
Approximate Polymorphisms

Yuval Filmus, 12 March 2021, MIT Reading Group

Joint work with
Noam Lifshitz, Dor Minzer, Elchanan Mossel

Judgement Aggregation
Defendant is guilty if they have the means and the motive

Means? Motive? Guilty?

Ehud Yes No No

Shamgar No Yes No

Deborah Yes Yes Yes

Majority Yes Yes No

Judgement Aggregation
Defendant is guilty if they have the means and the motive

Means? Motive? Guilty?

Ehud Yes No No

Shamgar No Yes No

Deborah Yes Yes Yes

Majority Yes Yes No Inconsistent!

Polymorphisms

Polymorphisms
Given:

Polymorphisms
Given:
Predicate P⊆{0,1}k

Polymorphisms
Given:
Predicate P⊆{0,1}k

Function f: {0,1}n→{0,1}

Polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Given:
Predicate P⊆{0,1}k

Function f: {0,1}n→{0,1} n

k

Polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

Given:
Predicate P⊆{0,1}k

Function f: {0,1}n→{0,1} n

k

Polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→
f

→
f

→
f

0 1 0

Given:
Predicate P⊆{0,1}k

Function f: {0,1}n→{0,1} n

k

Polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→
f

→
f

→
f

0 1 0 → Should satisfy P

Given:
Predicate P⊆{0,1}k

Function f: {0,1}n→{0,1} n

k

Polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→
f

→
f

→
f

0 1 0 → Should satisfy P

“f is a poly-
morphism

of P”

Given:
Predicate P⊆{0,1}k

Function f: {0,1}n→{0,1} n

k

Example: Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

 A>B? B>C? C>A?

V
o

t
e

r
s

Example: Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

 A>B? B>C? C>A?

→
→
→
→
→

Forbidden
rows:
0 0 0

1 1 1V

o
t

e
r

s

Example: Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

 A>B? B>C? C>A?

→
→
→
→
→

Forbidden
rows:
0 0 0

1 1 1

→
f
→

f

→
f

0 1 0

V
o

t
e

r
s

Outcome

Example: Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

 A>B? B>C? C>A?

→
→
→
→
→

Forbidden
rows:
0 0 0

1 1 1

→
f
→

f

→
f

0 1 0 → Outcome must
be legal

V
o

t
e

r
s

Outcome

Example: Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

 A>B? B>C? C>A?

Polymorphisms:
Dictators (i-th row)
(Arrow’s theorem)

→
→
→
→
→

Forbidden
rows:
0 0 0

1 1 1

→
f
→

f

→
f

0 1 0 → Outcome must
be legal

V
o

t
e

r
s

Outcome

Example: Even Parity
A function is linear if f : {0,1}n → {0,1} f(x ⊕ y) = f(x) ⊕ f(y)

Example: Even Parity
A function is linear if f : {0,1}n → {0,1} f(x ⊕ y) = f(x) ⊕ f(y)

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

x y x⊕y

Example: Even Parity
A function is linear if f : {0,1}n → {0,1} f(x ⊕ y) = f(x) ⊕ f(y)

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

x y x⊕y

→
→
→
→
→

Rows have
even parity

Example: Even Parity
A function is linear if f : {0,1}n → {0,1} f(x ⊕ y) = f(x) ⊕ f(y)

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

x y x⊕y

→
→
→
→
→

Rows have
even parity

→
f
→

f

→
f

0 1 1

Example: Even Parity
A function is linear if f : {0,1}n → {0,1} f(x ⊕ y) = f(x) ⊕ f(y)

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

x y x⊕y

→
→
→
→
→

Rows have
even parity

→
f
→

f

→
f

0 1 1 → Outcome must
have even parity

Example: Even Parity
A function is linear if f : {0,1}n → {0,1} f(x ⊕ y) = f(x) ⊕ f(y)

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

x y x⊕y

→
→
→
→
→

Rows have
even parity

→
f
→

f

→
f

0 1 1 → Outcome must
have even parity

Polymorphisms:
XORs of rows

Example: AND
A function is multiplicative if f : {0,1}n → {0,1} f(xy) = f(x)f(y)

