Boolean function analysis: beyond the hypercube

Yuval Filmus

Technion — Israel Institute of Technology

CAALM'19

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dimension-independent properties of functions $\{0,1\}^n \rightarrow \{0,1\}$

Many applications to combinatorics and computational complexity

Suppose $\mathcal{F} \subset {[n] \choose k}$ is intersecting, k = pn, p < 1/2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose $\mathcal{F} \subset {\binom{[n]}{k}}$ is intersecting, $k = pn, \ p < 1/2$. • $|\mathcal{F}| \leq {\binom{n-1}{k-1}}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose
$$\mathcal{F} \subset {[n] \choose k}$$
 is intersecting, $k = pn, \ p < 1/2$.
• $|\mathcal{F}| \leq {n-1 \choose k-1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose
$$\mathcal{F} \subset {[n] \choose k}$$
 is intersecting, $k = pn, \ p < 1/2$.
• $|\mathcal{F}| \leq {n-1 \choose k-1}$.

$$|\mathcal{F}| = \binom{n-1}{k-1} \Longrightarrow \mathcal{F} \text{ is a star, i.e. } \{A : i \in A\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$${f 0}~~|{\cal F}|pprox inom{n-1}{k-1} \Longrightarrow {\cal F}pprox$$
 a star.

Suppose F ⊂ (^[n]_k) is intersecting, k = pn, p < 1/2.
|F| ≤ (ⁿ⁻¹_{k-1}). Lovász: spectral proof using theta function.
|F| = (ⁿ⁻¹_{k-1}) ⇒ F is a star, i.e. {A : i ∈ A}.
|F| ≈ (ⁿ⁻¹_{k-1}) ⇒ F ≈ a star.

Suppose F ⊂ (^[n]_k) is intersecting, k = pn, p < 1/2.
|F| ≤ (ⁿ⁻¹_{k-1}). Lovász: spectral proof using theta function.
|F| = (ⁿ⁻¹_{k-1}) ⇒ F is a star, i.e. {A : i ∈ A}. Boolean degree 1 function is a dictator.
|F| ≈ (ⁿ⁻¹_{k-1}) ⇒ F ≈ a star.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose F ⊂ (^[n]_k) is intersecting, k = pn, p < 1/2.
|F| ≤ (ⁿ⁻¹_{k-1}). Lovász: spectral proof using theta function.
|F| = (ⁿ⁻¹_{k-1}) ⇒ F is a star, i.e. {A : i ∈ A}. Boolean degree 1 function is a dictator.
|F| ≈ (ⁿ⁻¹_{k-1}) ⇒ F ≈ a star.

Boolean *almost* degree 1 function is *almost* a dictator.

(日)(1)

Fundamental theorem

Every function $f: \{\pm 1\}^n \to \mathbb{R}$ has unique expansion as multilinear polynomial, the *Fourier expansion*:

$$f(x_1,\ldots,x_n) = \sum_{S \subseteq [n]} \hat{f}(S) x_S$$
, where $x_S = \prod_{i \in S} x_i$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fundamental theorem

Every function $f: \{\pm 1\}^n \to \mathbb{R}$ has unique expansion as multilinear polynomial, the *Fourier expansion*:

$$f(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) x_S$$
, where $x_S = \prod_{i \in S} x_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Degree of f = degree of Fourier expansion.

Fundamental theorem

Every function $f: \{\pm 1\}^n \to \mathbb{R}$ has unique expansion as multilinear polynomial, the *Fourier expansion*:

$$f(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) x_S$$
, where $x_S = \prod_{i \in S} x_i$

Degree of f = degree of Fourier expansion.

Dictator: function depending on one coordinate. *d*-Junta: function depending on *d* coordinates. deg $f \le d$ iff *f* is linear combination of *d*-juntas.

