

Approximate Polymorphisms

Joint work with Noam Lifshitz, Dor Minzer, Elchanan Mossel

Yuval Filmus, 7 March 2021, TAU Combinatorics Seminar

Judgement Aggregation

Defendant is guilty if they have the means and the motive

	Means?	Motive?	Guilty?	
Ehud	Yes	No	No	
Shamgar	No	Yes	No	
Deborah	Yes	Yes	Yes	
Majority Yes		Yes	No	

Judgement Aggregation

Defendant is guilty if they have the means and the motive

	Means?	Motive?	Guilty?
Ehud	Yes	No	No
Shamgar	No	Yes	No
Deborah	Deborah Yes		Yes
Majority	Yes	Yes	No

Inconsistent!

Given:

Given:

Predicate $P \subseteq \{0,1\}^k$

Given:

Predicate $P \subseteq \{0,1\}^k$

Function $f: \{0,1\}^n \to \{0,1\}$

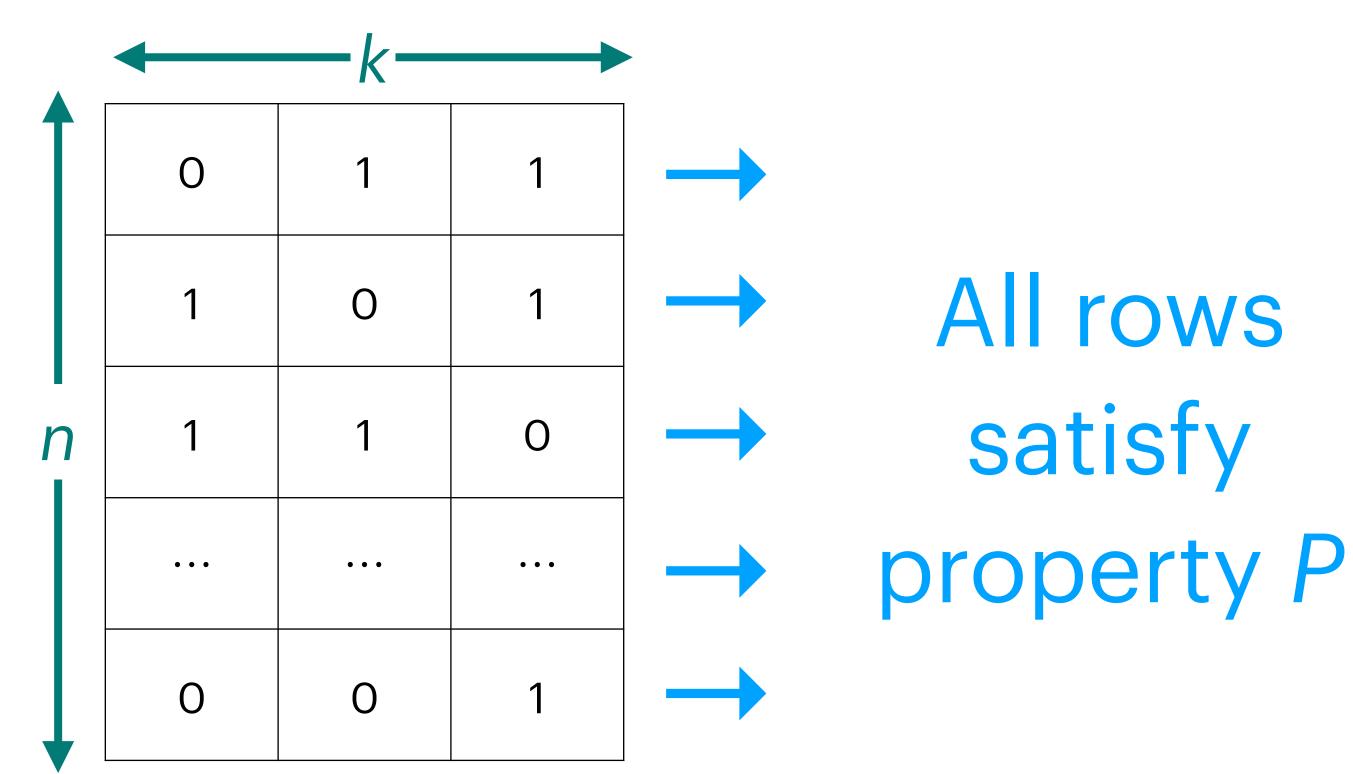
Given:

Predicate $P \subseteq \{0,1\}^k$

•	<u></u>	—k—	
	O	1	1
	1	O	1
n	1	1	O
	• • •	• • •	• • •
	O	O	1

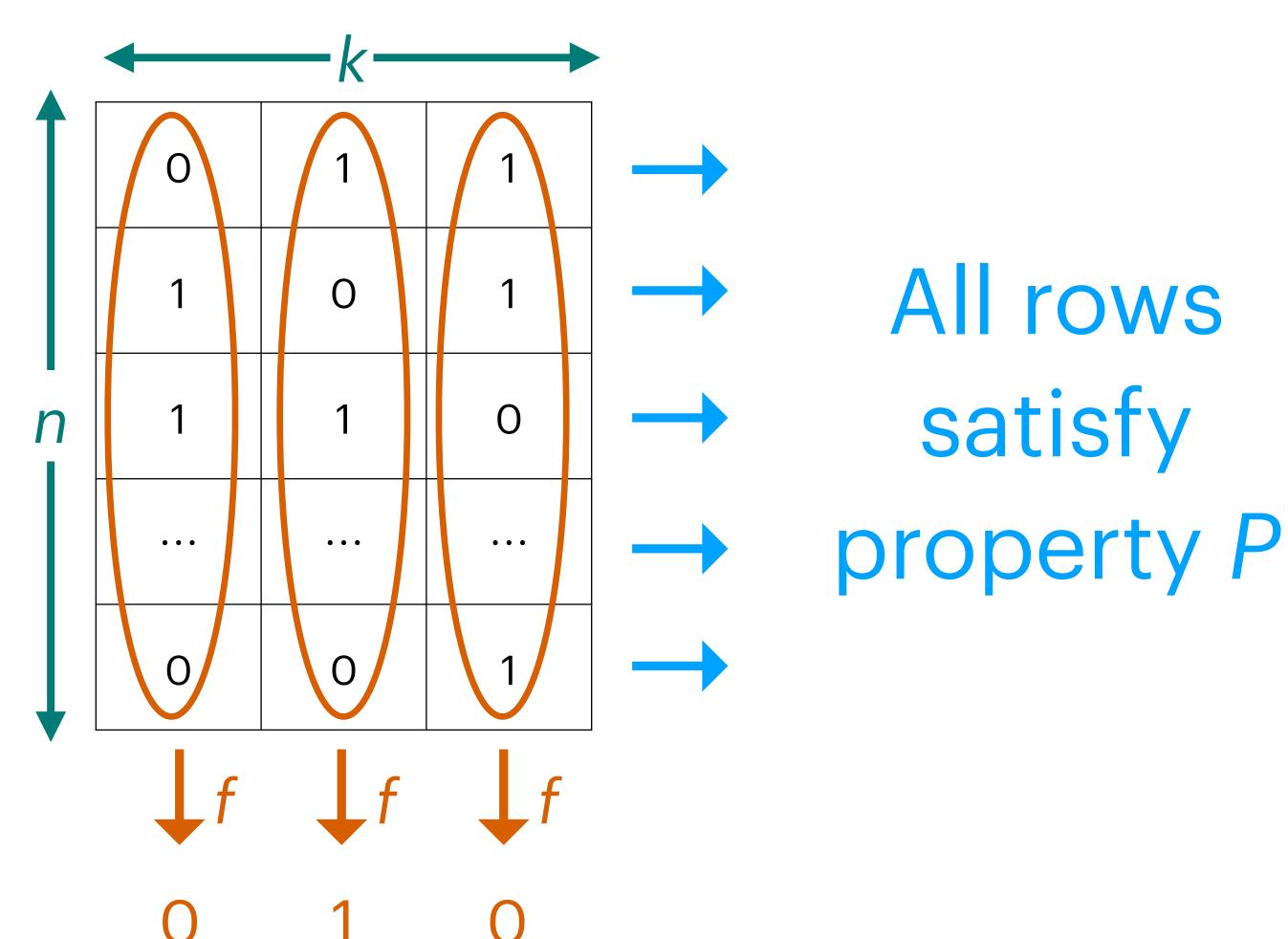
Given:

Predicate $P \subseteq \{0,1\}^k$



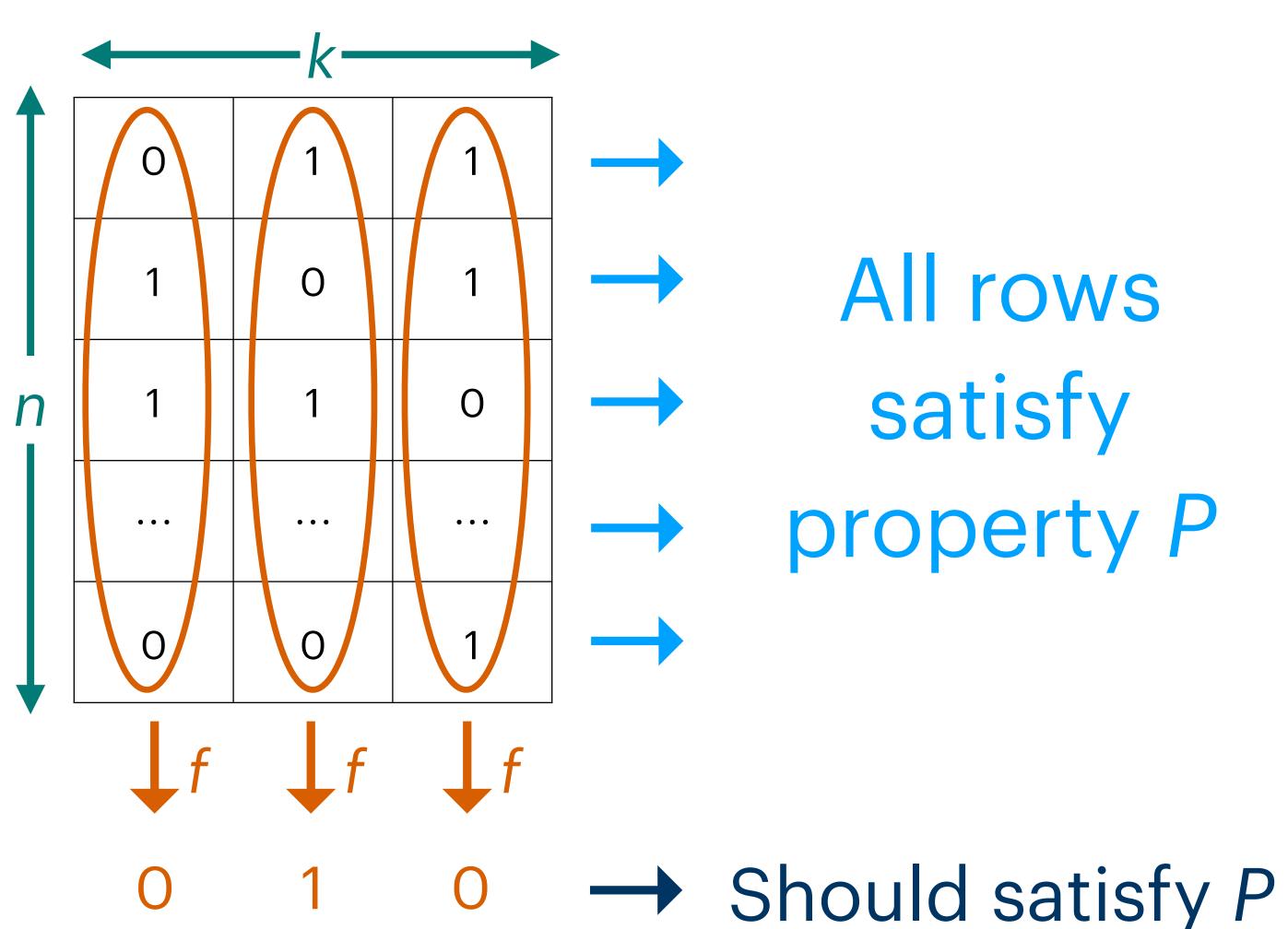
Given:

Predicate $P \subseteq \{0,1\}^k$



Given:

