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Plan for the talks

m This talk: Introduction and applications.

m Tomorrow: In-depth survey.



Classical Boolean function analysis

m Central object of study: real-valued functions on the Boolean
cube {£1}".

m Often, but not always, the functions themselves are also
Boolean.

m The Boolean cube can be regarded as a Cayley graph of Z7, a
distance-regular graph, a differential poset, ...

m Distance-regularity: #{z: d(x,z) = a,d(y, z) = b} depends
only on d(x,y).



Fundamental theorem of Boolean function analysis

Fundamental theorem of Boolean function analysis

Every function f: {+1}" — R has a unique expansion as a
multilinear polynomial in the n inputs x1,...,x, € {£1}.

m The coefficients of the monomials are the Fourier coefficients.
m 7(S) is coefficient of xs := [Lics xi-
m The monomials form an orthonormal basis

with respect to the inner product (f, g) = E[fg].

m The monomials are also all characters of Z3.
m Important for linearity testing.



Spectral degree:

m The degree of the unique representation is the degree of f.
m Aside: degf = 0((5(%06) for Boolean f.

Spatial degree:
m A d-junta is a function depending on d coordinates.

m degf < d iff f is a linear combination of d-juntas.



Influence

Spatial definition:

m Laplacian: Lf(x) = %zny[f(x) —f(y)]
m Total influence: Inf[f] = (f, Lf).
Spectral formula:

Lf_Z|5|f de—

m At least V[f] (Poincaré inequality).
m At most (deg f)V][f]
m At most deg f if f is Boolean.
Also have influences in given direction (= generator).



Spatial definition:

m Markov process on the cube: flip each coordinate with rate 1.
m N,(x) is state after 3 In% steps, starting at x.

= T,(x) = E[F(N,(x))]

m Noise stability: Stab,[f] = (f, T,f).

Spectral formula:

T,f = Zp"s'f(S)xs = Zpdf:d.
S d



Coarse decomposition

Spectral definition:
m =9 is homogeneous degree d part of Fourier expansion of f.
mf=>"_,f=9 Orthogonal decomposition of R[{£1}"].
Spatial definition:

m Function is homogeneous degree d if it has degree d and is
orthogonal to all (d — 1)-juntas.

m Theory of differential posets: there exists unique
decomposition f =", 4.
Theory of association schemes: If A(x,y) depends only on d(x,y)

then
Af =) Agf=o.
d

Examples: Lf, T,f.



Structure theorems

Notions of simplicity for Boolean functions:
m d-junta.
m Degree d.
m Total influence d.
Fundamental theorems:
m FKN: Almost degree 1 — almost 1-junta.
m Kindler-Safra: Almost degree d — almost O(29)-junta.

d)

m Friedgut: Total influence d — almost 2°(9)_junta.



Other highlights

m Invariance principle: extending functions from Boolean cube
to Gaussian space.

m Small-set expansion: Pryca[N,(x) ¢ A] = 1 for small A.
m Hypercontractivity: || T,f||q < ||f]|, for g > p.

m KKL: Every balanced function has an influential coordinate.



Other domains

m p-biased cube: important in random graph theory (via sharp
threshold theorems).
m Johnson scheme (slice): all k-subsets of [n].

m Setting of Erdés—Ko—Rado theorem.
m Used by O'Donnell-Wimmer in statistical learning theory.

m KKL on the slice implies robust Kruskal-Katona.
m Grassmann scheme: all k-dimensional subspaces of [Fg.
(In the application, g = 2.)
m Used recently to prove 2-to-1 conjecture.
m Other groups (Z7, S,), other association schemes, Gaussian
space, Cayley graphs of codes, high-dimensional expanders, ...



2-to-1 conjecture

Label cover

Given: edge-weighted bipartite graph (A, B, E) and constraints
e C ZA X ZB.

Goal: find assignment to vertices which satisfies maximum weight
of constraints.

m a-to-b constraints: e = J; Ai x Bj, where |A;j| = a, |Bi| =b
are partitions of X4, X 5.
m a-to-b conjectures: for every € > 0, if |X al,|Xpg| are large
enough, NP-hard to distinguish between val > 1 — ¢ and
val < e when all constraints are a-to-b.
m Unique games conjecture: a=b = 1.
m Variant: perfect completeness (not for UGC!).
m Stronger version when a = b: X4 = X g = Z4 and all
constraints are linear, i.e. {1(x) + ¢2(y) € S for |S| = a.



2-to-1 theorem

Recently proved by Dinur, Khot, Kindler, Minzer, Safra.
Corollaries:

m /2-hardness for vertex cover (improving over Dinur-Safra's
1.36-hardness).

Max-cut-gain: distinguishing 1/2 + € and 1/2 + ¢/ log(1/e).
Distinguishing almost 4-colorable to not almost 1/e-colorable.

Hard to color more than 1 — 1/k + O('”k) vertices of almost
k-colorable graphs.

