

Established by the European Commission

Approximate Polymorphisms

Judgement Aggregation

Defendant is guilty if they have the means and the motive

	Means?	Motive?	Guilty?
Ehud	Yes	No	No
Shamgar	No	Yes	No
Deborah	Yes	Yes	Yes
Majority	Yes	Yes	No

Judgement Aggregation

Defendant is guilty if they have the means and the motive

	Means?	Motive?	Guilty?
Ehud	Yes	No	No
Shamgar	No	Yes	No
Deborah	Yes	Yes	Yes
Majority	Yes	Yes	No

Polymorphisms

Polymorphisms

Given:

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\}^{k}$

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\} k$
Function $f:\{0,1\} n \rightarrow\{0,1\}$

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\}^{k}$
Function $f:\{0,1\} n \rightarrow\{0,1\}$

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\}^{k}$
Function $f:\{0,1\} n \rightarrow\{0,1\}$

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\}^{k}$
Function $f:\{0,1\} n \rightarrow\{0,1\}$

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\}^{k}$
Function $f:\{0,1\} n \rightarrow\{0,1\}$

Polymorphisms

Given:

Predicate $P \subseteq\{0,1\}^{k}$
Function $f:\{0,1\} n \rightarrow\{0,1\}$

" f is a polymorphism of $P^{\prime \prime}$

Example: Not-All-Equal

\cdots	$A>B ? ~ B>C ?$		$\mathrm{C}>\mathrm{A}$?
	0	1	1
-	1	0	1
	1	1	0
)	\ldots	\ldots	\ldots
	0	0	1

Example: Not-All-Equal

Example: Not-All-Equal

Outcome

Example: Not-All-Equal

Example: Not-All-Equal

Example: Even Parity

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if $f(x \oplus y)=f(x) \oplus f(y)$

Example: Even Parity

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if $f(x \oplus y)=f(x) \oplus f(y)$

x	y	$x \oplus y$
0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

Example: Even Parity

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if $f(x \oplus y)=f(x) \oplus f(y)$

x	y	$x \oplus y$
0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

Rows have even parity

Example: Even Parity

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if $f(x \oplus y)=f(x) \oplus f(y)$

Example: Even Parity

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if $f(x \oplus y)=f(x) \oplus f(y)$

Example: Even Parity

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if $f(x \oplus y)=f(x) \oplus f(y)$

Polymorphisms:
XORs of rows

Example: AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is multiplicative if $f(x y)=f(x) f(y)$

Example: AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is multiplicative if $f(x y)=f(x) f(y)$

x	y	$x \wedge y$
0	1	0
1	0	0
1	1	1
\cdots	\cdots	\cdots
0	0	0

Example: AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is multiplicative if $f(x y)=f(x) f(y)$

Example: AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is multiplicative if $f(x y)=f(x) f(y)$

x	y	x^y		
	${ }^{1}{ }^{0}$		\rightarrow	
1	0	0	\rightarrow	Last coord
1	1	1	\rightarrow	computes
		\cdots	\rightarrow	AND
0	0	0	\rightarrow	
	$\downarrow f$	$\downarrow f$		
0	1	0		

Example: AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is multiplicative if $f(x y)=f(x) f(y)$

Example: AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is multiplicative if $f(x y)=f(x) f(y)$

Polymorphisms:
ANDs of rows, 0

Example: NAND

0	1
1	0
0	0
\cdots	\cdots
0	1

Example: NAND

0	1
1	0
0	0
\cdots	\cdots
0	1

[^0]Forbidden row: 11

Example: NAND

\square

Example: NAND

Forbidden row: 11
$\downarrow f \quad \downarrow f$
$0 \quad 1 \quad \rightarrow \quad$ Outcome not 11

Example: NAND

Polymorphisms:
Intersecting families

$\downarrow f \quad \downarrow f$
$0 \quad 1 \quad \rightarrow \quad$ Outcome not 11

Post's Lattice

Truth-Functional Setting

Truth-Functional Setting

XOR function

0	1	$0 \oplus 1$
1	0	$1 \oplus 0$
1	1	$1 \oplus 1$
\cdots	\cdots	\cdots
0	0	$0 \oplus 0$

Truth-Functional Setting

XOR function

0	1	$0 \oplus 1$
1	0	$1 \oplus 0$
1	1	$1 \oplus 1$
\ldots	\cdots	\cdots
0	0	$0 \oplus 0$

