Triangle-intersecting families of graphs

David Ellis, Yuval Filmus and Ehud Friedgut

5 December 2015

The problem

Definition

A family of subsets of K_{n} is triangle-intersecting if the intersection of any two graphs contains a triangle.

The problem

Definition

A family of subsets of K_{n} is triangle-intersecting if the intersection of any two graphs contains a triangle.

Example

Triangle-junta - all graphs containing a fixed triangle.

The problem

Definition

A family of subsets of K_{n} is triangle-intersecting if the intersection of any two graphs contains a triangle.

Example

Triangle-junta - all graphs containing a fixed triangle.

Question (Simonovits \& Sós, 1976)

How many graphs can a triangle-intersecting family of graphs contain?

The problem

Definition

A family of subsets of K_{n} is triangle-intersecting if the intersection of any two graphs contains a triangle.

Example

Triangle-junta - all graphs containing a fixed triangle.

Question (Simonovits \& Sós, 1976)

How many graphs can a triangle-intersecting family of graphs contain?

Conjecture (Simonovits \& Sós, 1976)
At most $2^{\binom{n}{2}-3}$.

The problem

Definition

A family of subsets of K_{n} is triangle-intersecting if the intersection of any two graphs contains a triangle.

Example

Triangle-junta - all graphs containing a fixed triangle.

Question (Simonovits \& Sós, 1976)

How many graphs can a triangle-intersecting family of graphs contain?

Conjecture (Simonovits \& Sós, 1976)
At most $2^{\binom{n}{2}-3}$. In other words, triangle-juntas are optimal.

Progress on the conjecture

Simonovits \& Sós (1976)

Trivial upper bound: $2^{\binom{n}{2}-1}$.

Progress on the conjecture

Simonovits \& Sós (1976)

Trivial upper bound: $2^{\binom{n}{2}-1}$.
Chung, Frankl, Graham \& Shearer (1986)
Shearer's lemma: $2^{\binom{n}{2}-2}$.

Progress on the conjecture

Simonovits \& Sós (1976)

Trivial upper bound: $2^{\binom{n}{2}-1}$.
Chung, Frankl, Graham \& Shearer (1986)
Shearer's lemma: $2^{\binom{n}{2}-2}$.

Ellis, Filmus \& Friedgut (2010)
Semidefinite method: $2^{\binom{n}{2}-3}$.

Shearer's lemma

Setup

- U: ground set.
- $\mathcal{F}, \mathcal{S} \subseteq 2^{U}$: families of subsets of U.
- $\mathcal{F}_{S} \subseteq 2^{S}$: projection of \mathcal{F} into $S \subseteq U$.

Shearer's lemma

Setup

- U: ground set.
- $\mathcal{F}, \mathcal{S} \subseteq 2^{U}$: families of subsets of U.
- $\mathcal{F}_{S} \subseteq 2^{S}$: projection of \mathcal{F} into $S \subseteq U$.

Shearer's lemma (1986)

If every $i \in U$ appears in at least $\mu|\mathcal{S}|$ sets of \mathcal{S} then

$$
|\mathcal{F}|^{\mu} \leq \sqrt[\mid S]{ } \sqrt{\prod_{S \in \mathcal{S}}\left|\mathcal{F}_{S}\right|}
$$

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.
- \mathcal{F}_{S} is intersecting for all $S \in \mathcal{S}$

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.
- \mathcal{F}_{S} is intersecting for all $S \in \mathcal{S} \Longrightarrow\left|\mathcal{F}_{S}\right| \leq 2^{|S|-1}$.

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.
- \mathcal{F}_{S} is intersecting for all $S \in \mathcal{S} \Longrightarrow\left|\mathcal{F}_{S}\right| \leq 2^{|S|-1}$.
- Every edge appears in $\approx|\mathcal{S}| / 2$ sets.

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.
- \mathcal{F}_{S} is intersecting for all $S \in \mathcal{S} \Longrightarrow\left|\mathcal{F}_{S}\right| \leq 2^{|S|-1}$.
- Every edge appears in $\approx|\mathcal{S}| / 2$ sets.

Applying Shearer's lemma

$$
|\mathcal{F}|^{1 / 2} \leq \sqrt[\mid \mathcal{S}]{ } \sqrt{\prod_{S \in \mathcal{S}}\left|\mathcal{F}_{S}\right|}
$$

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.
- \mathcal{F}_{S} is intersecting for all $S \in \mathcal{S} \Longrightarrow\left|\mathcal{F}_{S}\right| \leq 2^{|S|-1}$.
- Every edge appears in $\approx|\mathcal{S}| / 2$ sets.

