Boolean function analysis: beyond the hypercube

Yuval Filmus

Technion - Israel Institute of Technology
CAALM'19

What is Boolean function analysis?

Dimension-independent properties of functions $\{0,1\}^{n} \rightarrow\{0,1\}$

Many applications to combinatorics and computational complexity

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.
(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.
(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \mathcal{F}$ is a star, i.e. $\{A: i \in A\}$.

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.
(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \mathcal{F}$ is a star, i.e. $\{A: i \in A\}$.
(3) $|\mathcal{F}| \approx\binom{n-1}{k-1} \Longrightarrow \mathcal{F} \approx$ a star.

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.
(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Lovász: spectral proof using theta function.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \mathcal{F}$ is a star, i.e. $\{A: i \in A\}$.
(3) $|\mathcal{F}| \approx\binom{n-1}{k-1} \Longrightarrow \mathcal{F} \approx$ a star.

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.
(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Lovász: spectral proof using theta function.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \mathcal{F}$ is a star, i.e. $\{A: i \in A\}$.

Boolean degree 1 function is a dictator.
(3) $|\mathcal{F}| \approx\binom{n-1}{k-1} \Longrightarrow \mathcal{F} \approx$ a star.

Motivating example: Erdős-Ko-Rado theorem

Suppose $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting, $k=p n, p<1 / 2$.
(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Lovász: spectral proof using theta function.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \mathcal{F}$ is a star, i.e. $\{A: i \in A\}$.

Boolean degree 1 function is a dictator.
(3) $|\mathcal{F}| \approx\binom{n-1}{k-1} \Longrightarrow \mathcal{F} \approx$ a star.

Boolean almost degree 1 function is almost a dictator.

Classical Boolean function analysis

Fundamental theorem

Every function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial, the Fourier expansion:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} \hat{f}(S) x_{S}, \quad \text { where } x_{S}=\prod_{i \in S} x_{i}
$$

Classical Boolean function analysis

Fundamental theorem

Every function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial, the Fourier expansion:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} \hat{f}(S) x_{S}, \quad \text { where } x_{S}=\prod_{i \in S} x_{i}
$$

Degree of $f=$ degree of Fourier expansion.

Classical Boolean function analysis

Fundamental theorem

Every function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial, the Fourier expansion:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} \hat{f}(S) x_{S}, \quad \text { where } x_{S}=\prod_{i \in S} x_{i}
$$

Degree of $f=$ degree of Fourier expansion.

Dictator: function depending on one coordinate. d-Junta: function depending on d coordinates. $\operatorname{deg} f \leq d$ iff f is linear combination of d-juntas.

Boolean degree 1 functions

Question
Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has degree 1 .
What does f look like?

Boolean degree 1 functions

Question

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has degree 1 .
What does f look like?

$$
\operatorname{deg} f \leq 1 \Longleftrightarrow f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

Boolean degree 1 functions

Question

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has degree 1 .
What does f look like?

$$
\operatorname{deg} f \leq 1 \Longleftrightarrow f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

Dictator theorem

If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has degree 1 then

$$
f \in\left\{ \pm 1, \pm x_{1}, \ldots, \pm x_{n}\right\} .
$$

Boolean almost degree 1 functions

Refined question

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ satisfies

$$
\underset{x \sim\{ \pm 1\}^{n}}{\mathbb{E}}\left[(f(x)-g(x))^{2}\right]=\epsilon
$$

for some $g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ of degree 1 .
What does f look like?

Boolean almost degree 1 functions

Refined question

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ satisfies

$$
\underset{x \sim\{ \pm 1\}^{n}}{\mathbb{E}}\left[(f(x)-g(x))^{2}\right]=\epsilon
$$

for some $g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ of degree 1 .
What does f look like?