Predicate $P \subseteq \{0,1\}^k$

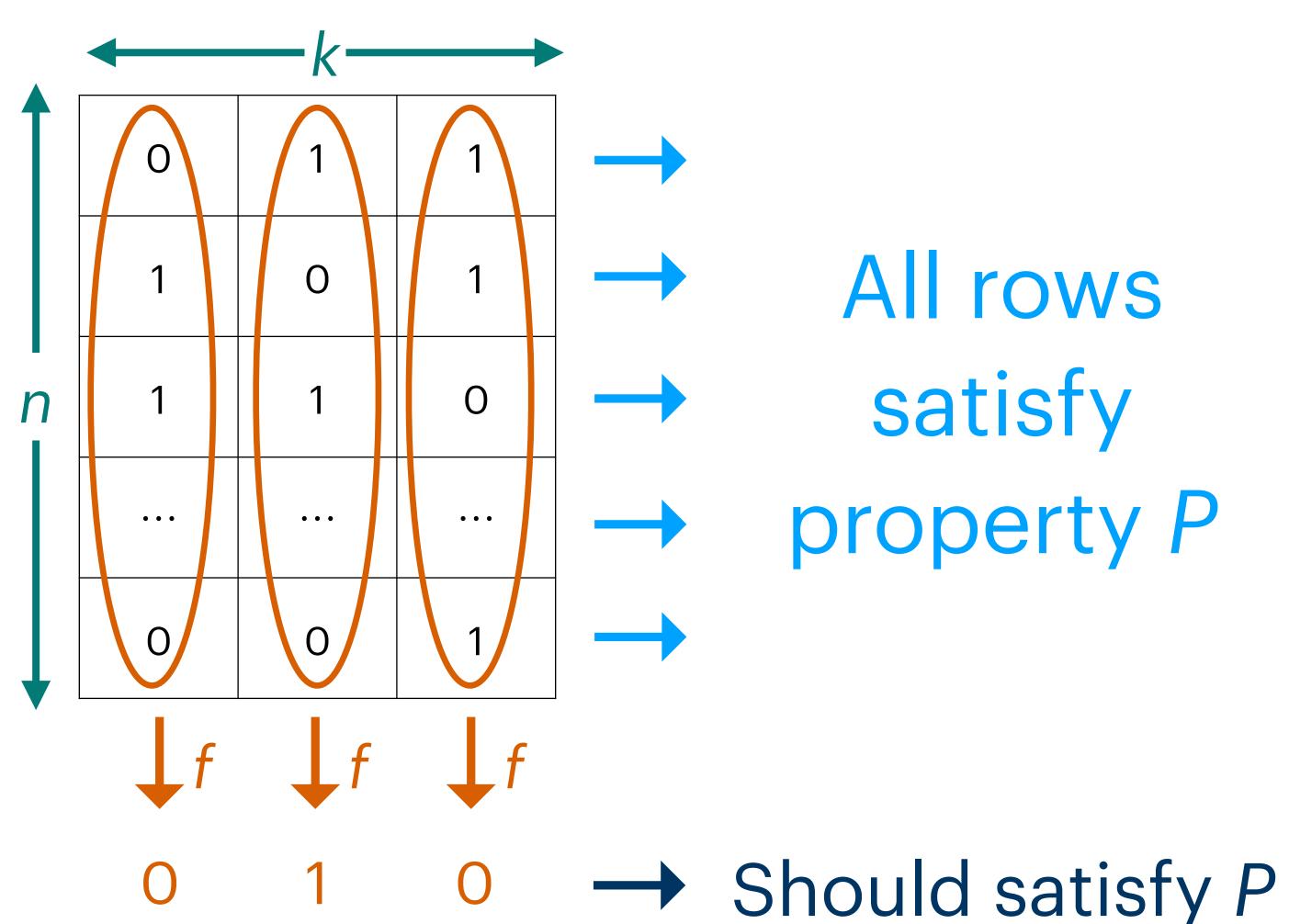


Given:

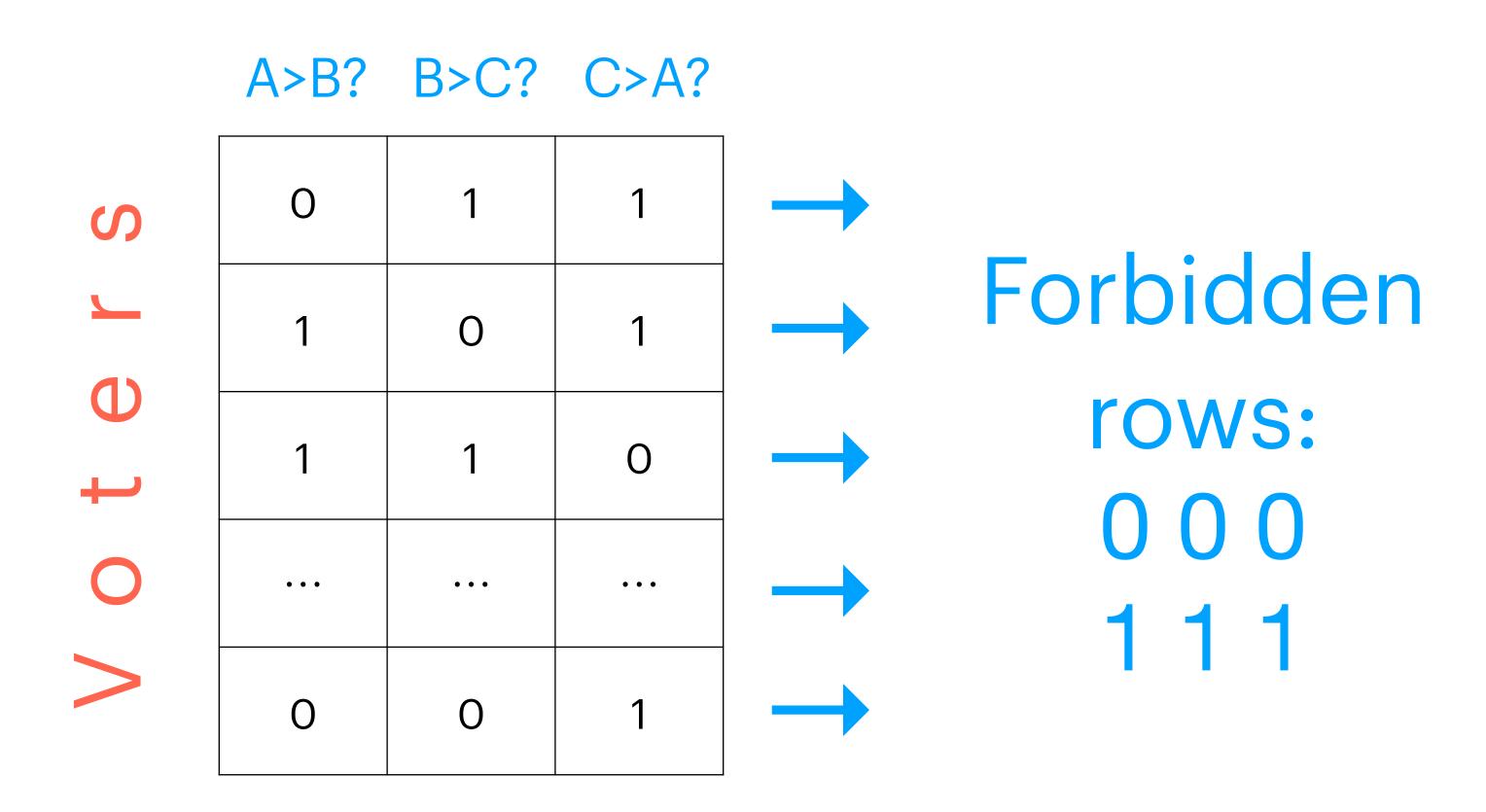
Predicate $P \subseteq \{0,1\}^k$

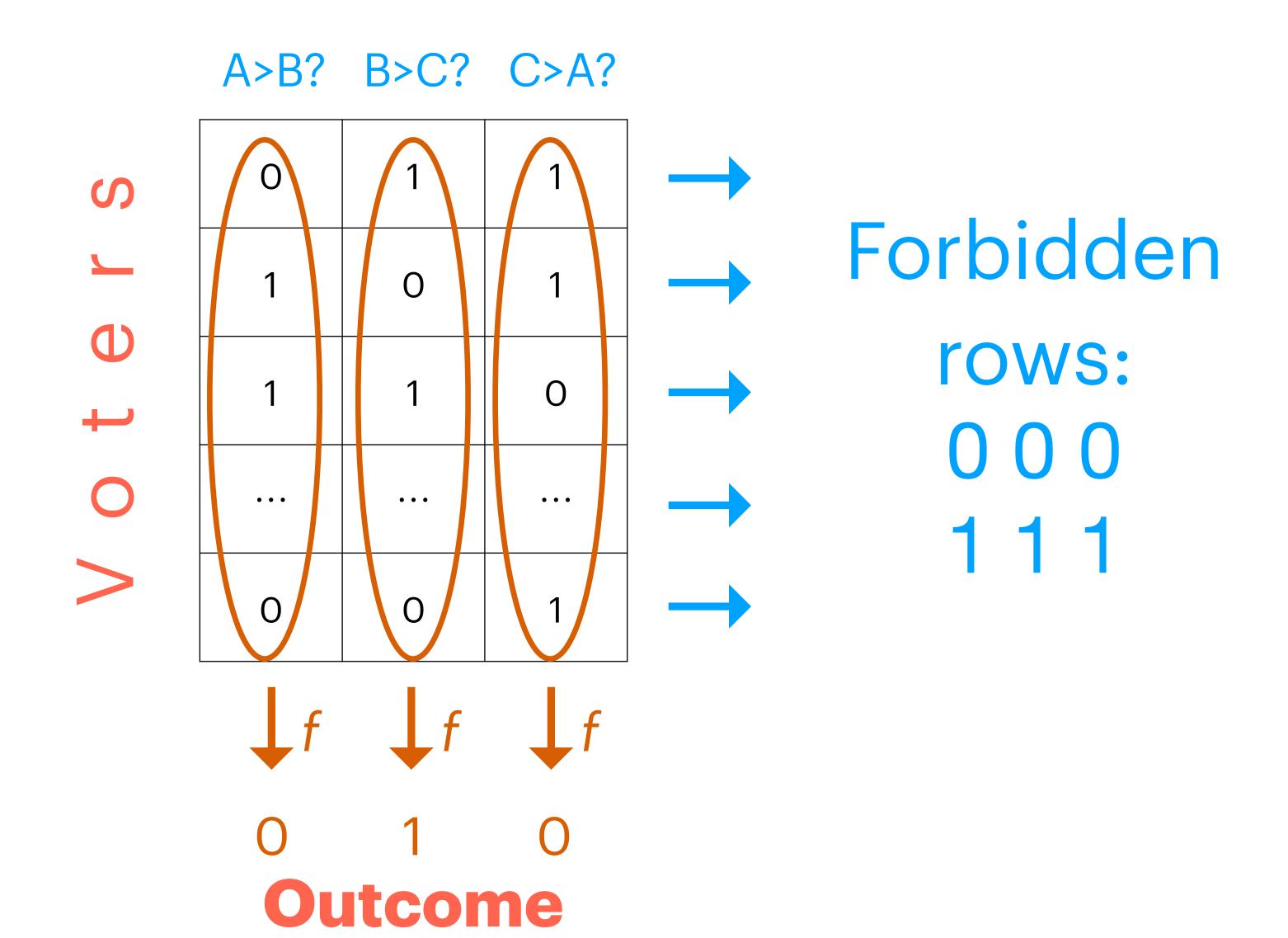
Function $f: \{0,1\}^n \to \{0,1\}$

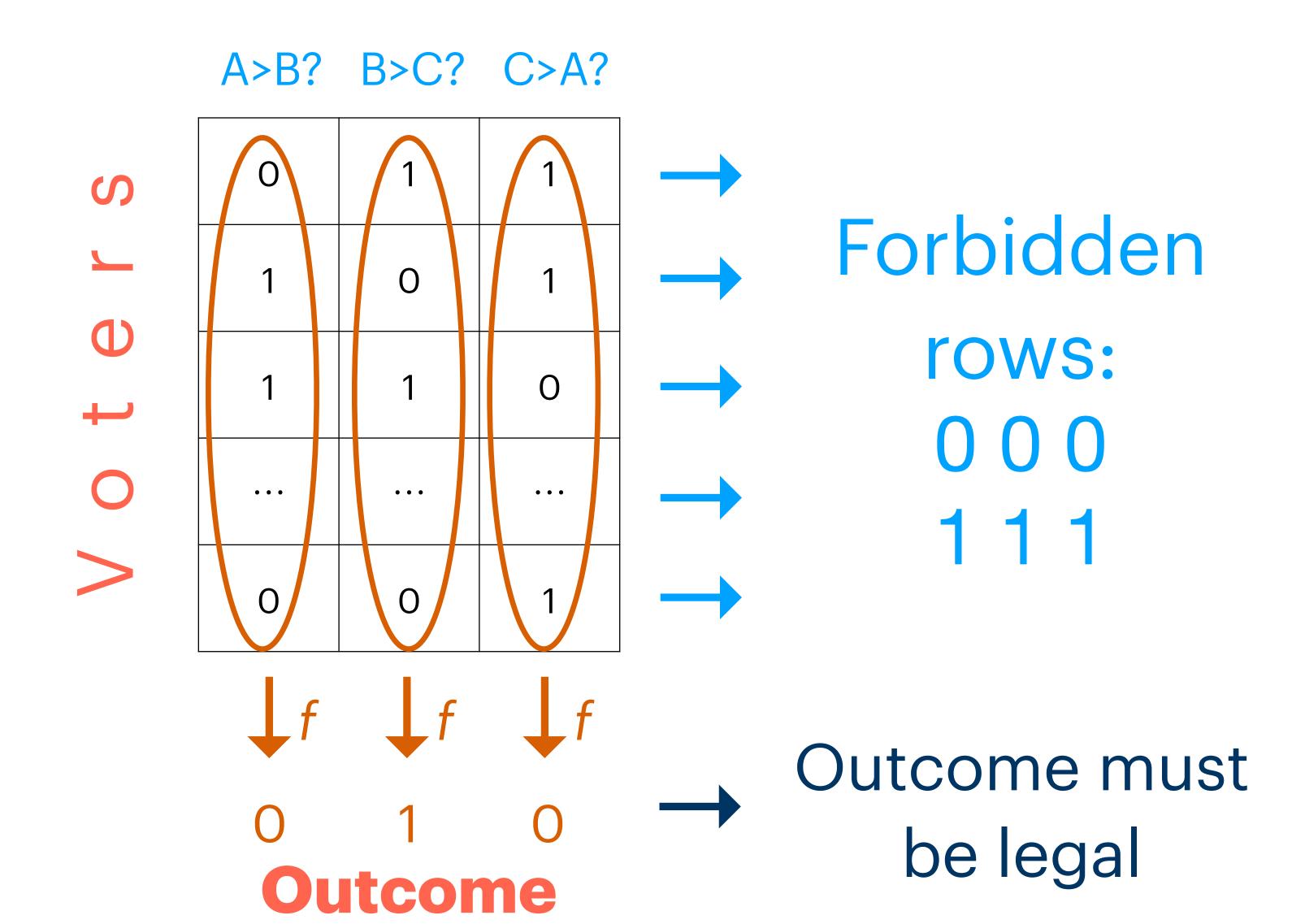
"f is a polymorphism of P"