Example: AND
A function is multiplicative if f : {0,1}n → {0,1} f(xy) = f(x)f(y)

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

x y x∧y

Example: AND
A function is multiplicative if f : {0,1}n → {0,1} f(xy) = f(x)f(y)

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

x y x∧y

→
→
→
→
→

Last coord
computes

AND

Example: AND
A function is multiplicative if f : {0,1}n → {0,1} f(xy) = f(x)f(y)

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

x y x∧y

→
→
→
→
→

Last coord
computes

AND

→
f
→

f

→
f

0 1 0

Example: AND
A function is multiplicative if f : {0,1}n → {0,1} f(xy) = f(x)f(y)

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

x y x∧y

→
→
→
→
→

Last coord
computes

AND

→
f
→

f

→
f

0 1 0 → Same condition

Example: AND
A function is multiplicative if f : {0,1}n → {0,1} f(xy) = f(x)f(y)

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

x y x∧y

→
→
→
→
→

Last coord
computes

AND

→
f
→

f

→
f

0 1 0 → Same condition

Polymorphisms:
ANDs of rows, 0

Example: NAND

0 1

1 0

0 0

⋯ ⋯

0 1

Example: NAND

→
→
→
→
→

Forbidden row:
1 1

0 1

1 0

0 0

⋯ ⋯

0 1

Example: NAND

→
→
→
→
→

Forbidden row:
1 1

→
f

→
f

0 1

0 1

1 0

0 0

⋯ ⋯

0 1

Example: NAND

→
→
→
→
→

Forbidden row:
1 1

→
f

→
f

0 1 → Outcome not 1 1

0 1

1 0

0 0

⋯ ⋯

0 1

Example: NAND

→
→
→
→
→

Forbidden row:
1 1

→
f

→
f

0 1 → Outcome not 1 1

0 1

1 0

0 0

⋯ ⋯

0 1

Polymorphisms:
Intersecting families

Post’s Lattice

Truth-Functional Setting

Truth-Functional Setting

0 1 0⊕1

1 0 1⊕0

1 1 1⊕1

⋯ ⋯ ⋯

0 0 0⊕0

XOR function

Truth-Functional Setting

0 1 0⊕1

1 0 1⊕0

1 1 1⊕1

⋯ ⋯ ⋯

0 0 0⊕0

XOR function

0 1 0∧1

1 0 1∧0

1 1 1∧1

⋯ ⋯ ⋯

0 0 0∧0

AND function

Truth-Functional Setting

0 1 0⊕1

1 0 1⊕0

1 1 1⊕1

⋯ ⋯ ⋯

0 0 0⊕0

XOR function

0 1 0∧1

1 0 1∧0

1 1 1∧1

⋯ ⋯ ⋯

0 0 0∧0

AND function

0 1 1 Maj(0,1,1)

1 1 1 Maj(1,1,1)

1 0 0 Maj(1,0,0)

⋯ ⋯ ⋯ ⋯

0 0 0 Maj(0,0,0)

Majority function

Truth-Functional Setting

0 1 0⊕1

1 0 1⊕0

1 1 1⊕1

⋯ ⋯ ⋯

0 0 0⊕0

XOR function

0 1 0∧1

1 0 1∧0

1 1 1∧1

⋯ ⋯ ⋯

0 0 0∧0

AND function

0 1 1 Maj(0,1,1)

1 1 1 Maj(1,1,1)

1 0 0 Maj(1,0,0)

⋯ ⋯ ⋯ ⋯

0 0 0 Maj(0,0,0)

Majority function

Always have dictators, sometimes “antidictators,” sometimes constants

Truth-Functional Setting

0 1 0⊕1

1 0 1⊕0

1 1 1⊕1

⋯ ⋯ ⋯

0 0 0⊕0

XOR function

0 1 0∧1

1 0 1∧0

1 1 1∧1

⋯ ⋯ ⋯

0 0 0∧0

AND function

0 1 1 Maj(0,1,1)

1 1 1 Maj(1,1,1)

1 0 0 Maj(1,0,0)

