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1 Introduction

The area of analysis of boolean functions has become commonplace in theoretical computer
science. In this short talk, we would like to explain one application outside of computer
science, namely to extremal combinatorics of the Erdős–Ko–Rado variety.

2 Erdős–Ko–Rado theory

The celebrated Erdős–Ko–Rado theorem [9], proved at 1938 but published only at 1961,
states the following. Suppose F ⊆

(
[n]
k

)
is an intersecting family of sets. This means that

(1) F consists of subsets of size k of the ground set [n] = {1, . . . , n}, and (2) any two sets in
F contain at least one point in common. Then:

Upper bound: If k ≤ n/2 then |F| ≤
(
n−1
k−1

)
.

Uniqueness: If k < n/2 and |F| =
(
n−1
k−1

)
then F is a 1-star.

Stability: If k < n/2 and |F| ≥ (1− ε)
(
n−1
k−1

)
then there is an element contained in 1−O(ε)

of the sets in F .

Here a 1-star is a family of the form {S ∈
(
[n]
k

)
: x ∈ S} for some x ∈ [n]. The last part

(stability) is not found in the original paper, and is essentially proved in Frankl [11].
The Erdős–Ko–Rado paper opened up an entire research are in extremal combinatorics.

Their original result was extended in various ways:

Strong stability: Hilton and Milner [16, 12] showed that if k ≤ n/2 and |F| >
(
n−1
k−1

)
−(

n−k−1
k−1

)
+ 1 then F is contained in a star.

Variants: The notion of being intersecting has been extended:

• Ahlswede and Khachatrian [1, 2] found the maximum t-intersecting families (fam-
ilies in which any two sets contain at least t points in common) which are subsets
of
(
[n]
k

)
.
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• Pyber [21] proved the cross-intersecting version of the Erdős–Ko–Rado theorem:
for k ≤ n/2, if F ,G ⊆

(
[n]
k

)
are cross-intersecting (every set in F intersects every

set in G) then |F||G| ≤
(
n−1
k−1

)2
.

• Frankl [10] showed that if k ≤ (r − 1)/r · n and F ⊆
(
[n]
k

)
is r-wise intersecting

(any r sets in F intersect) then |F| ≤
(
n−1
k−1

)
.

Different domains: The theorem has been generalized to different domains, such as:

• Deza and Frankl [4] showed that every intersecting family of permutations on n
points contains at most (n− 1)! permutations; two permutations intersect if they
agree on the image of at least one point. This was extended to t-intersecting
families by Ellis, Friedgut and Pilpel [8].

• Frankl and Wilson [13] showed that if F is a family of k-dimensional subspaces
of GF(q)n whose pairwise intersections have dimension at least t then for n ≥ 2k,
|F| ≤

[
n−t
k−t

]
q
, which is the number of (k − t)-dimensional subspaces of GF(q)n−t.

• Ellis, Filmus and Friedgut [7] showed that every odd-cycle-intersecting family of

subgraphs of Kn contains at most 2(n
2)−3 graphs. This is a family in which any

two graphs contain an odd cycle in common.

3 Katona’s circle argument

There are many ways to prove the Erdős–Ko–Rado theorem. The simplest one is due to
Katona [18]. Let F ⊆

(
[n]
k

)
be an intersecting family, where k ≤ n/2. Consider the n sets

{1, . . . , k}, {2, . . . , k + 1}, . . . , {k + 1, 1, . . . , k − 1}.

Suppose that {k, . . . , 2k − 1} ∈ F . Since F is intersecting, the only other sets that could
be in F are {a, . . . , a + k − 1} for 1 ≤ a ≤ 2k − 1 < n. Let amin, amax be the minimal and
maximal such a. Since F is intersecting, amax − amin ≤ k − 1, and so F contains k sets out
of the listed n sets.

