(x, y)$ depends only on $d(x, y)$ then

$$
A f=\sum_{d} \lambda_{d} f=d
$$

Examples: $L f, T_{\rho} f$.

Structure theorems

Notions of simplicity for Boolean functions:

- d-junta.
- Degree d.
- Total influence d.

Fundamental theorems:
■ FKN: Almost degree $1 \longrightarrow$ almost 1-junta.
■ Kindler-Safra: Almost degree $d \longrightarrow$ almost $O\left(2^{d}\right)$-junta.

- Friedgut: Total influence $d \longrightarrow$ almost $2^{O(d)}$-junta.

Other highlights

- Invariance principle: extending functions from Boolean cube to Gaussian space.
- Small-set expansion: $\operatorname{Pr}_{x \in A}\left[N_{\rho}(x) \notin A\right] \approx 1$ for small A.

■ Hypercontractivity: $\left\|T_{\rho} f\right\|_{q} \leq\|f\|_{p}$ for $q>p$.

- KKL: Every balanced function has an influential coordinate.

Other domains

- p-biased cube: important in random graph theory (via sharp threshold theorems).
■ Johnson scheme (slice): all k-subsets of [n].
■ Setting of Erdős-Ko-Rado theorem.
■ Used by O'Donnell-Wimmer in statistical learning theory.
- KKL on the slice implies robust Kruskal-Katona.
- Grassmann scheme: all k-dimensional subspaces of \mathbb{F}_{q}^{n}. (In the application, $q=2$.)
- Used recently to prove 2-to-1 conjecture.

■ Other groups ($\mathbb{Z}_{k}^{n}, S_{n}$), other association schemes, Gaussian space, Cayley graphs of codes, high-dimensional expanders, ...

2-to-1 conjecture

Label cover

Given: edge-weighted bipartite graph (A, B, E) and constraints $\pi_{e} \subseteq \Sigma_{A} \times \Sigma_{B}$.
Goal: find assignment to vertices which satisfies maximum weight of constraints.

■ a-to-b constraints: $\pi_{e}=\bigcup_{i} A_{i} \times B_{i}$, where $\left|A_{i}\right|=a,\left|B_{i}\right|=b$ are partitions of Σ_{A}, Σ_{B}.
■ a-to-b conjectures: for every $\epsilon>0$, if $\left|\Sigma_{A}\right|,\left|\Sigma_{B}\right|$ are large enough, NP-hard to distinguish between val $\geq 1-\epsilon$ and val $\leq \epsilon$ when all constraints are a-to- b.

- Unique games conjecture: $a=b=1$.
- Variant: perfect completeness (not for UGC!).
- Stronger version when $a=b: \Sigma_{A}=\Sigma_{B}=\mathbb{Z}_{2}^{n}$ and all constraints are linear, i.e. $\ell_{1}(x)+\ell_{2}(y) \in S$ for $|S|=a$.

2-to-1 theorem

Recently proved by Dinur, Khot, Kindler, Minzer, Safra.
Corollaries:

- $\sqrt{2}$-hardness for vertex cover (improving over Dinur-Safra's 1.36-hardness).
- Max-cut-gain: distinguishing $1 / 2+\epsilon$ and $1 / 2+\epsilon / \log (1 / \epsilon)$.

■ Distinguishing almost 4-colorable to not almost $1 / \epsilon$-colorable.

- Hard to color more than $1-1 / k+O\left(\frac{\ln k}{k^{2}}\right)$ vertices of almost k-colorable graphs.
■ Lasserre integrality gaps.

Grassmann encoding

Traditional PCPs use the Long Code:
■ $x \in\{0,1\}^{k}$ encoded by a table $T_{x}:\{0,1\}^{\{0,1\}^{k}} \rightarrow\{0,1\}$.

- Encoding is $T_{x}[f]=f(x)$.

Proof of 2-to-1 conjecture using Grassmann Code:

- $x \in\{0,1\}^{k}$ identified with linear function Λ_{x} on \mathbb{Z}_{2}^{k}.
- Λ_{x} encoded by a table F_{x} with input an ℓ-dim subspace L and output a linear function on L.
- Encoding is $F_{x}[L]=\left.\Lambda_{x}\right|_{L}$.

Similar in spirit to the Short Code of Barak, Gopalan, Håstad, Meka, Raghavendra, and Steurer.

Grassmann agreement test

How do we test that F is a valid encoding?

Grassmann agreement test

- Input: For every ℓ-dim subspace L, a linear function $F[L]$ on L.
- Choose L_{1}, L_{2} of $\operatorname{dim} \ell$ with $\operatorname{dim}\left(L_{1} \cap L_{2}\right)=\ell-1$.
- Verify that $\left.F\left[L_{1}\right]\right|_{L_{1} \cap L_{2}}=\left.F\left[L_{2}\right]\right|_{L_{1} \cap L_{2}}$.
(Cf. Long Code test, which uses 3 queries.)
Some properties:
- Completeness: test always passes if $F[L]=\Lambda_{L}$.
- Test is 2-to-2: $\left.F\left[L_{i}\right]\right|_{L_{1} \cap L_{2}}$ can be extended to $F\left[L_{i}\right]$ in 2 ways.
- Can be converted to 2-to-1 using two tables.

Soundness of Grassmann agreement test

Grassmann agreement test

- Input: For every ℓ-dim subspace L, a linear function $F[L]$ on L.
- Choose L_{1}, L_{2} of $\operatorname{dim} \ell$ with $\operatorname{dim}\left(L_{1} \cap L_{2}\right)=\ell-1$.
- Verify that $\left.F\left[L_{1}\right]\right|_{L_{1} \cap L_{2}}=\left.F\left[L_{2}\right]\right|_{L_{1} \cap L_{2}}$.

