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Linear functions

Suppose f : {−1, 1}n → {−1, 1} is linear:

f (x1, . . . , xn) = c0 +
n∑

i=1

cixi .

Theorem: f depends on at most one coordinate.
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Almost linear functions

Suppose f : {−1, 1}n → {−1, 1} is almost linear:

E

(c0 +
n∑

i=1

cixi − f

)2
 = ε.

Distribution over {−1, 1}n: uniform or µp.

µp(x1, . . . , xn) = p#{i :xi=−1}|(1− p)#{i :xi=1}.

Theorem: f is O(ε)-close to a linear Boolean function.
(Friedgut–Kalai–Naor, 2002)
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(Almost) low-degree functions

If f : {−1, 1}n → {−1, 1} has degree d then
f depends on ≤ d2d variables.

(Nisan–Szegedy, 1994)

If f : {−1, 1}n → {−1, 1} is ε-close to a function of degree d then
f is O(ε)-close to a Boolean function of degree d .

(Kindler–Safra, 2002)

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Boolean cube
Slice (Johnson scheme)
Symmetric group

(Almost) low-degree functions

If f : {−1, 1}n → {−1, 1} has degree d then
f depends on ≤ d2d variables.

(Nisan–Szegedy, 1994)

If f : {−1, 1}n → {−1, 1} is ε-close to a function of degree d then
f is O(ε)-close to a Boolean function of degree d .

(Kindler–Safra, 2002)

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Boolean cube
Slice (Johnson scheme)
Symmetric group

Functions on the slice

The slice is
([n]
k

)
.

Usually assume δ ≤ k
n ≤ 1− δ.

Can identify the slice with{
(x1, . . . , xn) ∈ {±1}n :

n∑
i=1

xi = 2k − n

}
.
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Almost linear functions

Suppose f :
([n]
k

)
→ {−1, 1} is almost linear:

E

( n∑
i=1

cixi − f

)2
 = ε.

Uniform distribution on
([n]
k

)
.

Theorem: f is O(ε)-close to a linear Boolean function.
(F. et al., 2013+)
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(Almost) low-degree functions

If f :
([n]
k

)
→ {−1, 1} has degree d then

f depends on exp(d) variables.
(F. et al., 2013+)

Conjecture: If f :
([n]
k

)
→ {−1, 1} is ε-close to a function of degree

d then f is O(ε)-close to a Boolean function of degree d .
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Functions on the slice

The symmetric group is Sn.

Can identify Sn with permutation matrices X = (xij)
n
i ,j=1.

Each entry is 0/1, each row and each column sums to 1.
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Linear functions

Suppose f : Sn → {0, 1} is linear:

f (X ) =
n∑

i ,j=1

cijxij .

Theorem: f depends on at most one row or one column.

f (π) = Jπ(i) ∈ JK

or

f (π) = Jπ−1(j) ∈ I K

(Ellis, Friedgut and Pilpel, 2011)
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Almost linear functions

Suppose f : Sn → {0, 1} is almost linear:

E

 n∑
i ,j=1

cijxi − f

2 = ε.

Uniform distribution on Sn.

Theorem: If f is balanced, f is O(ε1/7)-close to a linear Boolean
function.
Theorem: If f is sparse, f is O(ε1/2)-close to a function of the form

max(xi1j1 , . . . , xir jr ),

i.e., characteristic function of a union of double cosets

Tij = {π ∈ Sn : π(i) = j}.
Sparse means E[f ] = c/n for small c .

(Ellis, F., Friedgut, 2014)
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(Almost) low-degree functions

If f : Sn → {0, 1} has degree d then
f can be written as a sum of disjoint monomials of degree d .
I.e., f is characteristic function of disjoint sum of double d-cosets

Ti1j1 ∩ · · · ∩ Tid jd .

(Ellis, Friedgut and Pilpel, 2011)

Theorem: If f is sparse, f is O(ε1/2)-close to the characteristic
function of a union of double d-cosets.
Sparse means E[f ] = c/nd for small c .

(Ellis, F., Friedgut, 2014)
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Erdős–Ko–Rado theorems

Erdős–Ko–Rado theorem (1938/1961):

If k < n/2 and F ⊆
([n]
k

)
is intersecting, then

|F| ≤
(
n − 1

k − 1

)
.

Equality only for F = {S ∈
([n]
k

)
: i ∈ S} (“star”).

If p < 1/2 and F ∈ 2[n] is intersecting, then µp(F) ≤ p.
Equality only for F = {S ∈ 2[n] : i ∈ S}.