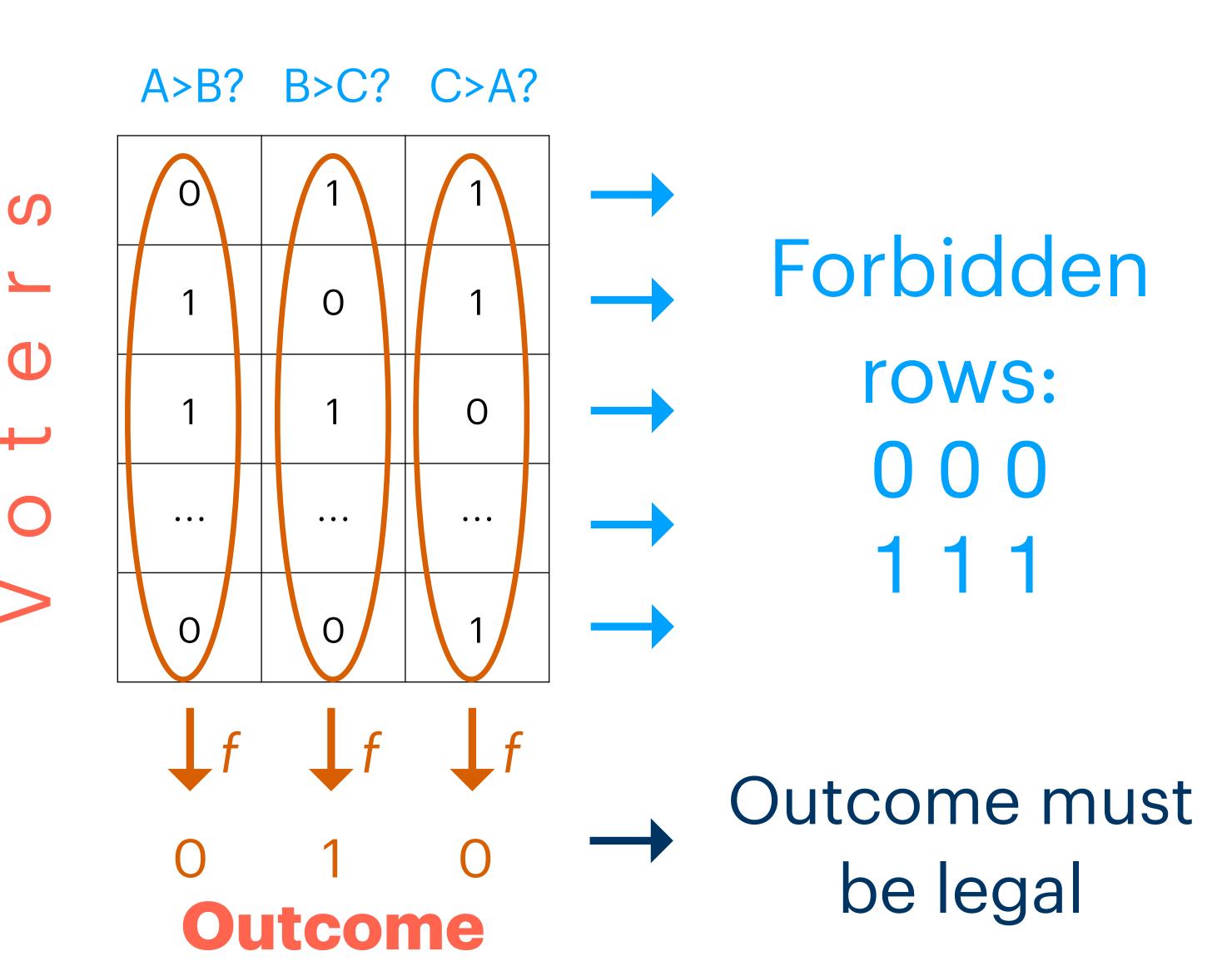
A>B? B>C? C>A? S





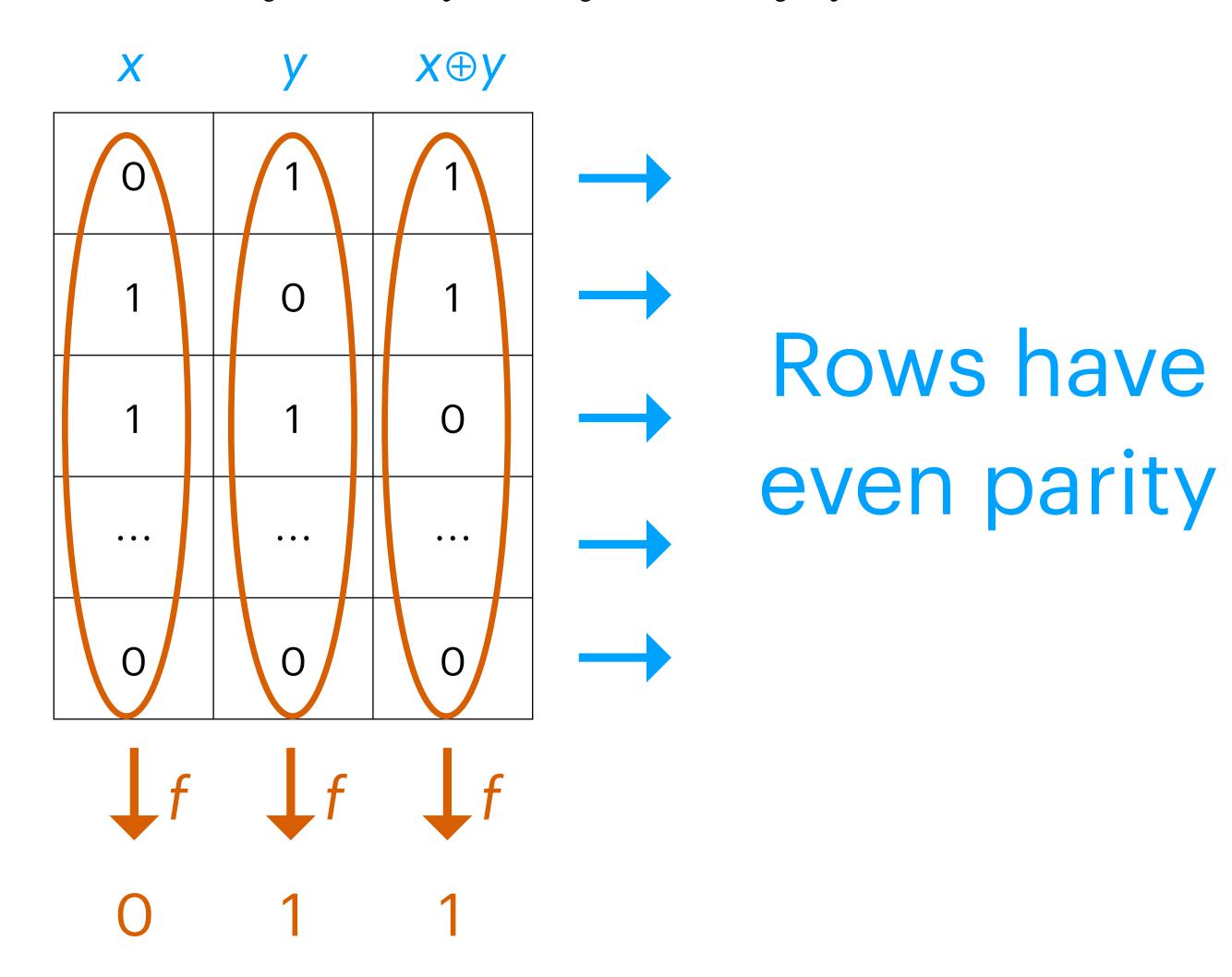


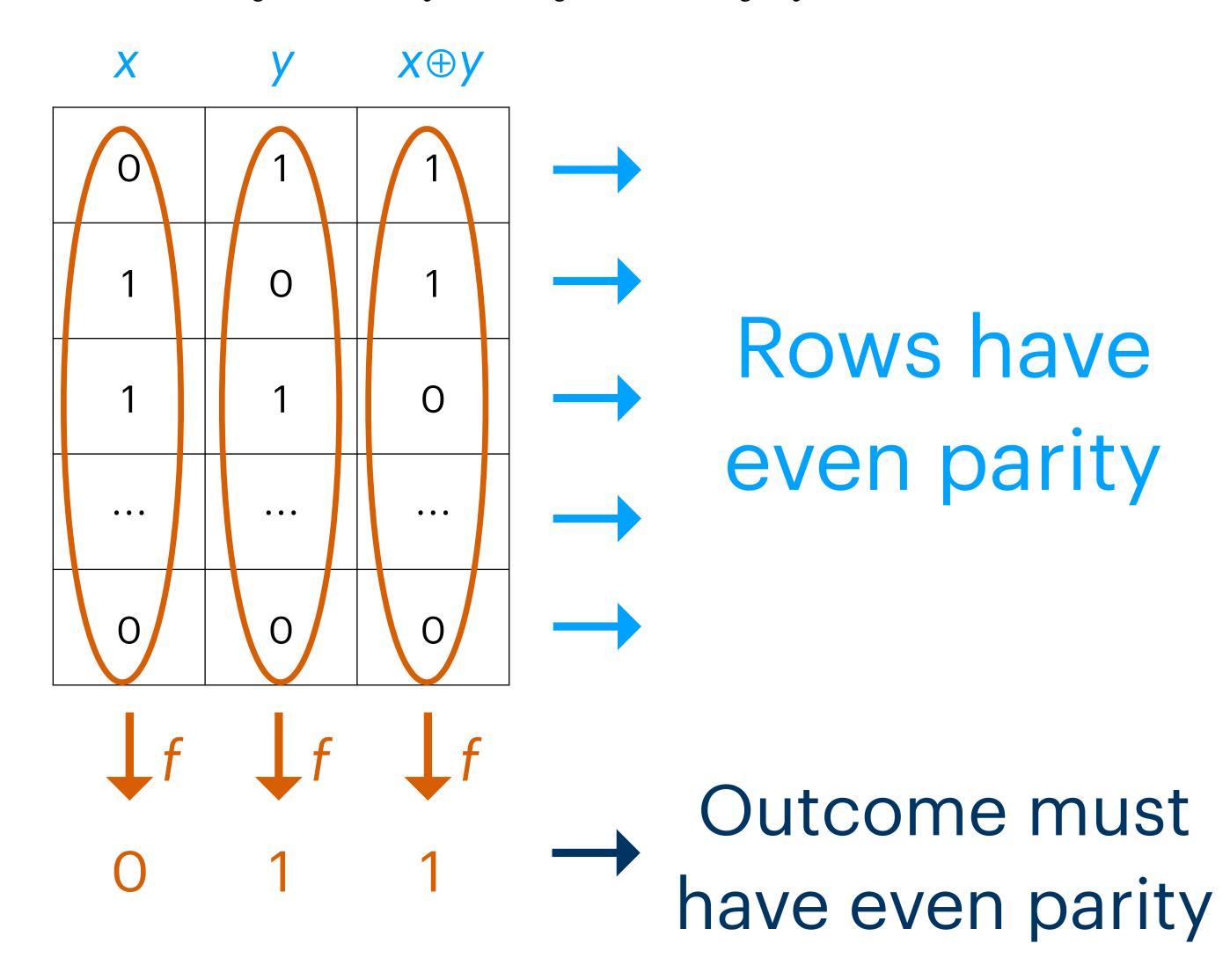
Polymorphisms:
Dictators (*i*-th row)
(Arrow's theorem)