AND function

0	1	$0 \wedge 1$
1	0	$1 \wedge 0$
1	1	$1 \wedge 1$
\cdots	\cdots	\cdots
0	0	$0 \wedge 0$

Truth-Functional Setting

XOR function

0	1	$0 \oplus 1$
1	0	$1 \oplus 0$
1	1	$1 \oplus 1$
\cdots	\cdots	\cdots
0	0	$0 \oplus 0$

AND function

0	1	$0 \wedge 1$
1	0	$1 \wedge 0$
1	1	$1 \wedge 1$
\cdots	\cdots	\cdots
0	0	$0 \wedge 0$

Majority function

0	1	1	$\operatorname{Maj}(0,1,1)$
1	1	1	$\operatorname{Maj}(1,1,1)$
1	0	0	$\operatorname{Maj}(1,0,0)$
\cdots	\cdots	\cdots	\cdots
0	0	0	$\operatorname{Maj}(0,0,0)$

Truth-Functional Setting

XOR function

0	1	$0 \oplus 1$
1	0	$1 \oplus 0$
1	1	$1 \oplus 1$
\cdots	\cdots	\cdots
0	0	$0 \oplus 0$

AND function

0	1	$0 \wedge 1$
1	0	$1 \wedge 0$
1	1	$1 \wedge 1$
\cdots	\cdots	\cdots
0	0	$0 \wedge 0$

Majority function

0	1	1	$\operatorname{Maj}(0,1,1)$
1	1	1	$\operatorname{Maj}(1,1,1)$
1	0	0	$\operatorname{Maj}(1,0,0)$
\cdots	\cdots	\cdots	\cdots
0	0	0	$\operatorname{Maj}(0,0,0)$

Always have dictators, sometimes "antidictators," sometimes constants

Truth-Functional Setting

XOR function

0	1	$0 \oplus 1$
1	0	$1 \oplus 0$
1	1	$1 \oplus 1$
\cdots	\cdots	\cdots
0	0	$0 \oplus 0$

AND function

0	1	$0 \wedge 1$
1	0	$1 \wedge 0$
1	1	$1 \wedge 1$
\cdots	\cdots	\cdots
0	0	$0 \wedge 0$

Majority function

0	1	1	$\operatorname{Maj}(0,1,1)$
1	1	1	$\operatorname{Maj}(1,1,1)$
1	0	0	$\operatorname{Maj}(1,0,0)$
\cdots	\cdots	\cdots	\cdots
0	0	0	$\operatorname{Maj}(0,0,0)$

Always have dictators, sometimes "antidictators," sometimes constants Dokow \& Holzman: Other polymorphisms exist only for AND, XOR

Approximate Polymorphisms

Approximate Polymorphisms

	1		
	$\bigcirc \cdot$	\rightarrow	All rows
	10	\rightarrow	satisfy
		\rightarrow	property P
0	0	\rightarrow	
	$\downarrow+\downarrow$		
	10	\rightarrow	Should satisfy
	Exact	oly	phism

Approximate Polymorphisms

Approx polymorphism

Approximate Polymorphisms

Exact polymorpı... .prox polymorphism

Examples of approximate polymorphisms

Not-All-Equal

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	1

Even Parity

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

NAND

0	1
1	0
0	0
\cdots	\cdots
0	1

AND function

0	1	0
1	0	0
1	1	1
\cdots	\cdots	\cdots
0	0	0

Examples of approximate polymorphisms

Not-All-Equal

0	1	1
1	0	1
1	1	0
\ldots	\cdots	\cdots
0	0	1

Even Parity

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

NAND

0	1
1	0
0	0
\ldots	\cdots
0	1

AND function

0	1	0
1	0	0
1	1	1
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms:
Dictators (i-th row)
(Kalai's theorem)

Examples of approximate polymorphisms

Not-All-Equal

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	1

Approx polymorphisms:
Dictators (i-th row)
(Kalai's theorem)

Even Parity

0	1	1
1	0	1
1	1	0
\ldots	\cdots	\cdots
0	0	0

0	1
1	0
0	0
\cdots	\cdots
0	1

AND function

0	1	0
1	0	0
1	1	1
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms: XORs of rows

