Structure theorems for almost low degree functions

Yuval Filmus

Institute for Advanced Study

April 8, 2014

Yuval Filmus Structure theorems for almost low degree functions

Outline

Theorems

- Boolean cube
- Slice (Johnson scheme)
- Symmetric group

2 Applications

- Theorems
- Connection to structure theorems
- Multiple intersections

3 Proofs

- Almost linear functions on slice
- Almost linear functions on S_n (sparse case)
- Almost linear functions on S_n (balanced case)

 Theorems
 Boolean cube

 Applications
 Slice (Johnson sch

 Proofs
 Symmetric group

Section 1

Theorems

<ロ> <同> <同> < 同> < 同>

æ

Boolean cube Slice (Johnson scheme) Symmetric group

Linear functions

Suppose $f: \{-1,1\}^n \rightarrow \{-1,1\}$ is linear:

$$f(x_1,\ldots,x_n)=c_0+\sum_{i=1}^n c_i x_i.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Boolean cube Slice (Johnson scheme) Symmetric group

Linear functions

Suppose $f: \{-1,1\}^n \rightarrow \{-1,1\}$ is linear:

$$f(x_1,\ldots,x_n)=c_0+\sum_{i=1}^n c_i x_i.$$

Theorem: *f* depends on at most one coordinate.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Boolean cube Slice (Johnson scheme Symmetric group

Almost linear functions

Suppose $f: \{-1,1\}^n \to \{-1,1\}$ is almost linear:

$$\mathbb{E}\left[\left(c_0+\sum_{i=1}^n c_i x_i-f\right)^2\right]=\epsilon.$$

Distribution over $\{-1,1\}^n$: uniform or μ_p .

$$\mu_p(x_1,\ldots,x_n)=p^{\#\{i:x_i=-1\}|}(1-p)^{\#\{i:x_i=1\}}.$$

イロト 不得 トイヨト イヨト 二日

Boolean cube Slice (Johnson scheme Symmetric group

Almost linear functions

Suppose $f: \{-1,1\}^n \to \{-1,1\}$ is almost linear:

$$\mathbb{E}\left[\left(c_0+\sum_{i=1}^n c_i x_i-f\right)^2\right]=\epsilon.$$

Distribution over $\{-1,1\}^n$: uniform or μ_p .

$$\mu_p(x_1,\ldots,x_n)=p^{\#\{i:x_i=-1\}|}(1-p)^{\#\{i:x_i=1\}}.$$

Theorem: f is $O(\epsilon)$ -close to a linear Boolean function. (*Friedgut–Kalai–Naor*, 2002)

イロト イポト イヨト イヨト 二日

Boolean cube Slice (Johnson scheme Symmetric group

(Almost) low-degree functions

If $f: \{-1,1\}^n \to \{-1,1\}$ has degree d then f depends on $\leq d2^d$ variables.

(Nisan-Szegedy, 1994)

- 4 同 6 4 日 6 4 日 6

3

Boolean cube Slice (Johnson scheme Symmetric group

(Almost) low-degree functions

If $f: \{-1,1\}^n \to \{-1,1\}$ has degree d then f depends on $\leq d2^d$ variables.

(Nisan–Szegedy, 1994)

If $f: \{-1,1\}^n \to \{-1,1\}$ is ϵ -close to a function of degree d then f is $O(\epsilon)$ -close to a *Boolean* function of degree d.

(Kindler–Safra, 2002)

・ 同 ト ・ ヨ ト ・ ヨ ト

Boolean cube Slice (Johnson scheme) Symmetric group

Functions on the slice

The slice is $\binom{[n]}{k}$. Usually assume $\delta \leq \frac{k}{n} \leq 1 - \delta$. Can identify the slice with

$$\left\{ (x_1, \ldots, x_n) \in \{\pm 1\}^n : \sum_{i=1}^n x_i = 2k - n \right\}.$$

∃ >

Boolean cube Slice (Johnson scheme) Symmetric group

Linear functions

Suppose $f: \binom{[n]}{k} \to \{-1,1\}$ is linear:

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n c_i x_i.$$

Theorem: *f* depends on at most one coordinate.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Boolean cube Slice (Johnson scheme) Symmetric group

Almost linear functions

Suppose $f: \binom{[n]}{k} \to \{-1, 1\}$ is almost linear:

$$\mathbb{E}\left[\left(\sum_{i=1}^n c_i x_i - f\right)^2\right] = \epsilon.$$

Uniform distribution on $\binom{[n]}{k}$.

