Triangle-intersecting families of graphs

Yuval Filmus

January 31, 2014

1 Simonovits-Sós conjecture

In 1938, Erdős, Ko and Rado proved the basic result known as the Erdös-Ko-Rado theorem: (curiously, the paper [2] was published only in 1961)

Theorem (Erdős-Ko-Rado). Suppose $k \leq n / 2$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ is an intersecting family (any two sets intersect). Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. If $k<n / 2$, then this bound is achieved only for dictators (families of the form $\left\{S \in\binom{[n]}{k}: i \in S\right\}$).

Their paper opened up an entire field in extremal combinatorics. One of the questions, asked by Simonovits and Sós [5] in 1976, concerned triangle-intersecting families. A collection $\mathcal{F} \subseteq 2^{K_{n}}$ of graphs on n vertices is triangle-intersecting if the intersection of any two graphs contains some triangle. It will be convenient to measure such families using the measure $\mu(\mathcal{F})=|\mathcal{F}| / 2_{\binom{n}{2} \text {. One }}$ way of constructing such a family is a triangle-junta: take a fixed triangle and all graphs containing it. Such a family contains $1 / 8$ of the graphs. Simonovits and Sós conjectured that this is the best that can be achieved, and furthermore triangle-juntas are the unique maximizers. Unfortunately, all they could prove was an upper bound of $1 / 2$, which follows from the fact that a graph and its complement cannot both be in the family.

Chung, Graham, Frankl and Shearer [1] were able to prove an upper bound of $1 / 4$, using Shearer's lemma. The lemma states that if you project the family \mathcal{F} into m subsets X_{1}, \ldots, X_{m} such that each element is covered exactly k times, then

$$
\mu(\mathcal{F}) \leq \sqrt[k]{\mu\left(\mathcal{F}_{1}\right) \cdots \mu\left(\mathcal{F}_{m}\right)}
$$

where \mathcal{F}_{i} is the projection to X_{i}, and the measure μ is normalized to be a probability measure on each of the sets. The idea is to take as the sets X_{i} all complements of complete bipartite graphs. For each bipartite graph G, if we project \mathcal{F} to \bar{G} then we get an intersecting family, since every triangle contains an edge outside of G. Therefore $\mu\left(\mathcal{F}_{i}\right) \leq 1 / 2$, since \mathcal{F}_{i} cannot contain both a graph and its complement. On the other hand, each edge appears in half the families, so $k=m / 2$. Therefore $\mu(\mathcal{F}) \leq\left((1 / 2)^{m}\right)^{2 / m}=1 / 4$.

The proof only used the fact that a triangle is not bipartite. It therefore applies for a larger class of families, non-bipartite-intersecting or odd-cycle-intersecting. We can also improve on the proof in another respect. Instead of considering intersecting families, we can consider agreeing families. These are families in which the condition for each pair A, B of sets is applied not to the intersection $A \cap B$ but to the agreement $A \nabla B=\overline{A \triangle B}$, which is the set of positions on which both sets "agree". For any bipartite G, if we project an odd-cycle-agreeing family to \bar{G} then we get an agreeing family, and such families have measure at most $1 / 2$, for the same reason as above. So the bound $1 / 4$ applies even for odd-cycle-agreeing families.

In the rest of the talk, we prove the Simonovits-Sós conjecture for odd-cycle-agreeing families.

2 Hoffman's bound

The basic idea is to use a spectral bound due to Hoffman [3]. The bound, which is a special case of the Lovász bound (better known as the θ function), was devised to bound the size of independent sets in graphs. In our case, the graph is the non-agreement graph of our problem: the vertices are the graphs on n vertices, and the edges connect any two graphs which are not odd-cycle-agreeing. An independent set in this graph is the same as an odd-cycle-agreeing family.