(Friedgut, 2008)

If F ⊆ Sn is intersecting, then |F| ≤ (n − 1)!.
Equality only for F = {π ∈ Sn : π(i) = j}.

(Deza–Frankl, 1977); (Cameron–Ku, 2003)
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Erdős–Ko–Rado theorems
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Stability versions

If k < n/2, F ⊆
([n]
k

)
is intersecting,

and |F| ≈
(n−1
k−1
)
, then F is close to a star.

(Frankl, 1987)

If p < 1/2, F ∈ 2[n] is intersecting,
and µp(F) ≈ p, then F is close to a star.

(Friedgut, 2008)

If F ⊆ Sn is intersecting
and |F| ≈ (n − 1)!, then F is close to a star.

(Ellis, 2009)
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Stability and structure theorems

Stability theorems follow from structure theorems.
Example: Intersecting families in 2[n].
Let f be characteristic function of an intersecting family.
Friedgut constructs a quadratic form Q such that 〈f ,Qf 〉 = 0.
Spectral decomposition of Q implies

∑
S⊆[n]

(
− p

1− p

)|S |
f̂ (S)2 = 0.

Also know f̂ (∅) =
∑

S f̂ (S)2 = µp(F).
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Stability and structure theorems

For characteristic function f of intersecting family F :

∑
S⊆[n]

(
− p

1− p

)|S |
f̂ (S)2 = 0.

Also know f̂ (∅) =
∑

S f̂ (S)2 = µp(F).

µp(F) ≤ p.

If µp(F) = p then f̂ is supported on first two levels.

If µp(F) ≈ p then f̂ is concentrated on first two levels.

Friedgut–Kalai–Naor gives stability.
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Multiple intersections

If n ≥ (t + 1)(k − t − 1) and F is t-intersecting, then

|F| ≤
(
n − t

k − t

)
.

Equality only for F = {S ∈
([n]
k

)
: i1, . . . , it ∈ S} (“t-star”).

(Frankl, 1984)

If p < 1/(t + 1) and F ∈ 2[n] is t-intersecting, then µp(F) ≤ pt .
Equality only for F = {S ∈ 2[n] : i1, . . . , it ∈ S}.

(Friedgut, 2008)

If n ≥ Ct and F ⊆ Sn is t-intersecting, then |F| ≤ (n − t)!.
Equality only for F = {π ∈ Sn : π(i1) = j1, . . . , π(it) = jt}.
Ct should be equal to 2t + 1.

(Ellis, Friedgut and Pilpel, 2011)

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Theorems
Connection to structure theorems
Multiple intersections

Multiple intersections

If n ≥ (t + 1)(k − t − 1) and F is t-intersecting, then

|F| ≤
(
n − t

k − t

)
.

Equality only for F = {S ∈
([n]
k

)
: i1, . . . , it ∈ S} (“t-star”).

(Frankl, 1984)

If p < 1/(t + 1) and F ∈ 2[n] is t-intersecting, then µp(F) ≤ pt .
Equality only for F = {S ∈ 2[n] : i1, . . . , it ∈ S}.

(Friedgut, 2008)

If n ≥ Ct and F ⊆ Sn is t-intersecting, then |F| ≤ (n − t)!.
Equality only for F = {π ∈ Sn : π(i1) = j1, . . . , π(it) = jt}.
Ct should be equal to 2t + 1.

(Ellis, Friedgut and Pilpel, 2011)

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Theorems
Connection to structure theorems
Multiple intersections

Multiple intersections

If n ≥ (t + 1)(k − t − 1) and F is t-intersecting, then

|F| ≤
(
n − t

k − t

)
.

Equality only for F = {S ∈
([n]
k

)
: i1, . . . , it ∈ S} (“t-star”).

(Frankl, 1984)

If p < 1/(t + 1) and F ∈ 2[n] is t-intersecting, then µp(F) ≤ pt .
Equality only for F = {S ∈ 2[n] : i1, . . . , it ∈ S}.

(Friedgut, 2008)

If n ≥ Ct and F ⊆ Sn is t-intersecting, then |F| ≤ (n − t)!.
Equality only for F = {π ∈ Sn : π(i1) = j1, . . . , π(it) = jt}.
Ct should be equal to 2t + 1.

(Ellis, Friedgut and Pilpel, 2011)

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Theorems
Connection to structure theorems
Multiple intersections

Multiple intersections: stability

Conjecture: if n ≥ (t + 1)(k − t − 1), F is t-intersecting,
and |F| ≈

(n−t
k−t
)
, then F is close to a t-star.