X	y	X⊕y
0	1	1
1	0	1
1	1	O
• • •	• • •	• • •
O	O	O

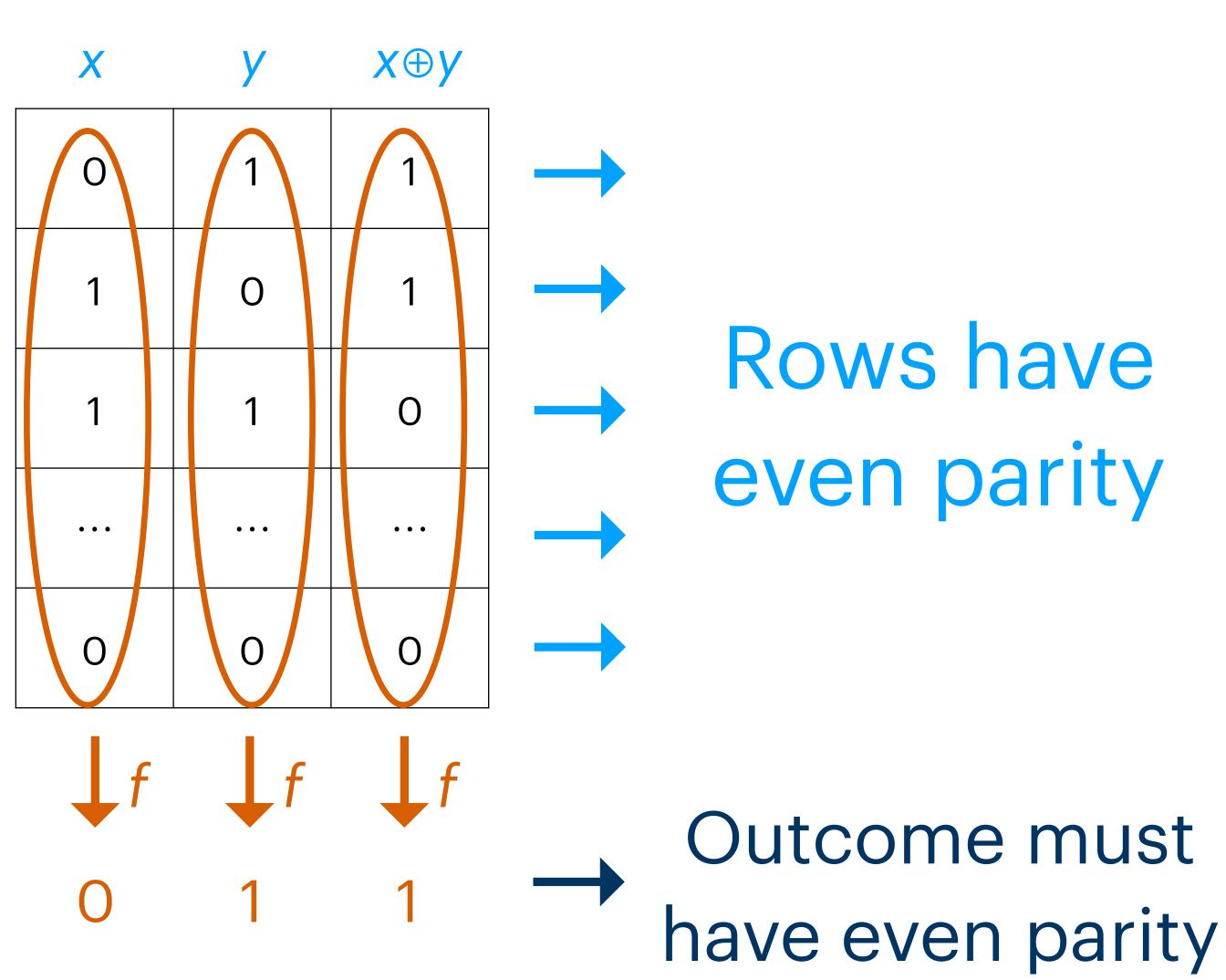
	X⊕y	y	X
	1	1	0
	1	O	1
Rows have	O	1	1
even parity	• • •	• • •	• • •
	O	0	0





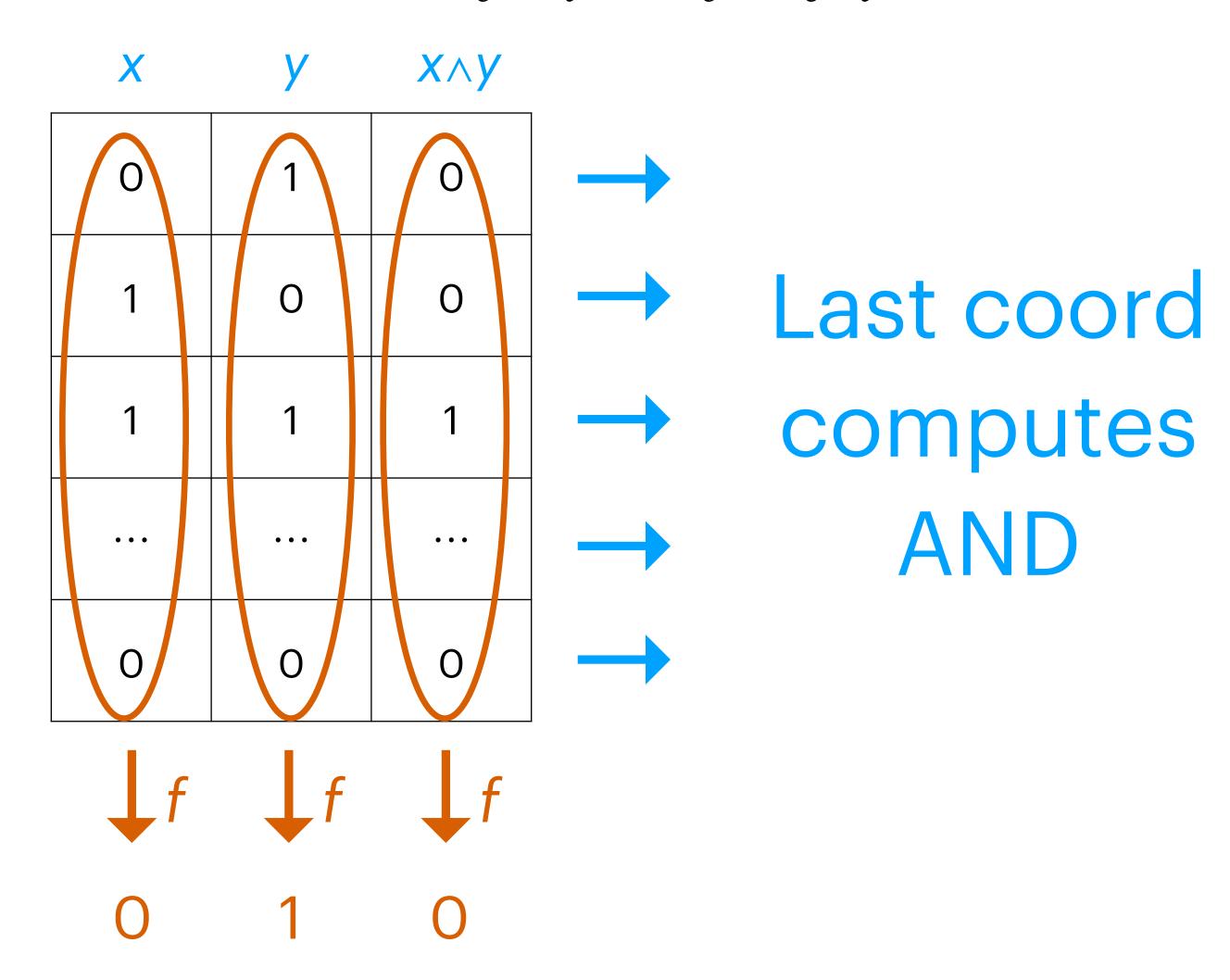
A function $f: \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$

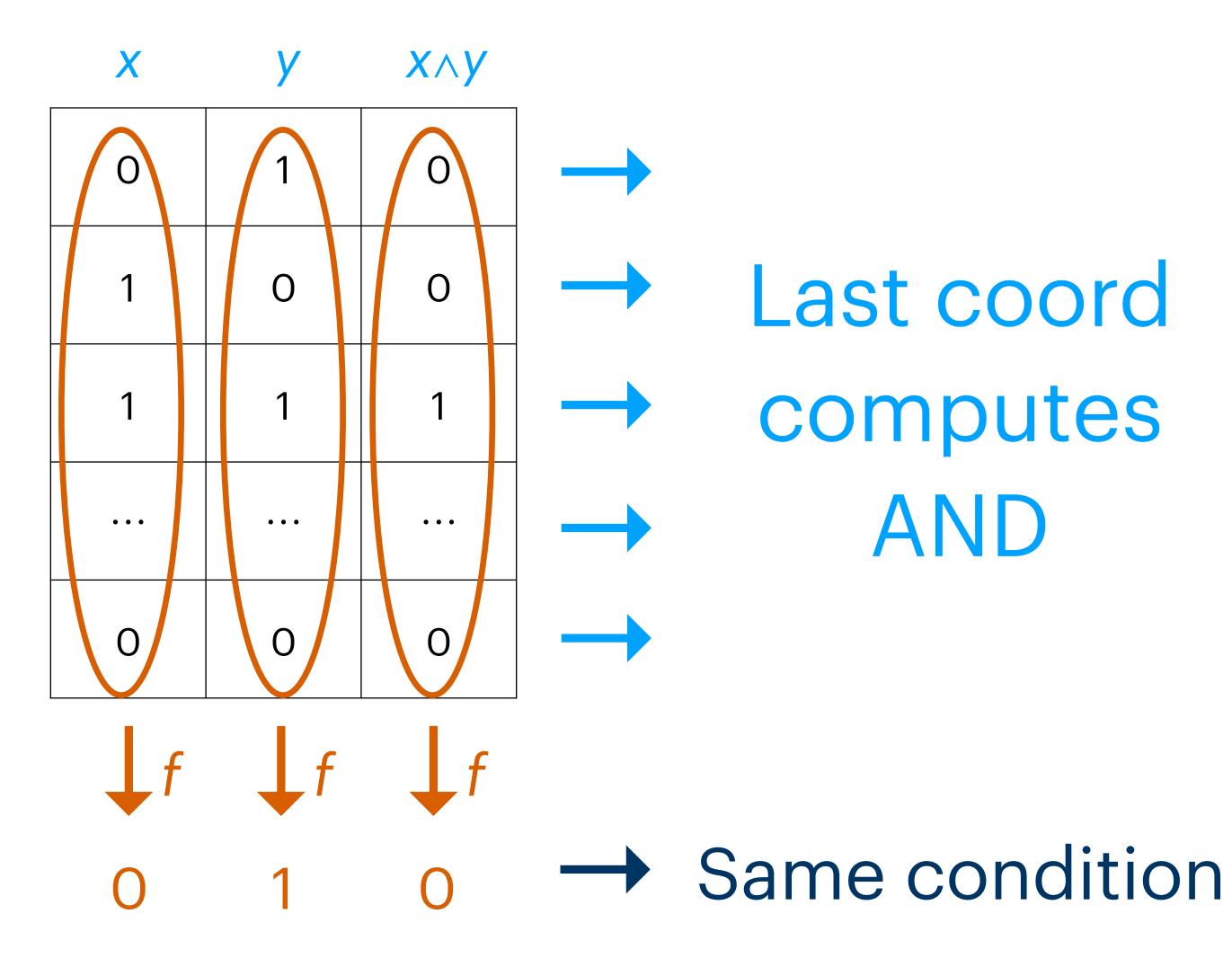
Polymorphisms: XORs of rows



X	y	X∧y
0	1	O
1	O	O
1	1	1
• • •	• • •	• • •
O	O	O

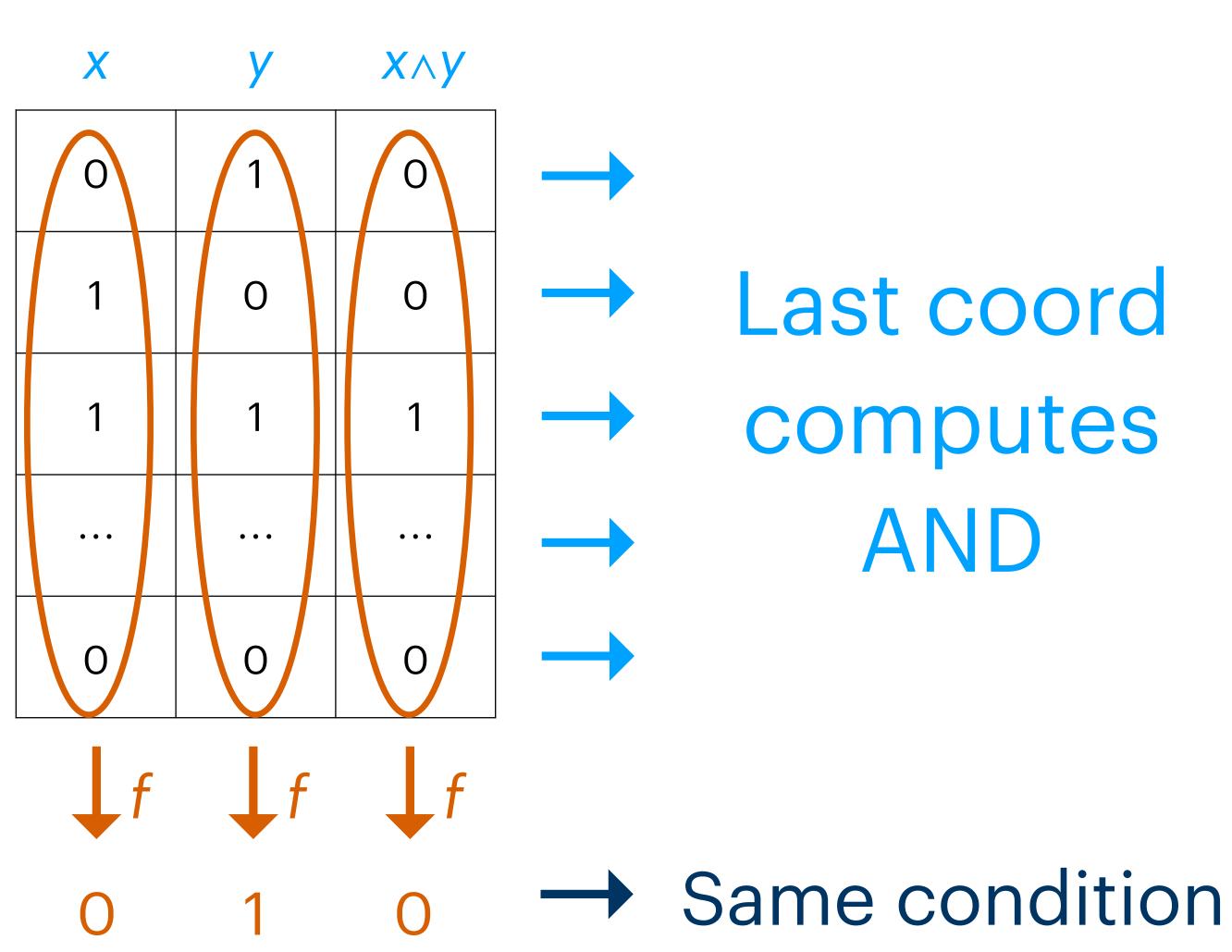
	_	X∧y	y	X
		O	1	O
Last coord		O	O	1
computes		1	1	1
AND		• • •	• • •	• • •
		O	O	O





