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Extremal combinatorics studies how large a collection of objects can be if it satisfies a given

set of restrictions. Inspired by a classical theorem due to Erdős, Ko and Rado, Simonovits and

Sós posed the following problem: determine how large a collection of graphs on the vertex set

{1, . . . , n} can be, if the intersection of any two of them contains a triangle. They conjectured

that the largest possible collection, containing 1/8 of all graphs, consists of all graphs containing

a fixed triangle (a triangle-star). The first major contribution of this thesis is a confirmation

of this conjecture.

We prove the Simonovits–Sós conjecture in the following strong form: the only triangle-

intersecting families of measure at least 1/8 are triangle-stars (uniqueness), and every triangle-

intersecting family of measure 1/8 − ε is O(ε)-close to a triangle-star (stability).

In order to prove the stability part of our theorem, we utilize a structure theorem for Boolean

functions on {0,1}m whose Fourier expansion is concentrated on the first t + 1 levels, due to

Kindler and Safra. The second major contribution of this thesis consists of two analogs of this

theorem for Boolean functions on Sm whose Fourier expansion is concentrated on the first two

levels.

In the same way that the Kindler–Safra theorem is useful for studying triangle-intersecting

families, our structure theorems are useful for studying intersecting families of permutations,

which are families in which any two permutations agree on the image of at least one point.

Using one of our theorems, we give a simple proof of the following result of Ellis, Friedgut and

Pilpel: an intersecting family of permutations on Sm of size (1 − ε)(m − 1)! is O(ε)-close to a

double coset, a family which consists of all permutations sending some point i to some point j.
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Chapter 1

Introduction

How many edges can a graph on n vertices contain, if it has no triangles? How many sets can a

family of subsets of {1, . . . , n} consist of, if no set in the family is a subset of another set in the

family? How many sets can a family of subsets of {1, . . . , n} contain, if any two sets intersect?

These are the sort of questions considered in the area of extremal combinatorics.

In 19381, Erdős, Ko and Rado [30] proved the following seminal theorem.

Theorem (Erdős–Ko–Rado). Suppose F is a family of subsets of {1, . . . , n} consisting of sets of

size k, such that the intersection of any two sets in F is non-empty. If k ≤ n/2 then ∣F ∣ ≤ (n−1
k−1

).

If furthermore k < n/2, then ∣F ∣ = (n−1
k−1

) if and only if F consists of all subsets containing some

element x ∈ {1, . . . , n} (such a family is variously known as a star, sunflower, dictatorship,

centered family, principal family, kernel system).

The original theorem was the starting point of an entire research program in extremal

combinatorics, which proceeded in various directions.

How big can a family of permutations of Sn be, if any two permutations agree on at least

one point? How big can a family of graphs on n vertices be, if the intersection of any two

graphs contains a triangle? Suppose I is a non-empty family of sets which is closed under

taking subsets. Is it always the case that no intersecting subfamily of I is larger than the

maximal star contained in I? The last question, known as Chvátal’s conjecture [11, Problem

1Although the paper [30] dates from 1961, Erdős [29] mentions that the result itself was proved in 1938.
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Chapter 1. Introduction 2

25], remains open.

Focusing on families of subsets of {1, . . . , n}, we could require the family to satisfy stronger

properties than just being intersecting. What can we say about two families if any set in one

family intersects every set in the other family? How large can the family be, if any three sets

intersect? How large can an intersecting family be, if it is not a star? How large can the family

be, if every two sets intersect in at least two points?

Another direction focuses on stability. Suppose that F is an intersecting family consisting

of subsets of {1, . . . , n} of size k. If k < n/2 then we know that ∣F ∣ ≤ (n−1
k−1

), and furthermore the

extremal families are stars. What can we say about intersecting families of size (1 − ε)(n−1
k−1

)?

What does an arbitrary intersecting family approximately look like?

The Erdős–Ko–Rado theorem can be proved in various ways. The original proof uses the

technique of shifting, which modifies the family into a form which is easier to analyze while

maintaining its intersecting property. Various other proofs are known: Frankl and Graham [37]

describe three additional proofs, and two other proofs appear in [44] and [36].

Friedgut [40] came up with a way of proving a variant of the Erdős–Ko–Rado theorem

and some of its generalizations using Fourier analysis. The advantage of his approach is that it

automatically yields stability: it shows that families whose size is almost maximal are themselves

close to extremal families (families of maximal size). The idea is to derive properties of the

Fourier expansion of the characteristic function of an intersecting family. These properties allow

us to characterize the Fourier spectra of families whose size is maximal or almost maximal, and

through the Fourier spectra, the structure of the families.