If p < 1/(t + 1), F ∈ 2[n] is t-intersecting,
and µp(F) ≈ pt , then F is close to a t-star.

(Friedgut, 2008), proof uses (Kindler–Safra, 2002)

If n ≥ Ct , F ⊆ Sn is t-intersecting,
and |F| ≈ (n − t)!, then F is close to a t-star.

(Ellis, 2011)
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Proof sketch

Suppose f :
( [n]
n/2

)
→ {−1, 1} is ε-close to a linear function:

f (x1, . . . , xn) ≈
n∑

i=1

cixi =: `.

(Recall
∑n

i=1 xi = 0.)

1 For each i , either xi ≈ ±1 or xi ≈ 0.

2 xi ≈ ±1 for at most one i .

3 Reduce to the case xi ≈ 0 for all i .

4 Apply Friedgut–Kalai–Naor.
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Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

{a1, b1} × · · · × {an/2, bn/2}.

Corresponding restriction of ` is

g(y1, . . . , yn) = C +
1

2

n/2∑
i=1

(cai − cbi )yi .

Friedgut–Kalai–Naor over a random subcube implies

n

2

n∑
i ,j=1

(ci − cj)
2 = O(ε).

Left-hand side upper bounds the variance of `.
Since V[`] = O(ε), E[`] ≈ ±1. We are done since f ≈ `.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

{a1, b1} × · · · × {an/2, bn/2}.

Corresponding restriction of ` is

g(y1, . . . , yn) = C +
1

2

n/2∑
i=1

(cai − cbi )yi .

Friedgut–Kalai–Naor over a random subcube implies

n

2

n∑
i ,j=1

(ci − cj)
2 = O(ε).

Left-hand side upper bounds the variance of `.
Since V[`] = O(ε), E[`] ≈ ±1. We are done since f ≈ `.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

{a1, b1} × · · · × {an/2, bn/2}.

Corresponding restriction of ` is

g(y1, . . . , yn) = C +
1

2

n/2∑
i=1

(cai − cbi )yi .

Friedgut–Kalai–Naor over a random subcube implies

n

2

n∑
i ,j=1

(ci − cj)
2 = O(ε).

Left-hand side upper bounds the variance of `.
Since V[`] = O(ε), E[`] ≈ ±1. We are done since f ≈ `.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {0, 1} is sparse (Ef = c/n) and close to its
linear projection `.

1 Let bij = |F ∩ Tij |/|Tij | − |F|/|Sn|.
2 Let h =

∑
ij bijxij .

3 E[h2] ≈ 1
n

∑
ij b

2
ij , E[h3] ≈ 1

n

∑
ij b

3
ij .

4 Since f ≈ `, can estimate E[h2] ≈ c/n.

5 Since h & 0 and h is close to Boolean, E[h3] & c/n.

6 So
∑

ij b
2
ij(1− bij) . 0.

7 So for each i , j , either bij ≈ 0 or bij ≈ 1.

8 Roughly c of the bij are close to 1.

9 F is approximated by union of the corresponding Tij .
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Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions



Theorems
Applications

Proofs

Almost linear functions on slice
Almost linear functions on Sn (sparse case)
Almost linear functions on Sn (balanced case)

Proof sketch

Suppose f : Sn → {−1, 1} is balanced (Ef = 0) and close to its
linear projection `.

1 Let aij = n−1
n! |F ∩ Tij |, so f (π) =

∑n
i=1 aiπ(i).

2 For random X ,Y , consider f |π(X )=Y = g1(π|X ) + g2(π|X ).

3 For most X ,Y , f |π(X )=Y close to Boolean (“(X ,Y ) good”).

4 Since g1, g2 are “independent”, one must be ≈ 0, the other
close to Boolean.

5 For most π ∈ Sn, most pairs (X , π(X )) are good.

6 So g1(π|X ) =
∑

i∈X aiπ(i) ≈ 0, 1 (or 0,−1) w.p. ≈ 1.

7 Friedgut–Kalai–Naor: aiπ(i) ≈ 0 for all i with ≤ 1 exception.

8 Can only happen if all “strong” entries of (aij) concentrated
on one row or column.

9 f essentially depends only on this strong row or column.

Yuval Filmus Structure theorems for almost low degree functions


	Theorems
	Boolean cube
	Slice (Johnson scheme)
	Symmetric group

	Applications
	Theorems
	Connection to structure theorems
	Multiple intersections

	Proofs
	Almost linear functions on slice
	Almost linear functions on Sn (sparse case)
	Almost linear functions on Sn (balanced case)


