Foresight in sulbmodular optimization

Yuval Filmus, Technion

This is not Uri!

Set Cover

How many sets needed to cover entire universe?

Set Cover

How many sets needed to cover entire universe?

Greedy algorithm:
Repeatedly choose set covering maximum number of new elements

In \boldsymbol{n} approximation

Set Cover

How many sets needed to cover entire universe?

Greedy algorithm:
Repeatedly choose set covering maximum number of new elements

In \boldsymbol{n} approximation

Feige (JACM'98):
Optimal unless NP \subseteq TIME (n^{O} (loglog n)
D. Moshkovitz (2014):

Optimal unless $\mathbf{P}=\mathbf{N P}$

Max k-Cover

How many elements can cover using \boldsymbol{k} sets?

Max k-Cover

How many elements can cover using \boldsymbol{k} sets?

Greedy algorithm:
Repeatedly choose set covering maximum number of new elements

1-1/e approximation
(0.632)

Max k-Cover

How many elements can cover using \boldsymbol{k} sets?

Greedy algorithm:
Repeatedly choose set covering maximum number of new elements

1-1/e approximation
(0.632)

Feige (JACM'98): Optimal unless $\mathrm{P}=\mathrm{NP}$

Partition Max k-Cover

How many elements can cover using k sets, one of each color?

Partition Max k-Cover

How many elements can cover using k sets, one of each color?

Greedy algorithm:
Repeatedly choose set covering maximum number of new elements

1/2 approximation

Partition Max k-Cover

How many elements can cover using k sets, one of each color?

Greedy algorithm:
Repeatedly choose set covering maximum number of new elements

1/2 approximation

Generalizes Max SAT:

- Color: variable
- Set: truth assignment
- Element: clause

Partition Max k-Cover

How many elements can cover using k sets, one of each color?

Random order greedy:
Choose random order of colors. Repeatedly choose set covering maximum number of new elements.
≥ 0.5096 approximation
[Buchbinder, Feldman, F, Garg'19]

Partition Max k-Cover

How many elements can cover using \boldsymbol{k} sets, one of each color?

Random order greedy: Choose random order of colors. Repeatedly choose set covering maximum number of new elements.
≥ 0.5096 approximation
[Buchbinder, Feldman, F, Garg'19]

Srinivasan '01,
Ageev, Sviridenko '04:
LP relaxation
Calinescu, Chekuri, Pál, Vondrák '09: Continuous greedy

1-1/e approximation
Not combinatorial!

Local search?

Locally optimal!

1/2 approximation

Local search?

Loss: Cover fewer elements
Gain: Upper square covered twice

Local search!

Idea:

Give more weight to elements covered multiple times

Local search!

Idea:
Give more weight to elements covered multiple times

F, Ward (2012):
Optimal choice of weights
\rightarrow 1-1/e approximation!
Optimal weights found by solving infinite LP

Multiplicity	Weight
0	0
1	1
2	1.418
3	1.672
4	1.852
5	1.991
k	$\approx C \log k$
$\alpha_{k+1}=(k+1) \alpha_{k}-k \alpha_{k-1}-\frac{1}{e-1}$	

Analyzing local search

Setup:

- Local optimum $S_{1, \ldots, S_{k}}$
- Global optimum $O_{1, \ldots,} O_{k}$

Switching S_{i} and O_{i} doesn't improve objective function cost \Rightarrow

$$
\sum_{i=1}^{k} \operatorname{cost}\left(S_{1}, \ldots, O_{i}, \ldots, S_{k}\right) \leq k \cdot \operatorname{cost}\left(S_{1}, \ldots, S_{k}\right) \quad \text { (local optimality) }
$$

Analyzing local search

Setup:

- Local optimum $S_{1, \ldots, S_{k}}$
- Global optimum $\mathbf{O}_{1, \ldots, O_{k}}$

Switching S_{i} and O_{i} doesn't improve objective function cost \Rightarrow

$$
\sum_{i=1}^{k} \operatorname{cost}\left(S_{1}, \ldots, O_{i}, \ldots, S_{k}\right) \leq k \cdot \operatorname{cost}\left(S_{1}, \ldots, S_{k}\right) \quad \text { (local optimality) }
$$