Theorem: f is $O(\epsilon)$ -close to a linear Boolean function. (*F. et al., 2013+*)

伺 ト イヨト イヨト

Boolean cube Slice (Johnson scheme) Symmetric group

(Almost) low-degree functions

If
$$f: {[n] \choose k} \to \{-1, 1\}$$
 has degree d then
 f depends on exp (d) variables.
(*F. et al., 2013+*)

< 日 > < 同 > < 三 > < 三 >

3

Boolean cube Slice (Johnson scheme) Symmetric group

(Almost) low-degree functions

If
$$f: {[n] \choose k} \to \{-1,1\}$$
 has degree d then
 f depends on exp (d) variables.
(*F. et al., 2013+*)

Conjecture: If $f: {[n] \choose k} \to \{-1, 1\}$ is ϵ -close to a function of degree d then f is $O(\epsilon)$ -close to a *Boolean* function of degree d.

・ 同 ト ・ ヨ ト ・ ヨ ト

Boolean cube Slice (Johnson scheme) Symmetric group

Functions on the slice

The symmetric group is S_n .

Can identify S_n with permutation matrices $X = (x_{ij})_{i,j=1}^n$. Each entry is 0/1, each row and each column sums to 1.

- A - E - M

Theorems Applications Proofs Symmetric group

Linear functions

Suppose $f: S_n \to \{0, 1\}$ is linear:

$$f(X) = \sum_{i,j=1}^n c_{ij} x_{ij}.$$

Theorem: *f* depends on at most one row or one column.

 $f(\pi) = \llbracket \pi(i) \in J \rrbracket$

or

$$f(\pi) = \llbracket \pi^{-1}(j) \in I \rrbracket$$

(Ellis, Friedgut and Pilpel, 2011)

4 E 6 4 E 6

Boolean cube Slice (Johnson scheme) Symmetric group

Almost linear functions

Suppose $f: S_n \to \{0,1\}$ is almost linear:

$$\mathbb{E}\left[\left(\sum_{i,j=1}^n c_{ij}x_i-f\right)^2\right]=\epsilon.$$

Uniform distribution on S_n .

Theorem: If f is balanced, f is $O(\epsilon^{1/7})$ -close to a linear Boolean function.

Theorem: If f is sparse, f is $O(\epsilon^{1/2})$ -close to a function of the form

$$\max(x_{i_1j_1},\ldots,x_{i_rj_r}),$$

i.e., characteristic function of a union of double cosets

$$T_{ij} = \{\pi \in S_n : \pi(i) = j\}.$$

Sparse means $\mathbb{E}[f] = c/n$ for small c.

(Ellis, F., Friedgut, 2014)

 Theorems
 Boolean cube

 Applications
 Slice (Johnson sci

 Proofs
 Symmetric group

(Almost) low-degree functions

If $f: S_n \to \{0, 1\}$ has degree d then f can be written as a sum of disjoint monomials of degree d. I.e., f is characteristic function of disjoint sum of double d-cosets

$$T_{i_1j_1}\cap\cdots\cap T_{i_dj_d}.$$

(Ellis, Friedgut and Pilpel, 2011)

(4月) (4日) (4日)

 Theorems
 Boolean cube

 Applications
 Slice (Johnson sc

 Proofs
 Symmetric group

(Almost) low-degree functions

If $f: S_n \to \{0, 1\}$ has degree d then f can be written as a sum of disjoint monomials of degree d. I.e., f is characteristic function of disjoint sum of double d-cosets

