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What is Boolean function analysis?

Dimension-independent properties of
functions {0,1}" — {0,1}

Many applications to combinatorics
and computational complexity
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Motivating example: Erdés—Ko—Rado theorem

Suppose F C ([Z]) is intersecting, k = pn, p < 1/2.

o |7l < (7).
Lovasz: spectral proof using theta function.
@ |F|=(;"]) = Fisastar, ie {A:ic A
Boolean degree 1 function is a dictator.
@ |F| = (j_}) = F =~ astar.
Boolean almost degree 1 function is almost a dictator.
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Classical Boolean function analysis

Fundamental theorem

Every function f: {£1}" — R has unique expansion as multilinear
polynomial, the Fourier expansion:

f(xt,...,%xn) = Z f(S)xs, where xs :Hx,-.

SC[n] ies

Degree of f = degree of Fourier expansion. J

Dictator: function depending on one coordinate.
d-Junta: function depending on d coordinates.
deg f < d iff f is linear combination of d-juntas.
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Boolean degree 1 functions

Suppose f: {£1}" — {£1} has degree 1.

What does f look like?

degf <1<= f(x1,...,%y) = a0 + a1x1 + -+ - + anXp. J

Dictator theorem
If f: {£1}" — {£1} has degree 1 then

fe{+l +x1,...,tx,}.
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for some g: {£1}" — R of degree 1.
What does f look like?

\

Friedgut—Kalai-Naor (FKN) theorem
Suppose f: {£1}" — {+£1} satisfies ||f>1||> = €. Then

Pr[f # h] = O(e) for some h € {£1,%x1,...,£xp}.

\
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Boolean function analysis on the slice

The slice or Johnson scheme is
I _ (x1,- -, xn) € {0 1}"-§n:x-:k
k AR n 9 . I:1 1 .

Fundamental theorem (Dunkl)

Every function f: ([Z]) — R has unique expansion as multilinear
polynomial P of degree < min(k, n — k) such that

Examples: 1, (x1 — x2), (1 — x2) (>3 — x4), . - .
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Degree of functions on the slice

Fundamental theorem (Dunkl)

Every function f: ([Z]) — R has unique expansion as multilinear
polynomial P of degree < min(k, n — k) such that

Degree of f = degree of unique expansion. )

Dictator theorem holds (except for trivial cases).
FKN theorem holds for 0 < k/n < 1.
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Erdos—Ko—Rado theorem

Spectral argument of Lovdsz

Let k =pn, p<1/2.
If F C ([Z]) is intersecting and F is not too small then

n—1
715 (1) @ ciEp).

Corollaries
Q | 7] < (i71)-
Q |[F|=(]_]) = deglr=1.
Dictator theorem: F is a star.
0 [Fl=(1-¢(]"1) = 1> = O(e).
FKN theorem: F is O(e)-close to a star.
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Let p:= k/n = o(1) and € > p?.
Consider g: ([Z]) — R defined as

g i=x1+ - +xyp ~ Bin(ve/p, p) ~ Poisson(v/e)

This shows that

o Prlg =0]~1-
o Prlg=1]~e—e¢
e Prlg > 2] ~e.

Therefore

O(e)
g = fZ:X]_\/'--\/X\/g/p
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FKN theorem for small k

FKN theorem on the slice (F.)

Let p:=k/n<1/2.

If f: ([Z]) — {0, 1} satisfies ||f>1||> = € then either f or 1 — f is
O(e)-close to a disjunction of m variables, where

wmfio(£)}

fis O(y/€+ p)-close to 0 or 1.

Dictator theorem on the slice

If £ ([Z]) — {0,1} has degree 1 and k # 1,n — 1 then

fe{0,1,x,1—x1,...,%n, 1 — xp}.
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Symmetric group

The symmetric group is

Sp=A{m:[n] — [n] | 7 is a permutation}

= {(xj)ij=1 € {0,1}"" | (x3) is a permutation matrix}.

deg f < d if f can be written as degree d polynomial in X;;.
degf < d if f is linear combination of indicators of events

m(h) =Jji,...,7(ig) = jg-
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Boolean degree 1 functions on S,

What are dictators in S,?

Suppose f: S, — {0,1} has degree 1, i.e.,

f= ZZQUXU

i=1 j=1

What does f look like?

Ellis, Friedgut and Pilpel show that wlog, a;; € {0,1}.
So f is sum of mutually exclusive x;;.

Two entries are mutually exclusive if on same row or column.
Set of entries is mutually exclusive if all on a single row or column.
Conclusion: f is sum of entries on a single row or column.
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Boolean (almost) degree 1 functions on S,

Dictator theorem (EFP)

If f: S, — {0,1} has degree 1 then
f depends on some 7(i) or on some 7 1(j) (“dictator”).

