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The problem

Definition

A family of subsets of Kn is triangle-intersecting if the intersection
of any two graphs contains a triangle.

Example

Triangle-junta — all graphs containing a fixed triangle.

Question (Simonovits & Sós, 1976)

How many graphs can a triangle-intersecting family of graphs
contain?

Conjecture (Simonovits & Sós, 1976)

At most 2
(n
2
)−3

. In other words, triangle-juntas are optimal.
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Progress on the conjecture

Simonovits & Sós (1976)

Trivial upper bound: 2
(n
2
)−1

.

Chung, Frankl, Graham & Shearer (1986)

Shearer’s lemma: 2
(n
2
)−2

.

Ellis, Filmus & Friedgut (2010)

Semidefinite method: 2
(n
2
)−3
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Shearer’s lemma

Setup

U: ground set.

F ,S ⊆ 2
U

: families of subsets of U.

FS ⊆ 2
S

: projection of F into S ⊆ U.

Shearer’s lemma (1986)

If every i ∈ U appears in at least µ∣S∣ sets of S then

∣F∣µ ≤ ∣S∣

√
∏
S∈S

∣FS ∣.
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Application to triangle-intersecting families

Setup

U = edges of Kn.

F : triangle-intersecting family.

S: all complements of complete balanced bipartite graphs.

FS is intersecting for all S ∈ S⟹ ∣FS ∣ ≤ 2
∣S∣−1

.

Every edge appears in ≈ ∣S∣/2 sets.

Applying Shearer’s lemma

∣F∣1/2 ≤ ∣S∣

√
∏
S∈S

∣FS ∣ ≲ 2
(n
2
)/2−1

⟹ ∣F∣ ≤ 2
(n
2
)−2
.
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Heart of the argument

Crucial property

F triangle-intersecting, B bipartite ⟹ FB intersecting.

Observation

F odd-cycle-intersecting, B bipartite ⟹ FB intersecting.

Conclusion

F odd-cycle-intersecting ⟹ ∣F∣ ≤ 2
(n
2
)−2

.
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Agreeing families

Agreement

F ⊆ 2
Kn ⇔ family of 2-colorings of Kn.

Odd-cycle-agreeing family: every two graphs agree on colors of
some odd cycle.

Observation

F odd-cycle-agreeing, B bipartite ⟹ FB agreeing.

Agreeing families contain ≤ 1
2

of the sets ⟹ ∣FB∣ ≤ 2
∣B∣−1

.
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Semidefinite method

Method

Suppose A is a symmetric 2
Kn × 2

Kn matrix such that:

A(G ,H) = 0 if G ,H don’t agree on some odd cycle.

A1 = 1.

Minimal eigenvalue of A is λ.

Then for all odd-cycle-agreeing families F :

∣F∣ ≤ −λ
1 − λ

2
(n
2
)
.

Proof

We construct a matrix with λ = −1/7.

∣F∣ ≤ 1/7

1 + 1/7
2
(n
2
)
=

1

8
2
(n
2
)
.
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Symmetry considerations

Observation

If F is odd-cycle-agreeing then for all sets of edges K ,
{G ⊕ K ∶ G ∈ F} is odd-cycle-agreeing.

Corollary

Can assume A(G ,H) = A(G ⊕ K ,H ⊕ K) for all G ,H,K .
(“A is circulant”.)

Conclusion

Eigenvectors of A are χK ∶G ↦ (−1)∣K∩G ∣
.
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Admissible spectra

Definition

λ∶ 2
Kn → R is an admissible spectrum if for some A:

A(G ,H) = 0 if G ,H don’t agree on some odd cycle.

A is circulant.

λG is eigenvalue of χG .

Goal

Find an admissible spectrum λ with:

λ∅ = 1.

λG ≥ −1/7 for all G .

Basis for admissible spectra

Admissible spectra are spanned by {G ↦ (−1)∣G\B∣ ∶ bipartite B}.
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Cut statistics

Definition

qk(G) = probability that a random partition of G cuts k edges.

Examples

G q0(G) q1(G) q2(G) q3(G) q4(G)
∅ 1 0 0 0 0
− 1/2 1/2 0 0 0
∧ 1/4 1/2 1/4 0 0
△ 1/4 0 3/4 0 0
∧∧ 1/16 1/4 3/8 1/4 1/16
� 1/8 0 1/4 1/2 1/8

Observation

λG = (−1)∣G ∣
qk(G) is admissible for all k .
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The proof

Definition

λG = (−1)∣G ∣ (q0(G) − 5
7
q1(G) − 1

7
q2(G) + 3

28
q3(G)) admissible.

Claim

λ∅ = 1 and λG ≥ −1/7 for all G .

Proof

λ∅ = 1 by inspection.

λG ≥ −1/7 for G in table.

λG ≥ −1/7 for large ∣G ∣ since qk(G) ≈ 0.

λG ≥ −1/7 for medium ∣G ∣ (boring calculations). □
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Uniqueness and stability

Upper bound

F odd-cycle-agreeing ⟹ ∣F∣ ≤ 2
(n
2
)−3

.

Uniqueness

F odd-cycle-agreeing, ∣F∣ = 2
(n
2
)−3
⟹ F a triangle-junta.

Stability

F odd-cycle-agreeing, ∣F∣ ≈ 2
(n
2
)−3
⟹ F ≈ a triangle-junta.
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Open questions

Other graphs

What happens if we replace triangle with other graphs?

Path of length 3

Christsofides: can beat 2
(n
2
)−3

for P3!

Other generalizations

Cross-intersecting families?
Multiply-intersecting families?
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