 $T_{i_1j_1}\cap\cdots\cap T_{i_dj_d}.$

(Ellis, Friedgut and Pilpel, 2011)

Theorem: If f is sparse, f is $O(\epsilon^{1/2})$ -close to the characteristic function of a union of double d-cosets. Sparse means $\mathbb{E}[f] = c/n^d$ for small c. (Ellis, F., Friedgut, 2014)
 Theorems
 Theorems

 Applications
 Connection to structure theor

 Proofs
 Multiple intersections

Section 2

Applications

<ロ> <同> <同> < 同> < 同>

æ

Theorems Connection to structure theorems Multiple intersections

Erdős–Ko–Rado theorems

Erdős–Ko–Rado theorem (1938/1961): If k < n/2 and $\mathcal{F} \subseteq {[n] \choose k}$ is intersecting, then

$$|\mathcal{F}| \le {n-1 \choose k-1}$$

Equality only for $\mathcal{F} = \{S \in {[n] \choose k} : i \in S\}$ ("star").

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Theorems Connection to structure theorems Multiple intersections

Erdős–Ko–Rado theorems

Erdős–Ko–Rado theorem (1938/1961): If k < n/2 and $\mathcal{F} \subseteq {[n] \choose k}$ is intersecting, then

$$|\mathcal{F}| \le {n-1 \choose k-1}$$

Equality only for $\mathcal{F} = \{S \in {[n] \choose k} : i \in S\}$ ("star").

If p < 1/2 and $\mathcal{F} \in 2^{[n]}$ is intersecting, then $\mu_p(\mathcal{F}) \le p$. Equality only for $\mathcal{F} = \{S \in 2^{[n]} : i \in S\}$. (Friedgut, 2008)

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorems Connection to structure theorems Multiple intersections

Erdős–Ko–Rado theorems

Erdős–Ko–Rado theorem (1938/1961): If k < n/2 and $\mathcal{F} \subseteq {[n] \choose k}$ is intersecting, then

$$|\mathcal{F}| \leq {n-1 \choose k-1}$$

Equality only for $\mathcal{F} = \{S \in {[n] \choose k} : i \in S\}$ ("star").

If p < 1/2 and $\mathcal{F} \in 2^{[n]}$ is intersecting, then $\mu_p(\mathcal{F}) \le p$. Equality only for $\mathcal{F} = \{S \in 2^{[n]} : i \in S\}$. (Friedgut, 2008)

If $\mathcal{F} \subseteq S_n$ is intersecting, then $|\mathcal{F}| \le (n-1)!$. Equality only for $\mathcal{F} = \{\pi \in S_n : \pi(i) = j\}$. (Deza–Frankl, 1977); (Cameron–Ku, 2003)

・ 同 ト ・ ヨ ト ・ ヨ ト

If
$$k < n/2$$
, $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is intersecting,
and $|\mathcal{F}| \approx {\binom{n-1}{k-1}}$, then \mathcal{F} is close to a star.
(*Frankl, 1987*)

If
$$p < 1/2$$
, $\mathcal{F} \in 2^{[n]}$ is intersecting,
and $\mu_p(\mathcal{F}) \approx p$, then \mathcal{F} is close to a star.
(*Friedgut*, 2008)

If
$$\mathcal{F} \subseteq S_n$$
 is intersecting
and $|\mathcal{F}| \approx (n-1)!$, then \mathcal{F} is close to a star.
(*Ellis, 2009*)

<ロ> <同> <同> < 同> < 同>

æ

 Theorems
 Theorems

 Applications
 Connection to structure theorems

 Proofs
 Multiple intersections

Stability and structure theorems

Stability theorems follow from structure theorems.

Example: Intersecting families in $2^{[n]}$.

Let f be characteristic function of an intersecting family.