Friedgut-Kalai-Naor (FKN) theorem

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ satisfies $\left\|f^{>1}\right\|^{2}=\epsilon$. Then

$$
\operatorname{Pr}[f \neq h]=O(\epsilon) \text { for some } h \in\left\{ \pm 1, \pm x_{1}, \ldots, \pm x_{n}\right\} .
$$

Boolean function analysis on the slice

The slice or Johnson scheme is

$$
\binom{[n]}{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

Boolean function analysis on the slice

The slice or Johnson scheme is

$$
\binom{[n]}{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

Fundamental theorem (Dunkl)

Every function $f:\binom{[n]}{k} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min (k, n-k)$ such that

$$
\sum_{i=1}^{n} \frac{\partial P}{\partial x_{i}}=0
$$

Examples: $1,\left(x_{1}-x_{2}\right),\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right), \ldots$

Degree of functions on the slice

Fundamental theorem (Dunkl)

Every function $f:\binom{[n]}{k} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min (k, n-k)$ such that

$$
\sum_{i=1}^{n} \frac{\partial P}{\partial x_{i}}=0
$$

Degree of functions on the slice

Fundamental theorem (Dunkl)

Every function $f:\binom{[n]}{k} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min (k, n-k)$ such that

$$
\sum_{i=1}^{n} \frac{\partial P}{\partial x_{i}}=0
$$

Degree of $f=$ degree of unique expansion.

Degree of functions on the slice

Fundamental theorem (Dunkl)

Every function $f:\binom{[n]}{k} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min (k, n-k)$ such that

$$
\sum_{i=1}^{n} \frac{\partial P}{\partial x_{i}}=0
$$

Degree of $f=$ degree of unique expansion.

Dictator: function depending on one coordinate. d-Junta: function depending on d coordinates. $\operatorname{deg} f \leq d$ iff f is linear combination of d-juntas.

Degree of functions on the slice

Fundamental theorem (Dunkl)

Every function $f:\binom{[n]}{k} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min (k, n-k)$ such that

$$
\sum_{i=1}^{n} \frac{\partial P}{\partial x_{i}}=0
$$

Degree of $f=$ degree of unique expansion.

Dictator theorem holds (except for trivial cases).
FKN theorem holds for $0 \ll k / n \ll 1$.

Erdős-Ko-Rado theorem

Spectral argument of Lovász
Let $k=p n, p<1 / 2$.
If $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting and \mathcal{F} is not too small then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}\left(1-C\left\|1_{\mathcal{F}}^{>1}\right\|^{2}\right)
$$

Erdős-Ko-Rado theorem

Spectral argument of Lovász

Let $k=p n, p<1 / 2$.
If $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting and \mathcal{F} is not too small then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}\left(1-C\left\|1_{\mathcal{F}}^{>1}\right\|^{2}\right)
$$

Corollaries

(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Erdős-Ko-Rado theorem

Spectral argument of Lovász

Let $k=p n, p<1 / 2$.
If $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting and \mathcal{F} is not too small then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}\left(1-C\left\|1_{\mathcal{F}}^{>1}\right\|^{2}\right)
$$

Corollaries

(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \operatorname{deg} 1_{\mathcal{F}}=1$.

Dictator theorem: \mathcal{F} is a star.

Erdős-Ko-Rado theorem

Spectral argument of Lovász

Let $k=p n, p<1 / 2$.
If $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting and \mathcal{F} is not too small then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}\left(1-C\left\|1_{\mathcal{F}}^{>1}\right\|^{2}\right)
$$

Corollaries

(1) $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.
(2) $|\mathcal{F}|=\binom{n-1}{k-1} \Longrightarrow \operatorname{deg} 1_{\mathcal{F}}=1$.

Dictator theorem: \mathcal{F} is a star.
(3) $|\mathcal{F}|=(1-\epsilon)\binom{n-1}{k-1} \Longrightarrow\left\|1_{\mathcal{F}}^{>1}\right\|^{2}=O(\epsilon)$.

FKN theorem: \mathcal{F} is $O(\epsilon)$-close to a star.

FKN theorem for small k ?

Let $p:=k / n=o(1)$ and $\epsilon \gg p^{2}$.
Consider $g:\binom{[n]}{k} \rightarrow \mathbb{R}$ defined as

$$
g:=x_{1}+\cdots+x_{\sqrt{\epsilon} / p}
$$

FKN theorem for small k ?

