

Approximate Polymorphisms Joint work with Noam Lifshitz, Dor Minzer, Elchanan Mossel

Yuval Filmus, 12 March 2021, MIT Reading Group

European Research Council

Established by the European Commission

Judgement Aggregation

	Means?	Motive?	Guilty?
Ehud	Yes	No	No
Shamgar	No	Yes	No
Deborah	Yes	Yes	Yes
Majority	Yes	Yes	No

Defendant is guilty if they have the **means** and the **motive**

Judgement Aggregation

	Means?	Motive?	Guilty?
Ehud	Yes	No	No
Shamgar	No	Yes	No
Deborah	Yes	Yes	Yes
Majority	Yes	Yes	No

Defendant is guilty if they have the **means** and the **motive**

Inconsistent!

Given:

Given: Predicate $P \subseteq \{0,1\}^k$

Given: Predicate $P \subseteq \{0,1\}^k$ Function $f: \{0,1\}^n \rightarrow \{0,1\}$

Polym

n

Given: Predicate $P \subseteq \{0,1\}^k$ Function $f: \{0,1\}^n \rightarrow \{0,1\}$

orp	his	ms
	k	
0	1	1
1	0	1
1	1	0
• • •	• • •	• • •
0	0	1

Polym

n

Given: Predicate $P \subseteq \{0,1\}^k$ Function $f: \{0,1\}^n \rightarrow \{0,1\}$

7	orp	his	ms	
		k		
	0	1	1	
	1	0	1	A
	1	1	0	
	• • •	• • •	• • •	pro
	0	0	1	

All rows satisfy operty P

n

Given: Predicate $P \subseteq \{0,1\}^k$ Function $f: \{0,1\}^n \rightarrow \{0,1\}$

All rows satisfy property P

n

Given: Predicate $P \subseteq \{0,1\}^k$ Function $f: \{0,1\}^n \rightarrow \{0,1\}$

n

Given: Predicate $P \subseteq \{0,1\}^k$ Function $f: \{0,1\}^n \rightarrow \{0,1\}$

"f is a polymorphism of P"

S Φ +- \bigcirc

A>B? B>C? C>A?

1	1
0	1
1	0
• • •	• • •
0	1

S Φ +- \bigcirc >

A>B? B>C? C>A?

1	1	
0	1	
1	0	
• • •	•••	
0	1	

Forbidden rows: 0 0 0

A>B? B>C? C>A?

Forbidden rows: 00

A>B? B>C? C>A?

Forbidden rows: \mathbf{O}

Outcome must be legal

S

Φ

+--

0

>

Polymorphisms: Dictators (*i*-th row) (Arrow's theorem)

A>B? B>C? C>A?

Forbidden rows: 000 111

Outcome must be legal

A function $f: \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

A function $f: \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

x y x⊕*y*

1	1
0	1
1	0
• • •	• • •
0	0

A function $f: \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

X⊕y V 1 1 0 1 0 1 • • • • • • 0 0

Rows have even parity

A function $f: \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

Rows have even parity

A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

Rows have even parity

Outcome must have even parity

A function $f: \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

Polymorphisms: XORs of rows

Rows have even parity

Outcome must have even parity

Example: AND

X

Example: AND

У	X∧Y
1	0
0	0
1	1
• • •	• • •
0	0

X

Example: AND

AND

Example: AND

Last coord computes AND

Example: AND

Polymorphisms: ANDs of rows, O

Example: AND

Example: NAND

Example: NAND

Forbidden row:

↓*f*

1

Example: NAND

Forbidden row:

Example: NAND

0

0

• • •

1

Jf

Outcome not 11

Polymorphisms: Intersecting families

0

Example: NAND

0

0

• • •

Outcome not 11

Post's Lattice

Truth-Functional Setting
XOR function

0	1	0⊕1
1	0	1⊕0
1	1	1⊕1
• • •	• • •	• • •
0	0	0⊕0

XOR function

1	0∧1
0	1∧0
1	1∧1
• • •	•••
0	0^0

XOR function

AND function

Majority function

1	0∧1
0	1∧0
1	1∧1
• • •	•••
0	0^0

0	1	1	Maj(0,1
1	1	1	Maj(1,1,
1	0	0	Maj(1,0
• • •	• • •	•••	• • •
0	0	0	Maj(0,0

XOR function

Always have dictators, sometimes "antidictators," sometimes constants

AND function

Majority function

1	0∧1	0	1	1	Maj(0,1,
0	1∧0	1	1	1	Maj(1,1,
1	1∧1	1	0	0	Maj(1,0,
• • •	• • •	•••	• • •	• • •	• • •
0	0^0	0	0	0	Maj(0,0,

XOR function

Always have dictators, sometimes "antidictators," sometimes constants Dokow & Holzman: Other polymorphisms exist only for AND, XOR

AND function

Majority function

Approximate Polymorphisms

Approximate Polymorphisms

Approximate Polymorphisms

Approximate Polymorphisms All rows 0 s every satisfy 0 approximate property P • • • polymorphism 0 close to an exact polymorphism? Satisfies P w.p. 0.9 prox polymorphism Exact polymorph.

Not-All-Equal

Even Parity

0	1	1
1	0	1
1	1	0
• • •	• • •	•••
0	0	1

0	1	1
1	0	1
1	1	0
•••	• • •	•••
0	0	0

NAND

0	1	0
1	0	0
1	1	1
•••	•••	•••
0	0	0

Not-All-Equal

Even Parity

0	1	1
1	0	1
1	1	0
• • •	• • •	• • •
0	0	1

0	1	1
1	0	1
1	1	0
• • •	• • •	•••
0	0	0

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

NAND

0	1	0
1	0	0
1	1	1
•••	•••	•••
0	0	0

Not-All-Equal

Even Parity

0	1	1
1	0	1
1	1	0
• • •	• • •	• • •
0	0	1

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

0	1	1
1	0	1
1	1	0
•••	• • •	•••
0	0	0

Approx polymorphisms: XORs of rows

(Linearity testing)

NAND

0	1	0
1	0	0
1	1	1
•••	• • •	•••
0	0	0

Not-All-Equal

Even Parity

0	1	1
1	0	1
1	1	0
• • •	• • •	• • •
0	0	1

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

0	1	1
1	0	1
1	1	0
•••	• • •	•••
0	0	0

Approx polymorphisms: XORs of rows

(Linearity testing)

NAND

AND function

0	1	0
1	0	0
1	1	1
•••	• • •	•••
0	0	0

ms: Approx polymorphisms: Intersecting families

(Friedgut-Regev)

Not-All-Equal

Even Parity

0	1	1
1	0	1
1	1	0
• • •	• • •	• • •
0	0	1

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

0	1	1
1	0	1
1	1	0
•••	• • •	•••
0	0	0

Approx polymorphisms: XORs of rows

(Linearity testing)

NAND

AND function

0	1	0
1	0	0
1	1	1
• • •	• • •	• • •
0	0	0

Approx polymorphisms: Intersecting families

(Friedgut-Regev)

Approx polymorphisms: ANDs of rows, constant O

(This work)

Not-All-Equal

Even Parity

0	1	1
1	0	1
1	1	0
• • •	• • •	• • •
0	0	1

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

0	1	1
1	0	1
1	1	0
•••	• • •	•••
0	0	0

Approx polymorphisms: XORs of rows

(Linearity testing)

NAND

AND function

0	1	0
1	0	0
1	1	1
• • •	•••	Impro Neham
0	0	0

ms: Approx polymorphisms: Intersecting families

(Friedgut-Regev)

Approx polymorphisms: ANDs of rows, constant O

(This work)

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for f: $\{0,1\}^n \rightarrow \{0,1\}$ being a degree k monomial:

- 1. Test that $\Pr[f = 1] = 2^{-k}$.
- 2. Test that $f(x \land y) = f(x) \land f(y)$.