Question

```
Suppose f: \{\pm 1\}^n \to \{\pm 1\} has degree 1.
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What does f look like?

Question

Suppose $f: \{\pm 1\}^n \to \{\pm 1\}$ has degree 1.

What does f look like?

$$\deg f \leq 1 \Longleftrightarrow f(x_1,\ldots,x_n) = a_0 + a_1 x_1 + \cdots + a_n x_n.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Question

Suppose $f: \{\pm 1\}^n \to \{\pm 1\}$ has degree 1.

What does f look like?

$$\deg f \leq 1 \Longleftrightarrow f(x_1,\ldots,x_n) = a_0 + a_1 x_1 + \cdots + a_n x_n.$$

Dictator theorem

If $f: \{\pm 1\}^n \to \{\pm 1\}$ has degree 1 then

$$f \in \{\pm 1, \pm x_1, \ldots, \pm x_n\}.$$

Refined question

Suppose $f: \{\pm 1\}^n \to \{\pm 1\}$ satisfies

$$\mathbb{E}_{\mathsf{x}\sim\{\pm1\}^n}[(f(x)-g(x))^2]=\epsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some $g \colon \{\pm 1\}^n \to \mathbb{R}$ of degree 1.

What does f look like?

Refined question

Suppose $f \colon \{\pm 1\}^n \to \{\pm 1\}$ satisfies

$$\mathbb{E}_{x \sim \{\pm 1\}^n}[(f(x) - g(x))^2] = \epsilon$$

for some $g \colon \{\pm 1\}^n \to \mathbb{R}$ of degree 1.

What does f look like?

Friedgut-Kalai-Naor (FKN) theorem

Suppose $f: \{\pm 1\}^n \to \{\pm 1\}$ satisfies $||f^{>1}||^2 = \epsilon$. Then

 $\Pr[f \neq h] = O(\epsilon) \text{ for some } h \in \{\pm 1, \pm x_1, \dots, \pm x_n\}.$

The slice or Johnson scheme is

$$\binom{[n]}{k} = \left\{ (x_1, \ldots, x_n) \in \{0, 1\}^n : \sum_{i=1}^n x_i = k \right\}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

The slice or Johnson scheme is

$$\binom{[n]}{k} = \left\{ (x_1, \ldots, x_n) \in \{0, 1\}^n : \sum_{i=1}^n x_i = k \right\}.$$

Fundamental theorem (Dunkl)

Every function $f: \binom{[n]}{k} \to \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min(k, n-k)$ such that

$$\sum_{i=1}^n \frac{\partial P}{\partial x_i} = 0.$$

Examples: $1, (x_1 - x_2), (x_1 - x_2)(x_3 - x_4), \dots$

Every function $f: \binom{[n]}{k} \to \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min(k, n-k)$ such that

$$\sum_{i=1}^{n} \frac{\partial P}{\partial x_i} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Every function $f: \binom{[n]}{k} \to \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min(k, n-k)$ such that

$$\sum_{i=1}^{n} \frac{\partial P}{\partial x_i} = 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Degree of f = degree of unique expansion.

Every function $f: \binom{[n]}{k} \to \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min(k, n-k)$ such that

$$\sum_{i=1}^n \frac{\partial P}{\partial x_i} = 0.$$

Degree of f = degree of unique expansion.

Dictator: function depending on one coordinate. *d*-Junta: function depending on *d* coordinates. deg $f \le d$ iff *f* is linear combination of *d*-juntas.

Every function $f: \binom{[n]}{k} \to \mathbb{R}$ has unique expansion as multilinear polynomial P of degree $\leq \min(k, n-k)$ such that

$$\sum_{i=1}^n \frac{\partial P}{\partial x_i} = 0.$$

(日)

Degree of f = degree of unique expansion.

Dictator theorem holds (except for trivial cases). FKN theorem holds for $0 \ll k/n \ll 1$.

Let k = pn, p < 1/2. If $\mathcal{F} \subset {[n] \choose k}$ is intersecting and \mathcal{F} is not too small then $|\mathcal{F}| < {n-1 \choose k} (1 - C ||1|^{2})$

$$|\mathcal{F}| \leq inom{n-1}{k-1}ig(1-C\|1_{\mathcal{F}}^{>1}\|^2ig).$$

Let k = pn, p < 1/2. If $\mathcal{F} \subset {[n] \choose k}$ is intersecting and \mathcal{F} is not too small then

$$|\mathcal{F}| \leq inom{n-1}{k-1}ig(1-C\|1^{>1}_{\mathcal{F}}\|^2ig).$$

Corollaries

$$|\mathcal{F}| \leq \binom{n-1}{k-1}.$$

