Boolean function analysis beyond the Boolean cube

Yuval Filmus

Technion

5 March 2018 Institute for Advanced Study

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• This talk: Introduction and applications.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tomorrow: In-depth survey.

- Central object of study: real-valued functions on the Boolean cube {±1}ⁿ.
- Often, but not always, the functions themselves are also Boolean.
- The Boolean cube can be regarded as a Cayley graph of Zⁿ₂, a distance-regular graph, a differential poset, ...
- Distance-regularity: #{z : d(x, z) = a, d(y, z) = b} depends only on d(x, y).

Fundamental theorem of Boolean function analysis

Every function $f: \{\pm 1\}^n \to \mathbb{R}$ has a unique expansion as a multilinear polynomial in the *n* inputs $x_1, \ldots, x_n \in \{\pm 1\}$.

• The coefficients of the monomials are the *Fourier coefficients*.

- $\hat{f}(S)$ is coefficient of $x_S := \prod_{i \in S} x_i$.
- The monomials form an orthonormal basis with respect to the inner product (f,g) = E[fg].
- The monomials are also all characters of \mathbb{Z}_2^n .
 - Important for linearity testing.

Spectral degree:

• The degree of the unique representation is the *degree* of *f*.

• Aside: deg
$$f = O((\widetilde{\deg}f)^6)$$
 for Boolean f .

Spatial degree:

- A *d*-junta is a function depending on *d* coordinates.
- deg $f \leq d$ iff f is a linear combination of d-juntas.

Influence

Spatial definition:

- Laplacian: $Lf(x) = \frac{1}{2} \sum_{y \sim x} [f(x) f(y)].$
- Total influence: $\ln[f] = \langle f, Lf \rangle$.

Spectral formula:

$$Lf = \sum_{S} |S|\hat{f}(S)x_S = \sum_{d} df^{=d}.$$

- At least V[f] (Poincaré inequality).
- At most $(\deg f)\mathbb{V}[f]$
- At most deg f if f is Boolean.

Also have influences in given direction (= generator).

Spatial definition:

- Markov process on the cube: flip each coordinate with rate 1.
- $N_{\rho}(x)$ is state after $\frac{1}{2} \ln \frac{1}{\rho}$ steps, starting at x.

•
$$T_{\rho}f(x) = \mathbb{E}[f(N_{\rho}(x))].$$

• Noise stability: $\operatorname{Stab}_{\rho}[f] = \langle f, T_{\rho}f \rangle$.

Spectral formula:

$$T_{\rho}f = \sum_{S} \rho^{|S|}\hat{f}(S)x_{S} = \sum_{d} \rho^{d}f^{=d}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spectral definition:

• $f^{=d}$ is homogeneous degree d part of Fourier expansion of f.

• $f = \sum_{d=0}^{n} f^{=d}$. Orthogonal decomposition of $\mathbb{R}[\{\pm 1\}^n]$. Spatial definition:

- Function is homogeneous degree d if it has degree d and is orthogonal to all (d 1)-juntas.
- Theory of differential posets: there exists unique decomposition $f = \sum_{d} f^{=d}$.

Theory of association schemes: If A(x, y) depends only on d(x, y) then

$$Af = \sum_{d} \lambda_{d} f^{=d}.$$

Examples: Lf, $T_{\rho}f$.

Notions of simplicity for Boolean functions:

- *d*-junta.
- Degree *d*.
- Total influence *d*.

Fundamental theorems:

- FKN: Almost degree $1 \longrightarrow$ almost 1-junta.
- Kindler–Safra: Almost degree $d \longrightarrow \text{almost } O(2^d)$ -junta.

• Friedgut: Total influence $d \longrightarrow \text{almost } 2^{O(d)}$ -junta.

- Invariance principle: extending functions from Boolean cube to Gaussian space.
- Small-set expansion: $\Pr_{x \in A}[N_{\rho}(x) \notin A] \approx 1$ for small A.
- Hypercontractivity: $||T_{\rho}f||_q \le ||f||_p$ for q > p.
- KKL: Every balanced function has an influential coordinate.