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for f: $\{0,1\}^n \rightarrow \{0,1\}$ being a degree k monomial:

- 1. Test that $\Pr[f = 1] = 2^{-k}$.
- 2. Test that $f(x \land y) = f(x) \land f(y)$.

[PRSO2] could not analyze this "natural" test.

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for f: $\{0,1\}^n \rightarrow \{0,1\}$ being a degree k monomial:

- 1. Test that $\Pr[f = 1] = 2^{-k}$.
- 2. Test that $f(x \land y) = f(x) \land f(y)$.

[PRSO2] could not analyze this "natural" test.

Our work shows that this test works!

Every function $f: \{\pm 1\}^n \rightarrow \{\pm 1\}$ has unique representation as multilinear poly

- Degree of f: degree of unique representation (as polynomial)

Every function $f: \{\pm 1\}^n \rightarrow \{\pm 1\}$ has unique representation as multilinear poly

- Every function $f: \{\pm 1\}^n \to \{\pm 1\}$ has unique representation as multilinear poly
- Degree of f: degree of unique representation (as polynomial)
- Noise operator $T_
 ho$ multiplies degree d monomials ("level d") by ho^d

- Every function $f: \{\pm 1\}^n \rightarrow \{\pm 1\}$ has unique representation as multilinear poly
- Degree of f: degree of unique representation (as polynomial)
- Noise operator $T_{
 ho}$ multiplies degree d monomials ("level d") by ho^d
- Constant coefficient is expectation of f

- Every function $f: \{\pm 1\}^n \rightarrow \{\pm 1\}$ has unique representation as multilinear poly
- Degree of f: degree of unique representation (as polynomial)
- Noise operator $T_{
 ho}$ multiplies degree d monomials ("level d") by ho^d
- Constant coefficient is expectation of f
- Important observation: different monomials are orthogonal

Simpler example

Polymorphisms: Dictators (*i*-th row) **Constant functions**

Majority function

Last coord computes Majority

- A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if
- $f(Maj(x_1, y_1, z_1), \dots, Maj(x_n, y_n, z_n)) = Maj(f(x_1, \dots, x_n), f(y_1, \dots, y_n), f(z_1, \dots, z_n))$

- A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if
 - f(Maj(x, y, z)) = Maj(f(x), f(y), f(z))

A function $f: \{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if

 $f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$

Fix *x*, average over *y*, *z*: $T_{1/2}$

$$\mu_{1/2}f(x) = \frac{1-\mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if

Fix x, average over y, z: $T_{1/2}$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

$$f(Maj(x, y, z)) = Maj(f(x), f(y), f(z))$$

ver y, z: $T_{1/2}f(x) = \frac{1 - \mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$

A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if

Fix *x*, average over *y*, *z*: $\mu = \frac{1 - \mu^2}{2} \mu$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

f(Maj(x, y, z)) = Maj(f(x), f(y), f(z))

$$+\mu \qquad \mu = \mathbb{E}[f]$$

- A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if
- Fix x, average over y, z: $T_{1/2}$
- Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.
- If $\mu \in \{\pm 1\}$, function is constant.

$$f(Maj(x, y, z)) = Maj(f(x), f(y), f(z))$$

ver y, z: $T_{1/2}f(x) = \frac{1 - \mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$

- A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if
 - $f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$
- Fix x, average over y, z: $T_{1/2}$
- Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.
- If $\mu \in \{\pm 1\}$, function is constant.
- If $\mu = 0$ then $T_{1/2}f = \frac{1}{2}f$, so deg

= Maj(
$$f(x), f(y), f(z)$$
)
 $_{2}f(x) = \frac{1 - \mu^{2}}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$

$$gf = 1$$
, so f is a dictator.