[^1]
Examples of approximate polymorphisms

Not-All-Equal

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	1

Approx polymorphisms: Dictators (i-th row)
(Kalai's theorem)

Even Parity

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms: XORs of rows
(Linearity testing)

NAND

0	1
1	0
0	0
\cdots	\cdots
0	1

0	1	0
1	0	0
1	1	1
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms: Intersecting families
(Friedgut-Regev)

Examples of approximate polymorphisms

Not-All-Equal

0	1	1
1	0	1
1	1	0
\ldots	\cdots	\cdots
0	0	1

Approx polymorphisms: Dictators (i-th row)
(Kalai's theorem)

Even Parity

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms: XORs of rows
(Linearity testing)

NAND

0	1
1	0
0	0
\cdots	\cdots
0	1

Approx polymorphisms: Intersecting families
(Friedgut-Regev)

AND function

0	1	0
1	0	0
1	1	1
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms: ANDs of rows, constant 0
(This work)

Examples of approximate polymorphisms

Not-All-Equal

0	1	1
1	0	1
1	1	0
\ldots	\cdots	\cdots
0	0	1

Approx polymorphisms: Dictators (i-th row)
(Kalai's theorem)

Even Parity

0	1	1
1	0	1
1	1	0
\cdots	\cdots	\cdots
0	0	0

Approx polymorphisms: XORs of rows
(Linearity testing)

NAND

0	1
1	0
0	0
\cdots	\cdots
0	1

Approx polymorphisms: Intersecting families
(Friedgut-Regev)

AND function

0	1	0
1	0	0
1	1	1
\ldots	\ldots	Improves on Nehama 2010
0	0	0

Approx poly

AND of rophisms:
(This work)

(This constant 0

Application to Property Testing

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Application to Property Testing

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for $f:\{0,1\}^{n} \rightarrow\{0,1\}$ being a degree k monomial:

1. Test that $\operatorname{Pr}[f=1]=2^{-k}$.
2. Test that $f(x \wedge y)=f(x) \wedge f(y)$.

Application to Property Testing

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for $f:\{0,1\}^{n} \rightarrow\{0,1\}$ being a degree k monomial:

1. Test that $\operatorname{Pr}[f=1]=2^{-k}$.
2. Test that $f(x \wedge y)=f(x) \wedge f(y)$.
[PRSO2] could not analyze this "natural" test.

Application to Property Testing

Michal Parnas, Dana Ron, Alex Samorodnitsky: Testing Basic Boolean Formulae (2002)

Test for $f:\{0,1\}^{n} \rightarrow\{0,1\}$ being a degree k monomial:

1. Test that $\operatorname{Pr}[f=1]=2^{-k}$.
2. Test that $f(x \wedge y)=f(x) \wedge f(y)$.
[PRSO2] could not analyze this "natural" test.

Our work shows that this test works!

Background: Boolean Function Analysis

Background: Boolean Function Analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has unique representation as multilinear poly

Background: Boolean Function Analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has unique representation as multilinear poly
Degree of f : degree of unique representation (as polynomial)

Background: Boolean Function Analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has unique representation as multilinear poly
Degree of f : degree of unique representation (as polynomial)
Noise operator T_{ρ} multiplies degree d monomials ("level $d^{\prime \prime}$) by ρ^{d}

Background: Boolean Function Analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has unique representation as multilinear poly
Degree of f : degree of unique representation (as polynomial)
Noise operator T_{ρ} multiplies degree d monomials ("level $d^{\prime \prime}$) by ρ^{d}
Constant coefficient is expectation of f

Background: Boolean Function Analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has unique representation as multilinear poly
Degree of f : degree of unique representation (as polynomial)
Noise operator T_{ρ} multiplies degree d monomials ("level $d^{\prime \prime}$) by ρ^{d}
Constant coefficient is expectation of f
Important observation: different monomials are orthogonal

Simpler example

Majority function

0	1	1	1
1	1	1	1
1	0	0	0
\cdots	\cdots	\cdots	\cdots
0	0	0	0

Last coord computes Majority

Polymorphisms:
Dictators (i-th row)
Constant functions

Polymorphisms of Majority

$$
\begin{gathered}
\text { A function } f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\} \text { is a polymorphism of Majority if } \\
f\left(\operatorname{Maj}\left(x_{1}, y_{1}, z_{1}\right), \ldots, \operatorname{Maj}\left(x_{n}, y_{n}, z_{n}\right)\right)=\operatorname{Maj}\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right), f\left(z_{1}, \ldots, z_{n}\right)\right)
\end{gathered}
$$