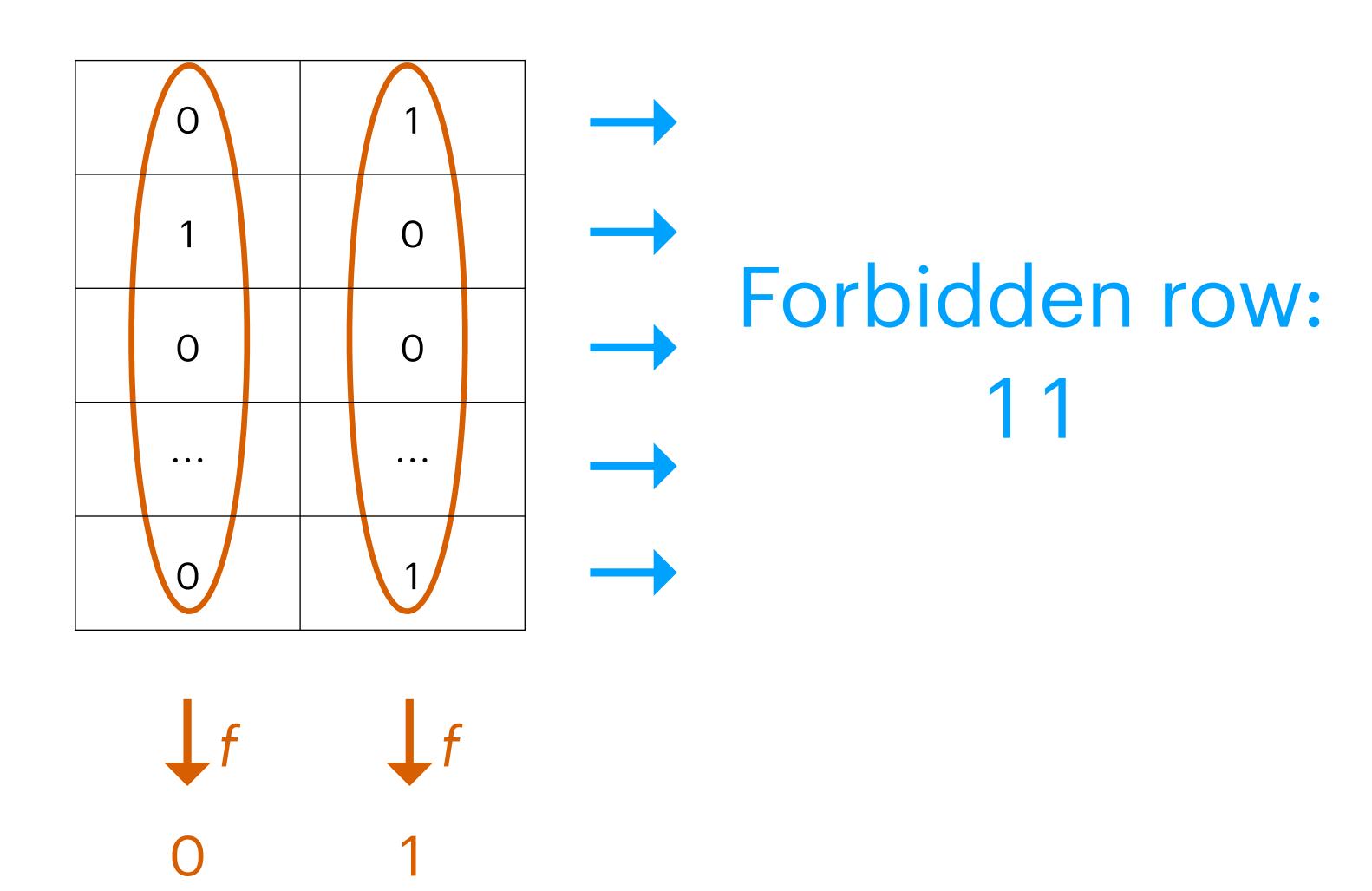
A function $f: \{0,1\}^n \to \{0,1\}$ is multiplicative if f(xy) = f(x)f(y)