- A function f: $\{\pm 1\}^n \rightarrow \{\pm 1\}$ is a polymorphism of Majority if
 - $f(\mathsf{Maj}(x, y, z)) = \mathsf{Mai}(f(x), f(y), f(z))$
- Fix x, average over y, z: $T_{1/2}$
- Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.
- If $\mu \in \{\pm 1\}$, function is constant.
- If $\mu = 0$ then $T_{1/2}f = \frac{1}{2}f$, so deg Everything also holds approximately, using FKN theorem!

$$= \operatorname{Maj}(f(x), f(y), f(z))$$

$$_{2}f(x) = \frac{1 - \mu^{2}}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

$$gf = 1$$
, so f is a dictator.

Polymorphisms of AND

- A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if
 - f(xy) = f(x)f(y)

Polymorphisms of AND

Fix *x*, average over *y*:

- A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if
 - f(xy) = f(x)f(y)

 $T_{\downarrow}f(x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$
Fix *x*, average over *y*:

- A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if
 - f(xy) = f(x)f(y)

$$x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$$

- A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if f(xy) = f(x)f(y)Fix *x*, average over *y*: $T_{\downarrow}f(x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$
- on Fourier expansion

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

Problem: one-sided noise operator T_{\downarrow} has complicated effect

- A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if f(xy) = f(x)f(y)Fix *x*, average over *y*: $T_{\perp}f(x)$
- Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion
 - However, can read Fourier expansion of $T_{\rm L}f$ from *biased* Fourier expansion of *f* !

$$x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$$

- A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if f(xy) = f(x)f(y)Fix *x*, average over *y*: $T_{\downarrow}f(x) = \mu f(x),$ \leftarrow Unbiased inputs
- Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion
 - However, can read Fourier expansion of $T_{\perp}f$ from *biased* Fourier expansion of *f* !

- A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if f(xy) = f(x)f(y)Fix *x*, average over *y*: (3/4,1/4)-biased inputs $\rightarrow T_{\perp}f(x) = \mu f(x), \quad \leftarrow Unbiased inputs$
 - Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion
 - However, can read Fourier expansion of $T_{\rm L}f$ from *biased* Fourier expansion of *f* !

A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a polymorphism of AND if

Fix *x*, average over *y*:

f(xy) = f(x)f(y)

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

(3/4,1/4)-biased inputs $\rightarrow T_{\perp}f(x) = \mu f(x), \leftarrow Unbiased inputs$

- **Cannot directly compare biased and unbiased Fourier expansions!** The two expansions depend on different parts of f.
 - However, can read Fourier expansion of $T_{\perp}f$ from *biased* Fourier expansion of *f* !

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).

Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\downarrow}f$ has decaying tails.

Bourgain's junta theorem: f is close to a junta F.

- Starting point: $T_{\perp}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
- Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\perp}f$ has decaying tails.

Bourgain's junta theorem: f is close to a junta F.

- Starting point: $T_{\perp}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
- Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\perp}f$ has decaying tails.

Bourgain's junta theorem: f is close to a junta F.

- Starting point: $T_{\perp}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
- Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\perp}f$ has decaying tails.
- For random x'', y'', we have $f_{x''}(x')f_{y''}(y') \approx f_{x''y'}(x'y')$ and $f_{x''} \approx F$.

Bourgain's junta theorem: f is close to a junta F.

- Starting point: $T_{\perp}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
- Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\perp}f$ has decaying tails.
- For random x'', y'', we have $f_{x''}(x')f_{y''}(y') = f_{x''y''}(x'y')$ and $f_{x''} \approx F$.

Bourgain's junta theorem: f is close to a junta F.

- Starting point: $T_{\perp}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
- Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\perp}f$ has decaying tails.
- For random x'', y'', we have $f_{x''}(x')f_{y''}(y') = f_{x''y'}(x'y')$ and $f_{x''} \approx F$.
- Implies that $f_{x''}, f_{y''}, f_{x''y''}$ are ANDs, hence $f \approx F \approx f_{x''}$ is close to an AND.

Bourgain's junta theorem: f is close to a junta F.

Define $f_{x''}(x') = f(x', x'')$, where x' are junta variables.

Easier than proof in paper!