Applying Shearer's lemma

$$
|\mathcal{F}|^{1 / 2} \leq \sqrt[\mid \mathcal{S}]{\prod_{S \in \mathcal{S}}\left|\mathcal{F}_{S}\right|} \leqslant 2^{\binom{n}{2} / 2-1}
$$

Application to triangle-intersecting families

Setup

- $U=$ edges of K_{n}.
- \mathcal{F} : triangle-intersecting family.
- \mathcal{S} : all complements of complete balanced bipartite graphs.
- \mathcal{F}_{S} is intersecting for all $S \in \mathcal{S} \Longrightarrow\left|\mathcal{F}_{S}\right| \leq 2^{|S|-1}$.
- Every edge appears in $\approx|\mathcal{S}| / 2$ sets.

Applying Shearer's lemma

$$
|\mathcal{F}|^{1 / 2} \leq \sqrt[\mid \mathcal{S}]{\prod_{S \in \mathcal{S}}\left|\mathcal{F}_{S}\right|} \leqslant 2^{\binom{n}{2} / 2-1} \Longrightarrow|\mathcal{F}| \leq 2^{\binom{n}{2}-2} .
$$

Heart of the argument

Crucial property
\mathcal{F} triangle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Heart of the argument

Crucial property
\mathcal{F} triangle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Observation

\mathcal{F} odd-cycle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Heart of the argument

Crucial property

\mathcal{F} triangle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Observation

\mathcal{F} odd-cycle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Conclusion

\mathcal{F} odd-cycle-intersecting $\Longrightarrow|\mathcal{F}| \leq 2^{\binom{n}{2}-2 .}$

Agreeing families

Agreement

$\mathcal{F} \subseteq 2^{K_{n}} \Leftrightarrow$ family of 2-colorings of K_{n}.

Agreeing families

Agreement

$\mathcal{F} \subseteq 2^{K_{n}} \Leftrightarrow$ family of 2-colorings of K_{n}. Odd-cycle-agreeing family: every two graphs agree on colors of some odd cycle.

Agreeing families

Agreement

$\mathcal{F} \subseteq 2^{K_{n}} \Leftrightarrow$ family of 2-colorings of K_{n}. Odd-cycle-agreeing family: every two graphs agree on colors of some odd cycle.

Observation

\mathcal{F} odd-cycle-agreeing, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ agreeing.

Agreeing families

Agreement

$\mathcal{F} \subseteq 2^{K_{n}} \Leftrightarrow$ family of 2-colorings of K_{n}. Odd-cycle-agreeing family: every two graphs agree on colors of some odd cycle.

Observation

\mathcal{F} odd-cycle-agreeing, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ agreeing.
Agreeing families contain $\leq \frac{1}{2}$ of the sets $\Longrightarrow\left|\mathcal{F}_{\overline{\mathcal{B}}}\right| \leq 2^{|\overline{\mathcal{B}}|-1}$.

Agreeing families

Agreement

$\mathcal{F} \subseteq 2^{K_{n}} \Leftrightarrow$ family of 2 -colorings of K_{n}.
Odd-cycle-agreeing family: every two graphs agree on colors of some odd cycle.

Observation

\mathcal{F} odd-cycle-agreeing, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ agreeing.
Agreeing families contain $\leq \frac{1}{2}$ of the sets $\Longrightarrow\left|\mathcal{F}_{\overline{\mathcal{B}}}\right| \leq 2^{|\overline{\mathcal{B}}|-1}$.

Conclusion

\mathcal{F} odd-cycle-agreeing $\Longrightarrow|\mathcal{F}| \leq 2^{\binom{n}{2}-2}$.

Semidefinite method

Method

Suppose A is a symmetric $2^{K_{n}} \times 2^{K_{n}}$ matrix such that:

- $A(G, H)=0$ if G, H don't agree on some odd cycle.

Semidefinite method

Method

Suppose A is a symmetric $2^{K_{n}} \times 2^{K_{n}}$ matrix such that:

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- $A 1=1$.

Semidefinite method

Method

Suppose A is a symmetric $2^{K_{n}} \times 2^{K_{n}}$ matrix such that:

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- $A 1=1$.
- Minimal eigenvalue of A is λ.

Semidefinite method

Method

Suppose A is a symmetric $2^{K_{n}} \times 2^{K_{n}}$ matrix such that:

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- $A 1=1$.
- Minimal eigenvalue of A is λ.

Then for all odd-cycle-agreeing families \mathcal{F} :

$$
|\mathcal{F}| \leq \frac{-\lambda}{1-\lambda} 2^{\binom{n}{2}}
$$

Semidefinite method

Method

Suppose A is a symmetric $2^{K_{n}} \times 2^{K_{n}}$ matrix such that:

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- $A 1=1$.
- Minimal eigenvalue of A is λ.

Then for all odd-cycle-agreeing families \mathcal{F} :

$$
|\mathcal{F}| \leq \frac{-\lambda}{1-\lambda} 2^{\binom{n}{2}}
$$

Proof

We construct a matrix with $\lambda=-1 / 7$.