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Fix x, average over $y, z: \quad T_{1 / 2} f(x)=\frac{1-\mu^{2}}{2} f(x)+\mu, \quad \mu=\mathbb{E}[f]$

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Fix x, average over $y, z: \quad T_{1 / 2} f(x)=\frac{1-\mu^{2}}{2} f(x)+\mu, \quad \mu=\mathbb{E}[f]$
Comparing expectations on both sides: $\mu \in\{0, \pm 1\}$.

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Fix x, average over $y, z: \quad \mu=\frac{1-\mu^{2}}{2} \mu+\mu \quad \mu=\mathbb{E}[f]$
Comparing expectations on both sides: $\mu \in\{0, \pm 1\}$.

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Fix x, average over $y, z: \quad T_{1 / 2} f(x)=\frac{1-\mu^{2}}{2} f(x)+\mu, \quad \mu=\mathbb{E}[f]$
Comparing expectations on both sides: $\mu \in\{0, \pm 1\}$.
If $\mu \in\{ \pm 1\}$, function is constant.

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Fix x, average over $y, z: \quad T_{1 / 2} f(x)=\frac{1-\mu^{2}}{2} f(x)+\mu, \quad \mu=\mathbb{E}[f]$
Comparing expectations on both sides: $\mu \in\{0, \pm 1\}$.
If $\mu \in\{ \pm 1\}$, function is constant.
If $\mu=0$ then $T_{1 / 2} f=\frac{1}{2} f$, so $\operatorname{deg} f=1$, so f is a dictator.

Polymorphisms of Majority

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a polymorphism of Majority if

$$
f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))
$$

Fix x, average over $y, z: \quad T_{1 / 2} f(x)=\frac{1-\mu^{2}}{2} f(x)+\mu, \quad \mu=\mathbb{E}[f]$
Comparing expectations on both sides: $\mu \in\{0, \pm 1\}$.
If $\mu \in\{ \pm 1\}$, function is constant.
If $\mu=0$ then $T_{1 / 2} f=\frac{1}{2} f$, so $\operatorname{deg} f=1$, so f is a dictator.
Everything also holds approximately, using FKN theorem!

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :

$$
T_{\downarrow} f(x)=\mu f(x), \quad \mu=\mathbb{E}[f]
$$

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :

```
E[f(xy)] = average of fover values "below" }
```

$$
T_{\downarrow} f(x)=\mu f(x), \quad \mu=\mathbb{E}[f]
$$

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :
$\mathbb{E}[f(x y)]=$ average of f over values "below" x

$$
T_{\downarrow} f(x)=\mu f(x), \quad \mu=\mathbb{E}[f]
$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :
$\mathbb{E}[f(x y)]=$ average of f over values "below" x

$$
T_{\downarrow} f(x)=\mu f(x), \quad \mu=\mathbb{E}[f]
$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

However, can read Fourier expansion of $T_{\downarrow} f$ from biased Fourier expansion of f !

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :
$\mathbb{E}[f(x y)]=$ average of f over values "below" x

$$
T_{\downarrow} f(x)=\mu f(x), \quad \leftarrow \text { Unbiased inputs }
$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

However, can read Fourier expansion of $T_{\downarrow} f$ from biased Fourier expansion of f !

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :
$\mathbb{E}[f(x y)]=$ average of f over values "below" x
(3/4,1/4)-biased inputs $\rightarrow \quad T_{\downarrow} f(x)=\mu f(x), \quad \leftarrow$ Unbiased inputs
Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

However, can read Fourier expansion of $T_{\downarrow} f$ from biased Fourier expansion of f !

Polymorphisms of AND

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a polymorphism of AND if

$$
f(x y)=f(x) f(y)
$$

Fix x, average over y :

$$
\text { (3/4,1/4)-biased inputs } \rightarrow \quad T_{\downarrow} f(x)=\mu f(x), \quad \leftarrow \text { Unbiased inputs }
$$

Cannot directly compare biased and unbiased Fourier expansions! The two expansions depend on different parts of f.