The Fourier coefficients of a function on n coordinates are divided into n + 1 levels. The

Fourier expansion of a star is particularly simple: only coefficients on the first two levels are

non-zero. Friedgut’s method starts by deriving an inequality on the Fourier coefficients of the

characteristic function, which immediately implies a tight upper bound on the size of inter-

secting families. Furthermore, the bound can only be tight if the Fourier expansion of the

characteristic function is supported on the first two levels. A simple argument shows that for

Boolean functions, that can only be the case if the family is a star.

When the intersecting family has almost maximal size, the method implies that the Fourier
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expansion of the characteristic function is concentrated on the first two levels, that is, all the

other coefficients are small in magnitude. Friedgut then applies a classical structure theorem for

Boolean functions, the Friedgut–Kalai–Naor theorem, to conclude that the intersecting family

is close to a family depending on one element only, which must be a star.

Deza and Frankl [13] proved a theorem which is the analog of Erdős–Ko–Rado for permu-

tations. Two permutations in Sn are intersecting if they agree on at least one point. Their

theorem shows that an intersecting family of permutations in Sn contains at most (n − 1)!

permutations. Cameron and Ku [7] showed that this upper bound is achieved only by families

of the form {π ∈ Sn ∶ π(i) = j}, known as double cosets. Ellis [22] showed that an intersecting

family of size (1 − ε)(n − 1)! must be O(ε)-close to a double coset.

Ellis’s method is very similar to the method used by Friedgut to prove the Erdős–Ko–Rado

theorem. The main difference is that instead of using Fourier analysis on {0,1}n, Ellis needs

to use Fourier analysis on Sn, which is rather more complicated. At a very coarse level, the

Fourier coefficients with respect to Sn can be divided into n levels. The Fourier expansion of

double cosets is supported on the first two levels.

Ellis’s proof follows the same steps as the previously described one. He starts with an

inequality satisfied by the Fourier coefficients, which directly implies the upper bound (n− 1)!.

The Fourier expansion of the characteristic function of a family of size (n−1)! must be supported

on the first two levels, and a relatively simple argument shows that this can only happen if the

family is a double coset. If the family has size (1−ε)(n−1)!, then most of the Fourier expansion

is concentrated on the first two levels. At this point Ellis invokes a bootstrapping argument

which relies on the fact that the family is intersecting. One of our major results replaces this

ad hoc argument with an analog of the Friedgut–Kalai–Naor theorem that works for arbitrary

Boolean functions.
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1.1 Main results of the thesis

1.1.1 Intersection theorems

A family of graphs on n vertices is called triangle-intersecting (respectively, odd-cycle-intersecting)

if the intersection of any two graphs in the family contains a triangle (respectively, an odd cy-

cle). Chung, Frankl, Graham and Shearer [10] showed that a triangle-intersecting family can

contain at most 1/4 of the graphs, and mentioned a conjecture due to Sós and Simonovits that

the correct upper bound is 1/8. We strengthen and confirm this conjecture by proving the

following (Theorem 4.1):

Upper bound: Every odd-cycle-intersecting family of graphs on n vertices contains at most

1/8 of the graphs.

Uniqueness: The unique families achieving the bound 1/8 are triangle-juntas, families formed

by taking all supergraphs of a fixed triangle.

Stability: If an odd-cycle-intersecting family contains 1/8−ε of the graphs, then it is O(ε)-close

to a triangle-junta.

We also generalize these results to other settings (Theorems 4.2–4.5).

Sós and Simonovits’s conjecture is very natural, but surprisingly its analog fails if we replace

the triangle by a path of length 3 (see Section 10.2). Accordingly, our proof makes essential

use of the graphical nature of the families.

1.1.2 Structure theorems

The second main part of the thesis concerns structure theorems for Boolean functions on Sn

(the set of all permutations on n points), analogous to the theorem of Friedgut, Kalai and Naor.

Friedgut–Kalai–Naor. The Fourier expansion of a function f ∶{0,1}n → R is

f = ∑
S⊆{1,...,n}

f̂(S)χS ,

where the functions χS (which do not depend on f), known as the Fourier characters, form an

orthonormal basis for the vector space of all functions on {0,1}n (for a suitable inner product).
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The coefficients f̂(S) are known as the Fourier coefficients. The level of the Fourier coefficient

f̂(S) is ∣S∣.

If f depends only on the inputs T ⊆ {1, . . . , n}, then the Fourier expansion of f is supported

on coefficients f̂(S) such that S ⊆ T (that is, the other Fourier coefficients all vanish), and so its

Fourier expansion is supported on the first ∣T ∣+1 levels (including level zero). In particular, if f

depends on only one input (we call f a dictatorship), then its Fourier expansion is supported on

the first two levels. Conversely, if f is a Boolean function whose Fourier expansion is supported

on the first two levels, then it is not hard to show that f must be a dictatorship.