Friedgut constructs a quadratic form Q such that $\langle f, Qf \rangle = 0$. Spectral decomposition of Q implies

$$\sum_{S\subseteq [n]} \left(-\frac{p}{1-p}\right)^{|S|} \hat{f}(S)^2 = 0.$$

Also know $\hat{f}(\emptyset) = \sum_{S} \hat{f}(S)^2 = \mu_p(\mathcal{F}).$

Theorems Connection to structure theorems Multiple intersections

Stability and structure theorems

For characteristic function f of intersecting family \mathcal{F} :

Theorems Applications

Proofs

$$\sum_{S\subseteq [n]} \left(-\frac{p}{1-p}\right)^{|S|} \hat{f}(S)^2 = 0.$$

Also know $\hat{f}(\emptyset) = \sum_{S} \hat{f}(S)^2 = \mu_p(\mathcal{F}).$

- $\mu_p(\mathcal{F}) \leq p$.
- If $\mu_p(\mathcal{F}) = p$ then \hat{f} is supported on first two levels.
- If $\mu_p(\mathcal{F}) \approx p$ then \hat{f} is concentrated on first two levels.

Friedgut-Kalai-Naor gives stability.

Theorems Theorems Applications Connection to structure theorem Proofs Multiple intersections

Multiple intersections

If $n \ge (t+1)(k-t-1)$ and \mathcal{F} is *t*-intersecting, then

$$|\mathcal{F}| \leq \binom{n-t}{k-t}.$$

Equality only for $\mathcal{F} = \{S \in {[n] \choose k} : i_1, \dots, i_t \in S\}$ ("t-star"). (*Frankl, 1984*)

3

 Theorems
 Theorems

 Applications
 Connection to structure theorem

 Proofs
 Multiple intersections

Multiple intersections

If $n \ge (t+1)(k-t-1)$ and \mathcal{F} is *t*-intersecting, then

$$|\mathcal{F}| \leq \binom{n-t}{k-t}$$

Equality only for $\mathcal{F} = \{S \in {[n] \choose k} : i_1, \dots, i_t \in S\}$ ("t-star"). (*Frankl, 1984*)

If p < 1/(t+1) and $\mathcal{F} \in 2^{[n]}$ is *t*-intersecting, then $\mu_p(\mathcal{F}) \le p^t$. Equality only for $\mathcal{F} = \{S \in 2^{[n]} : i_1, \ldots, i_t \in S\}$. (*Friedgut, 2008*)

- 4 周 ト - 4 月 ト - 4 月 ト - -

 Theorems
 Theorems

 Applications
 Connection to structure theorem

 Proofs
 Multiple intersections

Multiple intersections

If $n \ge (t+1)(k-t-1)$ and $\mathcal F$ is *t*-intersecting, then

$$|\mathcal{F}| \le \binom{n-t}{k-t}$$

Equality only for $\mathcal{F} = \{S \in {[n] \choose k} : i_1, \dots, i_t \in S\}$ ("t-star"). (*Frankl, 1984*)

If p < 1/(t+1) and $\mathcal{F} \in 2^{[n]}$ is *t*-intersecting, then $\mu_p(\mathcal{F}) \le p^t$. Equality only for $\mathcal{F} = \{S \in 2^{[n]} : i_1, \dots, i_t \in S\}$. (Friedgut, 2008)

If $n \ge C_t$ and $\mathcal{F} \subseteq S_n$ is *t*-intersecting, then $|\mathcal{F}| \le (n-t)!$. Equality only for $\mathcal{F} = \{\pi \in S_n : \pi(i_1) = j_1, \dots, \pi(i_t) = j_t\}$. C_t should be equal to 2t + 1.

(Ellis, Friedgut and Pilpel, 2011)

(日) (同) (三) (三)

 Theorems
 Theorems

 Applications
 Connection to structure theorems

 Proofs
 Multiple intersections

Multiple intersections: stability

Conjecture: if $n \ge (t+1)(k-t-1)$, \mathcal{F} is *t*-intersecting, and $|\mathcal{F}| \approx {n-t \choose k-t}$, then \mathcal{F} is close to a *t*-star.