Let $p:=k / n=o(1)$ and $\epsilon \gg p^{2}$.
Consider $g:\binom{[n]}{k} \rightarrow \mathbb{R}$ defined as

$$
g:=x_{1}+\cdots+x_{\sqrt{\epsilon} / p} \sim \operatorname{Bin}(\sqrt{\epsilon} / p, p)
$$

FKN theorem for small k ?

Let $p:=k / n=o(1)$ and $\epsilon \gg p^{2}$.
Consider $g:\binom{[n]}{k} \rightarrow \mathbb{R}$ defined as

$$
g:=x_{1}+\cdots+x_{\sqrt{\epsilon} / p} \sim \operatorname{Bin}(\sqrt{\epsilon} / p, p) \sim \operatorname{Poisson}(\sqrt{\epsilon})
$$

FKN theorem for small k ?

Let $p:=k / n=o(1)$ and $\epsilon \gg p^{2}$.
Consider $g:\binom{[n]}{k} \rightarrow \mathbb{R}$ defined as

$$
g:=x_{1}+\cdots+x_{\sqrt{\epsilon} / p} \sim \operatorname{Bin}(\sqrt{\epsilon} / p, p) \sim \operatorname{Poisson}(\sqrt{\epsilon})
$$

This shows that

- $\operatorname{Pr}[g=0] \approx 1-\sqrt{\epsilon}$.
- $\operatorname{Pr}[g=1] \approx \sqrt{\epsilon}-\epsilon$.
- $\operatorname{Pr}[g \geq 2] \approx \epsilon$.

FKN theorem for small k ?

Let $p:=k / n=o(1)$ and $\epsilon \gg p^{2}$.
Consider $g:\binom{[n]}{k} \rightarrow \mathbb{R}$ defined as

$$
g:=x_{1}+\cdots+x_{\sqrt{\epsilon} / p} \sim \operatorname{Bin}(\sqrt{\epsilon} / p, p) \sim \operatorname{Poisson}(\sqrt{\epsilon})
$$

This shows that

- $\operatorname{Pr}[g=0] \approx 1-\sqrt{\epsilon}$.
- $\operatorname{Pr}[g=1] \approx \sqrt{\epsilon}-\epsilon$.
- $\operatorname{Pr}[g \geq 2] \approx \epsilon$.

Therefore

$$
g \stackrel{O(\epsilon)}{\approx} f:=x_{1} \vee \cdots \vee x_{\sqrt{\epsilon} / p}
$$

FKN theorem for small k

FKN theorem on the slice (F .)
Let $p:=k / n \leq 1 / 2$.
If $f:\binom{[n]}{k} \rightarrow\{0,1\}$ satisfies $\left\|f^{>1}\right\|^{2}=\epsilon$ then either f or $1-f$ is $O(\epsilon)$-close to a disjunction of m variables, where

$$
m=\max \left\{1, O\left(\frac{\sqrt{\epsilon}}{p}\right)\right\}
$$

FKN theorem for small k

FKN theorem on the slice (F .)
Let $p:=k / n \leq 1 / 2$.
If $f:\binom{[n]}{k} \rightarrow\{0,1\}$ satisfies $\left\|f^{>1}\right\|^{2}=\epsilon$ then either f or $1-f$ is $O(\epsilon)$-close to a disjunction of m variables, where

$$
m=\max \left\{1, O\left(\frac{\sqrt{\epsilon}}{p}\right)\right\}
$$

Corollary
f is $O(\sqrt{\epsilon}+p)$-close to 0 or 1 .

FKN theorem for small k

FKN theorem on the slice (F .)

Let $p:=k / n \leq 1 / 2$.
If $f:\binom{[n]}{k} \rightarrow\{0,1\}$ satisfies $\left\|f^{>1}\right\|^{2}=\epsilon$ then either f or $1-f$ is $O(\epsilon)$-close to a disjunction of m variables, where

$$
m=\max \left\{1, O\left(\frac{\sqrt{\epsilon}}{p}\right)\right\}
$$

Corollary
f is $O(\sqrt{\epsilon}+p)$-close to 0 or 1 .

