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Dokow & Holzman: Other polymorphisms exist only for AND, XOR

Always have dictators, sometimes “antidictators,” sometimes constants
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Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for  being a degree  monomial: 
1. Test that . 
2. Test that .

f : {0,1}n → {0,1} k
Pr[ f = 1] = 2−k

f(x ∧ y) = f(x) ∧ f(y)

[PRS02] could not analyze this “natural” test.

Our work shows that this test works!
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Background: Boolean Function Analysis

Every function   has unique representation as multilinear polyf : {±1}n → {±1}

Noise operator  multiplies degree  monomials (“level “) by Tρ d d ρd

Degree of : degree of unique representation (as polynomial)f

Important observation: different monomials are orthogonal

Constant coefficient is expectation of   f
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Polymorphisms of Majority

A function  is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[ f ]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

If , function is constant.μ ∈ {±1}

If  then , so , so  is a dictator.μ = 0 T1/2 f = 1
2 f deg f = 1 f

Everything also holds approximately, using FKN theorem!
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Polymorphisms of AND

A function  is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[ f ]

Problem: one-sided noise operator  has complicated effect 
                 on Fourier expansion

T↓

However, can read Fourier expansion of   
from biased Fourier expansion of  !

T↓ f
f

Cannot directly compare biased and unbiased Fourier expansions! 
The two expansions depend on different parts of .f

←Unbiased inputs(3/4,1/4)-biased inputs→

average of  over values “below” 𝔼[ f(xy)] = f x
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Approximate polymorphisms of AND
Starting point: , where  (otherwise ).T↓ f ≈ μf μ = 𝔼[ f ] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”,  has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem:  is close to a junta .f F

Define , where  are junta variables.fx′ ′ 
(x′ ) = f(x′ , x′ ′ ) x′ 

For random , we have  and .x′ ′ , y′ ′ fx′ ′ 
(x′ )fy′ ′ 

(y′ ) = fx′ ′ y′ ′ 
(x′ y′ ) fx′ ′ 

≈ F

Implies that  are ANDs, hence  is close to an AND.fx′ ′ 
, fy′ ′ 

, fx′ ′ y′ ′ 
f ≈ F ≈ fx′ ′ 

Easier than proof in paper!
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Results

• If  then  is -close to an AND or a constant.Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If  then  is -close to AND or constant.Pr[ f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If  then  is -close to a 
dictator or a constant.

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

• Same for Majority on any odd number of inputs.

• Ongoing work: many more functions!
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Open questions

• If  then  is -close to an AND or a constant. 
What is the best relation between  and ?

Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ

• If  then  is -close to a 
dictator or a constant. Works for any Majority. 
Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR. 
Can we generalize this from Maj to any function other than AND, XOR?

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

• If  then  correlates with exact polymorphism. 

Does a similar statement hold for AND?

Pr[ f(x ⊕ y) = f(x) ⊕ f(y)] ≥ 1
2 +ε f
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Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Not-All-Equal-SAT is NP-complete NAE(x1, x2, x3) ∧ NAE(x1, x2, x4)

XOR-SAT is in P (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕ x2 ⊕ x4)

Schaefer’s theorem: 
If all predicates have one of the following polymorphisms, in P: 

constant 0, constant 1, AND, OR, Majority, XOR 
Otherwise, NP-complete.

Recently extended to non-binary domains (Dichotomy Theorem).