Let $k = pn, \ p < 1/2$. If $\mathcal{F} \subset {[n] \choose k}$ is intersecting and \mathcal{F} is not too small then

$$|\mathcal{F}| \leq inom{n-1}{k-1}ig(1-\mathcal{C}\|1_{\mathcal{F}}^{>1}\|^2ig).$$

Corollaries

$$|\mathcal{F}| \le {n-1 \choose k-1}.$$

$$|\mathcal{F}| = {n-1 \choose k-1} \Longrightarrow \deg 1_{\mathcal{F}} = 1.$$
Dictator theorem: \mathcal{F} is a star

Let k = pn, p < 1/2. If $\mathcal{F} \subset {[n] \choose k}$ is intersecting and \mathcal{F} is not too small then

$$|\mathcal{F}| \leq inom{n-1}{k-1}ig(1-\mathcal{C}\|1_{\mathcal{F}}^{>1}\|^2ig).$$

Corollaries

Let p := k/n = o(1) and $\epsilon \gg p^2$. Consider $g : {[n] \choose k} \to \mathbb{R}$ defined as

$$g := x_1 + \cdots + x_{\sqrt{\epsilon}/p}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let p := k/n = o(1) and $\epsilon \gg p^2$. Consider $g : {[n] \choose k} \to \mathbb{R}$ defined as

$$g := x_1 + \cdots + x_{\sqrt{\epsilon}/p} \sim \operatorname{Bin}(\sqrt{\epsilon}/p, p)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let p := k/n = o(1) and $\epsilon \gg p^2$. Consider $g : {[n] \choose k} \to \mathbb{R}$ defined as

 $g := x_1 + \cdots + x_{\sqrt{\epsilon}/p} \sim \operatorname{Bin}(\sqrt{\epsilon}/p, p) \sim \operatorname{Poisson}(\sqrt{\epsilon})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let p := k/n = o(1) and $\epsilon \gg p^2$. Consider $g : {[n] \choose k} \to \mathbb{R}$ defined as

$$g := x_1 + \cdots + x_{\sqrt{\epsilon}/p} \sim \operatorname{Bin}(\sqrt{\epsilon}/p, p) \sim \operatorname{Poisson}(\sqrt{\epsilon})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This shows that

- $\Pr[g=0] \approx 1 \sqrt{\epsilon}$.
- $\Pr[g=1] \approx \sqrt{\epsilon} \epsilon$.
- $\Pr[g \ge 2] \approx \epsilon$.

Let p := k/n = o(1) and $\epsilon \gg p^2$. Consider $g : {[n] \choose k} \to \mathbb{R}$ defined as

$$g := x_1 + \cdots + x_{\sqrt{\epsilon}/p} \sim \operatorname{Bin}(\sqrt{\epsilon}/p, p) \sim \operatorname{Poisson}(\sqrt{\epsilon})$$

This shows that

- $\Pr[g=0] \approx 1 \sqrt{\epsilon}$.
- $\Pr[g=1] \approx \sqrt{\epsilon} \epsilon$.
- $\Pr[g \ge 2] \approx \epsilon$.

Therefore

$$g \stackrel{O(\epsilon)}{\approx} f := x_1 \vee \cdots \vee x_{\sqrt{\epsilon}/p}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FKN theorem on the slice (F.)

Let $p := k/n \le 1/2$. If $f : {[n] \choose k} \to \{0, 1\}$ satisfies $||f^{>1}||^2 = \epsilon$ then either f or 1 - f is $O(\epsilon)$ -close to a disjunction of m variables, where

$$m = \max\left\{1, O\left(\frac{\sqrt{\epsilon}}{p}\right)\right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FKN theorem on the slice (F.)

Let $p := k/n \le 1/2$. If $f : {[n] \choose k} \to \{0, 1\}$ satisfies $||f^{>1}||^2 = \epsilon$ then either f or 1 - f is $O(\epsilon)$ -close to a disjunction of m variables, where

$$m = \max\left\{1, O\left(\frac{\sqrt{\epsilon}}{p}\right)\right\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Corollary

f is $O(\sqrt{\epsilon} + p)$ -close to 0 or 1.

FKN theorem on the slice (F.)

Let $p := k/n \le 1/2$. If $f : {[n] \choose k} \to \{0, 1\}$ satisfies $||f^{>1}||^2 = \epsilon$ then either f or 1 - f is $O(\epsilon)$ -close to a disjunction of m variables, where

$$m = \max\left\{1, O\left(\frac{\sqrt{\epsilon}}{p}\right)\right\}.$$

Corollary

f is $O(\sqrt{\epsilon} + p)$ -close to 0 or 1.

Dictator theorem on the slice

If $f: \binom{[n]}{k} \to \{0,1\}$ has degree 1 and $k \neq 1, n-1$ then

 $f \in \{0, 1, x_1, 1 - x_1, \dots, x_n, 1 - x_n\}.$