Dictator theorem on the slice

If $f:\binom{[n]}{k} \rightarrow\{0,1\}$ has degree 1 and $k \neq 1, n-1$ then

$$
f \in\left\{0,1, x_{1}, 1-x_{1}, \ldots, x_{n}, 1-x_{n}\right\} .
$$

Symmetric group

The symmetric group is

$$
S_{n}=\{\pi:[n] \rightarrow[n] \mid \pi \text { is a permutation }\}
$$

Symmetric group

The symmetric group is

$$
\begin{aligned}
S_{n} & =\{\pi:[n] \rightarrow[n] \mid \pi \text { is a permutation }\} \\
& =\left\{\left(x_{i j}\right)_{i, j=1}^{n} \in\{0,1\}^{n \times n} \mid\left(x_{i j}\right) \text { is a permutation matrix }\right\} .
\end{aligned}
$$

Symmetric group

The symmetric group is

$$
\begin{aligned}
S_{n} & =\{\pi:[n] \rightarrow[n] \mid \pi \text { is a permutation }\} \\
& =\left\{\left(x_{i j}\right)_{i, j=1}^{n} \in\{0,1\}^{n \times n} \mid\left(x_{i j}\right) \text { is a permutation matrix }\right\} .
\end{aligned}
$$

Degree

$\operatorname{deg} f \leq d$ if f can be written as degree d polynomial in $x_{i j}$.

Symmetric group

The symmetric group is

$$
\begin{aligned}
S_{n} & =\{\pi:[n] \rightarrow[n] \mid \pi \text { is a permutation }\} \\
& =\left\{\left(x_{i j}\right)_{i, j=1}^{n} \in\{0,1\}^{n \times n} \mid\left(x_{i j}\right) \text { is a permutation matrix }\right\} .
\end{aligned}
$$

Degree

$\operatorname{deg} f \leq d$ if f can be written as degree d polynomial in $x_{i j}$. $\operatorname{deg} f \leq d$ if f is linear combination of indicators of events

$$
\pi\left(i_{1}\right)=j_{1}, \ldots, \pi\left(i_{d}\right)=j_{d} .
$$

Boolean degree 1 functions on S_{n}

What are dictators in S_{n} ?
Suppose $f: S_{n} \rightarrow\{0,1\}$ has degree 1 , i.e.,

$$
f=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i j}
$$

What does f look like?

Boolean degree 1 functions on S_{n}

What are dictators in S_{n} ?
Suppose $f: S_{n} \rightarrow\{0,1\}$ has degree 1 , i.e.,

$$
f=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i j} .
$$

What does f look like?

Ellis, Friedgut and Pilpel show that wlog, $a_{i j} \in\{0,1\}$. So f is sum of mutually exclusive $x_{i j}$.

Boolean degree 1 functions on S_{n}

What are dictators in S_{n} ?

Suppose $f: S_{n} \rightarrow\{0,1\}$ has degree 1 , i.e.,

$$
f=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i j} .
$$

What does f look like?

Ellis, Friedgut and Pilpel show that wlog, $a_{i j} \in\{0,1\}$. So f is sum of mutually exclusive $x_{i j}$.

Two entries are mutually exclusive if on same row or column.
Set of entries is mutually exclusive if all on a single row or column. Conclusion: f is sum of entries on a single row or column.

Boolean (almost) degree 1 functions on S_{n}

Dictator theorem (EFP)

If $f: S_{n} \rightarrow\{0,1\}$ has degree 1 then
f depends on some $\pi(i)$ or on some $\pi^{-1}(j)$ ("dictator").

Boolean (almost) degree 1 functions on S_{n}

Dictator theorem (EFP)

If $f: S_{n} \rightarrow\{0,1\}$ has degree 1 then
f depends on some $\pi(i)$ or on some $\pi^{-1}(j)$ ("dictator").

