Triangle-intersecting families of graphs

Yuval Filmus

January 31, 2014

1 Simonovits–Sós conjecture

In 1938, Erdős, Ko and Rado proved the basic result known as the Erdős-Ko-Rado theorem: (curiously, the paper [2] was published only in 1961)

Theorem (Erdős–Ko–Rado). Suppose $k \le n/2$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is an intersecting family (any two sets intersect). Then $|\mathcal{F}| \le {\binom{n-1}{k-1}}$. If k < n/2, then this bound is achieved only for dictators (families of the form $\{S \in {\binom{[n]}{k}} : i \in S\}$).

Their paper opened up an entire field in extremal combinatorics. One of the questions, asked by Simonovits and Sós [5] in 1976, concerned triangle-intersecting families. A collection $\mathcal{F} \subseteq 2^{K_n}$ of graphs on *n* vertices is triangle-intersecting if the intersection of any two graphs contains some triangle. It will be convenient to measure such families using the measure $\mu(\mathcal{F}) = |\mathcal{F}|/2^{\binom{n}{2}}$. One way of constructing such a family is a triangle-junta: take a fixed triangle and all graphs containing it. Such a family contains 1/8 of the graphs. Simonovits and Sós conjectured that this is the best that can be achieved, and furthermore triangle-juntas are the unique maximizers. Unfortunately, all they could prove was an upper bound of 1/2, which follows from the fact that a graph and its complement cannot both be in the family.

Chung, Graham, Frankl and Shearer [1] were able to prove an upper bound of 1/4, using Shearer's lemma. The lemma states that if you project the family \mathcal{F} into m subsets X_1, \ldots, X_m such that each element is covered exactly k times, then

$$\mu(\mathcal{F}) \leq \sqrt[k]{\mu(\mathcal{F}_1) \cdots \mu(\mathcal{F}_m)},$$

where \mathcal{F}_i is the projection to X_i , and the measure μ is normalized to be a probability measure on each of the sets. The idea is to take as the sets X_i all complements of complete bipartite graphs. For each bipartite graph G, if we project \mathcal{F} to \overline{G} then we get an intersecting family, since every triangle contains an edge outside of G. Therefore $\mu(\mathcal{F}_i) \leq 1/2$, since \mathcal{F}_i cannot contain both a graph and its complement. On the other hand, each edge appears in half the families, so k = m/2. Therefore $\mu(\mathcal{F}) \leq ((1/2)^m)^{2/m} = 1/4$.

The proof only used the fact that a triangle is not bipartite. It therefore applies for a larger class of families, non-bipartite-intersecting or odd-cycle-intersecting. We can also improve on the proof in another respect. Instead of considering intersecting families, we can consider agreeing families. These are families in which the condition for each pair A, B of sets is applied not to the intersection $A \cap B$ but to the agreement $A \nabla B = \overline{A \triangle B}$, which is the set of positions on which both sets "agree". For any bipartite G, if we project an odd-cycle-agreeing family to \overline{G} then we get an agreeing family, and such families have measure at most 1/2, for the same reason as above. So the bound 1/4 applies even for odd-cycle-agreeing families.

In the rest of the talk, we prove the Simonovits–Sós conjecture for odd-cycle-agreeing families.

2 Hoffman's bound

The basic idea is to use a spectral bound due to Hoffman [3]. The bound, which is a special case of the Lovász bound (better known as the θ function), was devised to bound the size of independent sets in graphs. In our case, the graph is the non-agreement graph of our problem: the vertices are the graphs on n vertices, and the edges connect any two graphs which are not odd-cycle-agreeing. An independent set in this graph is the same as an odd-cycle-agreeing family.

Lemma (Hoffman's bound). Let A be a symmetric matrix indexed by the graphs on n vertices such that (i) $A_{GH} = 0$ whenever G, H are odd-cycle-agreeing, (ii) $A\mathbf{1} = \mathbf{1}$, where $\mathbf{1}$ is the constant vector. For every odd-cycle-agreeing family $\mathcal{F}, \mu(\mathcal{F}) \leq \frac{-\lambda_{\min}}{1-\lambda_{\min}}$, where λ_{\min} is the minimal eigenvalue of A.

Proof. Let f be the characteristic vector of \mathcal{F} . We consider f under the inner product $\langle g,h\rangle = \mathbb{E}g(x)h(x)$. Under this inner product, $\langle f,f\rangle = \langle f,\mathbf{1}\rangle = \mu(\mathcal{F})$. Decompose $f = \mu(\mathcal{F})\mathbf{1} + g$. By construction $g \perp \mathbf{1}$, and so $||g||^2 = ||f||^2 - \mu(\mathcal{F})^2 \langle \mathbf{1},\mathbf{1}\rangle = \mu(\mathcal{F}) - \mu(\mathcal{F})^2$. The conditions on A imply that

$$0 = \langle f, Af \rangle = \mu(\mathcal{F})^2 \langle \mathbf{1}, \mathbf{1} \rangle + \langle g, Ag \rangle \ge \mu(\mathcal{F})^2 - \lambda_{\min} \|g\|^2.$$