However, can read Fourier expansion of $T_{\downarrow} f$ from biased Fourier expansion of f !

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.
Bourgain's junta theorem: f is close to a junta F.

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.
Bourgain's junta theorem: f is close to a junta F.
Define $f_{x^{\prime}}^{\prime}\left(x^{\prime}\right)=f\left(x^{\prime}, x^{\prime \prime}\right)$, where x^{\prime} are junta variables.

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.
Bourgain's junta theorem: f is close to a junta F.
Define $f_{x^{\prime}}^{\prime}\left(x^{\prime}\right)=f\left(x^{\prime}, x^{\prime \prime}\right)$, where x^{\prime} are junta variables.
For random $x^{\prime \prime}, y^{\prime \prime}$, we have $f_{x^{\prime}}\left(x^{\prime}\right) f_{y^{\prime}}\left(y^{\prime}\right) \approx f_{x^{\prime \prime} y^{\prime}}\left(x^{\prime} y^{\prime}\right)$ and $f_{x^{\prime \prime}} \approx F$.

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.
Bourgain's junta theorem: f is close to a junta F.
Define $f_{x^{\prime}}\left(x^{\prime}\right)=f\left(x^{\prime}, x^{\prime}\right)$, where x^{\prime} are junta variables.
For random $x^{\prime \prime}, y^{\prime \prime}$, we have $f_{x^{\prime \prime}}\left(x^{\prime}\right) f_{y^{\prime}}\left(y^{\prime}\right)=f_{x^{\prime \prime} y^{\prime}}\left(x^{\prime} y\right)$ and $f_{x^{\prime \prime}} \approx F$.

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.
Bourgain's junta theorem: f is close to a junta F.
Define $f_{x^{\prime}}\left(x^{\prime}\right)=f\left(x^{\prime}, x^{\prime}\right)$, where x^{\prime} are junta variables.
For random $x^{\prime \prime}, y^{\prime \prime}$, we have $f_{x^{\prime \prime}}\left(x^{\prime}\right) f_{y^{\prime}}\left(y^{\prime}\right)=f_{x^{\prime \prime} y^{\prime}}\left(x^{\prime} y\right)$ and $f_{x^{\prime \prime}} \approx F$.
Implies that $f_{x^{\prime \prime}}, f_{y^{\prime \prime}}, f_{x^{\prime \prime \prime}}$ are ANDs, hence $f \approx F \approx f_{x^{\prime \prime}}$ is close to an AND.

Approximate polymorphisms of AND

Starting point: $T_{\downarrow} f \approx \mu f$, where $\mu=\mathbb{E}[f] \gg 0$ (otherwise $f \approx 0$).
Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.
Bourgain's junta theorem: f is close to a junta F.
Define $f_{x^{\prime}}\left(x^{\prime}\right)=f\left(x^{\prime}, x^{\prime}\right)$, where x^{\prime} are junta variables.
For random $x^{\prime \prime}, y^{\prime \prime}$, we have $f_{x^{\prime \prime}}\left(x^{\prime}\right) f_{y^{\prime \prime}}^{\prime}\left(y^{\prime}\right)=f_{x^{\prime \prime} y^{\prime}}\left(x^{\prime} y^{\prime}\right)$ and $f_{x^{\prime \prime}} \approx F$.
Implies that $f_{x^{\prime \prime}}, f_{y^{\prime \prime}}, f_{x^{\prime \prime \prime}}$ are ANDs, hence $f \approx F \approx f_{x^{\prime \prime}}$ is close to an AND.
Easier than proof in paper!

Results

Results

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant.

Results

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant.
- If $\operatorname{Pr}\left[f\left(x_{1} \cdots x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)\right] \geq 1-\varepsilon$ then f is δ-close to AND or constant.

Results

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant.
- If $\operatorname{Pr}\left[f\left(x_{1} \cdots x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)\right] \geq 1-\varepsilon$ then f is δ-close to AND or constant.
- If $\operatorname{Pr}[f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))] \geq 1-\varepsilon$ then f is $O(\epsilon)$-close to a dictator or a constant.

Results

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant.
- If $\operatorname{Pr}\left[f\left(x_{1} \cdots x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)\right] \geq 1-\varepsilon$ then f is δ-close to AND or constant.
- If $\operatorname{Pr}[f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))] \geq 1-\varepsilon$ then f is $O(\epsilon)$-close to a dictator or a constant.
- Same for Majority on any odd number of inputs.