FKN theorem for sparse functions (EFF1)
If $f: S_{n} \rightarrow\{0,1\}$ is close to degree 1 and $\mathbb{E}[f]=c / n$ then f is close to sum of c entries $x_{i j}$.

Boolean (almost) degree 1 functions on S_{n}

Dictator theorem (EFP)

If $f: S_{n} \rightarrow\{0,1\}$ has degree 1 then
f depends on some $\pi(i)$ or on some $\pi^{-1}(j)$ ("dictator").
FKN theorem for sparse functions (EFF1)
If $f: S_{n} \rightarrow\{0,1\}$ is close to degree 1 and $\mathbb{E}[f]=c / n$ then f is close to sum of c entries $x_{i j}$.

FKN theorem for balanced functions (EFF2)
If $f: S_{n} \rightarrow\{0,1\}$ is close to degree 1 and $\mathbb{E}[f] \approx 1 / 2$ then f is close to a dictator.

What about higher degrees?

Higher-degree analog of dictator theorem
Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has degree d.
On how many coordinates can f depend?

What about higher degrees?

Higher-degree analog of dictator theorem

Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has degree d.
On how many coordinates can f depend?

Surprising example

Following function has degree d, depends on $\Omega\left(2^{d}\right)$ coordinates:

$$
f\left(x_{1}, \ldots, x_{d-1}, y_{0}, \ldots, y_{2^{d-1}-1}\right)=y_{x} .
$$

Can we do better?

Boolean (almost) degree d functions

Nisan-Szegedy theorem, CHS'18
If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has degree d then
f is an $O\left(2^{d}\right)$-junta (depends on $O\left(2^{d}\right)$ coordinates).

Boolean (almost) degree d functions

Nisan-Szegedy theorem, CHS'18

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has degree d then
f is an $O\left(2^{d}\right)$-junta (depends on $O\left(2^{d}\right)$ coordinates).

Kindler-Safra theorem

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is close to degree d then f is close to an $O\left(2^{d}\right)$-junta.

Boolean (almost) degree d functions

Nisan-Szegedy theorem, CHS'18

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has degree d then
f is an $O\left(2^{d}\right)$-junta (depends on $O\left(2^{d}\right)$ coordinates).

Kindler-Safra theorem

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is close to degree d then f is close to an $O\left(2^{d}\right)$-junta.

Analogs for slice and S_{n}
Nisan-Szegedy: known for slice (F.-Ihringer), unknown for S_{n}.

Boolean (almost) degree d functions

Nisan-Szegedy theorem, CHS'18

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has degree d then
f is an $O\left(2^{d}\right)$-junta (depends on $O\left(2^{d}\right)$ coordinates).

Kindler-Safra theorem

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is close to degree d then f is close to an $O\left(2^{d}\right)$-junta.

Analogs for slice and S_{n}

Nisan-Szegedy: known for slice (F.-Ihringer), unknown for S_{n}. Kindler-Safra: known for slice (FKMW,DFH,KK), known for sparse functions on S_{n} (EFF3), unknown for balanced functions.

Sparse juntas

Setting: $f:\binom{[n]}{k} \rightarrow\{0,1\}$, where $p:=k / n=o(1)$.
FKN theorem for sparse slice
If f is close to degree 1 then

$$
f \text { or } 1-f \approx g:=x_{i_{1}}+\cdots+x_{i_{m}}, \quad m=O(1 / p)
$$

On typical input, ≤ 1 monomials are non-zero, and $g \in\{0,1\}$.

Sparse juntas

Setting: $f:\binom{[n]}{k} \rightarrow\{0,1\}$, where $p:=k / n=o(1)$.

FKN theorem for sparse slice

If f is close to degree 1 then

$$
f \text { or } 1-f \approx g:=x_{i_{1}}+\cdots+x_{i_{m}}, \quad m=O(1 / p)
$$

On typical input, ≤ 1 monomials are non-zero, and $g \in\{0,1\}$.