$N(a, b, c)$ - \# elements appearing:
a times in $S_{1, \ldots, S_{k}}$
b times in O_{1}, \ldots, O_{k}
c times in $S_{1} \cap O_{1}, \ldots, S_{k} \cap O_{k}$
Given weights, can write LP for approximation ratio in variables $N(a, b, c)$:
$\min \left|S_{1} \cup \cdots \cup S_{k}\right|$ s.t. $\left|O_{1} \cup \cdots \cup O_{k}\right|=1$ and "local optimality"

Analyzing local search

Setup:

- Local optimum $S_{1, \ldots, S_{k}}$
- Global optimum $\mathbf{O}_{1, \ldots, O_{k}}$

Switching S_{i} and O_{i} doesn't improve objective function cost \Rightarrow

$$
\sum_{i=1}^{k} \operatorname{cost}\left(S_{1}, \ldots, O_{i}, \ldots, S_{k}\right) \leq k \cdot \operatorname{cost}\left(S_{1}, \ldots, S_{k}\right) \quad \text { (local optimality) }
$$

$N(a, b, c)$ - \# elements appearing:
a times in $S_{1, \ldots, S_{k}}$
b times in O_{1}, \ldots, O_{k}
c times in $S_{1} \cap O_{1}, \ldots, S_{k} \cap O_{k}$
Given weights, can write LP for approximation ratio in variables $N(a, b, c)$:
$\min \left|S_{1} \cup \cdots \cup S_{k}\right|$ s.t. $\left|O_{1} \cup \cdots \cup O_{k}\right|=1$ and "local optimality"
Can find optimal weights using dual LP

Matroids

Setup:

- Local optimum $S_{1, \ldots, S_{k}}$
- Global optimum $O_{1, \ldots,} O_{k}$

Switching S_{i} and O_{i} doesn't improve objective function $\operatorname{cost} \Rightarrow$

$$
\sum_{i=1}^{k} \operatorname{cost}\left(S_{1}, \ldots, O_{i}, \ldots, S_{k}\right) \leq k \cdot \operatorname{cost}\left(S_{1}, \ldots, S_{k}\right) \quad \text { (local optimality) }
$$

Matroids

Setup:

- Local optimum $S_{1, \ldots, S_{k}}$
- Global optimum $O_{1, \ldots,} O_{k}$

Switching S_{i} and O_{i} doesn't improve objective function cost \Rightarrow

$$
\sum_{i=1}^{k} \operatorname{cost}\left(S_{1}, \ldots, O_{i}, \ldots, S_{k}\right) \leq k \cdot \operatorname{cost}\left(S_{1}, \ldots, S_{k}\right) \quad \text { (local optimality) }
$$

Brualdi's lemma:
If S_{1}, \ldots, S_{k} and $O_{1, \ldots}, O_{k}$ are two bases in an arbitrary matroid, can rearrange indices so that $S_{1, \ldots,}, O_{i}, \ldots, S_{k}$ is a basis for all i

Matroids

Setup:

- Local optimum $S_{1, \ldots, S_{k}}$
- Global optimum $\mathbf{O}_{1, \ldots, O_{k}}$

Switching S_{i} and $\boldsymbol{O}_{\boldsymbol{i}}$ doesn't improve objective function cost \Rightarrow

$$
\sum_{i=1}^{k} \operatorname{cost}\left(S_{1}, \ldots, O_{i}, \ldots, S_{k}\right) \leq k \cdot \operatorname{cost}\left(S_{1}, \ldots, S_{k}\right) \quad \text { (local optimality) }
$$

Brualdi's lemma:
If S_{1}, \ldots, S_{k} and $O_{1, \ldots}, O_{k}$ are two bases in an arbitrary matroid, can rearrange indices so that $S_{1, \ldots,}, O_{i}, \ldots, S_{k}$ is a basis for all i

Conclusion: algorithm works for arbitrary matroids

Submodular functions

$f(A)=$ number of elements covered by sets in A

Submodular functions

$f(A)=$ number of elements covered by sets in A

$$
f(\varnothing)=0 \quad \text { Normalization }
$$

Submodular functions

$f(A)=$ number of elements covered by sets in A

Submodular functions

$f(A)=$ number of elements covered by sets in A

$$
f(\varnothing)=0
$$

Normalization

$$
f(A+x) \geq f(A) \quad \text { Monotonicity }
$$

If $A \subseteq B$ then
$\boldsymbol{f}(\mathrm{A}+\boldsymbol{x})-\boldsymbol{f}(\mathrm{A}) \geq$
Submodularity