Lemma (Hoffman's bound). Let A be a symmetric matrix indexed by the graphs on n vertices such that (i) $A_{G H}=0$ whenever G, H are odd-cycle-agreeing, (ii) $A \mathbf{1}=\mathbf{1}$, where $\mathbf{1}$ is the constant vector. For every odd-cycle-agreeing family $\mathcal{F}, \mu(\mathcal{F}) \leq \frac{-\lambda_{\min }}{1-\lambda_{\min }}$, where $\lambda_{\text {min }}$ is the minimal eigenvalue of A.

Proof. Let f be the characteristic vector of \mathcal{F}. We consider f under the inner product $\langle g, h\rangle=\mathbb{E} g(x) h(x)$. Under this inner product, $\langle f, f\rangle=\langle f, \mathbf{1}\rangle=\mu(\mathcal{F})$. Decompose $f=\mu(\mathcal{F}) \mathbf{1}+g$. By construction $g \perp \mathbf{1}$, and so $\|g\|^{2}=\|f\|^{2}-\mu(\mathcal{F})^{2}\langle\mathbf{1}, \mathbf{1}\rangle=\mu(\mathcal{F})-\mu(\mathcal{F})^{2}$. The conditions on A imply that

$$
0=\langle f, A f\rangle=\mu(\mathcal{F})^{2}\langle\mathbf{1}, \mathbf{1}\rangle+\langle g, A g\rangle \geq \mu(\mathcal{F})^{2}-\lambda_{\min }\|g\|^{2} .
$$

Substituting the value of $\|g\|^{2}$, we obtain $\mu(\mathcal{F})^{2} \leq \lambda_{\min }\left(\mu(\mathcal{F})-\mu(\mathcal{F})^{2}\right)$, and so $\mu(\mathcal{F}) \leq \lambda_{\min }(1-$ $\mu(\mathcal{F})$). The lemma easily follows.

Hoffman's bound isn't always tight, but in our case it is. How do we come up with the matrix A ? The first idea is to use some symmetry. If \mathcal{F} is an odd-cycle-agreeing family then so is $\mathcal{F} \oplus G$ given by $(\mathcal{F} \oplus G)(H)=\mathcal{F}(G \oplus H)$. We can do the same operation on the matrix A, by defining $A^{\oplus G}(H, K)=A(H \oplus G, K \oplus G)$. Since $(H \oplus G) \nabla(K \oplus G)=\overline{(H \oplus G) \oplus(K \oplus G)}=\overline{H \oplus K}=H \nabla K$, we see that $A^{\oplus G}$ satisfies condition (i) in Hoffman's bound. It is easy to see that condition (ii) is also satisfied, and furthermore $\lambda_{\min }\left(A^{\oplus G}\right)=\lambda_{\min }(A)$. We can therefore consider $A^{\prime}=\mathbb{E}_{G} A^{\oplus G}$. Clearly $\lambda_{\min }\left(A^{\prime}\right) \geq \lambda_{\min }(A)$, and so since $-\lambda_{\min } /\left(1-\lambda_{\min }=1-1 /\left(1-\lambda_{\min }\right)\right.$ is decreasing in $\lambda_{\min }$, replacing A with A^{\prime} can only result in a better bound. The matrix A^{\prime}, in turn, is symmetric, that is $A^{\prime \oplus G}=A^{\prime}$. A straightforward calculation shows that the Fourier characters $\chi_{G}(H)=(-1)^{|G \cap H|}$ are all eigenvectors of A^{\prime}, and so consistute its eigenvectors (since they form a basis). Summarizing, without loss of generality we can conclude that A has the Fourier characters as eigenvectors.

We can say even more. The space of 2×2 matrices whose eigenvectors are the Fourier characters is spanned by two matrices: the identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the swapping matrix $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. As a linear operator, the first matrix leaves its input unaffected, and the second flips it. Taking tensor products, we obtain a basis $B_{G}(H)=G \oplus H$. When G is the complement of a bipartite graph, B_{G} satisfies the properties in Hoffman's bound. Condition (ii) is easy to check. To verify condition (i), suppose that H, K are odd-cycle-intersecting. Then $1_{H}^{\prime} B_{G} 1_{K}=1_{H}^{\prime} 1_{K \oplus G}=[H=$ $K \oplus G]=[H \nabla K=\bar{G}]=0$, since \bar{G} is bipartite. Therefore all matrices of the form $\sum_{G}^{\prime} \alpha_{G} B_{\bar{G}}$ satisfy the conditions of Hoffman's bound, where G goes over all bipartite graphs, and the α_{G} sum to 1. A straightforward inductive argument proves the converse: these are all the matrices satisfying the conditions.

