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1 Simonovits–Sós conjecture

In 1938, Erdős, Ko and Rado proved the basic result known as the Erdős–Ko–Rado theorem:
(curiously, the paper [2] was published only in 1961)

Theorem (Erdős–Ko–Rado). Suppose k ≤ n/2 and F ⊆
([n]
k

)
is an intersecting family (any

two sets intersect). Then |F| ≤
(
n−1
k−1

)
. If k < n/2, then this bound is achieved only for dictators

(families of the form {S ∈
([n]
k

)
: i ∈ S}).

Their paper opened up an entire field in extremal combinatorics. One of the questions, asked
by Simonovits and Sós [5] in 1976, concerned triangle-intersecting families. A collection F ⊆ 2Kn

of graphs on n vertices is triangle-intersecting if the intersection of any two graphs contains some
triangle. It will be convenient to measure such families using the measure µ(F) = |F|/2(n

2). One
way of constructing such a family is a triangle-junta: take a fixed triangle and all graphs containing
it. Such a family contains 1/8 of the graphs. Simonovits and Sós conjectured that this is the best
that can be achieved, and furthermore triangle-juntas are the unique maximizers. Unfortunately,
all they could prove was an upper bound of 1/2, which follows from the fact that a graph and its
complement cannot both be in the family.

Chung, Graham, Frankl and Shearer [1] were able to prove an upper bound of 1/4, using
Shearer’s lemma. The lemma states that if you project the family F into m subsets X1, . . . , Xm

such that each element is covered exactly k times, then

µ(F) ≤ k
√
µ(F1) · · ·µ(Fm),

where Fi is the projection to Xi, and the measure µ is normalized to be a probability measure on
each of the sets. The idea is to take as the sets Xi all complements of complete bipartite graphs.
For each bipartite graph G, if we project F to G then we get an intersecting family, since every
triangle contains an edge outside of G. Therefore µ(Fi) ≤ 1/2, since Fi cannot contain both a
graph and its complement. On the other hand, each edge appears in half the families, so k = m/2.
Therefore µ(F) ≤ ((1/2)m)2/m = 1/4.

The proof only used the fact that a triangle is not bipartite. It therefore applies for a larger
class of families, non-bipartite-intersecting or odd-cycle-intersecting. We can also improve on the
proof in another respect. Instead of considering intersecting families, we can consider agreeing
families. These are families in which the condition for each pair A,B of sets is applied not to the
intersection A∩B but to the agreement AOB = A4B, which is the set of positions on which both
sets “agree”. For any bipartite G, if we project an odd-cycle-agreeing family to G then we get an
agreeing family, and such families have measure at most 1/2, for the same reason as above. So the
bound 1/4 applies even for odd-cycle-agreeing families.
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In the rest of the talk, we prove the Simonovits–Sós conjecture for odd-cycle-agreeing families.

2 Hoffman’s bound

The basic idea is to use a spectral bound due to Hoffman [3]. The bound, which is a special case of
the Lovász bound (better known as the θ function), was devised to bound the size of independent
sets in graphs. In our case, the graph is the non-agreement graph of our problem: the vertices are
the graphs on n vertices, and the edges connect any two graphs which are not odd-cycle-agreeing.
An independent set in this graph is the same as an odd-cycle-agreeing family.

Lemma (Hoffman’s bound). Let A be a symmetric matrix indexed by the graphs on n
vertices such that (i) AGH = 0 whenever G,H are odd-cycle-agreeing, (ii) A1 = 1, where 1 is the
constant vector. For every odd-cycle-agreeing family F , µ(F) ≤ −λmin

1−λmin
, where λmin is the minimal

eigenvalue of A.
Proof. Let f be the characteristic vector of F . We consider f under the inner product

〈g, h〉 = Eg(x)h(x). Under this inner product, 〈f, f〉 = 〈f,1〉 = µ(F). Decompose f = µ(F)1 + g.
By construction g ⊥ 1, and so ‖g‖2 = ‖f‖2 − µ(F)2〈1,1〉 = µ(F) − µ(F)2. The conditions on A
imply that

0 = 〈f,Af〉 = µ(F)2〈1,1〉+ 〈g,Ag〉 ≥ µ(F)2 − λmin‖g‖2.

