Triangle-intersecting families of graphs

David Ellis, Yuval Filmus and Ehud Friedgut

5 December 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A family of subsets of K_n is *triangle-intersecting* if the intersection of any two graphs contains a triangle.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

A family of subsets of K_n is *triangle-intersecting* if the intersection of any two graphs contains a triangle.

Example

Triangle-junta — all graphs containing a fixed triangle.

Definition

A family of subsets of K_n is *triangle-intersecting* if the intersection of any two graphs contains a triangle.

Example

Triangle-junta — all graphs containing a fixed triangle.

Question (Simonovits & Sós, 1976)

How many graphs can a triangle-intersecting family of graphs contain?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A family of subsets of K_n is *triangle-intersecting* if the intersection of any two graphs contains a triangle.

Example

Triangle-junta — all graphs containing a fixed triangle.

Question (Simonovits & Sós, 1976)

How many graphs can a triangle-intersecting family of graphs contain?

Conjecture (Simonovits & Sós, 1976)

At most $2^{\binom{n}{2}-3}$.

Definition

A family of subsets of K_n is *triangle-intersecting* if the intersection of any two graphs contains a triangle.

Example

Triangle-junta — all graphs containing a fixed triangle.

Question (Simonovits & Sós, 1976)

How many graphs can a triangle-intersecting family of graphs contain?

Conjecture (Simonovits & Sós, 1976)

At most $2^{\binom{n}{2}-3}$. In other words, triangle-juntas are optimal.

Simonovits & Sós (1976)

Trivial upper bound: $2^{\binom{n}{2}-1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simonovits & Sós (1976)

Trivial upper bound: $2^{\binom{n}{2}-1}$.

Chung, Frankl, Graham & Shearer (1986)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shearer's lemma: $2^{\binom{n}{2}-2}$.

Simonovits & Sós (1976)

Trivial upper bound: $2^{\binom{n}{2}-1}$.

Chung, Frankl, Graham & Shearer (1986)

Shearer's lemma: $2^{\binom{n}{2}-2}$.

Ellis, Filmus & Friedgut (2010)

Semidefinite method: $2^{\binom{n}{2}-3}$.

・ロト ・西ト ・ヨト ・ヨー うらぐ

- U: ground set.
- $\mathcal{F}, \mathcal{S} \subseteq 2^U$: families of subsets of U.
- $\mathcal{F}_S \subseteq 2^S$: projection of \mathcal{F} into $S \subseteq U$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- U: ground set.
- $\mathcal{F}, \mathcal{S} \subseteq 2^U$: families of subsets of U.
- $\mathcal{F}_S \subseteq 2^S$: projection of \mathcal{F} into $S \subseteq U$.

Shearer's lemma (1986)

If every $i \in U$ appears in at least $\mu|S|$ sets of S then

$$\left|\mathcal{F}\right|^{\mu} \leq \sup_{S \in \mathcal{S}} \left|\mathcal{F}_{S}\right|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application to triangle-intersecting families

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Setup

• $U = \text{edges of } K_n$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Setup

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.

• \mathcal{F}_S is intersecting for all $S \in \mathcal{S}$

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.

• \mathcal{F}_S is intersecting for all $S \in S \Longrightarrow |\mathcal{F}_S| \le 2^{|S|-1}$.

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.

- \mathcal{F}_S is intersecting for all $S \in S \Longrightarrow |\mathcal{F}_S| \le 2^{|S|-1}$.
- Every edge appears in $\approx |S|/2$ sets.

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.

- \mathcal{F}_S is intersecting for all $S \in S \Longrightarrow |\mathcal{F}_S| \le 2^{|S|-1}$.
- Every edge appears in $\approx |S|/2$ sets.

Applying Shearer's lemma

$$\left|\mathcal{F}\right|^{1/2} \leq \left|\mathcal{S}\right| \sqrt{\prod_{S \in \mathcal{S}} \left|\mathcal{F}_{S}\right|}$$

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.
- \mathcal{F}_S is intersecting for all $S \in S \Longrightarrow |\mathcal{F}_S| \le 2^{|S|-1}$.
- Every edge appears in $\approx |S|/2$ sets.

Applying Shearer's lemma

$$\left|\mathcal{F}\right|^{1/2} \leq \left|\mathcal{S}\right| \sqrt{\prod_{S \in \mathcal{S}} |\mathcal{F}_S|} \lesssim 2^{\binom{n}{2}/2 - 1}$$

- $U = \text{edges of } K_n$.
- \mathcal{F} : triangle-intersecting family.
- S: all *complements* of complete balanced bipartite graphs.
- \mathcal{F}_S is intersecting for all $S \in S \Longrightarrow |\mathcal{F}_S| \le 2^{|S|-1}$.
- Every edge appears in $\approx |S|/2$ sets.