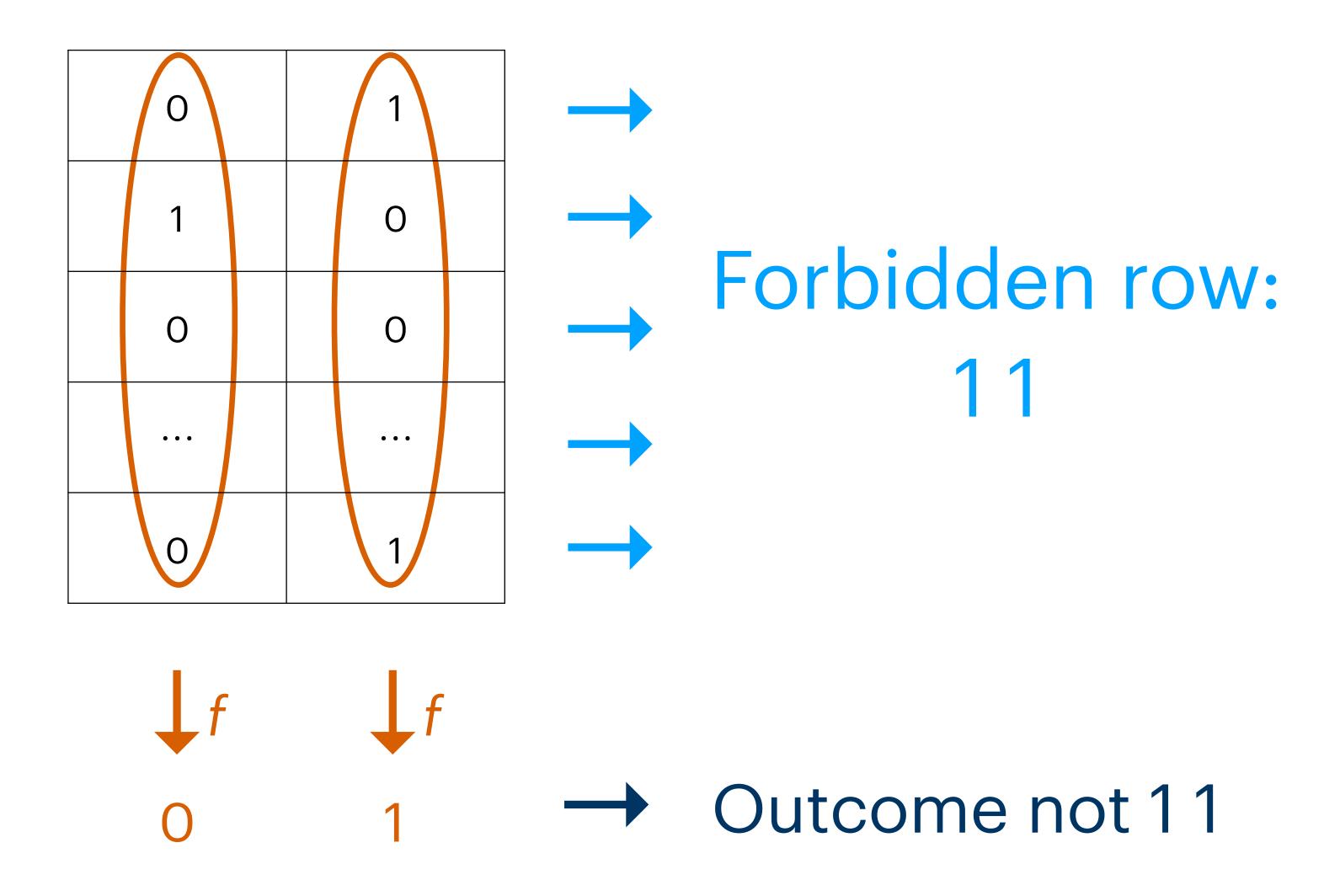
Polymorphisms: ANDs of rows, 0



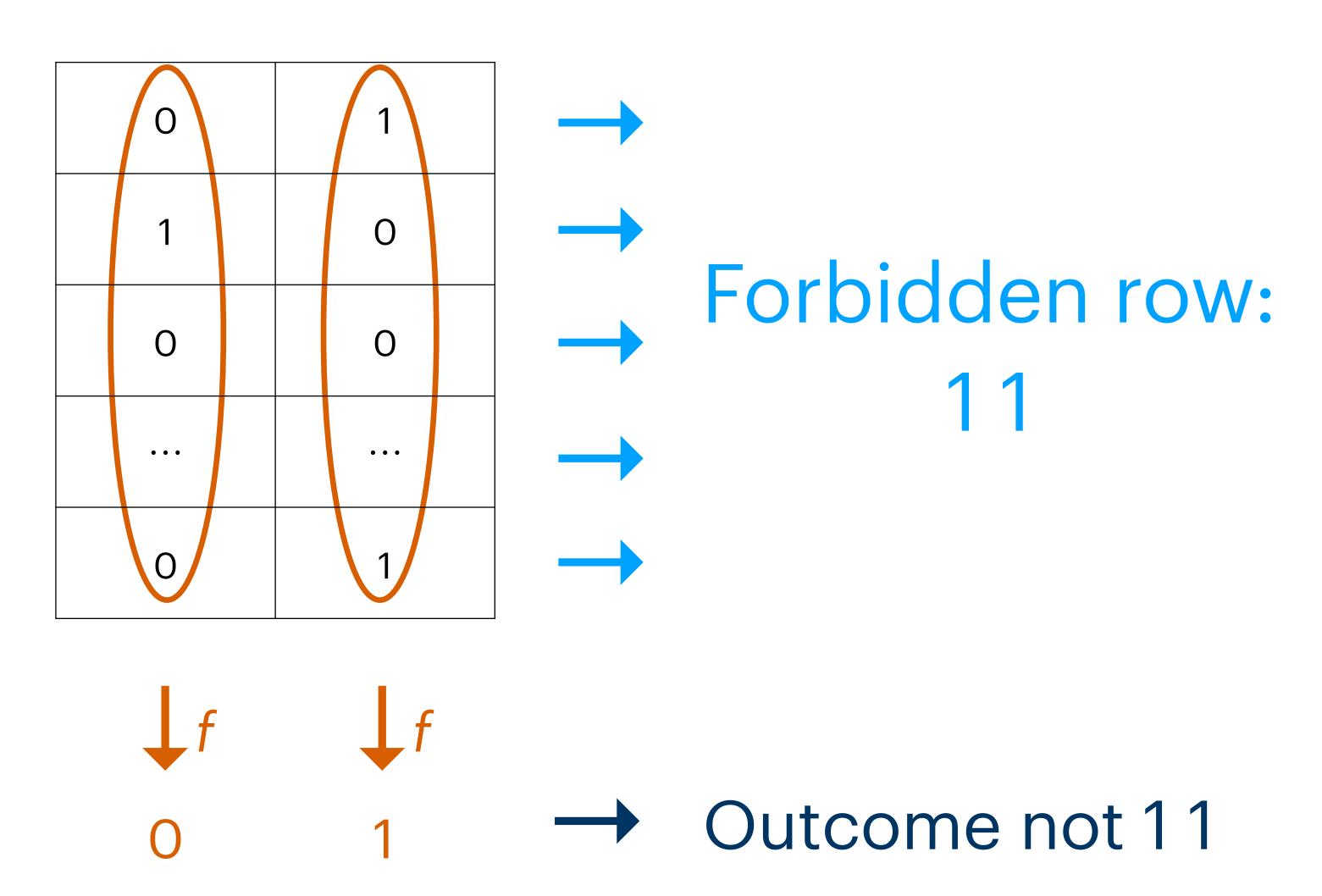
O	1
1	O
O	O
• • •	• • •
O	1

O	1	
1	O	
O	O	Forbidden row:
• • •	• • •	
O	1	

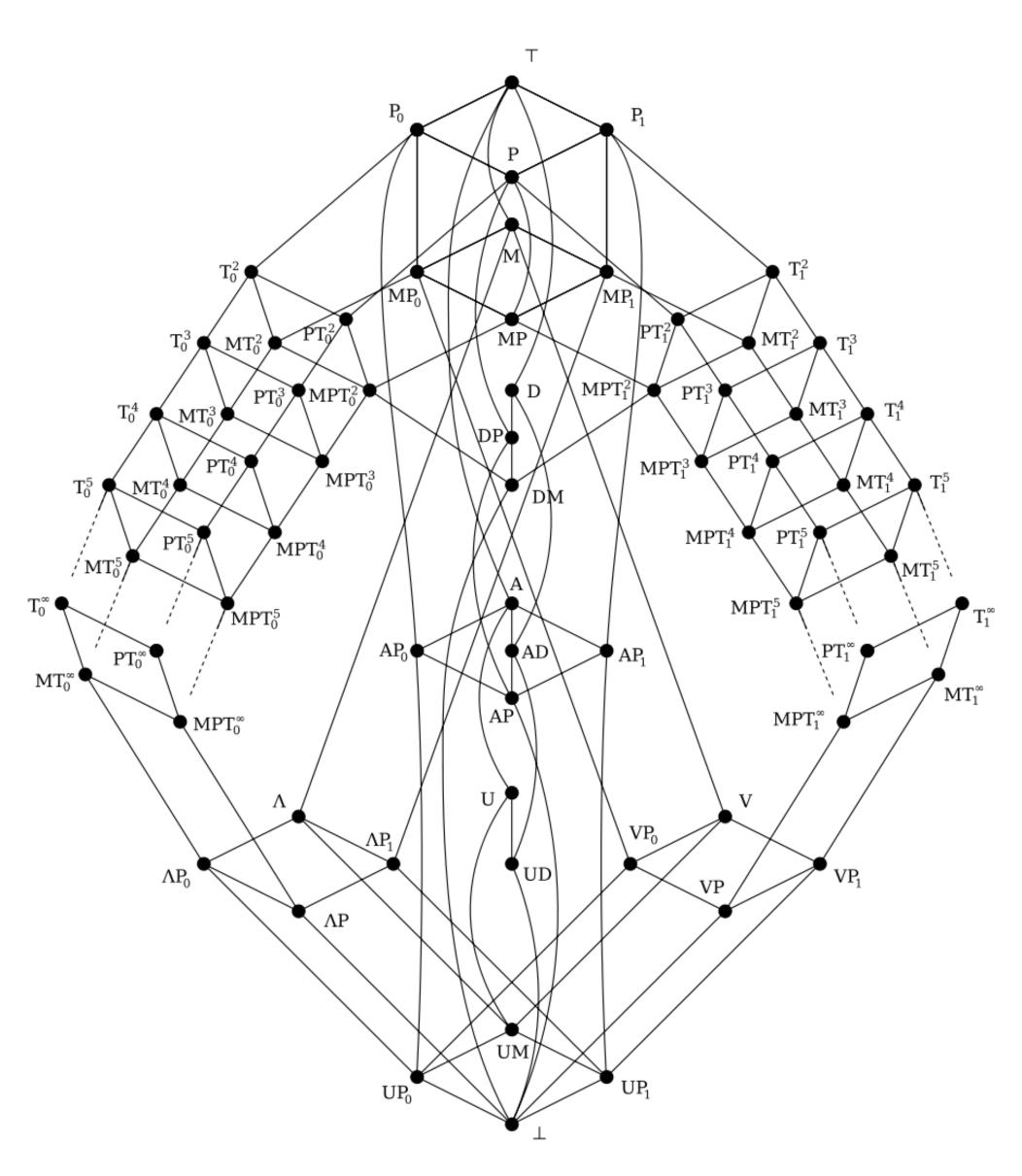




Polymorphisms: Intersecting families



Post's Lattice



Truth-Functional Setting

XOR function

O	1	0⊕1
1	O	1⊕0
1	1	1⊕1
• • •	• • •	• • •
O	O	O ① ①

XOR function

0	1	0⊕1
1	0	1⊕0
1	1	1⊕1
• • •	• • •	• • •
O	O	0⊕0

AND function

O	1	0∧1
1	O	1∧0
1	1	1.1
• • •	• • •	• • •
O	O	0,0

XOR function

0	1	O ⊕1
1	0	1⊕0
1	1	1⊕1
• • •	• • •	• • •
O	O	O ⊕ O

AND function

0	1	0∧1
1	O	1∧0
1	1	1∧1
• • •	• • •	• • •
O	O	0.0

Majority function

O	1	1	Maj(0,1,1)
1	1	1	Maj(1,1,1)
1	O	O	Maj(1,0,0)
• • •	• • •	• • •	• • •
O	O	O	Maj(0,0,0)

XOR function

0	1	0⊕1
1	0	1⊕0
1	1	1⊕1
• • •	• • •	• • •
O	O	O ① O

AND function

0	1	0∧1
1	O	1∧0
1	1	1∧1
• • •	• • •	• • •
O	O	0.0

Majority function

O	1	1	Maj(0,1,1)
1	1	1	Maj(1,1,1)
1	O	O	Maj(1,0,0)
• • •	• • •	• • •	• • •
O	O	O	Maj(0,0,0)

Always have dictators, sometimes "antidictators", sometimes constants

XOR function

O	1	0⊕1
1	0	1⊕0
1	1	1⊕1
• • •	• • •	• • •
O	O	O ⊕ O

AND function

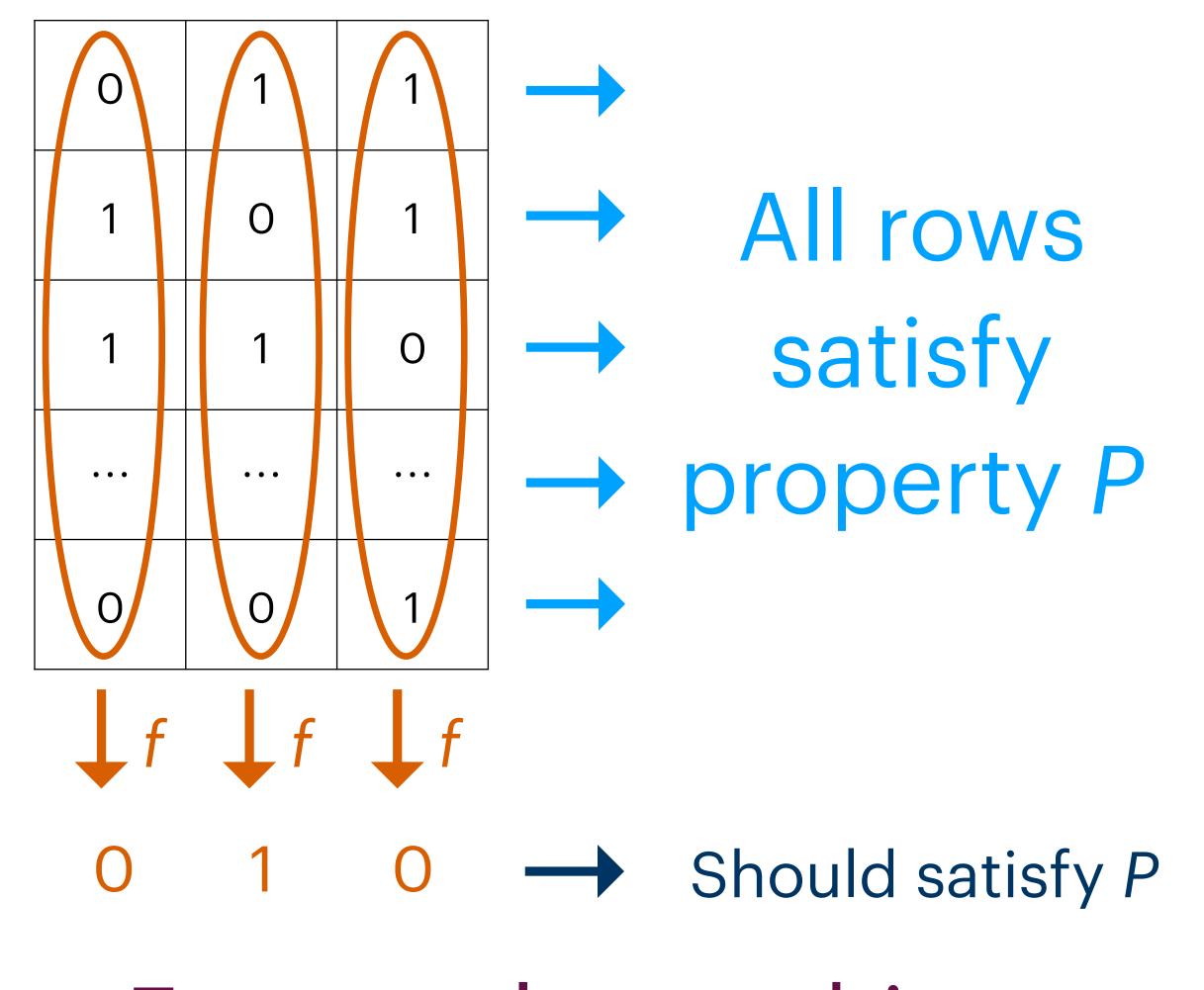
0	1	0∧1
1	0	1∧0
1	1	1.1
• • •	• • •	• • •
O	O	0,0

Majority function

O	1	1	Maj(0,1,1)
1	1	1	Maj(1,1,1)
1	O	O	Maj(1,0,0)
• • •	• • •	• • •	• • •
O	O	O	Maj(0,0,0)

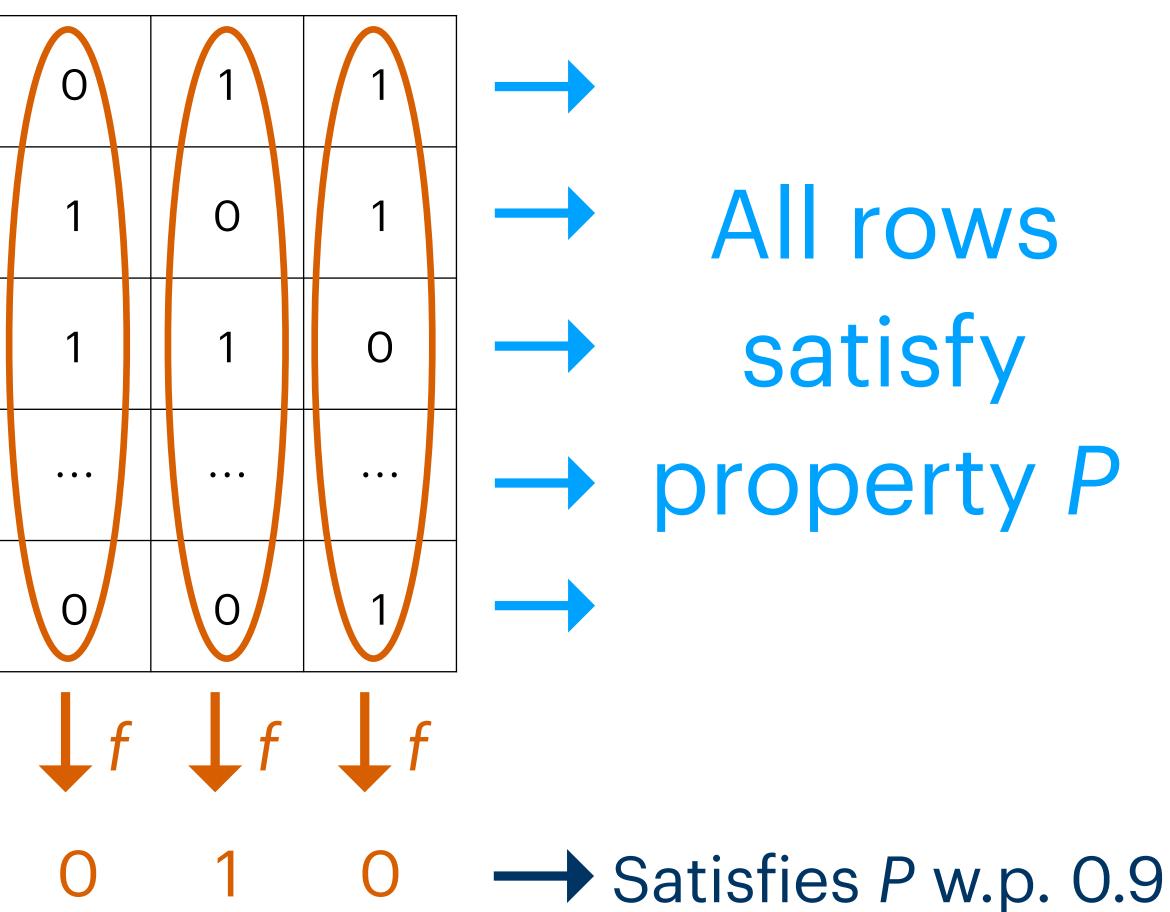
Always have dictators, sometimes "antidictators", sometimes constants

