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What is Boolean function analysis?

Dimension-independent properties of
functions {0, 1}n → {0, 1}

Many applications to combinatorics
and computational complexity



Motivating example: Erdős–Ko–Rado theorem

Suppose F ⊂
([n]
k

)
is intersecting, k = pn, p < 1/2.

1 |F| ≤
(n−1
k−1
)
.

Lovász: spectral proof using theta function.

2 |F| =
(n−1
k−1
)

=⇒ F is a star, i.e. {A : i ∈ A}.

Boolean degree 1 function is a dictator.

3 |F| ≈
(n−1
k−1
)

=⇒ F ≈ a star.

Boolean almost degree 1 function is almost a dictator.
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Classical Boolean function analysis

Fundamental theorem

Every function f : {±1}n → R has unique expansion as multilinear
polynomial, the Fourier expansion:

f (x1, . . . , xn) =
∑
S⊆[n]

f̂ (S)xS , where xS =
∏
i∈S

xi .

Degree of f = degree of Fourier expansion.

Dictator: function depending on one coordinate.
d-Junta: function depending on d coordinates.
deg f ≤ d iff f is linear combination of d-juntas.
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Boolean degree 1 functions

Question

Suppose f : {±1}n → {±1} has degree 1.

What does f look like?

deg f ≤ 1⇐⇒ f (x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn.

Dictator theorem

If f : {±1}n → {±1} has degree 1 then

f ∈ {±1,±x1, . . . ,±xn}.
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Boolean almost degree 1 functions

Refined question

Suppose f : {±1}n → {±1} satisfies

E
x∼{±1}n

[(f (x)− g(x))2] = ε

for some g : {±1}n → R of degree 1.

What does f look like?

Friedgut–Kalai–Naor (FKN) theorem

Suppose f : {±1}n → {±1} satisfies ‖f >1‖2 = ε. Then

Pr[f 6= h] = O(ε) for some h ∈ {±1,±x1, . . . ,±xn}.
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Boolean function analysis on the slice

The slice or Johnson scheme is(
[n]

k

)
=

{
(x1, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi = k

}
.

Fundamental theorem (Dunkl)

Every function f :
([n]
k

)
→ R has unique expansion as multilinear

polynomial P of degree ≤ min(k , n − k) such that

n∑
i=1

∂P

∂xi
= 0.

Examples: 1, (x1 − x2), (x1 − x2)(x3 − x4), . . .
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Degree of functions on the slice

Fundamental theorem (Dunkl)

Every function f :
([n]
k

)
→ R has unique expansion as multilinear

polynomial P of degree ≤ min(k , n − k) such that

n∑
i=1

∂P

∂xi
= 0.

Degree of f = degree of unique expansion.

Dictator theorem holds (except for trivial cases).
FKN theorem holds for 0� k/n� 1.



Erdős–Ko–Rado theorem

Spectral argument of Lovász

Let k = pn, p < 1/2.

If F ⊂
([n]
k

)
is intersecting and F is not too small then

|F| ≤
(
n − 1

k − 1

)(
1− C‖1>1

F ‖
2
)
.

Corollaries

1 |F| ≤
(n−1
k−1
)
.

2 |F| =
(n−1
k−1
)

=⇒ deg 1F = 1.

Dictator theorem: F is a star.

3 |F| = (1− ε)
(n−1
k−1
)

=⇒ ‖1>1
F ‖2 = O(ε).

FKN theorem: F is O(ε)-close to a star.
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FKN theorem for small k?

Let p := k/n = o(1) and ε� p2.

Consider g :
([n]
k

)
→ R defined as

g := x1 + · · ·+ x√ε/p

∼ Bin(
√
ε/p, p) ∼ Poisson(

√
ε)

This shows that

Pr[g = 0] ≈ 1−
√
ε.

Pr[g = 1] ≈
√
ε− ε.

Pr[g ≥ 2] ≈ ε.

Therefore

g
O(ε)
≈ f := x1 ∨ · · · ∨ x√ε/p
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FKN theorem for small k

FKN theorem on the slice (F.)

Let p := k/n ≤ 1/2.

If f :
([n]
k

)
→ {0, 1} satisfies ‖f >1‖2 = ε then either f or 1− f is

O(ε)-close to a disjunction of m variables, where

m = max

{
1,O

(√
ε

p

)}
.

Corollary

f is O(
√
ε+ p)-close to 0 or 1.

Dictator theorem on the slice

If f :
([n]
k

)
→ {0, 1} has degree 1 and k 6= 1, n − 1 then

f ∈ {0, 1, x1, 1− x1, . . . , xn, 1− xn}.
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Symmetric group

The symmetric group is

Sn = {π : [n]→ [n] | π is a permutation}

= {(xij)ni ,j=1 ∈ {0, 1}n×n | (xij) is a permutation matrix}.

Degree

deg f ≤ d if f can be written as degree d polynomial in xij .
deg f ≤ d if f is linear combination of indicators of events

π(i1) = j1, . . . , π(id) = jd .
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Boolean degree 1 functions on Sn

What are dictators in Sn?

Suppose f : Sn → {0, 1} has degree 1, i.e.,

f =
n∑

i=1

n∑
j=1

aijxij .

What does f look like?