Applying Shearer's lemma

$$\left|\mathcal{F}\right|^{1/2} \leq \left|\mathcal{S}\right| \sqrt{\prod_{S \in \mathcal{S}} |\mathcal{F}_S|} \lesssim 2^{\binom{n}{2}/2 - 1} \Longrightarrow |\mathcal{F}| \leq 2^{\binom{n}{2} - 2}$$

Crucial property

 \mathcal{F} triangle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Crucial property

 \mathcal{F} triangle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Observation

 \mathcal{F} odd-cycle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Crucial property

 \mathcal{F} triangle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Observation

 \mathcal{F} odd-cycle-intersecting, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ intersecting.

Conclusion

$$\mathcal{F}$$
 odd-cycle-intersecting $\Longrightarrow |\mathcal{F}| \leq 2^{\binom{n}{2}-2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

$$\mathcal{F} \subseteq 2^{K_n} \iff$$
 family of 2-colorings of K_n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathcal{F} \subseteq 2^{K_n} \Leftrightarrow$ family of 2-colorings of K_n . *Odd-cycle-agreeing family*: every two graphs agree on colors of some odd cycle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathcal{F} \subseteq 2^{K_n} \iff$ family of 2-colorings of K_n . *Odd-cycle-agreeing family*: every two graphs agree on colors of some odd cycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Observation

 $\mathcal{F} \text{ odd-cycle-agreeing, } \mathcal{B} \text{ bipartite} \Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}} \text{ agreeing.}$

 $\mathcal{F} \subseteq 2^{K_n} \iff$ family of 2-colorings of K_n . *Odd-cycle-agreeing family*: every two graphs agree on colors of some odd cycle.

Observation

 \mathcal{F} odd-cycle-agreeing, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ agreeing.

Agreeing families contain $\leq \frac{1}{2}$ of the sets $\implies |\mathcal{F}_{\overline{\mathcal{B}}}| \leq 2^{|\overline{\mathcal{B}}|-1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\mathcal{F} \subseteq 2^{K_n} \iff$ family of 2-colorings of K_n . *Odd-cycle-agreeing family*: every two graphs agree on colors of some odd cycle.

Observation

 \mathcal{F} odd-cycle-agreeing, \mathcal{B} bipartite $\Longrightarrow \mathcal{F}_{\overline{\mathcal{B}}}$ agreeing.

Agreeing families contain $\leq \frac{1}{2}$ of the sets $\implies |\mathcal{F}_{\overline{\mathcal{B}}}| \leq 2^{|\overline{\mathcal{B}}|-1}$

Conclusion

$$\mathcal{F}$$
 odd-cycle-agreeing $\implies |\mathcal{F}| \le 2^{\binom{n}{2}-2}$

Method

Suppose A is a symmetric $2^{K_n} \times 2^{K_n}$ matrix such that:

• A(G, H) = 0 if G, H don't agree on some odd cycle.

Method

Suppose A is a symmetric $2^{K_n} \times 2^{K_n}$ matrix such that:

• A(G, H) = 0 if G, H don't agree on some odd cycle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$A1 = 1$$
.

Method

Suppose A is a symmetric $2^{K_n} \times 2^{K_n}$ matrix such that:

• A(G, H) = 0 if G, H don't agree on some odd cycle.

- A1 = 1.
- Minimal eigenvalue of A is λ .

Method

Suppose A is a symmetric $2^{K_n} \times 2^{K_n}$ matrix such that:

- A(G, H) = 0 if G, H don't agree on some odd cycle.
- A1 = 1.
- Minimal eigenvalue of A is λ .

Then for all odd-cycle-agreeing families \mathcal{F} :

$$|\mathcal{F}| \leq \frac{-\lambda}{1-\lambda} 2^{\binom{n}{2}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Method

Suppose A is a symmetric $2^{K_n} \times 2^{K_n}$ matrix such that:

- A(G, H) = 0 if G, H don't agree on some odd cycle.
- A1 = 1.
- Minimal eigenvalue of A is λ .

Then for all odd-cycle-agreeing families \mathcal{F} :

$$|\mathcal{F}| \leq \frac{-\lambda}{1-\lambda} 2^{\binom{n}{2}}.$$

Proof

We construct a matrix with $\lambda = -1/7$.

Method

Suppose A is a symmetric $2^{K_n} \times 2^{K_n}$ matrix such that:

- A(G, H) = 0 if G, H don't agree on some odd cycle.
- A1 = 1.
- Minimal eigenvalue of A is λ .