Sparse junta

g is sparse junta if on typical input, $O(1)$ monomials are non-zero, and $g \in\{0,1\}$.
g is hereditarily sparse junta if g is sparse junta even given $x_{i_{1}}=\cdots=x_{i_{\ell}}=1$ for $\ell=O(1)$.

Sparse junta theorem

Sparse junta

g is sparse junta if on typical input, $O(1)$ monomials are non-zero, and $g \in\{0,1\}$.
g is hereditarily sparse junta if g is sparse junta even given $x_{i_{1}}=\cdots=x_{i_{\ell}}=1$ for $\ell=O(1)$.

Kindler-Safra theorem for sparse slice

$f \approx$ degree $d \Longrightarrow f \approx$ degree d hereditarily sparse junta.
Moreover, coefficients of sparse junta belong to some finite set.

Sparse junta theorem

Sparse junta

g is sparse junta if on typical input, $O(1)$ monomials are non-zero, and $g \in\{0,1\}$.
g is hereditarily sparse junta if g is sparse junta even given $x_{i_{1}}=\cdots=x_{i_{\ell}}=1$ for $\ell=O(1)$.

Kindler-Safra theorem for sparse slice

$f \approx$ degree $d \Longrightarrow f \approx$ degree d hereditarily sparse junta.
Moreover, coefficients of sparse junta belong to some finite set.

Corollary

If f is ϵ-close to degree d then f is $O\left(\epsilon^{c_{d}}+p\right)$-close to constant.

There's much more!

Other results

Highlights:

- Sharp threshold theorems.
- Small set expansion.
- Invariance principle.

Other domains

Highlights:

- Grassmann scheme.
- High-dimensional expanders.
- Locally testable codes.

Sharp and coarse thresholds

$G(n, p)=$ Erdős-Rényi random graph on n vertices, edge prob p.
Two examples

- $\operatorname{Pr}\left[G\left(n, \frac{c}{n}\right)\right.$ contains a triangle $] \longrightarrow 1-e^{-c^{3} / 6}$.
- $\operatorname{Pr}\left[G\left(n, \frac{\log n+c}{n}\right)\right.$ is connected $] \longrightarrow e^{-e^{-c}}$.

Sharp and coarse thresholds

$G(n, p)=$ Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

- $\operatorname{Pr}\left[G\left(n, \frac{c}{n}\right)\right.$ contains a triangle $] \longrightarrow 1-e^{-c^{3} / 6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. Coarse threshold.
- $\operatorname{Pr}\left[G\left(n, \frac{\log n+c}{n}\right)\right.$ is connected $] \longrightarrow e^{-e^{-c}}$.

Sharp and coarse thresholds

$G(n, p)=$ Erdős-Rényi random graph on n vertices, edge prob p.
Two examples

- $\operatorname{Pr}\left[G\left(n, \frac{c}{n}\right)\right.$ contains a triangle $] \longrightarrow 1-e^{-c^{3} / 6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. Coarse threshold.
- $\operatorname{Pr}\left[G\left(n, \frac{\log n+c}{n}\right)\right.$ is connected $] \longrightarrow e^{-e^{-c}}$.

Critical probability: $\frac{\log n}{n}$. Window size: $\frac{1}{n}$. Sharp threshold.

Sharp and coarse thresholds

$G(n, p)=$ Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

- $\operatorname{Pr}\left[G\left(n, \frac{c}{n}\right)\right.$ contains a triangle $] \longrightarrow 1-e^{-c^{3} / 6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. Coarse threshold.
- $\operatorname{Pr}\left[G\left(n, \frac{\log n+c}{n}\right)\right.$ is connected $] \longrightarrow e^{-e^{-c}}$. Critical probability: $\frac{\log n}{n}$. Window size: $\frac{1}{n}$. Sharp threshold.

Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are approximately local.

Sharp and coarse thresholds

$G(n, p)=$ Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

- $\operatorname{Pr}\left[G\left(n, \frac{c}{n}\right)\right.$ contains a triangle $] \longrightarrow 1-e^{-c^{3} / 6}$.

Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. Coarse threshold.

- $\operatorname{Pr}\left[G\left(n, \frac{\log n+c}{n}\right)\right.$ is connected $] \longrightarrow e^{-e^{-c}}$. Critical probability: $\frac{\log n}{n}$. Window size: $\frac{1}{n}$. Sharp threshold.

Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are approximately local.

Swift threshold theorem (Friedgut-Kalai; Bourgain-Kalai)

Monotone graph properties have window size $\tilde{O}\left(\frac{1}{\log ^{2} n}\right)$.

Invariance principle

Central limit theorem (Berry-Esséen)
If x_{1}, \ldots, x_{n} are i.i.d. samples of $U(\{ \pm 1\})$ then

$$
\mu+a_{1} x_{1}+\cdots+a_{n} x_{n} \sim N\left(\mu, a_{1}^{2}+\cdots+a_{n}^{2}\right)
$$

provided no a_{i} is too "prominent".

Invariance principle

Central limit theorem (Berry-Esséen)

If x_{1}, \ldots, x_{n} are i.i.d. samples of $U(\{ \pm 1\})$ then

$$
\mu+a_{1} x_{1}+\cdots+a_{n} x_{n} \sim N\left(\mu, a_{1}^{2}+\cdots+a_{n}^{2}\right)
$$

provided no a_{i} is too "prominent". Equivalently,

$$
\mu+a_{1} x_{1}+\cdots+a_{n} x_{n} \sim \mu+a_{1} g_{1}+\cdots+a_{n} g_{n}
$$

where g_{1}, \ldots, g_{n} are i.i.d. samples of $N(0,1)$.

Invariance principle

Central limit theorem (Berry-Esséen)

If x_{1}, \ldots, x_{n} are i.i.d. samples of $U(\{ \pm 1\})$ then

$$
\mu+a_{1} x_{1}+\cdots+a_{n} x_{n} \sim N\left(\mu, a_{1}^{2}+\cdots+a_{n}^{2}\right)
$$

provided no a_{i} is too "prominent". Equivalently,

$$
\mu+a_{1} x_{1}+\cdots+a_{n} x_{n} \sim \mu+a_{1} g_{1}+\cdots+a_{n} g_{n}
$$

where g_{1}, \ldots, g_{n} are i.i.d. samples of $N(0,1)$.

Invariance principle (Mossel-O'Donnell-Oleszkiewicz)

Same holds for degree $O(1)$ polynomials $\sum_{S} a_{S} x_{S}$ provided no variable is too influential: for all i,

$$
\sum_{S \ni i} a_{S}^{2} \ll \sum_{S \neq \emptyset} a_{S}^{2}
$$

Grassmann scheme

> Johnson scheme
> $J(n, k)$ is set of subsets of $\{1, \ldots, n\}$ of size k.

Grassmann scheme

Johnson scheme
 $J(n, k)$ is set of subsets of $\{1, \ldots, n\}$ of size k.

Grassmann scheme (q-Johnson scheme)
$J_{q}(n, k)$ is set of subspaces of \mathbb{F}_{q}^{n} of dimension k.

Grassmann scheme

Johnson scheme
 $J(n, k)$ is set of subsets of $\{1, \ldots, n\}$ of size k.

Grassmann scheme (q-Johnson scheme)
$J_{q}(n, k)$ is set of subspaces of \mathbb{F}_{q}^{n} of dimension k.

Dictator theorem (F .-Ihringer)

If $f: J_{2}(n, k) \rightarrow\{0,1\}$ has degree 1 then

$$
f \text { or } 1-f \in\{0,[x \in V],[y \perp V],[x \in V \vee y \perp V]\} \quad(x \not \perp y)
$$

Same object known as: Cameron-Liebler line class, tight set, completely regular strength 0 code of covering radius 1 .

There's much more!

Other results

Highlights:

- Sharp threshold theorems.
- Small set expansion.
- Invariance principle.

Other domains

Highlights:

- Grassmann scheme.
- High-dimensional expanders.
- Locally testable codes.