Friedgut, Kalai and Naor proved that if f is a balanced Boolean function whose Fourier

expansion is concentrated on the first two levels, then f is close to a dictatorship. More

formally, suppose that for some δ > 0,

δ < Pr
x∈{0,1}n

[f(x) = 1] < 1 − δ

and

∑
∣S∣>1

f̂(S)2 < δ.

Then there is a dictatorship g which differs from f on an O(δ) fraction of the inputs.

Our results. The Fourier expansion has an analog for functions defined on Sn. That is, there

is an orthonormal basis B for the vector space of all functions on Sn, and the Fourier expansion

of a function f ∶Sn → R is its expansion in terms of the basis B. In contrast to the usual Fourier

expansion, in this case there is no natural indexing of the basis functions in B. However, there

is a way of partitioning them into n levels.

If the function f depends only on the value of the input permutation π on the indices

I ⊆ {1, . . . , n}, then its Fourier expansion is concentrated on the first ∣I ∣ + 1 levels. The same

is true if f depends only on the value of π−1 on the indices I. In particular, if f depends only

on π(i) or only on π−1(i) (we call f a dictator), then its Fourier expansion is supported on the

first two levels. Ellis, Friedgut and Pilpel [28] proved the converse: if the Fourier expansion of

a Boolean function is supported on the first two levels, then it is a dictatorship. (They also

proved a more general result for functions supported on the first k + 1 levels.)
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We prove two analogs of Friedgut–Kalai–Naor in this setting. Both results concern Boolean

functions f whose Fourier expansion is concentrated on the first two levels. The first result

(Theorem 7.1) tackles the case where the support of f (the number of permutations π such that

f(π) = 1) is small, and the second result (Theorem 8.1) tackles the case where the support of

f is large.

Our first result applies when the support of f has size c(n − 1)! for c = o(n). We show that

c must be close to an integer, and that f must be close to the characteristic function of a union

of double cosets. We cannot conclude that f is close to a dictatorship since the double cosets

need not be disjoint (in this context, a dictatorship is a function which, given a permutation

π, depends only on π(i) for some i ∈ [n] or on π−1(j) for some j ∈ [n]). We also present an

application to intersecting families of permutations.

Our second result, applies when the support of f has size c(n − 1)! where min(c, n − c) =

ω(n5/6). In contrast to our first result, in this case we are able to show that f must be close to

a dictatorship.

1.2 Organization of the thesis

Following the introduction, we present some necessary background material in Chapter 2. The

bulk of the thesis is composed of two main parts, intersection theorems and structure theorems.

The first main part of the thesis contains our result on triangle-intersecting families of

graphs. This part begins in Chapter 3, which describes a method devised by Friedgut to prove

intersection theorems via Fourier analysis. We describe Friedgut’s method using two simple

applications: the traffic light puzzle and Friedgut’s Fourier-theoretic proof of a generalized

version of the Erdős–Ko–Rado theorem. This chapter contains some original material, but

mostly follows papers by Friedgut and his coauthors [4, 40]. Our result on triangle-intersecting

families appears in Chapter 4. This chapter follows work by the author together with David

Ellis and Ehud Friedgut [27]. The first part ends in Chapter 5, in which we prove a version

of the Ahlswede–Khachatrian theorem, a generalization of the Erdős–Ko–Rado theorem. This

chapter is expository in nature.
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The second main part of the thesis contains our stability theorems for Boolean functions

on Sn This part begins with Chapter 6, which introduces Fourier analysis on Sn from an

unorthodox perspective friendly to theoretical computer science. The subsequent two chapters

generalize the theorem of Friedgut, Kalai and Naor to Boolean functions on Sn. Chapter 7

contains our stability result for Boolean functions on Sn of small support. This chapter follows

work by the author together with David Ellis and Ehud Friedgut [24]. Chapter 8 contains our

stability result for balanced Boolean functions on Sn. This chapter follows work by the author

together with David Ellis and Ehud Friedgut [26].

Following the two main parts, we describe in Chapter 9 several applications of extremal

combinatorics to theoretical computer science. While the applications we present do not use

any of the novel results proven in this thesis, they use results of similar types. This expository

chapter serves to relate our results to theoretical computer science.

We conclude the thesis in Chapter 10, reporting on some subsequent research and describing

some open problems.



Chapter 2

Preliminaries

2.1 Notation

We will use N to denote the set of natural numbers (including zero), Z to denote the set of

integers, R to denote the set of real numbers, and R≥0 to denote the set of non-negative real

numbers. The ring of integers modulo k is denoted Zk.