Then for all odd-cycle-agreeing families \mathcal{F} :

$$|\mathcal{F}| \leq \frac{-\lambda}{1-\lambda} 2^{\binom{n}{2}}.$$

Proof

We construct a matrix with $\lambda = -1/7$.

$$|\mathcal{F}| \le \frac{1/7}{1+1/7} 2^{\binom{n}{2}} = \frac{1}{8} 2^{\binom{n}{2}}$$

Observation

If \mathcal{F} is odd-cycle-agreeing then for all sets of edges K, $\{G \oplus K : G \in \mathcal{F}\}$ is odd-cycle-agreeing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Observation

If \mathcal{F} is odd-cycle-agreeing then for all sets of edges K, $\{G \oplus K : G \in \mathcal{F}\}$ is odd-cycle-agreeing.

Corollary

Can assume $A(G, H) = A(G \oplus K, H \oplus K)$ for all G, H, K. ("A is *circulant*".)

Observation

If \mathcal{F} is odd-cycle-agreeing then for all sets of edges K, $\{G \oplus K : G \in \mathcal{F}\}$ is odd-cycle-agreeing.

Corollary

Can assume $A(G, H) = A(G \oplus K, H \oplus K)$ for all G, H, K. ("A is *circulant*".)

Conclusion

Eigenvectors of A are
$$\chi_{\mathcal{K}}: G \mapsto (-1)^{|\mathcal{K} \cap G|}$$
.

Admissible spectra

Definition

 $\lambda: 2^{K_n} \to \mathbb{R}$ is an *admissible spectrum* if for some *A*:

• A(G, H) = 0 if G, H don't agree on some odd cycle.

- A is circulant.
- λ_G is eigenvalue of χ_G .

Admissible spectra

Definition

 $\lambda: 2^{K_n} \to \mathbb{R}$ is an *admissible spectrum* if for some *A*:

• A(G, H) = 0 if G, H don't agree on some odd cycle.

- A is circulant.
- λ_G is eigenvalue of χ_G .

Goal

Find an admissible spectrum λ with:

•
$$\lambda_{\varnothing} = 1.$$

•
$$\lambda_G \ge -1/7$$
 for all G.

Admissible spectra

Definition

 $\lambda: 2^{K_n} \to \mathbb{R}$ is an *admissible spectrum* if for some *A*:

- A(G, H) = 0 if G, H don't agree on some odd cycle.
- A is circulant.
- λ_G is eigenvalue of χ_G .

Goal

Find an admissible spectrum λ with:

•
$$\lambda_{\varnothing} = 1$$
.

•
$$\lambda_G \ge -1/7$$
 for all G.

Basis for admissible spectra

Admissible spectra are spanned by $\{G \mapsto (-1)^{|G \setminus B|}$: bipartite $B\}$.

Cut statistics

Definition

 $q_k(G)$ = probability that a random partition of G cuts k edges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cut statistics

Definition

 $q_k(G)$ = probability that a random partition of G cuts k edges.

Examples

G	$q_0(G)$	$q_1(G)$	$q_2(G)$	$q_3(G)$	$q_4(G)$
 Ø	1	0	0	0	0
_	1/2	1/2	0	0	0
\wedge	1/4	1/2	1/4	0	0
\bigtriangleup	1/4	0	3/4	0	0
$\wedge \wedge$	1/16	1/4	3/8	1/4	1/16
\Leftrightarrow	1/8	0	1/4	1/2	1/8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cut statistics

Definition

 $q_k(G)$ = probability that a random partition of G cuts k edges.

Examples

G	$q_0(G)$	$q_1(G)$	$q_2(G)$	$q_3(G)$	$q_4(G)$
Ø	1	0	0	0	0
-	1/2	1/2	0	0	0
Λ	1/4	1/2		0	0
Δ	1/4	0	3/4	0	0
$\wedge \wedge$	1/16	1/4	3/8	1/4	1/16
\diamond	1/8	0	1/4	1/2	1/8

Observation

$$\lambda_G = (-1)^{|G|} q_k(G)$$
 is admissible for all k.

Definition

$$\lambda_G = (-1)^{|G|} \left(q_0(G) - \frac{5}{7} q_1(G) - \frac{1}{7} q_2(G) + \frac{3}{28} q_3(G) \right) \text{ admissible.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

$$\lambda_{G} = (-1)^{|G|} \left(q_{0}(G) - \frac{5}{7}q_{1}(G) - \frac{1}{7}q_{2}(G) + \frac{3}{28}q_{3}(G) \right) \text{ admissible.}$$

Table

G	$q_0(G)$	$q_1(G)$	$q_2(G)$	$q_3(G)$	$q_4(G)$	λ_{G}
Ø	1					1
_	1/2	1/2	0	0	0	-1/7
\wedge	1/4	1/2	1/4		0	-1/7
\bigtriangleup	1/4	0	3/4	0	0	-1/7
$\wedge \wedge$	1/16	1/4	3/8	1/4	1/16	-1/7
\Leftrightarrow	1/8	0	1/4	1/2	1/8	-1/7