Denote the collection of sets above by C1···n. In general, we can consider collections Cπ
for arbitrary π ∈ Sn, and these collections partition

(
[n]
k

)
: indeed, the relation of being related

by cyclic rotation is an equivalence relation, and we can divide
(
[n]
k

)
into

(
n
k

)
/n equivalence

classes. The family F can contain at most k sets out of each of these equivalence classes,
hence |F| ≤ (k/n)

(
n
k

)
=
(
n−1
k−1

)
. This gives the upper bound. Uniqueness can be derived

using some more effort.
Katona’s proof idea works in some other circumstances, for example:

• Frankl [10] showed that if k ≤ (r − 1)/r · n and F ⊆
(
[n]
k

)
is r-wise intersecting then

|F| ≤
(
n−1
k−1

)
, using essentially the same argument.

• Deza and Frankl [4] showed that an intersecting family of permutations in Sn contains
at most (n− 1)! permutations, by considering cyclic rotations of permutations.
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However, the proof does not extend to other situations, such as the Ahlswede–Khachatrian
theorem or triangle-intersecting families.

4 Lovász–Hoffman method

4.1 Erdős–Ko–Rado proof

Lovász [20], in his paper describing his theta function, proved the Erdős–Ko–Rado theorem
using a spectral method, which can be traced back to Hoffman [17]. The idea is to consider
the Kneser graph Kn(n, k). In this graph the set of vertices are

(
[n]
k

)
, and two vertices are

connected in the corresponding sets don’t intersect. Since k ≤ n/2, the graph is not empty.
The corresponding adjacency matrix A is symmetric and so has a basis of orthonormal
eigenvectors. Since A is regular, the maximal eigenvector is 1, which has an eigenvalue of
λ =

(
n−k
k

)
. It turns out that the minimal eigenvalue is λmin = −

(
n−k−1
k−1

)
.

Now consider an intersecting family F ⊂ and its corresponding characteristic function
f . We can decompose f into its component along 1 and its component in 1⊥. (Our inner
product is 〈g, h〉 = ESg(S)h(S).) The component along 1 is f0 = E[f ]1, and we have
‖f‖2 = ‖f0‖2 + ‖f − f0‖2. Since ‖f‖2 = E[f 2] = E[f ],

0 = 〈f, Af〉 ≥ λ‖f0‖2 + λmin‖f − f0‖2

= λE[f ]2 + λmin(E[f ]− E[f ]2).

Simple algebra now gives Hoffman’s bound :

E[f ] ≤ −λmin

λ− λmin

. (1)

Substituting the values of λ and λmin, we easily obtain E[f ] ≤ k/n.
Furthermore, when E[f ] = k/n, the argument shows that f − f0 must belong to the

eigenspace of λmin, and so f itself must belong to the span of the eigenspaces of λ and λmin.
When k < n/2, this subspace is spanned by 1-stars, and a short argument implies that F is
a 1-star.

4.2 Wilson’s extension

Wilson [22] extended Lovász’s argument to show that when (k − t + 1)/n ≤ 1/(t + 1), a
t-intersecting family F ⊆

(
[n]
k

)
contains at most

(
n−t
k−t

)
sets. One natural attempt would be

to consider the graph Gt−1 in which the vertex set is
(
[n]
k

)
and two vertices are connected if

the corresponding sets have fewer than t elements in common. However, this graph has the
“wrong” eigenvalues.

Instead, we look at the subspace of matrices spanned by the adjacency matrices of the
graphs G0, . . . , Gt−1. Each matrix A in this subspace satisfies the crucial relation f ′Af = 0
for every t-intersecting family F and its characteristic function f . By carefully choosing the
matrix A, Wilson was able to arrange for (1) to give the correct bound |F| ≤

(
n−t
k−t

)
.
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Furthermore, when (k − t + 1)/n < 1/(t + 1) and |F| =
(
n−t
k−t

)
, the same reasoning as

before showes that f belongs to the span of t-stars, and a short argument shows that it must
be a t-star.

4.3 General formulation

We can formulate Hoffman’s method more generally. Suppose we have a graph G, and want
to obtain an upper bound on the maximum independent set in G. Choose any symmetric
matrix A whose rows and columns are indexed by vertices of G, such that:

1. all rows in A sum to the same value λ,

2. Aij = 0 whenever i, j are not connected in G.

If F is any independent set then its characteristic function f satisfies 〈f, Af〉 = 0, and so
Hoffman’s bound (1) applies, with λmin being the minimal eigenvalue of A.