$$S_n = \{\pi \colon [n] \to [n] \mid \pi \text{ is a permutation}\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$S_n = \{\pi : [n] o [n] \mid \pi \text{ is a permutation}\}\ = \{(x_{ij})_{i,j=1}^n \in \{0,1\}^{n imes n} \mid (x_{ij}) \text{ is a permutation matrix}\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$S_n = \{\pi \colon [n] \to [n] \mid \pi \text{ is a permutation} \}$$

= $\{(x_{ij})_{i,j=1}^n \in \{0,1\}^{n \times n} \mid (x_{ij}) \text{ is a permutation matrix} \}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Degree

deg $f \leq d$ if f can be written as degree d polynomial in x_{ij} .

$$S_n = \{\pi \colon [n] \to [n] \mid \pi \text{ is a permutation} \}$$

= $\{(x_{ij})_{i,j=1}^n \in \{0,1\}^{n \times n} \mid (x_{ij}) \text{ is a permutation matrix} \}.$

Degree

deg $f \le d$ if f can be written as degree d polynomial in x_{ij} . deg $f \le d$ if f is linear combination of indicators of events

$$\pi(i_1)=j_1,\ldots,\pi(i_d)=j_d.$$

What are dictators in S_n ?

Suppose $f: S_n \rightarrow \{0,1\}$ has degree 1, i.e.,

$$f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_{ij}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

What does f look like?

What are dictators in S_n ?

Suppose $f: S_n \rightarrow \{0,1\}$ has degree 1, i.e.,

$$f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_{ij}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

What does f look like?

Ellis, Friedgut and Pilpel show that wlog, $a_{ij} \in \{0, 1\}$. So f is sum of mutually exclusive x_{ij} . What are dictators in S_n ?

Suppose $f: S_n \rightarrow \{0,1\}$ has degree 1, i.e.,

$$f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_{ij}.$$

What does f look like?

Ellis, Friedgut and Pilpel show that wlog, $a_{ij} \in \{0, 1\}$. So f is sum of mutually exclusive x_{ij} .

Two entries are mutually exclusive if on same row or column. Set of entries is mutually exclusive if all on a single row or column. Conclusion: f is sum of entries on a single row or column.

Dictator theorem (EFP)

If $f: S_n \to \{0, 1\}$ has degree 1 then f depends on some $\pi(i)$ or on some $\pi^{-1}(j)$ ("dictator").

Dictator theorem (EFP)

If $f: S_n \to \{0, 1\}$ has degree 1 then f depends on some $\pi(i)$ or on some $\pi^{-1}(j)$ ("dictator").

FKN theorem for sparse functions (EFF1)

If $f: S_n \to \{0, 1\}$ is close to degree 1 and $\mathbb{E}[f] = c/n$ then f is close to sum of c entries x_{ij} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Dictator theorem (EFP)

If $f: S_n \to \{0, 1\}$ has degree 1 then f depends on some $\pi(i)$ or on some $\pi^{-1}(j)$ ("dictator").

FKN theorem for sparse functions (EFF1)

If $f: S_n \to \{0, 1\}$ is close to degree 1 and $\mathbb{E}[f] = c/n$ then f is close to sum of c entries x_{ij} .

FKN theorem for balanced functions (EFF2)

If $f: S_n \to \{0, 1\}$ is close to degree 1 and $\mathbb{E}[f] \approx 1/2$ then f is close to a dictator.

Higher-degree analog of dictator theorem

Suppose $f: \{0,1\}^n \to \{0,1\}$ has degree d. On how many coordinates can f depend?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Higher-degree analog of dictator theorem

Suppose $f: \{0,1\}^n \to \{0,1\}$ has degree d. On how many coordinates can f depend?

Surprising example

Following function has degree d, depends on $\Omega(2^d)$ coordinates:

$$f(x_1,\ldots,x_{d-1},y_0,\ldots,y_{2^{d-1}-1})=y_x.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Can we do better?

If $f: \{0,1\}^n \to \{0,1\}$ has degree d then f is an $O(2^d)$ -junta (depends on $O(2^d)$ coordinates).

If $f: \{0,1\}^n \to \{0,1\}$ has degree d then f is an $O(2^d)$ -junta (depends on $O(2^d)$ coordinates).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Kindler-Safra theorem