Substituting the value of ‖g‖2, we obtain µ(F)2 ≤ λmin(µ(F) − µ(F)2), and so µ(F) ≤ λmin(1 −
µ(F)). The lemma easily follows. �

Hoffman’s bound isn’t always tight, but in our case it is. How do we come up with the matrix
A? The first idea is to use some symmetry. If F is an odd-cycle-agreeing family then so is F ⊕G
given by (F ⊕ G)(H) = F(G ⊕H). We can do the same operation on the matrix A, by defining
A⊕G(H,K) = A(H⊕G,K⊕G). Since (H⊕G)O(K⊕G) = (H ⊕G)⊕ (K ⊕G) = H ⊕K = HOK,
we see that A⊕G satisfies condition (i) in Hoffman’s bound. It is easy to see that condition (ii)
is also satisfied, and furthermore λmin(A⊕G) = λmin(A). We can therefore consider A′ = EGA⊕G.
Clearly λmin(A′) ≥ λmin(A), and so since −λmin/(1−λmin = 1− 1/(1−λmin) is decreasing in λmin,
replacing A with A′ can only result in a better bound. The matrix A′, in turn, is symmetric, that
is A′⊕G = A′. A straightforward calculation shows that the Fourier characters χG(H) = (−1)|G∩H|

are all eigenvectors of A′, and so consistute its eigenvectors (since they form a basis). Summarizing,
without loss of generality we can conclude that A has the Fourier characters as eigenvectors.

We can say even more. The space of 2×2 matrices whose eigenvectors are the Fourier characters

is spanned by two matrices: the identity matrix I =
(

1 0
0 1

)
and the swapping matrix X =

(
0 1
1 0

)
.

As a linear operator, the first matrix leaves its input unaffected, and the second flips it. Taking
tensor products, we obtain a basis BG(H) = G ⊕ H. When G is the complement of a bipartite
graph, BG satisfies the properties in Hoffman’s bound. Condition (ii) is easy to check. To verify
condition (i), suppose that H,K are odd-cycle-intersecting. Then 1′HBG1K = 1′H1K⊕G = [H =
K ⊕ G] = [HOK = G] = 0, since G is bipartite. Therefore all matrices of the form

∑′
G αGBG

satisfy the conditions of Hoffman’s bound, where G goes over all bipartite graphs, and the αG
sum to 1. A straightforward inductive argument proves the converse: these are all the matrices
satisfying the conditions.

It remains to choose the coefficients αG. To that end, we should understand what the eigenvalues
of BG look like. The eigenvalues of I are both 1, while X has eigenvalues 1,−1 for its eigenvectors
χ∅, χ{1} (here 1 is a dummy element). The matrix BG can be thought of as a tensor product
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of copies of I and X, where a copy of X is used for each edge in G. Therefore the eigenvalue
corresponding to χH is λH = (−1)|H∩G| = (−1)|H|(−1)|H∩G|. The general matrix therefore has
eigenvalues

λH = (−1)|H|
′∑
G

αG(−1)|H∩G|.

Call a vector of eigenvalues (or spectrum) admissible if it can be written in this form, ignoring the
condition that the αG sum to 1. Straightforward induction shows that for each bipartite G and
each function f : G→ R, the following spectrum is admissible: (−1)|H|f(H ∩G). Conversely, every
feasbile spectrum is a linear combination of functions of this form.

At this point, a flash of inspiration is needed. We consider the following process: take a random
complete bipartite graph G, and let qK(H) be the probability that H ∩G is isomorphic to G, and
qk(H) be the probability that |H ∩ G| = k. By taking the weighted average over all bipartite G,
we see that (−1)|H|qK(H) and (−1)|H|qk(H) are both admissible spectra. We will be looking for
an admissible spectrum of the following form:

(−1)|H|
∑
k

ckqk(H).