The best bound obtained in this way can be termed the “Hoffman function” of the graph.
The Lovász theta function is a similar bound which is always at least as tight as Hoffman’s
function. In many cases, Hoffman’s bound is already tight. Indeed, this approach has been
applied in several other situations:

• Frankl and Wilson [13] used Hoffman’s bound to prove the Erdős–Ko–Rado theorem
for vector spaces.

• Friedgut [14] used Hoffman’s bound to prove a weighted analog of Wilson’s result.

• Ellis, Friedgut and Pilpel [8] used Hoffman’s bound to prove the Erdős–Ko–Rado the-
orem for t-intersecting families of permutations.

• Ellis, Filmus and Friedgut [7] used Hoffman’s bound to show that odd-cycle-intersecting

families of graphs on n points contain at most 2(n
2)−3 graphs.

In the sequel, we concentrate on the latter result.

5 Odd-cycle-intersecting families of graphs

In 1976, Simonovits and Sós asked the following question: Suppose F is a family of subgraphs
of Kn (the complete graph on n points) such that any two graphs in the family have some
triangle in common. How big can F be? They conjectured that the maximum family is
a triangle-junta, consisting of all graphs containing a fixed triangle. This family contains
1/8 of all graphs. Chung, Graham, Frankl and Shearer [3] used Shearer’s lemma in 1986
to give an upper bound of 1/4, and this was the best until the result of Ellis, Filmus and
Friedgut [7].

The result of Chung, Graham, Frankl and Shearer also held for odd-cycle-intersecting
families, in which any two graphs can contain any odd cycle in common; equivalently, the
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intersection of any two graphs is non-bipartite. Their result also holds for odd-cycle-agreeing
families, in which the intersection of two sets A ∩ B (in this case, sets of edges) is replaces
by their agreement A⊕B. As they showed, this is an example of a general phenomenon: in
many cases, bounds on intersecting families transfer to agreeing families.

5.1 Feasible matrices

We now turn to the proof of Ellis, Filmus and Friedgut. We will be ambitious, trying to
prove an upper bound on odd-cycle-agreeing families. Our goal is to find a symmtric matrix
A, indexed by subgraphs of Kn, satisfying the following properties:

• The rows of A sum to λ = 1 (without loss of generality).

• AGH = 0 whenever A⊕B is non-bipartite.

• The minimal eigenvalue of A is λmin = −1/7.

We chose λmin = −1/7 since this gives the correct upper bound 1/8 in (1).
How do we go about constructing this matrix? We use symmetries to make our life easier.

Suppose A is a symmetric matrix satisfying the above properties (we call such a matrix a
solution). For a graph G, define a new matrix A⊕GST = AS⊕G,T⊕T . It is not hard to check that
A⊕G is also a solution, and moreover X = EGA⊕G is also a solution, and satisfies X = X⊕G

for all graphs G. This implies that the Fourier characters are the eigenvectors of X:

(XχG)H =
∑
S

XHSχG(S)

=
∑
S

X∅,S⊕HχG(S)

=
∑
S

X∅,SχG(S ⊕H)

= χG(H)
∑
S

X∅,SχG(S) = χG(H)(XχG)∅.

What can the matrix X look like? The subspace of matrices whose eigenvectors are the
Fourier characters clearly has dimension

(
n
2

)
. It is not hard to check that it is spanned by

the matrices BG for G ⊆ Kn, which operate on vectors in RKn by (BGf)(H) = f(G ⊕H).
The corresponding eigenvalues are

BGχH = (BGχH)∅ = χH⊕G(∅) = (−1)G⊕H .

Which of these matrices is feasible? The (G,H) entry of BS is e′GBSeH = e′GeH⊕S, and so
it is non-zero when G = H ⊕ S, or in other words when S = G⊕H. For BS to be feasible,
S must be bipartite. An inductive argument shows that the space of matrices satisfying
the second property above (we call such matrices feasible is spanned by the matrices BS for
co-bipartite S.
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Another symmetry which we can apply is symmetry with respect to renaming of the
vertices. Applying this symmetry to the matrix X gives us a matrix which is symmetric
with respect to permutations of the vertices.