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

$$\lambda_{G} = (-1)^{|G|} \left(q_{0}(G) - \frac{5}{7}q_{1}(G) - \frac{1}{7}q_{2}(G) + \frac{3}{28}q_{3}(G) \right) \text{ admissible.}$$

Table

G	$q_0(G)$	$q_1(G)$	$q_2(G)$	$q_3(G)$	$q_4(G)$	λ_G
Ø	1	0			0	1
		1/2	0	0	0	-1/7
\wedge	1/4		1/4		0	-1/7
\triangle	1/4	0	3/4	0	0	-1/7
$\wedge \wedge$	1/16	1/4	3/8	1/4	1/16	-1/7
\diamond	1/8	0	1/4	1/2	1/8	-1/7

Claim

$$\lambda_{\varnothing} = 1$$
 and $\lambda_G \ge -1/7$ for all G.

Definition

$$\lambda_{G} = (-1)^{|G|} \left(q_{0}(G) - \frac{5}{7}q_{1}(G) - \frac{1}{7}q_{2}(G) + \frac{3}{28}q_{3}(G) \right) \text{ admissible.}$$

Table

Claim

$$\lambda_{\varnothing} = 1$$
 and $\lambda_G \ge -1/7$ for all G.

Proof

Definition

$$\lambda_{G} = (-1)^{|G|} \left(q_{0}(G) - \frac{5}{7}q_{1}(G) - \frac{1}{7}q_{2}(G) + \frac{3}{28}q_{3}(G) \right) \text{ admissible.}$$

Table

Claim

$$\lambda_{\varnothing} = 1$$
 and $\lambda_G \ge -1/7$ for all G.

Proof

- $\lambda_{\emptyset} = 1$ by inspection.
- $\lambda_G \ge -1/7$ for G in table.

Definition

$$\lambda_{G} = (-1)^{|G|} \left(q_{0}(G) - \frac{5}{7}q_{1}(G) - \frac{1}{7}q_{2}(G) + \frac{3}{28}q_{3}(G) \right) \text{ admissible.}$$

Table

Claim

$$\lambda_{\varnothing} = 1$$
 and $\lambda_G \ge -1/7$ for all G.

Proof

- $\lambda_{\emptyset} = 1$ by inspection.
- $\lambda_G \ge -1/7$ for G in table.
- $\lambda_G \ge -1/7$ for large |G| since $q_k(G) \approx 0$.

Definition

$$\lambda_{G} = (-1)^{|G|} \left(q_{0}(G) - \frac{5}{7}q_{1}(G) - \frac{1}{7}q_{2}(G) + \frac{3}{28}q_{3}(G) \right) \text{ admissible.}$$

Table

Claim

$$\lambda_{\varnothing} = 1$$
 and $\lambda_G \ge -1/7$ for all G.

Proof

- $\lambda_{\emptyset} = 1$ by inspection.
- $\lambda_G \ge -1/7$ for G in table.
- $\lambda_G \ge -1/7$ for large |G| since $q_k(G) \approx 0$.
- $\lambda_G \ge -1/7$ for medium |G| (boring calculations).

Upper bound

 \mathcal{F} odd-cycle-agreeing $\implies |\mathcal{F}| \le 2^{\binom{n}{2}-3}$.

Upper bound

$$\mathcal{F}$$
 odd-cycle-agreeing $\implies |\mathcal{F}| \leq 2^{\binom{n}{2}-3}$.

Uniqueness

$$\mathcal{F}$$
 odd-cycle-agreeing, $|\mathcal{F}| = 2^{\binom{n}{2}-3} \Longrightarrow \mathcal{F}$ a triangle-junta.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Upper bound

$$\mathcal{F}$$
 odd-cycle-agreeing $\implies |\mathcal{F}| \le 2^{\binom{n}{2}-3}$.

Uniqueness

$$\mathcal{F}$$
 odd-cycle-agreeing, $|\mathcal{F}| = 2^{\binom{n}{2}-3} \Longrightarrow \mathcal{F}$ a triangle-junta.

Stability

$$\mathcal{F}$$
 odd-cycle-agreeing, $|\mathcal{F}| \approx 2^{\binom{n}{2}-3} \Longrightarrow \mathcal{F} \approx a$ triangle-junta.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What happens if we replace triangle with other graphs?

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

What happens if we replace triangle with other graphs?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Path of length 3

Christsofides: can beat $2^{\binom{n}{2}-3}$ for $P_3!$

What happens if we replace triangle with other graphs?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Path of length 3

Christsofides: can beat $2^{\binom{n}{2}-3}$ for P_3 !

Other generalizations

Cross-intersecting families?

What happens if we replace triangle with other graphs?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Path of length 3

Christsofides: can beat $2^{\binom{n}{2}-3}$ for P_3 !

Other generalizations

Cross-intersecting families? Multiply-intersecting families?