Other domains

- *p*-biased cube: important in random graph theory (via sharp threshold theorems).
- Johnson scheme (slice): all *k*-subsets of [*n*].
 - Setting of Erdős–Ko–Rado theorem.
 - Used by O'Donnell–Wimmer in statistical learning theory.
 - KKL on the slice implies robust Kruskal–Katona.
- Grassmann scheme: all k-dimensional subspaces of \mathbb{F}_q^n . (In the application, q = 2.)
 - Used recently to prove 2-to-1 conjecture.
- Other groups (Zⁿ_k, S_n), other association schemes, Gaussian space, Cayley graphs of codes, high-dimensional expanders, ...

2-to-1 conjecture

Label cover

Given: edge-weighted bipartite graph (A, B, E) and constraints $\pi_e \subseteq \Sigma_A \times \Sigma_B$. Goal: find assignment to vertices which satisfies maximum weight of constraints.

- *a*-to-*b* constraints: $\pi_e = \bigcup_i A_i \times B_i$, where $|A_i| = a$, $|B_i| = b$ are partitions of Σ_A, Σ_B .
- a-to-b conjectures: for every ε > 0, if |Σ_A|, |Σ_B| are large enough, NP-hard to distinguish between val ≥ 1 − ε and val ≤ ε when all constraints are a-to-b.
 - Unique games conjecture: a = b = 1.
 - Variant: perfect completeness (not for UGC!).
 - Stronger version when a = b: Σ_A = Σ_B = Z₂ⁿ and all constraints are linear, i.e. ℓ₁(x) + ℓ₂(y) ∈ S for |S| = a.

Recently proved by Dinur, Khot, Kindler, Minzer, Safra. Corollaries:

- √2-hardness for vertex cover (improving over Dinur–Safra's 1.36-hardness).
- Max-cut-gain: distinguishing $1/2 + \epsilon$ and $1/2 + \epsilon/\log(1/\epsilon)$.
- Distinguishing almost 4-colorable to not almost $1/\epsilon$ -colorable.
- Hard to color more than 1 1/k + O(^{ln k}/_{k²}) vertices of almost k-colorable graphs.

Lasserre integrality gaps.

Traditional PCPs use the Long Code:

- $x \in \{0,1\}^k$ encoded by a table $T_x \colon \{0,1\}^{\{0,1\}^k} \to \{0,1\}.$
- Encoding is $T_x[f] = f(x)$.

Proof of 2-to-1 conjecture using Grassmann Code:

- $x \in \{0,1\}^k$ identified with linear function Λ_x on \mathbb{Z}_2^k .
- Λ_x encoded by a table F_x with input an ℓ -dim subspace L and output a linear function on L.

• Encoding is $F_x[L] = \Lambda_x|_L$.

Similar in spirit to the Short Code of Barak, Gopalan, Håstad, Meka, Raghavendra, and Steurer.

How do we test that F is a valid encoding?

Grassmann agreement test

- Input: For every ℓ -dim subspace L, a linear function F[L] on L.
- Choose L_1, L_2 of dim ℓ with dim $(L_1 \cap L_2) = \ell 1$.
- Verify that $F[L_1]|_{L_1 \cap L_2} = F[L_2]|_{L_1 \cap L_2}$.

(Cf. Long Code test, which uses 3 queries.) Some properties:

- Completeness: test always passes if $F[L] = \Lambda|_L$.
- Test is 2-to-2: $F[L_i]|_{L_1 \cap L_2}$ can be extended to $F[L_i]$ in 2 ways.
- Can be converted to 2-to-1 using two tables.

Grassmann agreement test

- Input: For every ℓ -dim subspace L, a linear function F[L] on L.
- Choose L_1, L_2 of dim ℓ with dim $(L_1 \cap L_2) = \ell 1$.
- Verify that $F[L_1]|_{L_1 \cap L_2} = F[L_2]|_{L_1 \cap L_2}$.

Soundness:

- If test passes w.p. 1δ then $F[L] = \Lambda|_L$ w.p. $1 \epsilon(\delta)$.
- What happens if test passes with constant probability δ ?

- Guess: can "list decode" into $C(\delta)$ many Λ 's.
- Counterexample 1: $F[L] = \Lambda_{\min L}|_L$.
- Counterexample 2: $F[L] = \Lambda_{\min L^{\perp}}|_{L}$.

Reduction to small-set expansion

An idea of Barak, Kothari, and Steurer.