One can get more constraints by considering the characteristic function f of an optimal
family, in our case a triangle-star. A consideration of Hoffman’s bound shows that for the
bound to be tight, f − Ef must be in the eigenspace of λmin. Therefore for any S 6= ∅
satisfying f̂(S) 6= 0, the corresponding eigenvalue must be λmin. In other applications of this
method (such as Friedgut [14] and Ellis, Friedgut and Pilpel [8]), the space of feasible matrices
has small dimension, and these constraints together with λ = 1 determine the matrix A, and
it remains to verify that there are no eigenvalues smaller than the “conjectured” λmin. In our
case this doesn’t happen, and so we have to be more creative. The construction (detailed
below) gives a matrix A with the following properties:

1. The eigenvalue corresponding to χ∅ is λ = 1.

2. The eigenvalue corresponding to sets χG for G a single edge, a pair of edges or a triangle
is λmin = −1/7.

3. All other eigenvalues are at least λ2 = −1/7 + 1/952.

Before explaining the construction, we explain how we can deduce uniqueness and sta-
bility, using tools for the analysis of Boolean functions.

5.2 Uniqueness and stability

The matrix A which we have just claimed to exist shows, via (1), that an odd-cycle-agreeing

family contains at most 2(n
2)−3 graphs. We continue to prove uniqueness and stability.

Uniqueness states that the only families attaining this bound are triangle-semistars, which
are families of the form {G ⊆ Kn : G∩T = S} for some triangle T and S ⊆ T (when S = T ,

this is a triangle-star). Stability states that the only families containing at least (1−ε)2(n
2)−3

graphs are O(ε)2(n
2)-close to triangle-semistars.

Uniqueness. In view of the reduction of Chung, Frankl, Graham and Shearer, it is enough
to prove uniqueness for odd-cycle-intersecting families. The tightness conditions in Hoffman’s
bound imply that if f is the characteristic function of an odd-cycle-intersecting family F of

size |F| = 2(n
2)−3 then f is in the span of χS for |S| ≤ 3. A result of Friedgut [14] implies

that F is a 3-star, and so a triangle-star.

Stability. For stability we need to be more careful with our application of Hoffman’s

bound. Let F be an odd-cycle-agreeing family of size |F| = (1 − ε)2(n
2)−3, and let f be its

characteristic function. Decompose f as f = f0 + f1 + f2, where f0 = E[f ]1, f1 is in the
eigenspace of −1/7, and f2 consists of the rest. Let ‖f2‖2 = τ . Then

0 = 〈f, Af〉 ≥ λE[f ]2 + λmin(E[f ]− E[f ]2 − τ) + λ2τ.
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Arithmetic shows that

τ ≤ −λmin

λ2 − λmin

(
−λmin

λ− λmin

− E[f ]

)
=

ε

17
.

In other words, the Fourier expansion of f is O(ε)-close to being supported on the Fourier
coefficients of size at most 3. If we replaced 3 with 1, then the Friedgut–Kalai–Naor the-
orem [15] would imply that f is close to a dictatorship. In this case, the Kindler–Safra
theorem [19] states that if ε is small enough, f is O(ε)-close to a Boolean function g de-
pending on T = O(1) coordinates, that is ‖f − g‖2 = O(ε). (The theorem is false when
T = 3.)

Let G be the family corresponding to F . We first claim that G is odd-cycle-agreeing, if ε
is small enough. Indeed, suppose not, and take A,B ∈ G which are not odd-cycle-agreeing.
We can assume that A,B are contained in the set D of T coordinates on which g depends.
For each W ⊆ D, consider the sets AW = A∪W and BW = B∪W . Since AW ⊕BW = A⊕B
does not contain an odd cycle, at most one of them can belong to F . Therefore |F⊕G| ≥ 2|D|,
and so ‖f − g‖2 ≥ 2−T . If ε is small enough, we reach a contradiction.