If $f: \{0,1\}^n \to \{0,1\}$ is close to degree d then f is close to an $O(2^d)$ -junta.

If $f: \{0,1\}^n \to \{0,1\}$ has degree d then f is an $O(2^d)$ -junta (depends on $O(2^d)$ coordinates).

Kindler-Safra theorem

If $f: \{0,1\}^n \to \{0,1\}$ is close to degree d then f is close to an $O(2^d)$ -junta.

Analogs for slice and S_n

Nisan–Szegedy: known for slice (F.-Ihringer), unknown for S_n .

If $f: \{0,1\}^n \to \{0,1\}$ has degree d then f is an $O(2^d)$ -junta (depends on $O(2^d)$ coordinates).

Kindler-Safra theorem

If $f: \{0,1\}^n \to \{0,1\}$ is close to degree d then f is close to an $O(2^d)$ -junta.

Analogs for slice and S_n

Nisan–Szegedy: known for slice (F.-Ihringer), unknown for S_n . Kindler–Safra: known for slice (FKMW,DFH,KK), known for sparse functions on S_n (EFF3), unknown for balanced functions.

Sparse juntas

Setting:
$$f: {[n] \choose k} \to \{0,1\}$$
, where $p := k/n = o(1)$.

FKN theorem for sparse slice

If f is close to degree 1 then

$$f ext{ or } 1-f pprox g := x_{i_1} + \cdots + x_{i_m}, \quad m = O(1/p).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

On typical input, ≤ 1 monomials are non-zero, and $g \in \{0, 1\}$.

Sparse juntas

Setting:
$$f: {[n] \choose k} \to \{0,1\}$$
, where $p := k/n = o(1)$.

FKN theorem for sparse slice

If f is close to degree 1 then

$$f ext{ or } 1-f pprox g := x_{i_1} + \cdots + x_{i_m}, \quad m = O(1/p).$$

On typical input, ≤ 1 monomials are non-zero, and $g \in \{0, 1\}$.

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero, and $g \in \{0, 1\}$. g is hereditarily sparse junta if g is sparse junta even given $x_{i_1} = \cdots = x_{i_{\ell}} = 1$ for $\ell = O(1)$.

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero, and $g \in \{0, 1\}$. g is hereditarily sparse junta if g is sparse junta even given $x_{i_1} = \cdots = x_{i_\ell} = 1$ for $\ell = O(1)$.

Kindler-Safra theorem for sparse slice

 $f \approx$ degree $d \implies f \approx$ degree d hereditarily sparse junta. Moreover, coefficients of sparse junta belong to some finite set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero, and $g \in \{0, 1\}$. g is hereditarily sparse junta if g is sparse junta even given $x_{i_1} = \cdots = x_{i_\ell} = 1$ for $\ell = O(1)$.

Kindler-Safra theorem for sparse slice

 $f \approx \text{degree } d \implies f \approx \text{degree } d$ hereditarily sparse junta. Moreover, coefficients of sparse junta belong to some finite set.

Corollary

If f is ϵ -close to degree d then f is $O(\epsilon^{c_d} + p)$ -close to constant.

Other results

Highlights:

- Sharp threshold theorems.
- Small set expansion.
- Invariance principle.

Other domains

Highlights:

- Grassmann scheme.
- High-dimensional expanders.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Locally testable codes.

G(n, p) = Erdős–Rényi random graph on *n* vertices, edge prob *p*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two examples

•
$$\Pr[G(n, \frac{c}{n}) \text{ contains a triangle}] \longrightarrow 1 - e^{-c^3/6}$$
.

•
$$\Pr[G(n, \frac{\log n+c}{n}) \text{ is connected}] \longrightarrow e^{-e^{-c}}$$

G(n, p) = Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

• $\Pr[G(n, \frac{c}{n}) \text{ contains a triangle}] \longrightarrow 1 - e^{-c^3/6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. **Coarse threshold.**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$\Pr[G(n, \frac{\log n+c}{n}) \text{ is connected}] \longrightarrow e^{-e^{-1}}$$

G(n, p) = Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

- $\Pr[G(n, \frac{c}{n}) \text{ contains a triangle}] \longrightarrow 1 e^{-c^3/6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. **Coarse threshold.**