Dokow & Holzman: Other polymorphisms exist only for AND, XOR

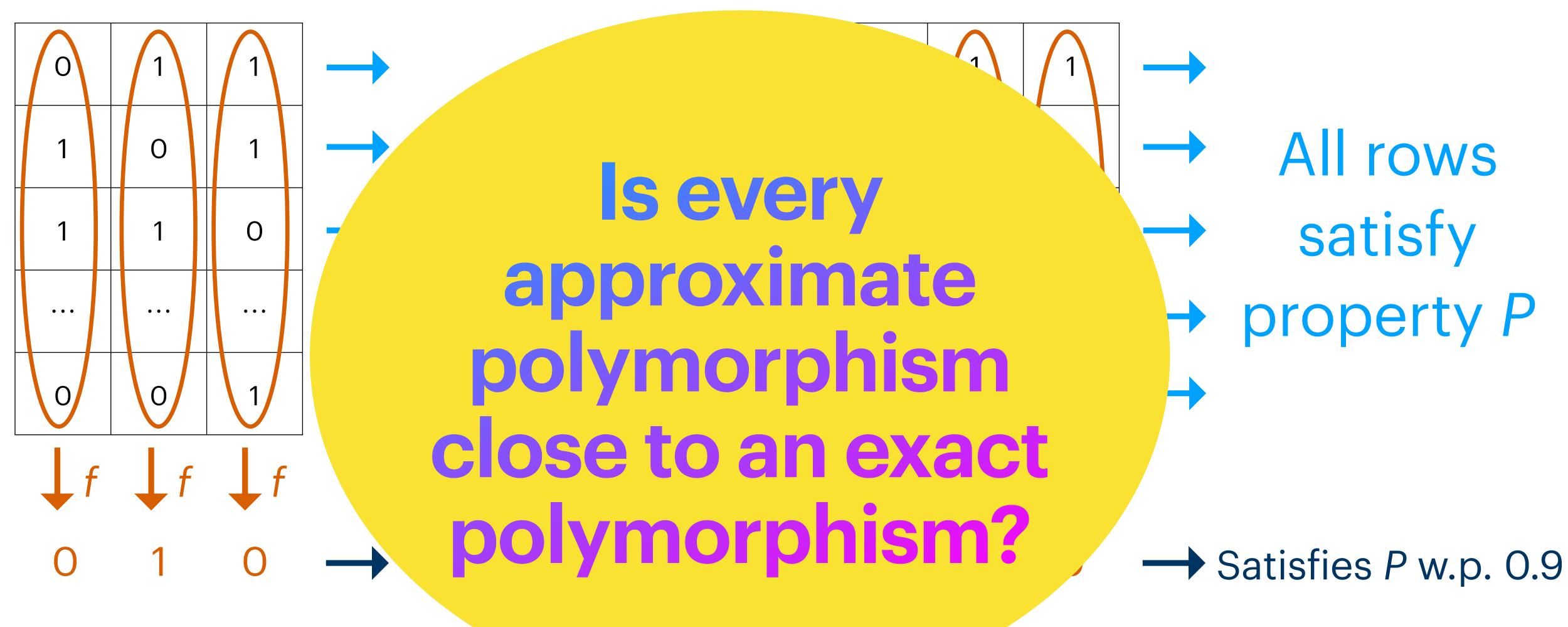


Exact polymorphism

Exact polymorphism



Approx polymorphism



Exact polymorpine

prox polymorphism

Not-All-Equal

O	1	1
1	O	1
1	1	O
• • •	• • •	• • •
O	O	1

Even Parity

0	1	1
1	0	1
1	1	O
• • •	• • •	• • •
O	O	O

NAND

O	1
1	O
0	O
• • •	• • •
O	1

AND function

O	1	O
1	0	O
1	1	1
• • •	• • •	• • •
O	O	O

Not-All-Equal

O	1	1
1	O	1
1	1	O

Even Parity

O	1	1
1	0	1
1	1	O
• • •	• • •	• • •
O	O	O

NAND

O	1
1	O
O	O
• • •	• • •
O	1

AND function

0	1	O
1	0	O
1	1	1
• • •	• • •	• • •
O	O	O

Approx polymorphisms: Dictators (*i*-th row)

0

0

(Kalai's theorem)

Not-All-Equal

O	1	1
1	O	1
1	1	O
• • •	• • •	• • •
O	O	1

Even Parity

O	1	1
1	0	1
1	1	O
• • •	• • •	• • •
O	O	O

NAND

O	1
1	O
O	O
• • •	• • •
O	1

AND function

O	1	0
1	0	O
1	1	1
• • •	• • •	• • •
O	O	O

Approx polymorphisms: Dictators (*i*-th row)

Approx polymorphisms:

XORs of rows

(Kalai's theorem)

(Linearity testing)

Not-All-Equal

O	1	1
1	O	1
1	1	0
• • •	• • •	• • •
O	0	1

Even Parity

O	1	1
1	0	1
1	1	O
• • •	• • •	• • •
O	O	O

NAND

O	1
1	O
O	O
• • •	• • •
O	1

AND function

O	1	O
1	O	O
1	1	1
• • •	• • •	• • •
O	O	O

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

Approx polymorphisms: XORs of rows

(Linearity testing)

Approx polymorphisms: Intersecting families

(Friedgut-Regev)

Not-All-Equal

O	1	1
1	O	1
1	1	O
• • •	• • •	• • •
O	O	1

Even Parity

O	1	1
1	O	1
1	1	O
• • •	• • •	• • •
O	O	O

NAND

O	1
1	O
O	O
• • •	• • •
O	1

AND function

O	1	O
1	0	O
1	1	1
• • •	• • •	• • •
O	O	O

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

Approx polymorphisms: XORs of rows

(Linearity testing)

Approx polymorphisms: Intersecting families

(Friedgut-Regev)

Approx polymorphisms: ANDs of rows, constant 0

(This work)

Not-All-Equal

O	1	1
1	O	1
1	1	O
• • •	• • •	• • •
O	O	1

Even Parity

O	1	1
1	0	1
1	1	O
• • •	• • •	• • •
O	O	O

NAND

O	1
1	O
O	O
• • •	• • •
O	1

AND function

O	1	0	
1	O	0	
1	1	1	
• • •	• • •	Improves Nehama 2	
0	0	0	

Approx polymorphisms: Dictators (*i*-th row)

(Kalai's theorem)

Approx polymorphisms: XORs of rows

(Linearity testing)

Approx polymorphisms: Intersecting families

(Friedgut-Regev)

Approx polymorphisms:
ANDs of rows, constant 0

(This work)

Every function $f: \{\pm 1\}^n \to \{\pm 1\}$ has unique representation as multilinear poly

Every function $f: \{\pm 1\}^n \to \{\pm 1\}$ has unique representation as multilinear poly

Degree of f: degree of unique representation (as polynomial)

Every function $f: \{\pm 1\}^n \to \{\pm 1\}$ has unique representation as multilinear poly

Degree of f: degree of unique representation (as polynomial)

Noise operator $T_{
ho}$ multiplies degree d monomials ("level d") by ho^d

Every function $f: \{\pm 1\}^n \to \{\pm 1\}$ has unique representation as multilinear poly

Degree of f: degree of unique representation (as polynomial)

Noise operator $T_{
ho}$ multiplies degree d monomials ("level d") by ho^d

Constant coefficient is expectation of f

Every function $f: \{\pm 1\}^n \to \{\pm 1\}$ has unique representation as multilinear poly

Degree of f: degree of unique representation (as polynomial)

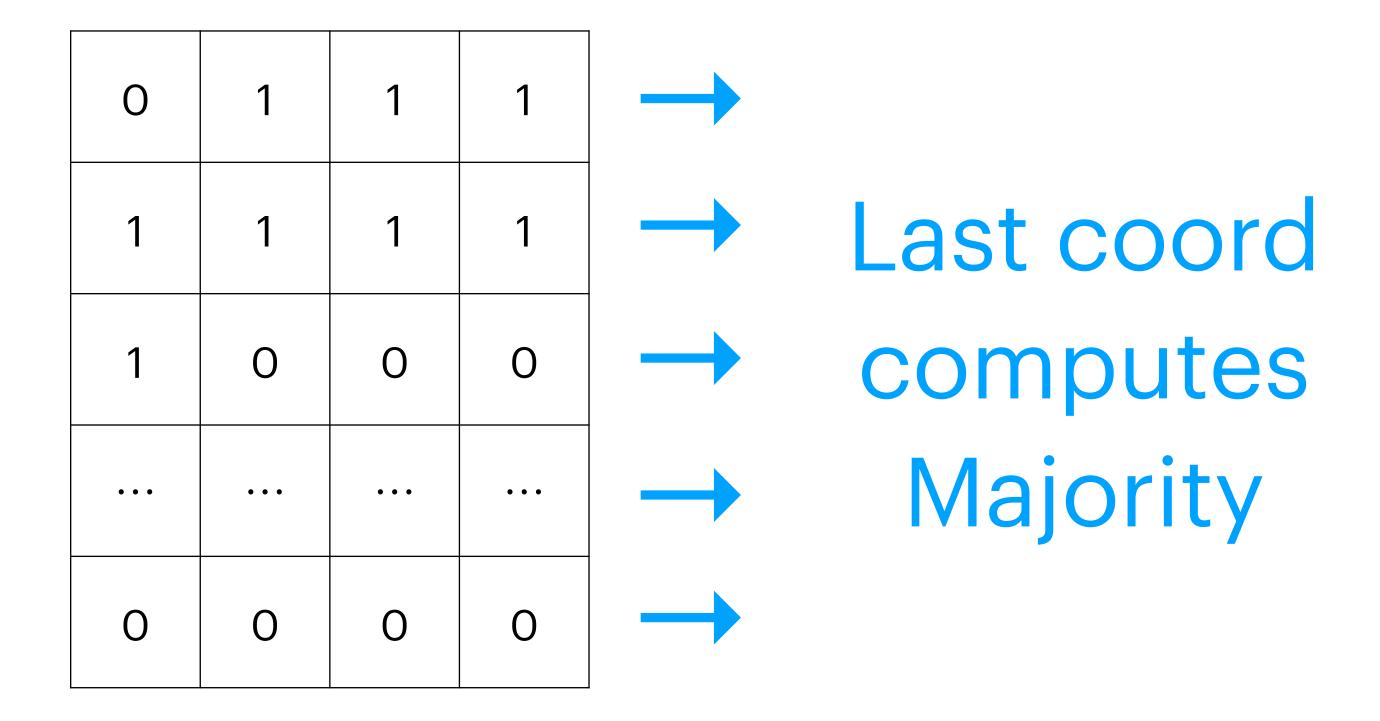
Noise operator $T_{
ho}$ multiplies degree d monomials ("level d") by ho^d

Constant coefficient is expectation of f

Important observation: different monomials are orthogonal

Simpler example

Majority function



Polymorphisms:
Dictators (*i*-th row)
Constant functions

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(Maj(x_1, y_1, z_1), ..., Maj(x_n, y_n, z_n)) = Maj(f(x_1, ..., x_n), f(y_1, ..., y_n), f(z_1, ..., z_n))$$

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if $f(\mathsf{Maj}(x,y,z)) = \mathsf{Maj}(f(x),f(y),f(z))$

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$$

Fix
$$x$$
, average over y, z :
$$T_{1/2}f(x) = \frac{1-\mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$$

Fix
$$x$$
, average over y, z :
$$T_{1/2}f(x) = \frac{1 - \mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$$

Fix
$$x$$
, average over y, z :
$$\mu = \frac{1 - \mu^2}{2} \mu + \mu \qquad \mu = \mathbb{E}[f]$$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$$

Fix
$$x$$
, average over y , z :
$$T_{1/2}f(x) = \frac{1-\mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

If $\mu \in \{\pm 1\}$, function is constant.

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$$

Fix
$$x$$
, average over y, z :
$$T_{1/2}f(x) = \frac{1 - \mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

If $\mu \in \{\pm 1\}$, function is constant.

If $\mu = 0$ then $T_{1/2}f = \frac{1}{2}f$, so $\deg f = 1$, so f is a dictator.

A function $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polymorphism of Majority if

$$f(\mathsf{Maj}(x, y, z)) = \mathsf{Maj}(f(x), f(y), f(z))$$

Fix
$$x$$
, average over y , z :
$$T_{1/2}f(x) = \frac{1-\mu^2}{2}f(x) + \mu, \qquad \mu = \mathbb{E}[f]$$

Comparing expectations on both sides: $\mu \in \{0, \pm 1\}$.

If $\mu \in \{\pm 1\}$, function is constant.

If $\mu = 0$ then $T_{1/2}f = \frac{1}{2}f$, so $\deg f = 1$, so f is a dictator.

Everything also holds approximately, using FKN theorem!

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if f(xy) = f(x)f(y)

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$

Fix x, average over y:

$$T_{\downarrow}f(x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$$

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$

Fix x, average over y:

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

$$T_{\downarrow}f(x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$$

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$

Fix x, average over y:

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

$$T_{\downarrow}f(x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$

Fix x, average over y:

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

$$T_{\downarrow}f(x) = \mu f(x), \qquad \mu = \mathbb{E}[f]$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

However, can read Fourier expansion of $T_{\downarrow}f$ from biased Fourier expansion of f!