Lasserre integrality gaps.



Grassmann encoding

Traditional PCPs use the Long Code:
m x € {0,1} encoded by a table Ty: {0,1}{01}* — (0, 1}.
m Encoding is T,[f] = f(x).
Proof of 2-to-1 conjecture using Grassmann Code:
m x € {0,1}* identified with linear function A, on Z5.
m A\, encoded by a table F, with input an /-dim subspace L and
output a linear function on L.
m Encoding is F L] = AL

Similar in spirit to the Short Code of Barak, Gopalan, Hastad,
Meka, Raghavendra, and Steurer.



Grassmann agreement test

How do we test that F is a valid encoding?

Grassmann agreement test

m Input: For every (-dim subspace L, a linear function F[L] on L.
m Choose Ly, Ly of dim ¢ with dim(L; N Ly) =¢— 1.
[ | Verify that F[L1]|L10L2 = F[L2]|L1QL2.

(Cf. Long Code test, which uses 3 queries.)
Some properties:
m Completeness: test always passes if F[L] = A|;.
m Test is 2-to-2: F[L;]|1,n1, can be extended to F[L;] in 2 ways.

m Can be converted to 2-to-1 using two tables.



Soundness of Grassmann agreement test

Grassmann agreement test

m Input: For every ¢-dim subspace L, a linear function F[L] on L.
m Choose Ly, Ly of dim ¢ with dim(L; N Ly) =¢ — 1.
| Verify that F[L1]|L10L2 = F[L2]|L10L2.

Soundness:
m If test passes w.p. 1 — ¢ then F[L] = A|; w.p. 1 — €(9).
m What happens if test passes with constant probability 67

m Guess: can "list decode” into C(&) many A's.
m Counterexample 1: F[L] = Aminc]e.
m Counterexample 2: F[L] = Apin o1



Reduction to small-set expansion

An idea of Barak, Kothari, and Steurer.

Grassmann agreement test

m Input: For every ¢-dim subspace L, a linear function F[L] on L.
m Choose Ly, Ly of dim ¢ with dim(L; N Lp) = ¢ — 1.
m Verify that F[Ll:”L]_ﬁLz = F[L2]‘L10L2.

Suppose F passes the test w.p. 4. For random A, let
S={L:F[L] =N|.}.

mIf L; €S and dim(L;iNLy) =¢—1then Pr[Ly € S] =4/2.
m Hence S has expected expansion 1 — /2.
= can find non-empty S with “small” expansion.

On the Boolean cube, small sets have expansion & 1.
What about the Grassmann scheme?



Small-set expansion on Grassmann scheme

Do all small sets have expansion = 17

m Counterexample 1: {L : x € L} has expansion 1/2.
m Counterexample 2: {L:y L L} has expansion 1/2.

Grassmann expansion hypothesis

If S has expansion 1 — § then S has density €(d) inside

{L:xt,. . xcs) € Liyi, -, ¥es) L L)

Implies soundness of Grassmann agreement test:
m If F passes test w.p.  then F agrees with A on €(¢) points of
{L: X1, ..., XC(6) € L,yl,...,yc((;) 1L}
m Can cover more of the domain by repeated randomization.



Proof of Grassmann expansion hypothesis

Recently proved by Khot, Minzer, and Safra.

Grassmann expansion hypothesis

If S has expansion 1 — § then S has density €(0) inside

{L DXLy XC(8) € L,yl,...,yc((;) 1 L}.

Proof idea:

(1s,Lapls) __
Tie1s) =0

m Can only happen if [|159]|/||1s|| > 7 for some small d.

m By assumption,

m This implies some lower bound on E[(157)%].
m Hypothesis follows by expanding E[(159)*]. (Hard!)

Actual proof uses the bilinear scheme graph with self-loops.



Robust version of Kruskal-Katona

Kruskal-Katona theorem

If 0 < k/n < 1and AC (1) satisfies 0 < |A|/(£) < 1 then

oA, A g (1),

() — () n

Extremal example: x;.

Robust Kruskal-Katona (O'Donnell-Wimmer)

Either A has correlation Q(1/n) with some x;, or

|OA| S ﬂ-q-Q <Iogn)'

(et — () n

Follows from KKL on the slice.



Monotone nets (O'Donnell-Wimmer)

Implication: Every monotone function on {0,1}" has correlation
1/2+Q (Iog"> with one of:

n

0,1, x1,...,x Maj.

In fact, for every monotone function f on {0,1}", either
m f has 1 — ¢ correlation with 0 or 1; or

m f has 1/2 4 1/n° correlation with one of xi,...,x,; or

n

m fhas1/2+Q <I°g”) correlation with majority.

Correlation 1/2 + Q ('°§”> is optimal for polynomial size nets

(Blum—Burch—Langford).
Can improve size of net to O(n/ log n) using local majorities.