⋯ ⋯ ⋯ ⋯

0 0 0 Maj(0,0,0)

Majority function

Dokow & Holzman: Other polymorphisms exist only for AND, XOR

Always have dictators, sometimes “antidictators,” sometimes constants

Approximate Polymorphisms

Approximate Polymorphisms
0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→

f

→

f

→

f

0 1 0 → Should satisfy P

Exact polymorphism

Approximate Polymorphisms
0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→

f

→

f

→

f

0 1 0 → Should satisfy P

Exact polymorphism

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→
f

→
f

→
f

0 1 0 →Satisfies P w.p. 0.9

Approx polymorphism

Approximate Polymorphisms
0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→

f

→

f

→

f

0 1 0 → Should satisfy P

Exact polymorphism

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

→
→
→
→
→

All rows
satisfy

property P

→
f

→
f

→
f

0 1 0 →Satisfies P w.p. 0.9

Approx polymorphism

Is every
approximate

polymorphism
close to an exact
polymorphism?

Examples of approximate polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

Even Parity

0 1

1 0

0 0

⋯ ⋯

0 1

NAND

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

AND function

Examples of approximate polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

Even Parity

0 1

1 0

0 0

⋯ ⋯

0 1

NAND

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

AND function

Approx polymorphisms:
Dictators (i-th row)

(Kalai’s theorem)

Examples of approximate polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

Even Parity

0 1

1 0

0 0

⋯ ⋯

0 1

NAND

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

AND function

Approx polymorphisms:
Dictators (i-th row)

(Kalai’s theorem)

Approx polymorphisms:
XORs of rows

(Linearity testing)

Examples of approximate polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

Even Parity

0 1

1 0

0 0

⋯ ⋯

0 1

NAND

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

AND function

Approx polymorphisms:
Dictators (i-th row)

(Kalai’s theorem)

Approx polymorphisms:
XORs of rows

(Linearity testing)

Approx polymorphisms:
Intersecting families

(Friedgut–Regev)

Examples of approximate polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

Even Parity

0 1

1 0

0 0

⋯ ⋯

0 1

NAND

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

AND function

Approx polymorphisms:
Dictators (i-th row)

(Kalai’s theorem)

Approx polymorphisms:
XORs of rows

(Linearity testing)

Approx polymorphisms:
Intersecting families

(Friedgut–Regev)

Approx polymorphisms:
ANDs of rows, constant 0

(This work)

Examples of approximate polymorphisms

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 1

Not-All-Equal

0 1 1

1 0 1

1 1 0

⋯ ⋯ ⋯

0 0 0

Even Parity

0 1

1 0

0 0

⋯ ⋯

0 1

NAND

0 1 0

1 0 0

1 1 1

⋯ ⋯ ⋯

0 0 0

AND function

Approx polymorphisms:
Dictators (i-th row)

(Kalai’s theorem)

Approx polymorphisms:
XORs of rows

(Linearity testing)

Approx polymorphisms:
Intersecting families

(Friedgut–Regev)

Approx polymorphisms:
ANDs of rows, constant 0

(This work)

Improves on
Nehama 2010

Application to Property Testing
Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Application to Property Testing
Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for being a degree monomial:
1. Test that .
2. Test that .

f : {0,1}n → {0,1} k
Pr[f = 1] = 2−k

f(x ∧ y) = f(x) ∧ f(y)

Application to Property Testing
Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for being a degree monomial:
1. Test that .
2. Test that .

f : {0,1}n → {0,1} k
Pr[f = 1] = 2−k

f(x ∧ y) = f(x) ∧ f(y)

[PRS02] could not analyze this “natural” test.

Application to Property Testing
Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for being a degree monomial:
1. Test that .
2. Test that .

f : {0,1}n → {0,1} k
Pr[f = 1] = 2−k

f(x ∧ y) = f(x) ∧ f(y)

[PRS02] could not analyze this “natural” test.

Our work shows that this test works!