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$

Fix x, average over y:

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

$$T_{\downarrow}f(x) = \mu f(x), \qquad \leftarrow Unbiased inputs$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

However, can read Fourier expansion of $T_{\downarrow}f$ from biased Fourier expansion of f!

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$

Fix x, average over y:

 $\mathbb{E}[f(xy)]$ = average of f over values "below" x

(3/4,1/4)-biased inputs $\rightarrow T_{\downarrow}f(x) = \mu f(x), \qquad \leftarrow Unbiased inputs$

$$T_{\downarrow}f(x) = \mu f(x),$$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

> However, can read Fourier expansion of $T_{\perp}f$ from biased Fourier expansion of f!

A function $f: \{0,1\}^n \to \{0,1\}$ is a polymorphism of AND if

$$f(xy) = f(x)f(y)$$
 — Unbiased inputs

Fix x, average over y:

 $\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x$

$$(3/4,1/4)$$
-biased inputs $\rightarrow T_{\downarrow}f(x) = \mu f(x), \qquad \leftarrow Unbiased inputs$

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

> However, can read Fourier expansion of $T_{1}f$ from biased Fourier expansion of f!

```
A function f: \{0,1\}^n \to \{0,1\} is a polymorphism of AND if (3/4,1/4)-biased inputs \to f(xy) = f(x)f(y) \leftarrow Unbiased inputs Fix x, average over y:  \boxed{\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x}  (3/4,1/4)-biased inputs \to T_{\downarrow}f(x) = \mu f(x), \leftarrow Unbiased inputs
```

Problem: one-sided noise operator T_{\downarrow} has complicated effect on Fourier expansion

However, can read Fourier expansion of $T_{\downarrow}f$ from biased Fourier expansion of f!

```
A function f: \{0,1\}^n \to \{0,1\} is a polymorphism of AND if (3/4,1/4)-biased inputs \to f(xy) = f(x)f(y) \leftarrow Unbiased inputs Fix x, average over y:
\mathbb{E}[f(xy)] = \text{average of } f \text{ over values "below" } x
(3/4,1/4)\text{-biased inputs} \to T_{\downarrow}f(x) = \mu f(x), \leftarrow Unbiased \text{ inputs}
```

Cannot directly compare biased and unbiased Fourier expansions! The two expansions depend on different parts of f.

However, can read Fourier expansion of $T_{\downarrow}f$ from biased Fourier expansion of f!

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f]$.

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f]$.

Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f]$.

Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.

Bourgain's junta theorem: f is close to a junta.

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f]$.

Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.

Bourgain's junta theorem: f is close to a junta.

Fixing non-junta variables: $T_{\downarrow}g \approx \mu f$, where $g: \{0,1\}^n \rightarrow [0,1]$.

Starting point: $T_{\downarrow}f \approx \mu f$, where $\mu = \mathbb{E}[f]$.

Since noise operator is "low-pass filter", $f \approx \mu^{-1} T_{\downarrow} f$ has decaying tails.

Bourgain's junta theorem: f is close to a junta.

Fixing non-junta variables: $T_{\downarrow}g \approx \mu f$, where $g: \{0,1\}^n \rightarrow [0,1]$.

Suggests solving generalized eigenvalue problem

$$T_{\downarrow}g = \lambda h$$

where $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

If $x_1=\cdots=x_\ell=1$ then $y_1=\cdots=y_\ell=1$ w.p. $2^{-\ell}$. Otherwise, $y_1\wedge\cdots\wedge y_\ell=0$ always.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

Unexpected solutions: $g = x_1 \oplus x_2, h = x_1 \vee x_2, \lambda = 1/2$.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

Unexpected solutions: $g = x_1 \oplus x_2, h = x_1 \vee x_2, \lambda = 1/2$.

If $x_1 = x_2 = 0$ then $y_1 = y_2 = 0$ always.

If $x_1 = 1$ then y_1 is uniformly random, so $y_1 \oplus y_2$ is uniformly random.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

Unexpected solutions: $g = x_1 \oplus x_2, h = x_1 \vee x_2, \lambda = 1/2$.

General case: g is $c \cdot AND$ of XORs, h is AND of ORs, $\lambda = c \cdot 2^{-\#factors}$.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

Unexpected solutions: $g = x_1 \oplus x_2, h = x_1 \vee x_2, \lambda = 1/2$.

General case: g is c · AND of XORs, h is AND of ORs, $\lambda = c \cdot 2^{-\#factors}$.

Also holds for approximate version $T_{\downarrow}g \approx \lambda h$.

Solve $T_{\downarrow}g(x) = \lambda h(x)$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$. $T_{\downarrow}g(x) = \mathbb{E}[g(y)]$, where y results from zeroing each coordinate w.p. $\frac{1}{2}$.

Expected solutions: $g = h = x_1 \land \dots \land x_\ell, \lambda = 2^{-\ell}$.

Unexpected solutions: $g = x_1 \oplus x_2, h = x_1 \vee x_2, \lambda = 1/2$.

General case: g is c · AND of XORs, h is AND of ORs, $\lambda = c \cdot 2^{-\#factors}$.

Also holds for approximate version $T_{\downarrow}g \approx \lambda h$.

Can rule out unexpected solutions since $\lambda \approx \mathbb{E}[h]$.

Solve $T_{\downarrow}g = \lambda h$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

Solve $T_{\downarrow}g = \lambda h$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

First step: *h* is monotone.

```
Solve T_{\downarrow}g = \lambda h for g: \{0,1\}^n \to [0,1] and h: \{0,1\}^n \to \{0,1\}.
```

First step: *h* is monotone.

```
Let z \le x. Want to rule out h(x) = 0 but h(z) = 1.

If h(x) = 0 then g(y) = 0 for all y below x.

So g(w) = 0 for all w below z, hence h(z) = 0.
```

```
Solve T_{\downarrow}g = \lambda h for g: \{0,1\}^n \to [0,1] and h: \{0,1\}^n \to \{0,1\}.
```

First step: *h* is monotone.

```
Let z \le x. Want to rule out h(x) = 0 but h(z) = 1.

If h(x) = 0 then g(y) = 0 for all y below x.

So g(w) = 0 for all w below z, hence h(z) = 0.
```

Second step: all minterms of h have same size.

Solve $T_{\downarrow}g = \lambda h$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

First step: *h* is monotone.

Let $z \le x$. Want to rule out h(x) = 0 but h(z) = 1. If h(x) = 0 then g(y) = 0 for all y below x. So g(w) = 0 for all w below z, hence h(z) = 0.

Second step: all minterms of h have same size.

Third step: minterm hypergraph is complete multipartite $\implies h$ is AND-OR.

Solve $T_{\downarrow}g = \lambda h$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

First step: *h* is monotone.

Let $z \le x$. Want to rule out h(x) = 0 but h(z) = 1. If h(x) = 0 then g(y) = 0 for all y below x. So g(w) = 0 for all w below z, hence h(z) = 0.

Second step: all minterms of h have same size.

Third step: minterm hypergraph is complete multipartite $\implies h$ is AND-OR.

Fourth step: invert $T_{\downarrow} \Longrightarrow g$ is AND-XOR.

Solve $T_{\downarrow}g = \lambda h$ for $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

First step: h is monotone.

Let $z \le x$. Want to rule out h(x) = 0 but h(z) = 1. If h(x) = 0 then g(y) = 0 for all y below x. So g(w) = 0 for all w below z, hence h(z) = 0.

Second step: all minterms of h have same size.

Third step: minterm hypergraph is complete multipartite $\implies h$ is AND-OR.

Fourth step: invert $T_{\downarrow} \Longrightarrow g$ is AND-XOR.

LP duality: argument automatically extends to $T_{\downarrow}g \approx \lambda h!$

• If $\Pr[f(xy) = f(x)f(y)] \ge 1 - \varepsilon$ then f is δ -close to an AND or a constant.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant.
- If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 \varepsilon$ then f is δ -close to AND or constant.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant.
- If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 \varepsilon$ then f is δ -close to AND or constant.
- If $\Pr[f(\mathsf{Maj}(x,y,z)) = \mathsf{Maj}(f(x),f(y),f(z))] \ge 1 \varepsilon$ then f is $O(\sqrt{\varepsilon})$ -close to a dictator or a constant.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant.
- If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 \varepsilon$ then f is δ -close to AND or constant.
- If $\Pr[f(\mathsf{Maj}(x,y,z)) = \mathsf{Maj}(f(x),f(y),f(z))] \ge 1 \varepsilon$ then f is $O(\sqrt{\varepsilon})$ -close to a dictator or a constant.
- Same for Majority on any odd number of inputs.

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant.
- If $\Pr[f(x_1 \cdots x_k) = f(x_1) \cdots f(x_k)] \ge 1 \varepsilon$ then f is δ -close to AND or constant.
- If $\Pr[f(\mathsf{Maj}(x,y,z)) = \mathsf{Maj}(f(x),f(y),f(z))] \ge 1 \varepsilon$ then f is $O(\sqrt{\varepsilon})$ -close to a dictator or a constant.
- Same for Majority on any odd number of inputs.
- Ongoing work: many more functions!

Suppose $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

Suppose $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

If $T_{\downarrow}g \approx \lambda h$, then g is close to AND-XOR, h is close to AND-OR.

Suppose $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

If $T_{\downarrow}g \approx \lambda h$, then g is close to AND-XOR, h is close to AND-OR.

Suppose that

- (i) $T_{\downarrow}g$ is typically small when h=0
- (ii) $T_{\downarrow}g$ is typically at least λ when h=1

Then h is close to a monotone junta.

Suppose $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

If $T_{\downarrow}g \approx \lambda h$, then g is close to AND-XOR, h is close to AND-OR.

Suppose that

- (i) $T_{\parallel}g$ is typically small when h=0
- (ii) $T_{\downarrow}g$ is typically at least λ when h=1

Then h is close to a monotone junta.

Cannot say more since g = h always a solution for monotone junta h.

Suppose $g: \{0,1\}^n \to [0,1]$ and $h: \{0,1\}^n \to \{0,1\}$.

If $T_{\downarrow}g \approx \lambda h$, then g is close to AND-XOR, h is close to AND-OR.

Suppose that

- (i) $T_{\parallel}g$ is typically small when h=0
- (ii) $T_{\downarrow}g$ is typically at least λ when h=1

Then h is close to a monotone junta.

Cannot say more since g = h always a solution for monotone junta h.

Proof is somewhat different!

• If $\Pr[f(xy) = f(x)f(y)] \ge 1 - \varepsilon$ then f is δ -close to an AND or a constant. What is the best relation between ε and δ ?

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. What is the best relation between ε and δ ?
- If $\Pr[f(\mathsf{Maj}(x,y,z)) = \mathsf{Maj}(f(x),f(y),f(z))] \ge 1 \varepsilon$ then f is $O(\sqrt{\varepsilon})$ -close to a dictator or a constant. Works for any Majority.

Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR.

Can we generalize this to any function other than AND, XOR?

- If $\Pr[f(xy) = f(x)f(y)] \ge 1 \varepsilon$ then f is δ -close to an AND or a constant. What is the best relation between ε and δ ?
- If $\Pr[f(\mathsf{Maj}(x,y,z)) = \mathsf{Maj}(f(x),f(y),f(z))] \geq 1-\varepsilon$ then f is $O(\sqrt{\varepsilon})$ -close to a dictator or a constant. Works for any Majority. Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR. Can we generalize this to any function other than AND, XOR?
- If $\Pr[f(x \oplus y) = f(x) \oplus f(y)] \ge \frac{1}{2} + \varepsilon$ then f correlates with exact polymorphism. Does a similar statement hold for AND?

SAT is NP-complete

$$(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$$

SAT is NP-complete

Not-All-Equal-SAT is NP-complete

$$(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$$

$$NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$$

SAT is NP-complete

Not-All-Equal-SAT is NP-complete

XOR-SAT is in P

$$(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$$

$$NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$$

$$(x_1 \oplus \overline{x_2} \oplus x_3) \land (x_1 \oplus x_2 \oplus x_4)$$

SAT is NP-complete

 $(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2 \vee x_4)$

Not-All-Equal-SAT is NP-complete

 $NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$

XOR-SAT is in P

 $(x_1 \oplus \overline{x_2} \oplus x_3) \land (x_1 \oplus x_2 \oplus x_4)$

Schaefer's theorem:

If all predicates have one of the following polymorphisms, in P:

constant 0, constant 1, AND, OR, Majority, XOR

Otherwise, NP-complete.

SAT is NP-complete

Not-All-Equal-SAT is NP-complete

XOR-SAT is in P

$$(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4)$$

$$NAE(x_1, \overline{x_2}, x_3) \land NAE(x_1, x_2, x_4)$$

$$(x_1 \oplus \overline{x_2} \oplus x_3) \land (x_1 \oplus x_2 \oplus x_4)$$

Schaefer's theorem:

If all predicates have one of the following polymorphisms, in P: constant 0, constant 1, AND, OR, Majority, XOR

Otherwise, NP-complete.

Recently extended to non-binary domains (Dichotomy Theorem).