Semidefinite method

Method

Suppose A is a symmetric $2^{K_{n}} \times 2^{K_{n}}$ matrix such that:

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- $A 1=1$.
- Minimal eigenvalue of A is λ.

Then for all odd-cycle-agreeing families \mathcal{F} :

$$
|\mathcal{F}| \leq \frac{-\lambda}{1-\lambda} 2^{\binom{n}{2}} .
$$

Proof

We construct a matrix with $\lambda=-1 / 7$.

$$
|\mathcal{F}| \leq \frac{1 / 7}{1+1 / 7} 2^{\binom{n}{2}}=\frac{1}{8} 2^{\binom{n}{2}} .
$$

Symmetry considerations

Observation

If \mathcal{F} is odd-cycle-agreeing then for all sets of edges K, $\{G \oplus K: G \in \mathcal{F}\}$ is odd-cycle-agreeing.

Symmetry considerations

Observation

If \mathcal{F} is odd-cycle-agreeing then for all sets of edges K, $\{G \oplus K: G \in \mathcal{F}\}$ is odd-cycle-agreeing.

Corollary

Can assume $A(G, H)=A(G \oplus K, H \oplus K)$ for all G, H, K. (" A is circulant".)

Symmetry considerations

Observation

If \mathcal{F} is odd-cycle-agreeing then for all sets of edges K, $\{G \oplus K: G \in \mathcal{F}\}$ is odd-cycle-agreeing.

Corollary

Can assume $A(G, H)=A(G \oplus K, H \oplus K)$ for all G, H, K. (" A is circulant".)

Conclusion

Eigenvectors of A are $\chi_{K}: G \mapsto(-1)^{|K \cap G|}$.

Admissible spectra

Definition

$\lambda: 2^{K_{n}} \rightarrow \mathbb{R}$ is an admissible spectrum if for some A :

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- A is circulant.
- λ_{G} is eigenvalue of χ_{G}.

Admissible spectra

Definition

$\lambda: 2^{K_{n}} \rightarrow \mathbb{R}$ is an admissible spectrum if for some A :

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- A is circulant.
- λ_{G} is eigenvalue of χ_{G}.

Goal

Find an admissible spectrum λ with:

- $\lambda_{\varnothing}=1$.
- $\lambda_{G} \geq-1 / 7$ for all G.

Admissible spectra

Definition

$\lambda: 2^{K_{n}} \rightarrow \mathbb{R}$ is an admissible spectrum if for some A :

- $A(G, H)=0$ if G, H don't agree on some odd cycle.
- A is circulant.
- λ_{G} is eigenvalue of χ_{G}.

Goal

Find an admissible spectrum λ with:

- $\lambda_{\varnothing}=1$.
- $\lambda_{G} \geq-1 / 7$ for all G.

Basis for admissible spectra

Admissible spectra are spanned by $\left\{G \mapsto(-1)^{|G \backslash B|}\right.$: bipartite $\left.B\right\}$.

Cut statistics

Definition

$q_{k}(G)=$ probability that a random partition of G cuts k edges.

Cut statistics

Definition

$q_{k}(G)=$ probability that a random partition of G cuts k edges.

Examples

G	$q_{0}(G)$	$q_{1}(G)$	$q_{2}(G)$	$q_{3}(G)$	$q_{4}(G)$
\varnothing	1	0	0	0	0
-	$1 / 2$	$1 / 2$	0	0	0
\wedge	$1 / 4$	$1 / 2$	$1 / 4$	0	0
Δ	$1 / 4$	0	$3 / 4$	0	0
$\wedge \wedge$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$
\diamond	$1 / 8$	0	$1 / 4$	$1 / 2$	$1 / 8$

Cut statistics

Definition

$q_{k}(G)=$ probability that a random partition of G cuts k edges.
Examples

G	$q_{0}(G)$	$q_{1}(G)$	$q_{2}(G)$	$q_{3}(G)$	$q_{4}(G)$
\varnothing	1	0	0	0	0
-	$1 / 2$	$1 / 2$	0	0	0
\wedge	$1 / 4$	$1 / 2$	$1 / 4$	0	0
Δ	$1 / 4$	0	$3 / 4$	0	0
$\wedge \wedge$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$
\diamond	$1 / 8$	0	$1 / 4$	$1 / 2$	$1 / 8$

Observation

$\lambda_{G}=(-1)^{|G|} q_{k}(G)$ is admissible for all k.