- Starting point: $T_{\perp}f \approx \mu f$, where $\mu = \mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
- Since noise operator is "low-pass filter", $f \approx \mu^{-1}T_{\perp}f$ has decaying tails.
- For random x'', y'', we have $f_{x''}(x')f_{y''}(y') = f_{x''y'}(x'y')$ and $f_{x''} \approx F$.
- Implies that $f_{x''}, f_{y''}, f_{x''y''}$ are ANDs, hence $f \approx F \approx f_{x''}$ is close to an AND.

• If $\Pr[f(xy) = f(x)f(y)] \ge 1 - \varepsilon$ then f is δ -close to an AND or a constant.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant.
- If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 \varepsilon$ then f is δ -close to AND or constant.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. • If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 - \varepsilon$ then f is δ -close to AND or constant. • If $\Pr[f(\operatorname{Maj}(x, y, z)) = \operatorname{Maj}(f(x), f(y), f(z))] \ge 1 - \varepsilon$ then f is $O(\varepsilon)$ -close to a dictator or a constant.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. • If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 - \varepsilon$ then f is δ -close to AND or constant. • If $\Pr[f(\operatorname{Maj}(x, y, z)) = \operatorname{Maj}(f(x), f(y), f(z))] \ge 1 - \varepsilon$ then f is $O(\varepsilon)$ -close to a
- dictator or a constant.
- Same for Majority on any odd number of inputs.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. • If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 - \varepsilon$ then f is δ -close to AND or constant. • If $\Pr[f(\operatorname{Maj}(x, y, z)) = \operatorname{Maj}(f(x), f(y), f(z))] \ge 1 - \varepsilon$ then f is $O(\varepsilon)$ -close to a
- dictator or a constant.
- Same for Majority on any odd number of inputs.
- Ongoing work: many more functions!

• If $\Pr[f(xy) = f(x)f(y)] \ge 1 - \varepsilon$ then f is δ -close to an AND or a constant. What is the best relation between ε and δ ?

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. What is the best relation between ε and δ ?
- If $\Pr[f(Maj(x, y, z)) = Maj(f(x), f(y), f(z))] \ge 1 \varepsilon$ then f is $O(\varepsilon)$ -close to a dictator or a constant. Works for any Majority. Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR. Can we generalize this from Maj to any function other than AND, XOR?

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. What is the best relation between ε and δ ?
- If $\Pr[f(Maj(x, y, z)) = Maj(f(x), f(y), f(z))] \ge 1 \varepsilon$ then f is $O(\varepsilon)$ -close to a dictator or a constant. Works for any Majority. Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR. Can we generalize this from Maj to any function other than AND, XOR?
- If $\Pr[f(x \oplus y) = f(x) \oplus f(y)] \ge \frac{1}{2} + \varepsilon$ then *f* correlates with exact polymorphism. Does a similar statement hold for AND?

SAT is NP-complete

 $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$

SAT is NP-complete Not-All-Equal-SAT is NP-complete

 $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$ $NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$

SAT is NP-complete Not-All-Equal-SAT is NP-complete XOR-SAT is in P

 $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$ $NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$ $(x_1 \oplus \overline{x_2} \oplus x_3) \land (x_1 \oplus x_2 \oplus x_4)$

SAT is NP-complete

Not-All-Equal-SAT is NP-complete

XOR-SAT is in P

Schaefer's theorem: If all predicates have one of the following polymorphisms, in P: constant 0, constant 1, AND, OR, Majority, XOR Otherwise, NP-complete.

 $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$ $NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$ $(x_1 \oplus \overline{x_2} \oplus x_3) \land (x_1 \oplus x_2 \oplus x_4)$

SAT is NP-complete

Not-All-Equal-SAT is NP-complete

XOR-SAT is in P

Schaefer's theorem: If all predicates have one of the following polymorphisms, in P: constant 0, constant 1, AND, OR, Majority, XOR Otherwise, NP-complete.

Recently extended to non-binary domains (Dichotomy Theorem).

 $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$ $NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$ $(x_1 \oplus \overline{x_2} \oplus x_3) \land (x_1 \oplus x_2 \oplus x_4)$