We have shown that G is odd-cycle-agreeing. If G is a triangle-semistar, then we are
done. There are only finitely many possibilities (up to renaming of the vertices) for G, and
so if ε is small enough, all of them are more than O(ε)-far from F . We conclude that G must
be a triangle-semistar.

The compactness argument for stability outlined here follows Friedgut [14] closely. A
different argument is used in Ellis, Friedgut and Pilpel [8] to prove stability for t-intersecting
families of permutations, though a weak form of stability also follows from Ellis, Filmus and
Friedgut [5, 6].

5.3 Constructing the matrix

It remains to construct the matrix A. The idea is to find a large enough collection of feasible
matrices which are possible to analyze. Using inclusion-exclusion, it is possible to show
that the there for each graph R, there is a feasible matrix ΛR such that the eigenvalue
corresponding to χG is (−1)|G| times the probability qR(G) that G ∩ C ≈ R, where C is a
random cut formed by splitting the vertex set into two sets uniformly. In particular, there
is a feasible matrix Λi such that the eigenvalue corresponding to χG is (−1)|G| times the
probability qi(G) that |G ∩ C| = i.

When G is large (contains many edges), all the probabilities qi(G) are small. Therefore
if we consider a matrix of the form

A =
d∑
i=0

ciΛi

for some small d, then the eigenvalues corresponding to χG will be close to zero for large G.
Indeed, the eigenvalue corresponding to χG is

λG = (−1)|G|
d∑
i=0

ciqi(G).
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One could hope that an appropriate choice of the coefficients ci would then produce the
correct eigenvalues.

Consider the following table:

G q0(G) q1(G) q2(G) q3(G) q4(G)
∅ 1 0 0 0 0
− 1/2 1/2 0 0 0
∧ 1/4 1/2 1/4 0 0
4 1/4 0 3/4 0 0
F4 1/16 4/16 6/16 4/16 1/16
K−4 1/8 0 1/4 1/2 1/8

In the table, F4 is a forest with 4 edges (they all have the same cut distribution). The
first line implies that c0 = 1, so that we get λ = 1. If f is the characteristic function of a
triangle-semistar then f̂(S) 6= 0 for all subgraphs of the triangle. For Hoffman’s bound to
be tight, we need the corresponding eigenvalues to be λmin = −1/7. Look at the second and
third line, we conclude that c1 = −5/7 and c2 = −1/7. This also works for the fourth line.
The following two lines show that 4c3 + c4 = 3/7. This leads us to choose c3 = 3/28 and
ci = 0 for i > 3.

The idea now is that when |G| is large, a random cut usually cuts more than three edges,
and so the eigenvalue corresponding to χG is close to zero. It is not so clear what happens
when |G| is medium-size, but that can be checked with a computer. Doing that, we obtain
the following information concerning

A1 = Λ0 −
5

7
Λ1 −

1

7
Λ2 +

3

7
Λ3 :

• The eigenvalue corresponding to χ∅ is λ = 1.

• The eigenvalue corresponding to sets χG for G a single edge, a pair of edges, a triangle,
a quadruple of edges, or a diamond is λmin = −1/7.

• All other eigenvalues are at least λ2(A1) = −1/7 + 1/56.

This information is tediously proved in the paper without computer calculations.
The matrix A1 already gives us the desired upper bound 1/8, but is not quite enough

for uniqueness and stability, though in principle these can be recovered by enumerating over
all families of graphs over at most 5 edges. Instead of this enumeration, we can “fix” the
matrix A1 by adding to it a matrix A2 which will get rid of the spurious tight eigenvectors
without harming any of the other properties. This matrix is

A2 =
∑
F

ΛF − Λ�,

where the sum goes over all forests of size 4. This matrix satisfies the following properties:

• The eigenvalue corresponding to χG for |G| < 4 is 0.
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• The eigenvalue corresponding to forests of size 4 is 1/16.

• The eigenvalue corresponding to diamonds is 1/8.

• All other eigenvalues are at most 1 in absolute value.

Using these properties, it is not hard to check that the matrix A = A1 + (16/17)A2 fits the
bill.
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