The proof

Definition

$$
\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right) \text { admissible. }
$$

The proof

Definition

$$
\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right) \text { admissible. }
$$

Table

G	$q_{0}(G)$	$q_{1}(G)$	$q_{2}(G)$	$q_{3}(G)$	$q_{4}(G)$	λ_{G}
\varnothing	1	0	0	0	0	1
-	$1 / 2$	$1 / 2$	0	0	0	$-1 / 7$
\wedge	$1 / 4$	$1 / 2$	$1 / 4$	0	0	$-1 / 7$
Δ	$1 / 4$	0	$3 / 4$	0	0	$-1 / 7$
$\wedge \wedge$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$	$-1 / 7$
\diamond	$1 / 8$	0	$1 / 4$	$1 / 2$	$1 / 8$	$-1 / 7$

The proof

Definition

$$
\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right) \text { admissible. }
$$

Table

G	$q_{0}(G)$	$q_{1}(G)$	$q_{2}(G)$	$q_{3}(G)$	$q_{4}(G)$	λ_{G}
\varnothing	1	0	0	0	0	1
-	$1 / 2$	$1 / 2$	0	0	0	$-1 / 7$
\wedge	$1 / 4$	$1 / 2$	$1 / 4$	0	0	$-1 / 7$
Δ	$1 / 4$	0	$3 / 4$	0	0	$-1 / 7$
$\wedge \wedge$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$	$-1 / 7$
\diamond	$1 / 8$	0	$1 / 4$	$1 / 2$	$1 / 8$	$-1 / 7$

Claim
$\lambda_{\varnothing}=1$ and $\lambda_{G} \geq-1 / 7$ for all G.

The proof

Definition

$\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right)$ admissible.

Table

Claim

$\lambda_{\varnothing}=1$ and $\lambda_{G} \geq-1 / 7$ for all G.

Proof

- $\lambda_{\varnothing}=1$ by inspection.

The proof

Definition

$\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right)$ admissible.

Table

Claim

$\lambda_{\varnothing}=1$ and $\lambda_{G} \geq-1 / 7$ for all G.

Proof

- $\lambda_{\varnothing}=1$ by inspection.
- $\lambda_{G} \geq-1 / 7$ for G in table.

The proof

Definition

$\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right)$ admissible.

Table

Claim

$\lambda_{\varnothing}=1$ and $\lambda_{G} \geq-1 / 7$ for all G.

Proof

- $\lambda_{\varnothing}=1$ by inspection.
- $\lambda_{G} \geq-1 / 7$ for G in table.
- $\lambda_{G} \geq-1 / 7$ for large $|G|$ since $q_{k}(G) \approx 0$.

The proof

Definition

$\lambda_{G}=(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}(G)+\frac{3}{28} q_{3}(G)\right)$ admissible.

Table

Claim

$\lambda_{\varnothing}=1$ and $\lambda_{G} \geq-1 / 7$ for all G.

Proof

- $\lambda_{\varnothing}=1$ by inspection.
- $\lambda_{G} \geq-1 / 7$ for G in table.
- $\lambda_{G} \geq-1 / 7$ for large $|G|$ since $q_{k}(G) \approx 0$.
- $\lambda_{G} \geq-1 / 7$ for medium $|G|$ (boring calculations).

Uniqueness and stability

Upper bound

\mathcal{F} odd-cycle-agreeing $\Longrightarrow|\mathcal{F}| \leq 2^{\binom{n}{2}-3}$.

Uniqueness and stability

Upper bound

\mathcal{F} odd-cycle-agreeing $\Longrightarrow|\mathcal{F}| \leq 2^{\binom{n}{2}-3}$.

Uniqueness

\mathcal{F} odd-cycle-agreeing, $|\mathcal{F}|=2^{\binom{n}{2}-3} \Longrightarrow \mathcal{F}$ a triangle-junta.

Uniqueness and stability

Upper bound

\mathcal{F} odd-cycle-agreeing $\Longrightarrow|\mathcal{F}| \leq 2^{\binom{n}{2}-3}$.

Uniqueness

\mathcal{F} odd-cycle-agreeing, $|\mathcal{F}|=2^{\binom{n}{2}-3} \Longrightarrow \mathcal{F}$ a triangle-junta.

Stability

\mathcal{F} odd-cycle-agreeing, $|\mathcal{F}| \approx 2^{\binom{n}{2}-3} \Longrightarrow \mathcal{F} \approx$ a triangle-junta.

Open questions

Other graphs
What happens if we replace triangle with other graphs?

Open questions

Other graphs
What happens if we replace triangle with other graphs?
Path of length 3
Christsofides: can beat $2^{\binom{n}{2}-3}$ for P_{3} !

Open questions

Other graphs
What happens if we replace triangle with other graphs?
Path of length 3
Christsofides: can beat $2^{\binom{n}{2}-3}$ for P_{3} !
Other generalizations
Cross-intersecting families?

Open questions

Other graphs
What happens if we replace triangle with other graphs?
Path of length 3
Christsofides: can beat $2^{\binom{n}{2}-3}$ for P_{3} !
Other generalizations
Cross-intersecting families?
Multiply-intersecting families?