$f(B+x)-f(B)$

Submodular functions

Alternative definitions:

- Normalization:
- Monotonicity:
- Submodularity:

$$
\begin{array}{ll}
f(\varnothing)=0 & \\
f(A+x)-f(A) \geq 0 & \partial_{x} f \geq 0 \\
f(A+x+y)-f(A+x)-f(A+y)+f(A) \leq 0 & \partial_{x} \partial_{y} f \leq 0 \\
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) &
\end{array}
$$

Submodular functions

Alternative definitions:

- Normalization: $\quad f(\varnothing)=0$
- Monotonicity: $\quad f(A+x)-f(A) \geq 0$
- Submodularity:

$$
\begin{array}{ll}
f(A+x)-f(A) \geq 0 & \partial_{x} f \geq 0 \\
f(A+x+y)-f(A+x)-f(A+y)+f(A) \leq 0 & \partial_{x} \partial_{y} f \leq \\
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) &
\end{array}
$$

Coverage functions characterized by:

$$
\partial_{x_{1}} \cdots \partial_{x_{k}} f \begin{cases}\geq 0 & \text { if } k \text { odd } \\ \leq 0 & \text { if } k \text { even }\end{cases}
$$

Many algorithms for coverage functions only need condition on first two derivatives

Submodular functions

"Max k-cover":
Given monotone submodular f, maximize $f(A)$ over $|A|=k$

Greedy algorithm:
Repeatedly add elements
maximizing value of \boldsymbol{f}
1-1/e approximation

Submodular functions

"Max k-cover":
Given monotone submodular f, maximize $f(A)$ over $|A|=k$

Greedy algorithm:
Repeatedly add elements maximizing value of \boldsymbol{f}

1-1/e approximation
"Partition Max k-cover":
Given monotone submodular f, maximize $f(A)$ over sets A containing one element of each color (k colors)

Greedy: 1/2
Random order greedy: ≥ 0.5096
Continuous greedy: 1-1/e

Submodular functions

"Max k-cover":
Given monotone submodular f, maximize $f(A)$ over $|A|=k$

Greedy algorithm:
Repeatedly add elements maximizing value of \boldsymbol{f}

1-1/e approximation
"Partition Max k-cover":
Given monotone submodular f, maximize $f(A)$ over sets A containing one element of each color (k colors)

Greedy: 1/2
Random order greedy: ≥ 0.5096
Continuous greedy: 1-1/e

Can we generalize our local search algorithm?

Submodular functions

Idea:
Formulate $\operatorname{cost}(A)$ in terms of $f(B)$ for $B \subseteq A$

Submodular functions

Idea:
Formulate $\operatorname{cost}(A)$ in terms of $f(B)$ for $B \subseteq A$

Let $f_{p}(A)=E[f(B)]$, where B is chosen by sampling each element of A w.p. p

De Finetti's theorem: cost is mixture of $\boldsymbol{f}_{\boldsymbol{p}}$

Submodular functions

Idea:
Formulate $\operatorname{cost}(A)$ in terms of $f(B)$ for $B \subseteq A$

Let $f_{p}(A)=E[f(B)]$, where B is chosen by sampling each element of A w.p. p

De Finetti's theorem: cost is mixture of $\boldsymbol{f}_{\boldsymbol{p}}$

$$
\operatorname{cost}(A)=\frac{1}{e-1} \int_{0}^{1} \frac{e^{p}}{p} f_{p}(A) \mathrm{d} p \quad \partial_{x} \operatorname{cost}(A)=\int_{0}^{1} \frac{e^{p}}{e-1}\left(\partial_{x} f\right)_{p}(A) \mathrm{d} p
$$

Submodular functions

Idea:
Formulate $\operatorname{cost}(A)$ in terms of $f(B)$ for $B \subseteq A$

Let $f_{p}(A)=E[f(B)]$, where B is chosen by sampling each element of A w.p. p

De Finetti's theorem: cost is mixture of $\boldsymbol{f}_{\boldsymbol{p}}$

$$
\operatorname{cost}(A)=\frac{1}{e-1} \int_{0}^{1} \frac{e^{p}}{p} f_{p}(A) \mathrm{d} p \quad \partial_{x} \operatorname{cost}(A)=\int_{0}^{1} \frac{e^{p}}{e-1}\left(\partial_{x} f\right)_{p}(A) \mathrm{d} p
$$

F, Ward (2012): 1-1/e approximation for any monotone submodular f !