Substituting the value of $||g||^2$, we obtain $\mu(\mathcal{F})^2 \leq \lambda_{\min}(\mu(\mathcal{F}) - \mu(\mathcal{F})^2)$, and so $\mu(\mathcal{F}) \leq \lambda_{\min}(1 - \mu(\mathcal{F}))$. The lemma easily follows. \Box

Hoffman's bound isn't always tight, but in our case it is. How do we come up with the matrix A? The first idea is to use some symmetry. If \mathcal{F} is an odd-cycle-agreeing family then so is $\mathcal{F} \oplus G$ given by $(\mathcal{F} \oplus G)(H) = \mathcal{F}(G \oplus H)$. We can do the same operation on the matrix A, by defining $A^{\oplus G}(H, K) = A(H \oplus G, K \oplus G)$. Since $(H \oplus G) \nabla (K \oplus G) = \overline{(H \oplus G)} \oplus (K \oplus G) = \overline{H \oplus K} = H \nabla K$, we see that $A^{\oplus G}$ satisfies condition (i) in Hoffman's bound. It is easy to see that condition (ii) is also satisfied, and furthermore $\lambda_{\min}(A^{\oplus G}) = \lambda_{\min}(A)$. We can therefore consider $A' = \mathbb{E}_G A^{\oplus G}$. Clearly $\lambda_{\min}(A') \geq \lambda_{\min}(A)$, and so since $-\lambda_{\min}/(1 - \lambda_{\min}) = 1 - 1/(1 - \lambda_{\min})$ is decreasing in λ_{\min} , replacing A with A' can only result in a better bound. The matrix A', in turn, is symmetric, that is $A'^{\oplus G} = A'$. A straightforward calculation shows that the Fourier characters $\chi_G(H) = (-1)^{|G \cap H|}$ are all eigenvectors of A', and so consistute its eigenvectors (since they form a basis). Summarizing, without loss of generality we can conclude that A has the Fourier characters as eigenvectors.

We can say even more. The space of 2×2 matrices whose eigenvectors are the Fourier characters is spanned by two matrices: the identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and the swapping matrix $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. As a linear operator, the first matrix leaves its input unaffected, and the second flips it. Taking tensor products, we obtain a basis $B_G(H) = G \oplus H$. When G is the complement of a bipartite graph, B_G satisfies the properties in Hoffman's bound. Condition (ii) is easy to check. To verify condition (i), suppose that H, K are odd-cycle-intersecting. Then $1'_H B_G 1_K = 1'_H 1_{K \oplus G} = [H = K \oplus G] = [H \nabla K = \overline{G}] = 0$, since \overline{G} is bipartite. Therefore all matrices of the form $\sum_G' \alpha_G B_{\overline{G}}$ satisfy the conditions of Hoffman's bound, where G goes over all bipartite graphs, and the α_G sum to 1. A straightforward inductive argument proves the converse: these are all the matrices satisfying the conditions.

It remains to choose the coefficients α_G . To that end, we should understand what the eigenvalues of $B_{\overline{G}}$ look like. The eigenvalues of I are both 1, while X has eigenvalues 1, -1 for its eigenvectors $\chi_{\emptyset}, \chi_{\{1\}}$ (here 1 is a dummy element). The matrix $B_{\overline{G}}$ can be thought of as a tensor product of copies of I and X, where a copy of X is used for each edge in \overline{G} . Therefore the eigenvalue corresponding to χ_H is $\lambda_H = (-1)^{|H \cap \overline{G}|} = (-1)^{|H|} (-1)^{|H \cap G|}$. The general matrix therefore has eigenvalues

$$\lambda_H = (-1)^{|H|} \sum_G' \alpha_G (-1)^{|H \cap G|}.$$

Call a vector of eigenvalues (or *spectrum*) admissible if it can be written in this form, ignoring the condition that the α_G sum to 1. Straightforward induction shows that for each bipartite G and each function $f: G \to \mathbb{R}$, the following spectrum is admissible: $(-1)^{|H|} f(H \cap G)$. Conversely, every feasible spectrum is a linear combination of functions of this form.

At this point, a flash of inspiration is needed. We consider the following process: take a random complete bipartite graph G, and let $q_K(H)$ be the probability that $H \cap G$ is isomorphic to G, and $q_k(H)$ be the probability that $|H \cap G| = k$. By taking the weighted average over all bipartite G, we see that $(-1)^{|H|}q_K(H)$ and $(-1)^{|H|}q_k(H)$ are both admissible spectra. We will be looking for an admissible spectrum of the following form:

$$(-1)^{|H|}\sum_k c_k q_k(H).$$

The intuition here is that for large |H|, this spectrum is close to 0, while for small |H|, we might have enough degrees of freedom to control its minimum. to that end, we consider the following table:

H	$q_0(H)$	$q_1(H)$	$q_2(H)$	$q_3(H)$	$q_4(H)$
Ø	1	0	0	0	0
—	1/2	1/2	0	0	0
\wedge	1/4	1/2	1/4	0	0
\triangle	1/4	0	3/4	0	0
F_4	1/16	1/4	3/8	1/4	1/16
K_4^-	1/8	0	1/4	1/2	1/8