Results

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant.
- If $\operatorname{Pr}\left[f\left(x_{1} \cdots x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)\right] \geq 1-\varepsilon$ then f is δ-close to AND or constant.
- If $\operatorname{Pr}[f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))] \geq 1-\varepsilon$ then f is $O(\epsilon)$-close to a dictator or a constant.
- Same for Majority on any odd number of inputs.
- Ongoing work: many more functions!

Open questions

Open questions

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant. What is the best relation between ε and δ ?

Open questions

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant. What is the best relation between ε and δ ?
- If $\operatorname{Pr}[f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))] \geq 1-\varepsilon$ then f is $O(\epsilon)$-close to a dictator or a constant. Works for any Majority.
Dokow \& Holzman: Non-trivial exact polymorphisms only for AND, XOR.
Can we generalize this from Maj to any function other than AND, XOR?

Open questions

- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \geq 1-\varepsilon$ then f is δ-close to an AND or a constant. What is the best relation between ε and δ ?
- If $\operatorname{Pr}[f(\operatorname{Maj}(x, y, z))=\operatorname{Maj}(f(x), f(y), f(z))] \geq 1-\varepsilon$ then f is $O(\epsilon)$-close to a dictator or a constant. Works for any Majority.
Dokow \& Holzman: Non-trivial exact polymorphisms only for AND, XOR.
Can we generalize this from Maj to any function other than AND, XOR?
- If $\operatorname{Pr}[f(x \oplus y)=f(x) \oplus f(y)] \geq \frac{1}{2}+\varepsilon$ then f correlates with exact polymorphism. Does a similar statement hold for AND?

Bonus: Schaefer's theorem

Bonus: Schaefer's theorem

SAT is NP-complete

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)
$$

Bonus: Schaefer's theorem

SAT is NP-complete
Not-All-Equal-SAT is NP-complete

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)
$$

$$
N A E\left(x_{1}, \overline{x_{2}}, x_{3}\right) \wedge N A E\left(x_{1}, x_{2}, x_{4}\right)
$$

Bonus: Schaefer's theorem

SAT is NP-complete
Not-All-Equal-SAT is NP-complete
XOR-SAT is in P

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)
$$

$$
\operatorname{NAE}\left(x_{1}, \overline{x_{2}}, x_{3}\right) \wedge \operatorname{NAE}\left(x_{1}, x_{2}, x_{4}\right)
$$

$\left(x_{1} \oplus \overline{x_{2}} \oplus x_{3}\right) \wedge\left(x_{1} \oplus x_{2} \oplus x_{4}\right)$

Bonus: Schaefer's theorem

SAT is NP-complete
Not-All-Equal-SAT is NP-complete
XOR-SAT is in P

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)
$$

$\operatorname{NAE}\left(x_{1}, \overline{x_{2}}, x_{3}\right) \wedge \operatorname{NAE}\left(x_{1}, x_{2}, x_{4}\right)$
$\left(x_{1} \oplus \overline{x_{2}} \oplus x_{3}\right) \wedge\left(x_{1} \oplus x_{2} \oplus x_{4}\right)$

Schaefer's theorem:
If all predicates have one of the following polymorphisms, in P : constant 0, constant 1, AND, OR, Majority, XOR
Otherwise, NP-complete.

Bonus: Schaefer's theorem

SAT is NP-complete
Not-All-Equal-SAT is NP-complete
XOR-SAT is in P

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)
$$

$\operatorname{NAE}\left(x_{1}, \overline{x_{2}}, x_{3}\right) \wedge \operatorname{NAE}\left(x_{1}, x_{2}, x_{4}\right)$
$\left(x_{1} \oplus \overline{x_{2}} \oplus x_{3}\right) \wedge\left(x_{1} \oplus x_{2} \oplus x_{4}\right)$

Schaefer's theorem:
If all predicates have one of the following polymorphisms, in P : constant O, constant 1, AND, OR, Majority, XOR
Otherwise, NP-complete.
Recently extended to non-binary domains (Dichotomy Theorem).

[^0]: \longrightarrow
 \longrightarrow

[^1]: (Linearity testing)