Grassmann agreement test

- Input: For every ℓ -dim subspace L, a linear function F[L] on L.
- Choose L_1, L_2 of dim ℓ with dim $(L_1 \cap L_2) = \ell 1$.
- Verify that $F[L_1]|_{L_1 \cap L_2} = F[L_2]|_{L_1 \cap L_2}$.

Suppose F passes the test w.p. δ . For random Λ , let

$$S = \{L : F[L] = \Lambda|_L\}.$$

- If $L_1 \in S$ and dim $(L_1 \cap L_2) = \ell 1$ then $\Pr[L_2 \in S] = \delta/2$.
- Hence S has expected expansion $1 \delta/2$.

 \implies can find non-empty S with "small" expansion.

On the Boolean cube, small sets have expansion ≈ 1 . What about the Grassmann scheme? Do all small sets have expansion ≈ 1 ?

- Counterexample 1: $\{L : x \in L\}$ has expansion 1/2.
- Counterexample 2: $\{L : y \perp L\}$ has expansion 1/2.

Grassmann expansion hypothesis

If S has expansion $1 - \delta$ then S has density $\epsilon(\delta)$ inside

$$\{L: x_1, \ldots, x_{C(\delta)} \in L, y_1, \ldots, y_{C(\delta)} \perp L\}.$$

Implies soundness of Grassmann agreement test:

- If *F* passes test w.p. δ then *F* agrees with Λ on $\epsilon(\delta)$ points of $\{L : x_1, \ldots, x_{C(\delta)} \in L, y_1, \ldots, y_{C(\delta)} \perp L\}$.
- Can cover more of the domain by repeated randomization.

Recently proved by Khot, Minzer, and Safra.

Grassmann expansion hypothesis

If S has expansion $1 - \delta$ then S has density $\epsilon(\delta)$ inside

$$\{L: x_1,\ldots,x_{C(\delta)} \in L, y_1,\ldots,y_{C(\delta)} \perp L\}.$$

Proof idea:

- By assumption, $\frac{\langle \mathbf{1}_{\mathcal{S}}, Lap\mathbf{1}_{\mathcal{S}} \rangle}{\langle \mathbf{1}_{\mathcal{S}}, \mathbf{1}_{\mathcal{S}} \rangle} = \delta$.
- Can only happen if $\|1_{S}^{=d}\|/\|1_{S}\| \geq \gamma$ for some small d.
- This implies some lower bound on $\mathbb{E}[(1_S^{=d})^4]$.
- Hypothesis follows by expanding $\mathbb{E}[(1_S^{=d})^4]$. (Hard!)

Actual proof uses the bilinear scheme graph with self-loops.

Robust version of Kruskal-Katona

Kruskal–Katona theorem

If $0 \ll k/n \ll 1$ and $A \subseteq {\binom{[n]}{k}}$ satisfies $0 \ll |A| / {\binom{n}{k}} \ll 1$ then

$$\frac{|\partial A|}{\binom{n}{k+1}} \geq \frac{|A|}{\binom{n}{k}} + \Omega\left(\frac{1}{n}\right).$$

Extremal example: x_i .

Robust Kruskal–Katona (O'Donnell–Wimmer)

Either A has correlation $\Omega(1/n^{\epsilon})$ with some x_i , or

$$\frac{|\partial A|}{\binom{n}{k+1}} \geq \frac{|A|}{\binom{n}{k}} + \Omega\left(\frac{\log n}{n}\right).$$

Follows from KKL on the slice.

Implication: Every monotone function on $\{0,1\}^n$ has correlation $1/2 + \Omega\left(\frac{\log n}{n}\right)$ with one of:

$$0, 1, x_1, ..., x_n, Maj.$$

In fact, for every monotone function f on $\{0,1\}^n$, either

- f has 1ϵ correlation with 0 or 1; or
- f has $1/2 + 1/n^{\epsilon}$ correlation with one of x_1, \ldots, x_n ; or
- f has $1/2 + \Omega\left(\frac{\log n}{n}\right)$ correlation with majority.

Correlation $1/2 + \Omega\left(\frac{\log n}{n}\right)$ is optimal for polynomial size nets (Blum–Burch–Langford).

Can improve size of net to $O(n/\log n)$ using local majorities.