Ellis, Friedgut and Pilpel show that wlog, aij ∈ {0, 1}.
So f is sum of mutually exclusive xij .

Two entries are mutually exclusive if on same row or column.
Set of entries is mutually exclusive if all on a single row or column.
Conclusion: f is sum of entries on a single row or column.
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Boolean (almost) degree 1 functions on Sn

Dictator theorem (EFP)

If f : Sn → {0, 1} has degree 1 then
f depends on some π(i) or on some π−1(j) (“dictator”).

FKN theorem for sparse functions (EFF1)

If f : Sn → {0, 1} is close to degree 1 and E[f ] = c/n then
f is close to sum of c entries xij .

FKN theorem for balanced functions (EFF2)

If f : Sn → {0, 1} is close to degree 1 and E[f ] ≈ 1/2 then
f is close to a dictator.
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What about higher degrees?

Higher-degree analog of dictator theorem

Suppose f : {0, 1}n → {0, 1} has degree d .
On how many coordinates can f depend?

Surprising example

Following function has degree d , depends on Ω(2d) coordinates:

f (x1, . . . , xd−1, y0, . . . , y2d−1−1) = yx .

Can we do better?
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Boolean (almost) degree d functions

Nisan–Szegedy theorem, CHS’18

If f : {0, 1}n → {0, 1} has degree d then
f is an O(2d)-junta (depends on O(2d) coordinates).

Kindler–Safra theorem

If f : {0, 1}n → {0, 1} is close to degree d then
f is close to an O(2d)-junta.

Analogs for slice and Sn

Nisan–Szegedy: known for slice (F.-Ihringer), unknown for Sn.
Kindler–Safra: known for slice (FKMW,DFH,KK), known for
sparse functions on Sn (EFF3), unknown for balanced functions.
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Sparse juntas

Setting: f :
([n]
k

)
→ {0, 1}, where p := k/n = o(1).

FKN theorem for sparse slice

If f is close to degree 1 then

f or 1− f ≈ g := xi1 + · · ·+ xim , m = O(1/p).

On typical input, ≤ 1 monomials are non-zero, and g ∈ {0, 1}.

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero,
and g ∈ {0, 1}.
g is hereditarily sparse junta if g is sparse junta even given
xi1 = · · · = xi` = 1 for ` = O(1).
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If f is ε-close to degree d then f is O(εcd + p)-close to constant.



Sparse junta theorem

Sparse junta

g is sparse junta if on typical input, O(1) monomials are non-zero,
and g ∈ {0, 1}.
g is hereditarily sparse junta if g is sparse junta even given
xi1 = · · · = xi` = 1 for ` = O(1).

Kindler–Safra theorem for sparse slice

f ≈ degree d =⇒ f ≈ degree d hereditarily sparse junta.
Moreover, coefficients of sparse junta belong to some finite set.

Corollary

If f is ε-close to degree d then f is O(εcd + p)-close to constant.



There’s much more!

Other results

Highlights:

Sharp threshold theorems.

Small set expansion.

Invariance principle.

Other domains

Highlights:

Grassmann scheme.

High-dimensional expanders.

Locally testable codes.



Sharp and coarse thresholds

G (n, p) = Erdős–Rényi random graph on n vertices, edge prob p.

Two examples

Pr[G (n, cn ) contains a triangle] −→ 1− e−c
3/6.

Critical probability: 1
n . Window size: 1

n . Coarse threshold.

Pr[G (n, log n+c
n ) is connected] −→ e−e

−c
.

Critical probability: log n
n . Window size: 1

n . Sharp threshold.

Sharp threshold theorem (Friedgut; Bourgain; Hatami)

Monotone graph properties with coarse threshold are
approximately local.

Swift threshold theorem (Friedgut–Kalai; Bourgain–Kalai)

Monotone graph properties have window size Õ( 1
log2 n

).
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log2 n

).



Sharp and coarse thresholds
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Invariance principle

Central limit theorem (Berry–Esséen)

If x1, . . . , xn are i.i.d. samples of U({±1}) then

µ+ a1x1 + · · ·+ anxn ∼ N(µ, a21 + · · ·+ a2n)

provided no ai is too “prominent”.

Equivalently,

µ+ a1x1 + · · ·+ anxn ∼ µ+ a1g1 + · · ·+ angn,

where g1, . . . , gn are i.i.d. samples of N(0, 1).

Invariance principle (Mossel–O’Donnell–Oleszkiewicz)

Same holds for degree O(1) polynomials
∑

S aSxS
provided no variable is too influential: for all i ,∑

S3i
a2S �

∑
S 6=∅

a2S .
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Grassmann scheme

Johnson scheme

J(n, k) is set of subsets of {1, . . . , n} of size k.

Grassmann scheme (q-Johnson scheme)

Jq(n, k) is set of subspaces of Fn
q of dimension k .

Dictator theorem (F.–Ihringer)

If f : J2(n, k)→ {0, 1} has degree 1 then

f or 1− f ∈ {0, [x ∈ V ], [y ⊥ V ], [x ∈ V ∨ y ⊥ V ]} (x 6⊥ y)

Same object known as: Cameron–Liebler line class, tight set,
completely regular strength 0 code of covering radius 1.
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