The intuition here is that for large |H|, this spectrum is close to 0, while for small |H|, we might
have enough degrees of freedom to control its minimum. to that end, we consider the following
table:

H q0(H) q1(H) q2(H) q3(H) q4(H)
∅ 1 0 0 0 0
− 1/2 1/2 0 0 0
∧ 1/4 1/2 1/4 0 0
4 1/4 0 3/4 0 0
F4 1/16 1/4 3/8 1/4 1/16
K−4 1/8 0 1/4 1/2 1/8

Here F4 is any forest having 4 edges, and K−4 is the diamond graph. Note that all rows sum to one,
so there is no need to have more columns. The spectrum we’re looking for must satisfy λ∅ = 1, and
so c0 = 1. We can also deduce other constraints. In order to get a bound of 1/8, the spectrum must
satisfy λmin = −1/7, and this gives us several inequality constraints. Furthermore, if we plug in a
triangle-junta into Hoffman’s bound then all the inequalities must be tight. That means that for
every non-zero Fourier coefficient in this family, the corresponding eigenvalue must be λmin. This
gives us more constraints. In this way, we can deduce c1 = −5/7, c2 = −1/7 and 4c3 + c4 = 3/7.
This gives us one degree of freedom. We arbitrarily choose c4 = 0 to obtain the simplest possible
expression,

(−1)|H|
(

1
7
q0(H)− 5

7
q1(H)− 1

7
q2(H) +

3
28
q3(H)

)
.

A miracle happens and the minimal value of this expression, over all graphs, is −1/7. Intuitively, for
large |H| this expression is close to zero, while for small |H| we engineered it to obtain the correct
eigenvalues. This leaves open the case of medium |H|, which must be tediously checked. We
conclude that an odd-cycle-agreeing family has measure at most 1/8, proving the Simonovits–Sós
conjecture.
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Simonovits and Sós conjectured that triangle-juntas are the unique maximal families. In order
to prove this, we need to fudge a bit with our spectrum. The problem is that while λmin = −1/7,
this is obtained on two many eigenvalues: on those corresponding to forests of 1, 2, 4 edges, triangles
and diamonds. Fortunately, we can fix that. Consider the expression

(−1)|H|
(

1
7
q0(H)− 5

7
q1(H)− 1

7
q2(H) +

3
28
q3(H) +

2
119

′∑
F

qF (H)− 2
119

q�(H)

)
,

where the sum ranges over all forests having exactly 4 edges. Some calculation shows that the
minimal eigenvalue is now attained only on forests of 1 or 2 edges and triangles, and furthermore
all other eigenvalues are at least −135/952 > −1/7. Suppose now that we have an odd-cycle-
agreeing family of measure 1/8. All the inequalities in Hoffman’s bound must be tight, and so its
Fourier expansion is supported on sets of at most 3 edges. Some simple arguments show that the
family must depend on at most 3 edges, and so must be a triangle-semijunta (all graphs which
intersect a fixed triangle in a specific way).

One advantage of the spectral approach is that it implies more than just an upper bound and a
description of the optimal families: we can also get a stability result, showing that nearly-optimal
families are close to optimal families. Consider an odd-cycle-agreeing family F of measure 1/8− ε.
Since there is a gap between the minimal eigenvalue and all other ones, an analysis of Hoffman’s
bound shows that a 1−O(ε) fraction of the Fourier expansion of the characteristic function f of the
family lies on the first 3 + 1 levels. A deep theorem of Kindler and Safra [4] then shows that F is
O(ε)-close to a family G depending on O(1) coordinates. If the family G is not odd-cycle-aggreeing
then consider two non-odd-cycle-agreeing graphs G,H ∈ G; we can assume that G,H are supported
on the O(1) coordinates. For each graph K on the complement of these coordinates, F can contain
at most one of G ∪K and H ∪K; therefore F is Ω(1)-far from G, and by assuming that ε is small
enough, we can rule out this case. There are finitely many odd-cycle-agreeing families on the O(1)
coordinates which are not triangle-semijuntas, and so if ε is small enough, we can also rule out G
being one of them. We conclude that for ε small enough, F is O(ε)-close to a triangle-semijunta.
We can drop the assumption on ε by adjusting the big O constant, obtaining the complete stability
result.
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