- $\Pr[G(n, \frac{\log n+c}{n}) \text{ is connected}] \longrightarrow e^{-e^{-c}}$. Critical probability: $\frac{\log n}{n}$. Window size: $\frac{1}{n}$. Sharp threshold.

G(n, p) = Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

- $\Pr[G(n, \frac{c}{n}) \text{ contains a triangle}] \longrightarrow 1 e^{-c^3/6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. **Coarse threshold.**
- $\Pr[G(n, \frac{\log n+c}{n}) \text{ is connected}] \longrightarrow e^{-e^{-c}}$. Critical probability: $\frac{\log n}{n}$. Window size: $\frac{1}{n}$. Sharp threshold.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are approximately local.

G(n, p) = Erdős-Rényi random graph on n vertices, edge prob p.

Two examples

- $\Pr[G(n, \frac{c}{n}) \text{ contains a triangle}] \longrightarrow 1 e^{-c^3/6}$. Critical probability: $\frac{1}{n}$. Window size: $\frac{1}{n}$. **Coarse threshold.**
- $\Pr[G(n, \frac{\log n+c}{n}) \text{ is connected}] \longrightarrow e^{-e^{-c}}$. Critical probability: $\frac{\log n}{n}$. Window size: $\frac{1}{n}$. Sharp threshold.

Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are approximately local.

Swift threshold theorem (Friedgut-Kalai; Bourgain-Kalai)

Monotone graph properties have window size $\tilde{O}(\frac{1}{\log^2 n})$.

Central limit theorem (Berry-Esséen)

If x_1, \ldots, x_n are i.i.d. samples of $U(\{\pm 1\})$ then $\mu + a_1x_1 + \cdots + a_nx_n \sim N(\mu, a_1^2 + \cdots + a_n^2)$ provided no a_i is too "prominent".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Central limit theorem (Berry–Esséen)

If x_1, \ldots, x_n are i.i.d. samples of $U(\{\pm 1\})$ then $\mu + a_1x_1 + \cdots + a_nx_n \sim N(\mu, a_1^2 + \cdots + a_n^2)$ provided no a_i is too "prominent". Equivalently, $\mu + a_1x_1 + \cdots + a_nx_n \sim \mu + a_1g_1 + \cdots + a_ng_n$, where g_1, \ldots, g_n are i.i.d. samples of N(0, 1).

Central limit theorem (Berry-Esséen)

If x_1, \ldots, x_n are i.i.d. samples of $U(\{\pm 1\})$ then $\mu + a_1x_1 + \cdots + a_nx_n \sim N(\mu, a_1^2 + \cdots + a_n^2)$ provided no a_i is too "prominent". Equivalently, $\mu + a_1x_1 + \cdots + a_nx_n \sim \mu + a_1g_1 + \cdots + a_ng_n$, where g_1, \ldots, g_n are i.i.d. samples of N(0, 1).

Invariance principle (Mossel–O'Donnell–Oleszkiewicz)

Same holds for degree O(1) polynomials $\sum_{S} a_{S} x_{S}$ provided no variable is too influential: for all *i*,

$$\sum_{S\ni i}a_S^2\ll\sum_{S\neq\emptyset}a_S^2.$$

Johnson scheme

J(n, k) is set of subsets of $\{1, \ldots, n\}$ of size k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Johnson scheme

J(n, k) is set of subsets of $\{1, \ldots, n\}$ of size k.

Grassmann scheme (q-Johnson scheme)

 $J_q(n,k)$ is set of subspaces of \mathbb{F}_q^n of dimension k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Johnson scheme

J(n, k) is set of subsets of $\{1, \ldots, n\}$ of size k.

Grassmann scheme (q-Johnson scheme)

 $J_q(n,k)$ is set of subspaces of \mathbb{F}_q^n of dimension k.

Dictator theorem (F.–Ihringer)

If $f: J_2(n,k) \rightarrow \{0,1\}$ has degree 1 then

 $f \text{ or } 1 - f \in \{0, [x \in V], [y \perp V], [x \in V \lor y \perp V]\} \quad (x \not\perp y)$

Same object known as: Cameron–Liebler line class, tight set, completely regular strength 0 code of covering radius 1.

Other results

Highlights:

- Sharp threshold theorems.
- Small set expansion.
- Invariance principle.

Other domains

Highlights:

- Grassmann scheme.
- High-dimensional expanders.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Locally testable codes.