FKN theorem for sparse functions (EFF1)

If f: S, — {0,1} is close to degree 1 and E[f] = ¢/n then
f is close to sum of c entries Xx;;.

N

FKN theorem for balanced functions (EFF2)

If f: S, — {0,1} is close to degree 1 and E[f] ~ 1/2 then
f is close to a dictator.

A,




What about higher degrees?

Higher-degree analog of dictator theorem

Suppose f: {0,1}" — {0,1} has degree d.
On how many coordinates can f depend?




What about higher degrees?

Higher-degree analog of dictator theorem
Suppose f: {0,1}" — {0,1} has degree d.
On how many coordinates can f depend?

Surprising example

| A\

Following function has degree d, depends on Q(29) coordinates:

f(Xla <oy Xd—1, Y0, - - - 7y2d—1—1) = Yx-

Can we do better?

A\
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Boolean (almost) degree d functions

Nisan—Szegedy theorem, CHS'18

If £: {0,1}" — {0,1} has degree d then
f is an O(29)-junta (depends on O(29) coordinates).

| \

Kindler—Safra theorem

If £:{0,1}" — {0,1} is close to degree d then
f is close to an O(29)-junta.

Analogs for slice and S,

| A\

Nisan—Szegedy: known for slice (F.-lhringer), unknown for S,,.
Kindler-Safra: known for slice (FKMW,DFH,KK), known for
sparse functions on S, (EFF3), unknown for balanced functions.

<




Sparse juntas

Setting: f: (1) — {0,1}, where p :== k/n = o(1).

FKN theorem for sparse slice

If f is close to degree 1 then
forl—frgi=xy3+ - +x,, m=O0(1/p).

On typical input, < 1 monomials are non-zero, and g € {0, 1}.




Sparse juntas

Setting: f: ([Z]) — {0,1}, where p := k/n = o(1).

FKN theorem for sparse slice

If f is close to degree 1 then

forl—frgi=xy3+ - +x,, m=O0(1/p).

On typical input, < 1 monomials are non-zero, and g € {0, 1}.

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero,
and g € {0,1}.

g is hereditarily sparse junta if g is sparse junta even given

Xy = =x;, =1 for £ = O(1).

1
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Sparse junta theorem

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero,

and g € {0,1}.
g is hereditarily sparse junta if g is sparse junta even given
Xy =---=x;, =1for £ = O(1).

Kindler—Safra theorem for sparse slice

f ~ degree d = f = degree d hereditarily sparse junta.
Moreover, coefficients of sparse junta belong to some finite set.

If f is e-close to degree d then f is O(e“ + p)-close to constant.




There's much more!

Other results

Highlights:
@ Sharp threshold theorems.

@ Small set expansion.

@ Invariance principle.

Other domains

Highlights:

@ Grassmann scheme.

@ High-dimensional expanders.

o Locally testable codes.

A
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Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are
approximately local.




Sharp and coarse thresholds

G(n, p) = Erdés—Rényi random graph on n vertices, edge prob p.

Two examples

—c3/6

@ Pr[G(n, 7) contains a triangle] — 1 —e
Critical probability: . Window size: 1. Coarse threshold.

e Pr[G(n, |°g++c) is connected] —» e™¢ °
Critical probability: %87 Window size: 1. Sharp threshold.

n

v

Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are
approximately local.

Swift threshold theorem (Friedgut—Kalai; Bourgain—Kalai)

Monotone graph properties have window size 6(|og12n)'
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Invariance principle

Central limit theorem (Berry—Esséen)
If x1,...,x, are i.i.d. samples of U({£1}) then
p+aixi+ -+ anxa ~ N(p, ai + -+ + a3)
provided no a; is too “prominent”. Equivalently,
Mot aixy + oo+ anXp ~ f4+ 3181 + -+ angn,
where g1, ..., g, are i.i.d. samples of N(0,1).

| A\

Invariance principle (Mossel-O'Donnell-Oleszkiewicz)

Same holds for degree O(1) polynomials s asxs
provided no variable is too influential: for all 7,

Za_zg<<Za§.

S3i S#0
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Grassmann scheme

Johnson scheme
J(n, k) is set of subsets of {1,...,n} of size k.

Grassmann scheme (g-Johnson scheme)

Jq(n, k) is set of subspaces of Iy of dimension k.

Dictator theorem (F.—lhringer)

If £: Jo(n, k) — {0,1} has degree 1 then

forl—fe{0,[xeV][yLV][xeVvyLlV]} (xLy)

Same object known as: Cameron—Liebler line class, tight set,
completely regular strength 0 code of covering radius 1.



There's much more!

Other results

Highlights:
@ Sharp threshold theorems.

@ Small set expansion.

@ Invariance principle.

Other domains

Highlights:

@ Grassmann scheme.

@ High-dimensional expanders.

o Locally testable codes.
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