Background: Boolean Function Analysis

Background: Boolean Function Analysis

Every function has unique representation as multilinear polyf : {±1}n → {±1}

Background: Boolean Function Analysis

Every function has unique representation as multilinear polyf : {±1}n → {±1}

Degree of : degree of unique representation (as polynomial)f

Background: Boolean Function Analysis

Every function has unique representation as multilinear polyf : {±1}n → {±1}

Noise operator multiplies degree monomials (“level “) by Tρ d d ρd

Degree of : degree of unique representation (as polynomial)f

Background: Boolean Function Analysis

Every function has unique representation as multilinear polyf : {±1}n → {±1}

Noise operator multiplies degree monomials (“level “) by Tρ d d ρd

Degree of : degree of unique representation (as polynomial)f

Constant coefficient is expectation of f

Background: Boolean Function Analysis

Every function has unique representation as multilinear polyf : {±1}n → {±1}

Noise operator multiplies degree monomials (“level “) by Tρ d d ρd

Degree of : degree of unique representation (as polynomial)f

Important observation: different monomials are orthogonal

Constant coefficient is expectation of f

Simpler example

0 1 1 1

1 1 1 1

1 0 0 0

⋯ ⋯ ⋯ ⋯

0 0 0 0

Majority function

Polymorphisms:
Dictators (i-th row)
Constant functions

→
→
→
→
→

Last coord
computes
Majority

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x1, y1, z1), …, 𝖬𝖺𝗃(xn, yn, zn)) = 𝖬𝖺𝗃(f(x1, …, xn), f(y1, …, yn), f(z1, …, zn))

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[f]

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[f]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[f]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

μ =
1 − μ2

2
μ + μ

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[f]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

If , function is constant.μ ∈ {±1}

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[f]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

If , function is constant.μ ∈ {±1}

If then , so , so is a dictator.μ = 0 T1/2 f = 1
2 f deg f = 1 f

Polymorphisms of Majority

A function is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
1 − μ2

2
f(x) + μ, μ = 𝔼[f]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

If , function is constant.μ ∈ {±1}

If then , so , so is a dictator.μ = 0 T1/2 f = 1
2 f deg f = 1 f

Everything also holds approximately, using FKN theorem!

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

average of over values “below” 𝔼[f(xy)] = f x

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

Problem: one-sided noise operator has complicated effect
 on Fourier expansion

T↓

average of over values “below” 𝔼[f(xy)] = f x

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

Problem: one-sided noise operator has complicated effect
 on Fourier expansion

T↓

However, can read Fourier expansion of
from biased Fourier expansion of !

T↓ f
f

average of over values “below” 𝔼[f(xy)] = f x

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

Problem: one-sided noise operator has complicated effect
 on Fourier expansion

T↓

However, can read Fourier expansion of
from biased Fourier expansion of !

T↓ f
f

←Unbiased inputs

average of over values “below” 𝔼[f(xy)] = f x

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

Problem: one-sided noise operator has complicated effect
 on Fourier expansion

T↓

However, can read Fourier expansion of
from biased Fourier expansion of !

T↓ f
f

←Unbiased inputs(3/4,1/4)-biased inputs→

average of over values “below” 𝔼[f(xy)] = f x

Polymorphisms of AND

A function is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[f]

Problem: one-sided noise operator has complicated effect
 on Fourier expansion

T↓

However, can read Fourier expansion of
from biased Fourier expansion of !

T↓ f
f

Cannot directly compare biased and unbiased Fourier expansions!
The two expansions depend on different parts of .f

←Unbiased inputs(3/4,1/4)-biased inputs→

average of over values “below” 𝔼[f(xy)] = f x

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem: is close to a junta .f F

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem: is close to a junta .f F

Define , where are junta variables.fx′ ′
(x′) = f(x′ , x′ ′) x′

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem: is close to a junta .f F

Define , where are junta variables.fx′ ′
(x′) = f(x′ , x′ ′) x′

For random , we have and .x′ ′ , y′ ′ fx′ ′
(x′)fy′ ′

(y′) ≈ fx′ ′ y′ ′
(x′ y′) fx′ ′

≈ F

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem: is close to a junta .f F