Here F_4 is any forest having 4 edges, and K_4^- is the diamond graph. Note that all rows sum to one, so there is no need to have more columns. The spectrum we're looking for must satisfy $\lambda_{\emptyset} = 1$, and so $c_0 = 1$. We can also deduce other constraints. In order to get a bound of 1/8, the spectrum must satisfy $\lambda_{\min} = -1/7$, and this gives us several inequality constraints. Furthermore, if we plug in a triangle-junta into Hoffman's bound then all the inequalities must be tight. That means that for every non-zero Fourier coefficient in this family, the corresponding eigenvalue must be λ_{\min} . This gives us more constraints. In this way, we can deduce $c_1 = -5/7$, $c_2 = -1/7$ and $4c_3 + c_4 = 3/7$. This gives us one degree of freedom. We arbitrarily choose $c_4 = 0$ to obtain the simplest possible expression,

$$(-1)^{|H|}\left(\frac{1}{7}q_0(H) - \frac{5}{7}q_1(H) - \frac{1}{7}q_2(H) + \frac{3}{28}q_3(H)\right).$$

A miracle happens and the minimal value of this expression, over all graphs, is -1/7. Intuitively, for large |H| this expression is close to zero, while for small |H| we engineered it to obtain the correct eigenvalues. This leaves open the case of medium |H|, which must be tediously checked. We conclude that an odd-cycle-agreeing family has measure at most 1/8, proving the Simonovits–Sós conjecture. Simonovits and Sós conjectured that triangle-juntas are the unique maximal families. In order to prove this, we need to fudge a bit with our spectrum. The problem is that while $\lambda_{\min} = -1/7$, this is obtained on two many eigenvalues: on those corresponding to forests of 1, 2, 4 edges, triangles and diamonds. Fortunately, we can fix that. Consider the expression

$$(-1)^{|H|} \left(\frac{1}{7} q_0(H) - \frac{5}{7} q_1(H) - \frac{1}{7} q_2(H) + \frac{3}{28} q_3(H) + \frac{2}{119} \sum_F' q_F(H) - \frac{2}{119} q_{\Box}(H) \right),$$

where the sum ranges over all forests having exactly 4 edges. Some calculation shows that the minimal eigenvalue is now attained only on forests of 1 or 2 edges and triangles, and furthermore all other eigenvalues are at least -135/952 > -1/7. Suppose now that we have an odd-cycle-agreeing family of measure 1/8. All the inequalities in Hoffman's bound must be tight, and so its Fourier expansion is supported on sets of at most 3 edges. Some simple arguments show that the family must depend on at most 3 edges, and so must be a triangle-semijunta (all graphs which intersect a fixed triangle in a specific way).

One advantage of the spectral approach is that it implies more than just an upper bound and a description of the optimal families: we can also get a stability result, showing that nearly-optimal families are close to optimal families. Consider an odd-cycle-agreeing family \mathcal{F} of measure $1/8 - \epsilon$. Since there is a gap between the minimal eigenvalue and all other ones, an analysis of Hoffman's bound shows that a $1 - O(\epsilon)$ fraction of the Fourier expansion of the characteristic function f of the family lies on the first 3 + 1 levels. A deep theorem of Kindler and Safra [4] then shows that \mathcal{F} is $O(\epsilon)$ -close to a family \mathcal{G} depending on O(1) coordinates. If the family \mathcal{G} is not odd-cycle-aggreeing then consider two non-odd-cycle-agreeing graphs $G, H \in \mathcal{G}$; we can assume that G, H are supported on the O(1) coordinates. For each graph K on the complement of these coordinates, \mathcal{F} can contain at most one of $G \cup K$ and $H \cup \overline{K}$; therefore \mathcal{F} is $\Omega(1)$ -far from \mathcal{G} , and by assuming that ϵ is small enough, we can rule out this case. There are finitely many odd-cycle-agreeing families on the O(1) coordinates which are not triangle-semijuntas, and so if ϵ is small enough, we can also rule out \mathcal{G} being one of them. We conclude that for ϵ small enough, \mathcal{F} is $O(\epsilon)$ -close to a triangle-semijunta. We can drop the assumption on ϵ by adjusting the big O constant, obtaining the complete stability result.

References

- Fan R. K. Chung, Ronald L. Graham, Peter Frankl, and James B. Shearer. Some intersection theorems for ordered sets and graphs. J. Comb. Theory, Ser. A, 43(1):23–37, 1986.
- [2] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313–320, 1961.
- [3] Alan J. Hoffman. On eigenvalues and colorings of graphs, I. In *Graph Theory and its Applica*tions, Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., pages 79–91. Academic Press, New York, 1969.
- [4] Guy Kindler and Shmuel Safra. Noise-resistant Boolean functions are juntas. *Manuscript*.
- [5] Miklós Simonovits and Vera T. Sós. Graph intersection theorems. In Proc. Colloq. Combinatorics and Graph Theory, pages 389–391, Orsay, Paris, 1976.