Continuous greedy

Vondrák (2008)

Competing algorithm for submodular max \boldsymbol{k}-cover:

Maintain feasible solution A
At time $p \in[0,1]$, for each color i, at rate $1 / p$:
Update color i with x maximizing $\left(\partial_{x} f\right)_{p}(A)$

Continuous greedy
 Vondrák (2008)

Competing algorithm for submodular max \boldsymbol{k}-cover:

Maintain feasible solution A
At time $p \in[0,1]$, for each color i, at rate $1 / p$:
Update color i with x maximizing $\left(\partial_{x} f\right)_{p}(A)$

Our cost function considers all times at once:

$$
\operatorname{cost}(A)=\frac{1}{e-1} \int_{0}^{1} \frac{e^{p}}{p} f_{p}(A) \mathrm{d} p \quad \partial_{x} \operatorname{cost}(A)=\int_{0}^{1} \frac{e^{p}}{e-1}\left(\partial_{x} f\right)_{p}(A) \mathrm{d} p
$$

Continuous greedy

Vondrák (2008)

Competing algorithm for submodular max \boldsymbol{k}-cover:

Maintain feasible solution A
At time $p \in[0,1]$, for each color i, at rate $1 / p$:
Update color i with x maximizing $\left(\partial_{x} f\right)_{p}(A)$

Our cost function considers all times at once:

$$
\operatorname{cost}(A)=\frac{1}{e-1} \int_{0}^{1} \frac{e^{p}}{p} f_{p}(A) \mathrm{d} p \quad \partial_{x} \operatorname{cost}(A)=\int_{0}^{1} \frac{e^{p}}{e-1}\left(\partial_{x} f\right)_{p}(A) \mathrm{d} p
$$

Exact connection between the two algorithms is still a mystery!

Open problems

- Deterministic algorithm?

Open problems

- Deterministic algorithm?
- Optimization over perfect matchings in bipartite graph? (More generally, intersection of two or more matroids)

Open problems

- Deterministic algorithm?
- Optimization over perfect matchings in bipartite graph? (More generally, intersection of two or more matroids)
- Tight analysis of random order greedy

Open problems

- Deterministic algorithm?
- Optimization over perfect matchings in bipartite graph? (More generally, intersection of two or more matroids)
- Tight analysis of random order greedy
- Random order greedy with foresight? ("Secretary" variant of partition max k-cover)

Deterministic algorithm?

Our algorithm is randomized since f_{p} can only be computed by sampling Continuous greedy algorithm is randomized for similar reasons

Best known deterministic algorithm:
Residual greedy [Buchbinder, Feldman, Garg '19], 0.5008 approximation

Deterministic algorithm?

Our algorithm is randomized since f_{p} can only be computed by sampling Continuous greedy algorithm is randomized for similar reasons

Best known deterministic algorithm:
Residual greedy [Buchbinder, Feldman, Garg '19], 0.5008 approximation

Similar story for unconstrained submodular maximization:
Feige, Mirrokni, Vondrák '11: deterministic 1/3 approximation Buchbinder, Feldman, Naor, Schwartz '15: randomized 1/2 approximation Buchbinder, Feldman, Naor, Schwartz '15: deterministic 1/3 approximation

Deterministic algorithm?

Our algorithm is randomized since f_{p} can only be computed by sampling Continuous greedy algorithm is randomized for similar reasons

Best known deterministic algorithm:
Residual greedy [Buchbinder, Feldman, Garg '19], 0.5008 approximation

Similar story for unconstrained submodular maximization:
Feige, Mirrokni, Vondrák '11: deterministic 1/3 approximation Buchbinder, Feldman, Naor, Schwartz '15: randomized 1/2 approximation Buchbinder, Feldman, Naor, Schwartz '15: deterministic 1/3 approximation

Happy birthday, Uri!

This is also not Uri!