It remains to choose the coefficients α_{G}. To that end, we should understand what the eigenvalues of $B_{\bar{G}}$ look like. The eigenvalues of I are both 1 , while X has eigenvalues $1,-1$ for its eigenvectors $\left.\chi_{\emptyset}, \chi_{\{ } 1\right\}$ (here 1 is a dummy element). The matrix $B_{\bar{G}}$ can be thought of as a tensor product
of copies of I and X, where a copy of X is used for each edge in \bar{G}. Therefore the eigenvalue corresponding to χ_{H} is $\lambda_{H}=(-1)^{|H \cap \bar{G}|}=(-1)^{|H|}(-1)^{|H \cap G|}$. The general matrix therefore has eigenvalues

$$
\lambda_{H}=(-1)^{|H|} \sum_{G}^{\prime} \alpha_{G}(-1)^{|H \cap G|} .
$$

Call a vector of eigenvalues (or spectrum) admissible if it can be written in this form, ignoring the condition that the α_{G} sum to 1 . Straightforward induction shows that for each bipartite G and each function $f: G \rightarrow \mathbb{R}$, the following spectrum is admissible: $(-1)^{|H|} f(H \cap G)$. Conversely, every feasbile spectrum is a linear combination of functions of this form.

At this point, a flash of inspiration is needed. We consider the following process: take a random complete bipartite graph G, and let $q_{K}(H)$ be the probability that $H \cap G$ is isomorphic to G, and $q_{k}(H)$ be the probability that $|H \cap G|=k$. By taking the weighted average over all bipartite G, we see that $(-1)^{|H|} q_{K}(H)$ and $(-1)^{|H|} q_{k}(H)$ are both admissible spectra. We will be looking for an admissible spectrum of the following form:

$$
(-1)^{|H|} \sum_{k} c_{k} q_{k}(H) .
$$

The intuition here is that for large $|H|$, this spectrum is close to 0 , while for small $|H|$, we might have enough degrees of freedom to control its minimum. to that end, we consider the following table:

H	$q_{0}(H)$	$q_{1}(H)$	$q_{2}(H)$	$q_{3}(H)$	$q_{4}(H)$
\emptyset	1	0	0	0	0
-	$1 / 2$	$1 / 2$	0	0	0
\wedge	$1 / 4$	$1 / 2$	$1 / 4$	0	0
\triangle	$1 / 4$	0	$3 / 4$	0	0
F_{4}	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$
K_{4}^{-}	$1 / 8$	0	$1 / 4$	$1 / 2$	$1 / 8$

Here F_{4} is any forest having 4 edges, and K_{4}^{-}is the diamond graph. Note that all rows sum to one, so there is no need to have more columns. The spectrum we're looking for must satisfy $\lambda_{\emptyset}=1$, and so $c_{0}=1$. We can also deduce other constraints. In order to get a bound of $1 / 8$, the spectrum must satisfy $\lambda_{\min }=-1 / 7$, and this gives us several inequality constraints. Furthermore, if we plug in a triangle-junta into Hoffman's bound then all the inequalities must be tight. That means that for every non-zero Fourier coefficient in this family, the corresponding eigenvalue must be $\lambda_{\min }$. This gives us more constraints. In this way, we can deduce $c_{1}=-5 / 7, c_{2}=-1 / 7$ and $4 c_{3}+c_{4}=3 / 7$. This gives us one degree of freedom. We arbitrarily choose $c_{4}=0$ to obtain the simplest possible expression,

$$
(-1)^{|H|}\left(\frac{1}{7} q_{0}(H)-\frac{5}{7} q_{1}(H)-\frac{1}{7} q_{2}(H)+\frac{3}{28} q_{3}(H)\right) .
$$

A miracle happens and the minimal value of this expression, over all graphs, is $-1 / 7$. Intuitively, for large $|H|$ this expression is close to zero, while for small $|H|$ we engineered it to obtain the correct eigenvalues. This leaves open the case of medium $|H|$, which must be tediously checked. We conclude that an odd-cycle-agreeing family has measure at most $1 / 8$, proving the Simonovits-Sós conjecture.