If p < 1/(t+1), $\mathcal{F} \in 2^{[n]}$ is t-intersecting, and $\mu_p(\mathcal{F}) \approx p^t$, then \mathcal{F} is close to a t-star. (Friedgut, 2008), proof uses (Kindler–Safra, 2002)

If $n \ge C_t$, $\mathcal{F} \subseteq S_n$ is *t*-intersecting, and $|\mathcal{F}| \approx (n-t)!$, then \mathcal{F} is close to a *t*-star. (*Ellis, 2011*)

伺 ト イ ヨ ト イ ヨ ト

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	

Section 3

Proofs

《口》《聞》《臣》《臣》

æ

Theorems	Almost linear functions on slice
Applications	Almost linear functions on S_n (sparse case)
Proofs	

Suppose $f \colon {[n] \choose n/2} \to \{-1,1\}$ is ϵ -close to a linear function:

$$f(x_1,\ldots,x_n)\approx\sum_{i=1}^nc_ix_i=:\ell.$$

(Recall
$$\sum_{i=1}^{n} x_i = 0.$$
)

回 とくほとくほとう

3

Theorems	Almost linear functions on slice
Applications	Almost linear functions on S_n (sparse case)
Proofs	

Suppose $f: \binom{[n]}{n/2} \to \{-1, 1\}$ is ϵ -close to a linear function:

$$f(x_1,\ldots,x_n)\approx\sum_{i=1}^nc_ix_i=:\ell.$$

(Recall $\sum_{i=1}^{n} x_i = 0$.)

• For each *i*, either $x_i \approx \pm 1$ or $x_i \approx 0$.

ヨト イヨト

Theorems	Almost linear functions on slice
pplications	Almost linear functions on S_n (sparse case)
Proofs	

Suppose $f: \binom{[n]}{n/2} \to \{-1, 1\}$ is ϵ -close to a linear function:

$$f(x_1,\ldots,x_n)\approx\sum_{i=1}^nc_ix_i=:\ell.$$

(Recall $\sum_{i=1}^{n} x_i = 0$.)

- For each *i*, either $x_i \approx \pm 1$ or $x_i \approx 0$.
- 2 $x_i \approx \pm 1$ for at most one *i*.

Theorems	Almost linear functions on slice
pplications	Almost linear functions on S_n (sparse case)
Proofs	

Suppose $f: \binom{[n]}{n/2} \to \{-1, 1\}$ is ϵ -close to a linear function:

$$f(x_1,\ldots,x_n)\approx\sum_{i=1}^nc_ix_i=:\ell.$$

(Recall $\sum_{i=1}^{n} x_i = 0$.)

- For each *i*, either $x_i \approx \pm 1$ or $x_i \approx 0$.
- 2 $x_i \approx \pm 1$ for at most one *i*.
- **③** Reduce to the case $x_i \approx 0$ for all *i*.

Theorems	Almost linear functions on slice
pplications	
Proofs	

Suppose $f: \binom{[n]}{n/2} \to \{-1, 1\}$ is ϵ -close to a linear function:

$$f(x_1,\ldots,x_n)\approx\sum_{i=1}^nc_ix_i=:\ell.$$

(Recall $\sum_{i=1}^{n} x_i = 0$.)

- For each *i*, either $x_i \approx \pm 1$ or $x_i \approx 0$.
- 2 $x_i \approx \pm 1$ for at most one *i*.
- **③** Reduce to the case $x_i \approx 0$ for all *i*.
- Apply Friedgut–Kalai–Naor.