Soundness:
■ If test passes w.p. $1-\delta$ then $F[L]=\Lambda_{L}$ w.p. $1-\epsilon(\delta)$.
■ What happens if test passes with constant probability δ ?

- Guess: can "list decode" into $C(\delta)$ many Λ 's.
- Counterexample 1: $F[L]=\left.\Lambda_{\min L}\right|_{L}$.
- Counterexample 2: $F[L]=\left.\Lambda_{\min L+}\right|_{L}$.

Reduction to small-set expansion

An idea of Barak, Kothari, and Steurer.

Grassmann agreement test

- Input: For every ℓ-dim subspace L, a linear function $F[L]$ on L.

■ Choose L_{1}, L_{2} of $\operatorname{dim} \ell$ with $\operatorname{dim}\left(L_{1} \cap L_{2}\right)=\ell-1$.

- Verify that $\left.F\left[L_{1}\right]\right|_{L_{1} \cap L_{2}}=\left.F\left[L_{2}\right]\right|_{L_{1} \cap L_{2}}$.

Suppose F passes the test w.p. δ. For random Λ, let

$$
S=\left\{L: F[L]=\left.\Lambda\right|_{L}\right\} .
$$

- If $L_{1} \in S$ and $\operatorname{dim}\left(L_{1} \cap L_{2}\right)=\ell-1$ then $\operatorname{Pr}\left[L_{2} \in S\right]=\delta / 2$.
- Hence S has expected expansion $1-\delta / 2$. \Longrightarrow can find non-empty S with "small" expansion.
On the Boolean cube, small sets have expansion ≈ 1. What about the Grassmann scheme?

Small-set expansion on Grassmann scheme

Do all small sets have expansion ≈ 1 ?
■ Counterexample 1: $\{L: x \in L\}$ has expansion $1 / 2$.
■ Counterexample 2: $\{L: y \perp L\}$ has expansion $1 / 2$.

Grassmann expansion hypothesis

If S has expansion $1-\delta$ then S has density $\epsilon(\delta)$ inside

$$
\left\{L: x_{1}, \ldots, x_{C(\delta)} \in L, y_{1}, \ldots, y_{C(\delta)} \perp L\right\}
$$

Implies soundness of Grassmann agreement test:

- If F passes test w.p. δ then F agrees with Λ on $\epsilon(\delta)$ points of $\left\{L: x_{1}, \ldots, x_{C(\delta)} \in L, y_{1}, \ldots, y_{C(\delta)} \perp L\right\}$.
■ Can cover more of the domain by repeated randomization.

Proof of Grassmann expansion hypothesis

Recently proved by Khot, Minzer, and Safra.
Grassmann expansion hypothesis
If S has expansion $1-\delta$ then S has density $\epsilon(\delta)$ inside

$$
\left\{L: x_{1}, \ldots, x_{C(\delta)} \in L, y_{1}, \ldots, y_{C(\delta)} \perp L\right\}
$$

Proof idea:
■ By assumption, $\frac{\left\langle 1_{s, L a p} 1_{s}\right\rangle}{\left\langle 1_{s}, 1_{S}\right\rangle}=\delta$.

- Can only happen if $\left\|\overline{\bar{S}}^{d}\right\| /\left\|1_{S}\right\| \geq \gamma$ for some small d.
- This implies some lower bound on $\mathbb{E}\left[\left(1_{\bar{S}}{ }^{d}\right)^{4}\right]$.
- Hypothesis follows by expanding $\mathbb{E}\left[\left(1 \overline{\bar{S}}^{d}\right)^{4}\right]$. (Hard!)

Actual proof uses the bilinear scheme graph with self-loops.

Robust version of Kruskal-Katona

Kruskal-Katona theorem
If $0 \ll k / n \ll 1$ and $A \subseteq\binom{[n]}{k}$ satisfies $0 \ll|A| /\binom{n}{k} \ll 1$ then

$$
\frac{|\partial A|}{\binom{n}{k+1}} \geq \frac{|A|}{\binom{n}{k}}+\Omega\left(\frac{1}{n} \begin{array}{c}
n
\end{array}\right) .
$$

Extremal example: x_{i}.
Robust Kruskal-Katona (O'Donnell-Wimmer)
Either A has correlation $\Omega\left(1 / n^{\epsilon}\right)$ with some x_{i}, or

$$
\frac{|\partial A|}{\binom{n}{k+1}} \geq \frac{|A|}{\binom{n}{k}}+\Omega\left(\frac{\log n}{n}\right) .
$$

Follows from KKL on the slice.

Monotone nets (O'Donnell-Wimmer)

Implication: Every monotone function on $\{0,1\}^{n}$ has correlation $1 / 2+\Omega\left(\frac{\log n}{n}\right)$ with one of:

$$
0,1, x_{1}, \ldots, x_{n}, \text { Maj. }
$$

In fact, for every monotone function f on $\{0,1\}^{n}$, either
■ f has $1-\epsilon$ correlation with 0 or 1 ; or

- f has $1 / 2+1 / n^{\epsilon}$ correlation with one of x_{1}, \ldots, x_{n}; or
- f has $1 / 2+\Omega\left(\frac{\log n}{n}\right)$ correlation with majority.

Correlation $1 / 2+\Omega\left(\frac{\log n}{n}\right)$ is optimal for polynomial size nets
(Blum-Burch-Langford).
Can improve size of net to $O(n / \log n)$ using local majorities.