Simonovits and Sós conjectured that triangle-juntas are the unique maximal families. In order to prove this, we need to fudge a bit with our spectrum. The problem is that while $\lambda_{\min }=-1 / 7$, this is obtained on two many eigenvalues: on those corresponding to forests of $1,2,4$ edges, triangles and diamonds. Fortunately, we can fix that. Consider the expression

$$
(-1)^{|H|}\left(\frac{1}{7} q_{0}(H)-\frac{5}{7} q_{1}(H)-\frac{1}{7} q_{2}(H)+\frac{3}{28} q_{3}(H)+\frac{2}{119} \sum_{F}^{\prime} q_{F}(H)-\frac{2}{119} q_{\square}(H)\right),
$$

where the sum ranges over all forests having exactly 4 edges. Some calculation shows that the minimal eigenvalue is now attained only on forests of 1 or 2 edges and triangles, and furthermore all other eigenvalues are at least $-135 / 952>-1 / 7$. Suppose now that we have an odd-cycleagreeing family of measure $1 / 8$. All the inequalities in Hoffman's bound must be tight, and so its Fourier expansion is supported on sets of at most 3 edges. Some simple arguments show that the family must depend on at most 3 edges, and so must be a triangle-semijunta (all graphs which intersect a fixed triangle in a specific way).

One advantage of the spectral approach is that it implies more than just an upper bound and a description of the optimal families: we can also get a stability result, showing that nearly-optimal families are close to optimal families. Consider an odd-cycle-agreeing family \mathcal{F} of measure $1 / 8-\epsilon$. Since there is a gap between the minimal eigenvalue and all other ones, an analysis of Hoffman's bound shows that a $1-O(\epsilon)$ fraction of the Fourier expansion of the characteristic function f of the family lies on the first $3+1$ levels. A deep theorem of Kindler and Safra [4] then shows that \mathcal{F} is $O(\epsilon)$-close to a family \mathcal{G} depending on $O(1)$ coordinates. If the family \mathcal{G} is not odd-cycle-aggreeing then consider two non-odd-cycle-agreeing graphs $G, H \in \mathcal{G}$; we can assume that G, H are supported on the $O(1)$ coordinates. For each graph K on the complement of these coordinates, \mathcal{F} can contain at most one of $G \cup K$ and $H \cup \bar{K}$; therefore \mathcal{F} is $\Omega(1)$-far from \mathcal{G}, and by assuming that ϵ is small enough, we can rule out this case. There are finitely many odd-cycle-agreeing families on the $O(1)$ coordinates which are not triangle-semijuntas, and so if ϵ is small enough, we can also rule out \mathcal{G} being one of them. We conclude that for ϵ small enough, \mathcal{F} is $O(\epsilon)$-close to a triangle-semijunta. We can drop the assumption on ϵ by adjusting the big O constant, obtaining the complete stability result.

References

[1] Fan R. K. Chung, Ronald L. Graham, Peter Frankl, and James B. Shearer. Some intersection theorems for ordered sets and graphs. J. Comb. Theory, Ser. A, 43(1):23-37, 1986.
[2] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
[3] Alan J. Hoffman. On eigenvalues and colorings of graphs, I. In Graph Theory and its Applications, Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., pages 79-91. Academic Press, New York, 1969.
[4] Guy Kindler and Shmuel Safra. Noise-resistant Boolean functions are juntas. Manuscript.
[5] Miklós Simonovits and Vera T. Sós. Graph intersection theorems. In Proc. Colloq. Combinatorics and Graph Theory, pages 389-391, Orsay, Paris, 1976.