Theorems	Almost linear functions on slice
Applications	Almost linear functions on S_n (sparse case)
Proofs	

Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

$$\{a_1, b_1\} \times \cdots \times \{a_{n/2}, b_{n/2}\}.$$

Corresponding restriction of ℓ is

$$g(y_1,...,y_n) = C + \frac{1}{2} \sum_{i=1}^{n/2} (c_{a_i} - c_{b_i}) y_i$$

Theorems	Almost linear functions on slice	
pplications	Almost linear functions on S_n (sparse case)	
Proofs		

Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

$$\{a_1,b_1\}\times\cdots\times\{a_{n/2},b_{n/2}\}.$$

Corresponding restriction of ℓ is

$$g(y_1,\ldots,y_n) = C + \frac{1}{2} \sum_{i=1}^{n/2} (c_{a_i} - c_{b_i}) y_i.$$

Friedgut-Kalai-Naor over a random subcube implies

$$\frac{n}{2}\sum_{i,j=1}^{n}(c_i-c_j)^2=O(\epsilon).$$

Theorems	Almost linear functions on slice
Applications	Almost linear functions on S_n (sparse case)
Proofs	

Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

$$\{a_1,b_1\}\times\cdots\times\{a_{n/2},b_{n/2}\}.$$

Corresponding restriction of ℓ is

$$g(y_1,\ldots,y_n) = C + \frac{1}{2} \sum_{i=1}^{n/2} (c_{a_i} - c_{b_i}) y_i.$$

Friedgut-Kalai-Naor over a random subcube implies

$$\frac{n}{2}\sum_{i,j=1}^{n}(c_i-c_j)^2=O(\epsilon).$$

Left-hand side upper bounds the variance of ℓ . Since $\mathbb{V}[\ell] = O(\epsilon)$, $\mathbb{E}[\ell] \approx \pm 1$. We are done since $f \approx \ell_{\pm}$, $f \approx \ell_{\pm}$, $f \approx \ell_{\pm}$, $f \approx \ell_{\pm}$, $f \approx \ell_{\pm}$.

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

< 日 > < 同 > < 三 > < 三 >

э

Theorems		
Applications	Almost linear functions on S_n (sparse case)	
Proofs	Almost linear functions on <i>S_n</i> (balanced case)	

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

• Let
$$b_{ij} = |\mathcal{F} \cap T_{ij}|/|T_{ij}| - |\mathcal{F}|/|S_n|$$
.

э

Theorems	Almost linear functions on slice	
Applications	Almost linear functions on S_n (sparse case)	
Proofs	Almost linear functions on S _n (balanced case)	

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

• Let
$$b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$$
.
• Let $h = \sum_{ij} b_{ij} x_{ij}$.

э

Theorems	
pplications	Almost linear functions on S_n (sparse case)
Proofs	

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

э

3 N

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

- Let $b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| |\mathcal{F}| / |S_n|$.
- 2 Let $h = \sum_{ij} b_{ij} x_{ij}$.
- **3** $\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2, \ \mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3.$
- Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

3

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

- Let $b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| |\mathcal{F}| / |S_n|$.
- 2 Let $h = \sum_{ij} b_{ij} x_{ij}$.
- **3** $\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2, \ \mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3.$
- Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.
- Since $h \gtrsim 0$ and h is close to Boolean, $\mathbb{E}[h^3] \gtrsim c/n$.

3

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

• Let
$$b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$$
.

2 Let
$$h = \sum_{ij} b_{ij} x_{ij}$$
.

- Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.
- Since $h \gtrsim 0$ and h is close to Boolean, $\mathbb{E}[h^3] \gtrsim c/n$.

• So
$$\sum_{ij} b_{ij}^2 (1-b_{ij}) \lesssim 0.$$

- 4 同 6 4 日 6 4 日 6

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

• Let
$$b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$$
.

2 Let
$$h = \sum_{ij} b_{ij} x_{ij}$$
.

• Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

$${f 0}\,$$
 Since $h\gtrsim 0$ and h is close to Boolean, ${\Bbb E}[h^3]\gtrsim c/n.$

o So
$$\sum_{ij} b_{ij}^2 (1-b_{ij}) \lesssim 0.$$

• So for each
$$i, j$$
, either $b_{ij} \approx 0$ or $b_{ij} \approx 1$.

- 4 同 6 4 日 6 4 日 6

3

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

• Let
$$b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$$
.

