
Foresight in 
submodular optimization

Yuval Filmus, Technion

This is not Uri!



Set Cover

How many sets 
needed to cover 
entire universe?



Set Cover

How many sets 
needed to cover 
entire universe?

Greedy algorithm: 
Repeatedly choose set covering 
maximum number of new elements 
 
ln n approximation



Set Cover

How many sets 
needed to cover 
entire universe?

Greedy algorithm: 
Repeatedly choose set covering 
maximum number of new elements 
 
ln n approximation

Feige (JACM’98): 
Optimal unless NP⊆TIME(nO(loglog n)) 

D. Moshkovitz (2014): 
Optimal unless P=NP
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Partition Max k-Cover
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Generalizes Max SAT: 

- Color: variable 
- Set: truth assignment 
- Element: clause
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Partition Max k-Cover

How many elements 
can cover using k sets, 
one of each color?

Srinivasan ’01, 
Ageev, Sviridenko ’04: 
LP relaxation 

Calinescu, Chekuri, Pál, Vondrák ’09: 
Continuous greedy 

1–1/e approximation 
 
Not combinatorial!

Random order greedy: 
Choose random order of colors. 
Repeatedly choose set covering 
maximum number of new elements. 
 
≥0.5096 approximation 
[Buchbinder, Feldman, F, Garg’19]
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Idea: 
Give more weight to elements 
covered multiple times

F, Ward (2012): 
Optimal choice of weights 
➜ 1–1/e approximation! 

Optimal weights found 
by solving infinite LP

Multiplicity Weight
0 0
1 1
2 1.418
3 1.672
4 1.852
5 1.991
k ≈ C log k

αk+1 = (k + 1)αk − kαk−1−
1

e − 1
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N(a,b,c) – # elements appearing: 
   a times in S1,…,Sk 

    b times in O1,…,Ok 
   c times in S1∩O1,…,Sk∩Ok

Given weights, can write LP for approximation ratio in variables N(a,b,c): 

         min |S1∪⋯∪Sk| s.t. |O1∪⋯∪Ok|=1 and “local optimality”

(local optimality)

Can find optimal weights using dual LP
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Matroids
Setup: 

- Local optimum   S1,…,Sk 
- Global optimum O1,…,Ok 

Switching Si and Oi doesn’t improve objective function cost ⇒
k

∑
i=1

cost(S1, …, Oi, …, Sk) ≤ k ⋅ cost(S1, …, Sk)

Brualdi’s lemma: 
If S1,…,Sk and O1,…,Ok are two bases in an arbitrary matroid, 
can rearrange indices so that S1,…,Oi,…,Sk is a basis for all i

(local optimality)

Conclusion: algorithm works for arbitrary matroids
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Submodular functions

f(A+x) ≥ f(A) Monotonicity

If A⊆B then 
f(A+x) – f(A) ≥ 
f(B+x) – f(B)

Submodularity

f(∅) = 0 Normalization

f(A)=number of elements covered by sets in A
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Submodular functions
Alternative definitions:

f(∅)=0 
f(A+x)–f(A)≥0 
f(A+x+y)–f(A+x)–f(A+y)+f(A)≤0 
f(A)+f(B)≥f(A∪B)+f(A∩B)

• Normalization: 
• Monotonicity: 
• Submodularity:

∂xf ≥ 0 
∂x∂yf ≤ 0

Coverage functions characterized by:

∂x1
⋯∂xk

f { ≥ 0 if k odd
≤ 0 if k even

Many algorithms for coverage functions only need condition on first two derivatives
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Submodular functions
“Max k-cover”: 
Given monotone submodular f, 
maximize f(A) over |A|=k 

Greedy algorithm: 
Repeatedly add elements 
maximizing value of f 

1–1/e approximation

“Partition Max k-cover”: 
Given monotone submodular f, 
maximize f(A) over sets A 
containing one element 
of each color (k colors) 

Greedy: 1/2 
Random order greedy: ≥0.5096 
Continuous greedy: 1–1/e 

Can we generalize our local search algorithm?
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Submodular functions
Idea: 
Formulate cost(A) in terms of f(B) for B⊆A 

Let fp(A)=E[f(B)], where B is chosen by sampling each element of A w.p. p

De Finetti’s theorem: cost is mixture of fp

F, Ward (2012): 1–1/e approximation for any monotone submodular f! 

cost(A) =
1

e − 1 ∫
1

0

ep

p
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1
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Competing algorithm for submodular max k-cover:

Maintain feasible solution A 
At time p∈[0,1], for each color i, at rate 1/p: 
    Update color i with x maximizing (∂xf )p(A)

Vondrák (2008)
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Continuous greedy
Competing algorithm for submodular max k-cover:

Maintain feasible solution A 
At time p∈[0,1], for each color i, at rate 1/p: 
    Update color i with x maximizing (∂xf )p(A)

Our cost function considers all times at once:

cost(A) =
1

e − 1 ∫
1

0

ep

p
fp(A) dp ∂xcost(A) = ∫

1

0

ep

e − 1
(∂x f )p(A) dp

Exact connection between the two algorithms is still a mystery!

Vondrák (2008)
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Open problems

• Deterministic algorithm?

• Optimization over perfect matchings in bipartite graph? 
(More generally, intersection of two or more matroids)

• Tight analysis of random order greedy

• Random order greedy with foresight? 
(“Secretary” variant of partition max k-cover)
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Deterministic algorithm?
Our algorithm is randomized since fp can only be computed by sampling 
Continuous greedy algorithm is randomized for similar reasons

Best known deterministic algorithm: 
Residual greedy [Buchbinder, Feldman, Garg ’19], 0.5008 approximation

Similar story for unconstrained submodular maximization: 

Feige, Mirrokni, Vondrák ’11: deterministic 1/3 approximation 
Buchbinder, Feldman, Naor, Schwartz ’15: randomized 1/2 approximation 
Buchbinder, Feldman, Naor, Schwartz ’15: deterministic 1/3 approximation

Buchbinder, Feldman ’16: deterministic 1/2 approximation



Happy birthday, Uri!

This is also not Uri!


