AND testing and robust

judgment aggregation

Yuval Filmus (Technion)
Noam Lifshitz (HUJI) Dor Minzer (IAS)
Elchanan Mossel (MIT)

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program
(Grant agreement No. 802020 - HARMONIC)

Introduction

The accused should be convicted if they have both the means and the motive. Here is what the three judges had to say:

Introduction

- This shows that Majority is not admissible for AND.
- A judgment aggregation function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ is admissible for $A N D$ if for all $x, y \in\{0,1\}^{n}$, we have $f(x \wedge y)=f(x) \wedge f(y)$.
- Which functions are admissible?
- Dictators: $f(x)=x_{i}$
- Constants: $f(x)=0, f(x)=1$
- Oligarchies (ANDs): $f(x)=x_{1} \wedge \cdots \wedge x_{m}$

Introduction

Theorem: ANDs and constants are only functions admissible for AND.

Are there other solutions which are admissible whp?

$$
\text { (i.e., } \operatorname{Pr}[f(x \wedge y)=f(x) \wedge f(y)] \approx 1)
$$

Theorem (Nehama): If f is approx admissible, it is approx an AND: $\operatorname{Pr}[f(x \wedge y)=f(x) \wedge f(y)] \geq 1-\varepsilon \Longrightarrow f$ is $O(n \varepsilon)$-close to an AND

Arrow's theorem

An election is being held using ranked ballots. The outcome has to be a ranking as well. The final relative ranking of two candidates should depend only on the voters' relative rankings of these two candidates (IIA).

Linearity testing

The patient should be declared sane if the sandwich has chocolate or pickles, but not both. Here is what three psychiatrists had to say, based on their observations:

Universal Algebraic Interpretation

- In universal algebra, a function admissible for AND is called an AND polymorphism.
- Similarly, a function admissible for Arrow is an NAE polymorphism (NAE = Not All Equal), and a function admissible for linearity testing is an XOR polymorphism.
- Only polymorphisms of NAE are dictators.
- Only polymorphisms of XOR are XORs.
- We are trying to understand approximate polymorphisms.

Truth-functionality

- A set of allowed rows is called truth-functional if the last column is a function of the previous ones, and this is the only constraint.
- Both AND and XOR are truth-functional. NAE isn't.
- Dokow and Holzman showed that in the binary truthfunctional setting, AND and XOR (on any number of inputs) are the only interesting cases.
- In all other cases, the only polymorphisms are dictators and, sometimes, constants.

Property Testing Interpretation

- Linearity testing: to test if $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ is an XOR, sample random x, y and check $f(x \oplus y)=f(x) \oplus f(y)$.
- If f is XOR, test always succeeds ("completeness").
- If test succeeds whp, f is close to XOR ("soundness").
- Oligarchy testing: to test if $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ is an AND, sample random x, y and check $f(x \wedge y)=f(x) \wedge f(y)$.
- Completeness easy to check, want to prove soundness.
- Goldreich and Ron (TR20-068): $\tilde{O}(1 / \varepsilon)$ test.

Linearity testing

How do we prove soundness?

- Method 1: Self-correction (BLR)
- For most $x, y: f(x)=f(y) \oplus f(x \oplus y)$.
- "Guess" correct value at x is majority of $f(y) \oplus f(x \oplus y)$.
- Method 2: Fourier analysis (BCHKS)
- Express success probability of test using Fourier expansion of f.
- Deduce f can be approximated by single Fourier character.

AND testing

Given $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ s.t. $f(x y)=f(x) f(y)$ whp, want to deduce that f is close to an AND.

- Method 1: Self-correction
- Cannot express $f(x)$ in terms of $f(y), f(x y)$. "Information is lost."
- Method 2: Fourier analysis
- Formula for $\operatorname{Pr}[f(x y)=f(x) f(y)]$ isn't nice any more. For linearity testing, lucky that XORs=monomials.

Our approach

Suppose $f(x y)=f(x) f(y)$ w.p. ≈ 1.

- Fix x, and take expectation over y :
- $T_{\downarrow} f(x) \approx \lambda f(x)$, where $\lambda=\mathbb{E}[f]$, where $T_{\downarrow} f(x)$ is average of $f(z)$ on all values $z \leq x$.
- In total, $T_{\downarrow} f \approx \lambda f$ (in appropriate norm).
- Determine approximate eigenvectors of T_{\downarrow}.
- Uses low pass effect of T_{\downarrow} via Bourgain’s junta theorem.

Open problems

1. Improve dependence on ε from quasi-poly to poly.
2. Generalize to arbitrary truth-functional setting.

- In all remaining cases, answer should be dictator.
- Known for Arrow's theorem using Fourier analysis (Kalai).

3. "List-decoding" version:

- What if $\operatorname{Pr}[f(x \wedge y)=f(x) \wedge f(y)]$ is better than random?
- If $\operatorname{Pr}[f(x \oplus y)=f(x) \oplus f(y)]>1 / 2$ then f correlates with some XOR.