2 Let
$$h = \sum_{ij} b_{ij} x_{ij}$$
.

• Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

$${f 0}\,$$
 Since $h\gtrsim 0$ and h is close to Boolean, ${\Bbb E}[h^3]\gtrsim c/n.$

o So
$$\sum_{ij} b_{ij}^2 (1-b_{ij}) \lesssim 0.$$

② So for each
$$i, j$$
, either $b_{ij} \approx 0$ or $b_{ij} \approx 1$.

(a) Roughly c of the b_{ij} are close to 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof sketch

Suppose $f: S_n \to \{0, 1\}$ is sparse $(\mathbb{E}f = c/n)$ and close to its linear projection ℓ .

• Let
$$b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$$
.

2 Let
$$h = \sum_{ij} b_{ij} x_{ij}$$
.

• Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

$${f 0}$$
 Since $h\gtrsim 0$ and h is close to Boolean, $\mathbb{E}[h^3]\gtrsim c/n.$

• So
$$\sum_{ij} b_{ij}^2 (1 - b_{ij}) \lesssim 0.$$

- So for each i, j, either $b_{ij} \approx 0$ or $b_{ij} \approx 1$.
- **(a)** Roughly c of the b_{ij} are close to 1.
- **9** \mathcal{F} is approximated by union of the corresponding T_{ij} .

イロト イポト イラト イラト

Theorems	
Applications	Almost linear functions on S _n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

3 N

Theorems		
Applications	Almost linear functions on S _n (sparse case)	
Proofs	Almost linear functions on S_n (balanced case)	

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

• Let
$$a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$$
, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.

3 N

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

• Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.

So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.

4 B N 4 B N

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^n a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^n a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
- Since g_1, g_2 are "independent", one must be ≈ 0 , the other close to Boolean.

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
- Since g_1, g_2 are "independent", one must be ≈ 0 , the other close to Boolean.
- So For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.

A B > A B >

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
- Since g_1, g_2 are "independent", one must be ≈ 0 , the other close to Boolean.
- So For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.

• So
$$g_1(\pi|_X) = \sum_{i \in X} \mathsf{a}_{i\pi(i)} pprox \mathsf{0}, 1 ext{ (or } \mathsf{0}, -1) ext{ w.p. } pprox 1.$$

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^n a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
- Since g_1, g_2 are "independent", one must be ≈ 0 , the other close to Boolean.
- So For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
- So $g_1(\pi|_X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1 \text{ (or } 0, -1) \text{ w.p. } \approx 1.$
- Friedgut-Kalai-Naor: $a_{i\pi(i)} \approx 0$ for all *i* with ≤ 1 exception.

伺下 イヨト イヨト ニヨ

Theorems	
Applications	Almost linear functions on S_n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
- Since g_1, g_2 are "independent", one must be ≈ 0 , the other close to Boolean.
- So For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
- So $g_1(\pi|_X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1 \text{ (or } 0, -1) \text{ w.p. } \approx 1.$
- Friedgut–Kalai–Naor: $a_{i\pi(i)} \approx 0$ for all *i* with ≤ 1 exception.
- On only happen if all "strong" entries of (a_{ij}) concentrated on one row or column.

(4月) (4日) (4日) 日

Theorems	
Applications	Almost linear functions on S _n (sparse case)
Proofs	Almost linear functions on S_n (balanced case)

Suppose $f: S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ .

- Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^n a_{i\pi(i)}$.
- So For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
- So For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
- Since g_1, g_2 are "independent", one must be ≈ 0 , the other close to Boolean.
- So For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
- So $g_1(\pi|_X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1 \text{ (or } 0, -1) \text{ w.p. } \approx 1.$
- Friedgut–Kalai–Naor: $a_{i\pi(i)} \approx 0$ for all *i* with ≤ 1 exception.
- On only happen if all "strong" entries of (a_{ij}) concentrated on one row or column.
- I essentially depends only on this strong row or column.