Define , where are junta variables.fx′ ′
(x′) = f(x′ , x′ ′) x′

For random , we have and .x′ ′ , y′ ′ fx′ ′
(x′)fy′ ′

(y′) = fx′ ′ y′ ′
(x′ y′) fx′ ′

≈ F

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem: is close to a junta .f F

Define , where are junta variables.fx′ ′
(x′) = f(x′ , x′ ′) x′

For random , we have and .x′ ′ , y′ ′ fx′ ′
(x′)fy′ ′

(y′) = fx′ ′ y′ ′
(x′ y′) fx′ ′

≈ F

Implies that are ANDs, hence is close to an AND.fx′ ′
, fy′ ′

, fx′ ′ y′ ′
f ≈ F ≈ fx′ ′

Approximate polymorphisms of AND
Starting point: , where (otherwise).T↓ f ≈ μf μ = 𝔼[f] ≫ 0 f ≈ 0

Since noise operator is “low-pass filter”, has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem: is close to a junta .f F

Define , where are junta variables.fx′ ′
(x′) = f(x′ , x′ ′) x′

For random , we have and .x′ ′ , y′ ′ fx′ ′
(x′)fy′ ′

(y′) = fx′ ′ y′ ′
(x′ y′) fx′ ′

≈ F

Implies that are ANDs, hence is close to an AND.fx′ ′
, fy′ ′

, fx′ ′ y′ ′
f ≈ F ≈ fx′ ′

Easier than proof in paper!

Results

Results

• If then is -close to an AND or a constant.Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ

Results

• If then is -close to an AND or a constant.Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If then is -close to AND or constant.Pr[f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

Results

• If then is -close to an AND or a constant.Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If then is -close to AND or constant.Pr[f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If then is -close to a
dictator or a constant.

Pr[f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

Results

• If then is -close to an AND or a constant.Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If then is -close to AND or constant.Pr[f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If then is -close to a
dictator or a constant.

Pr[f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

• Same for Majority on any odd number of inputs.

Results

• If then is -close to an AND or a constant.Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If then is -close to AND or constant.Pr[f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If then is -close to a
dictator or a constant.

Pr[f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

• Same for Majority on any odd number of inputs.

• Ongoing work: many more functions!

Open questions

Open questions

• If then is -close to an AND or a constant.
What is the best relation between and ?

Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ

Open questions

• If then is -close to an AND or a constant.
What is the best relation between and ?

Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ

• If then is -close to a
dictator or a constant. Works for any Majority.
Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR.
Can we generalize this from Maj to any function other than AND, XOR?

Pr[f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

Open questions

• If then is -close to an AND or a constant.
What is the best relation between and ?

Pr[f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ

• If then is -close to a
dictator or a constant. Works for any Majority.
Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR.
Can we generalize this from Maj to any function other than AND, XOR?

Pr[f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃(f(x), f(y), f(z))] ≥ 1 − ε f O(ϵ)

• If then correlates with exact polymorphism.

Does a similar statement hold for AND?

Pr[f(x ⊕ y) = f(x) ⊕ f(y)] ≥ 1
2 +ε f

Bonus: Schaefer’s theorem

Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Not-All-Equal-SAT is NP-complete NAE(x1, x2, x3) ∧ NAE(x1, x2, x4)

Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Not-All-Equal-SAT is NP-complete NAE(x1, x2, x3) ∧ NAE(x1, x2, x4)

XOR-SAT is in P (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕ x2 ⊕ x4)

Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Not-All-Equal-SAT is NP-complete NAE(x1, x2, x3) ∧ NAE(x1, x2, x4)

XOR-SAT is in P (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕ x2 ⊕ x4)

Schaefer’s theorem:
If all predicates have one of the following polymorphisms, in P:

constant 0, constant 1, AND, OR, Majority, XOR
Otherwise, NP-complete.

Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Not-All-Equal-SAT is NP-complete NAE(x1, x2, x3) ∧ NAE(x1, x2, x4)

XOR-SAT is in P (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕ x2 ⊕ x4)

Schaefer’s theorem:
If all predicates have one of the following polymorphisms, in P:

constant 0, constant 1, AND, OR, Majority, XOR
Otherwise, NP-complete.

Recently extended to non-binary domains (Dichotomy Theorem).