For n a natural number, we will use [n] to denote the set {1, . . . , n}. The power set of a

set S will be denoted 2S . We will use [a, b], [a, b), (a, b], (a, b) to denote various intervals of

real numbers. A square bracket indicates that the endpoint is contained in the interval. The

notation ⌈x⌋ means the rounding of x, which is an integer m satisfying ∣m − x∣ ≤ 1/2. When

x ∈ Z + 1/2, round arbitrarily down.

A family of sets on n points is a subset of 2[n]. If all sets in the family have cardinality k

then the family is k-uniform.

A star is a family of sets on n points consisting of all sets containing some fixed i ∈ [n]. For

a subset S ⊆ [n], an S-star is the family of sets on n points consisting of all supersets of S. For

an integer t ≥ 1, a t-star is any S-star for ∣S∣ = t.

For a proposition P , we define JP K by

JP K =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if P is true,

0, if P is false.

If x, y ∈ {0,1}, then x ⊕ y is their sum modulo 2, also known as exclusive or (XOR). The

8
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corresponding operation on sets, symmetric difference, is denoted by ∆.

We denote the transpose of a matrix A by A′, and the Hermitian (conjugate transpose) by

A∗.

The group of all permutations on [n] is denoted Sn.

Unless otherwise mentioned, all logarithms are natural (to the base e).

We say that a function f is supported on a set S if f(x) = 0 for all x ∉ S. A related but

distinct informal notion is of a function concentrated on a set, whose exact meaning depends on

the context. For example, it could mean that ∑x∉S f(x)2 is small. We will not use this notion

when stating theorems, but only when discussing results.

We will use the standard asymptotic notations O(⋅), Ω(⋅), o(⋅), ω(⋅). Unless explicitly

mentioned, all the quantities in question are non-negative. We use ±O(⋅) to express a quantity

whose absolute value is O(⋅). For example, f = g ±O(1) is the same as ∣f − g∣ = O(1).

Unless stated otherwise, the underlying constant in asymptotic notation is universal. To

express the fact that the constant depends on some other quantities, we will add them as

subscripts. For example, if f ≤ Ct where Ct is a constant depending only on t, then we can also

write f = Ot(1).

2.2 Probability theory

The probability of an event E will be denoted Pr[E]. The expectation (or mean) of a random

variable X will be denoted EX or E[X]. If the expectation is taken over a variable A, we will

write EAX. The variance of a random variable X will be denoted VX or V[X]. The binomial

distribution on n points with probability p will be denoted Bin(n, p).

We will use the following classical results.

Theorem (Bonferroni inequalities). For events A1, . . . ,An on the same probability space,

∑
i

Pr[Ai] −∑
i<j

Pr[Ai and Aj] ≤ Pr[A1 or ⋯ or An] ≤∑
i

Pr[Ai].

The second inequality is usually known as the union bound.
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Theorem (Markov’s inequality). If X is a non-negative random variable then

Pr[X ≥ c] ≤ E[X]
c

.

Theorem (Chebyshev’s inequality). For every random variable X,

Pr[∣X −EX ∣ ≥ c] ≤ V[X]
c2

.

The following result is usually known in theoretical computer science as Chernoff’s inequality

or Hoeffding’s inequality, and is also a special case of Azuma’s inequality. For definiteness, we

choose the name Chernoff’s inequality.

Theorem (Chernoff’s inequality). Let X1, . . . ,Xn be independent random variables such that

Xi lies in some interval of length di with probability 1, and let X = ∑ni=1Xi. Then

Pr[X −EX ≥ c] ≤ exp(− 2c2

∑ni=1 d
2
i

)

and

Pr[EX −X ≥ c] ≤ exp(− 2c2

∑ni=1 d
2
i

) .

All the results listed so far belong to the genre of concentration of measure. The next result

belongs to the complementary genre of anti-concentration. Although named after both Berry

and Esseen, the version stated below is due to Esseen (a slightly weaker version had been proved

a year earlier by Berry, whose work wasn’t known to Esseen).

Theorem (Berry–Esseen). There exists some constant C > 0 such that the following is true.

Let X1, . . . ,Xn be independent non-constant random variables, and let X = ∑ni=1Xi. Let Y be

an independent normally distributed random variable with the same mean and variance as X.

For every interval I,

∣Pr[X ∈ I] −Pr[Y ∈ I]∣ ≤ C∑
n
i=1 E ∣Xi −EXi∣3

(∑ni=1 VXi)3/2
.

2.3 Convex functions

We list two important inequalities on convex functions.
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Definition 2.1. A function ϕ defined on an interval I is convex if for every x, y ∈ I and t ∈ [0,1],

ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y). ◯

Lemma 2.1 (Jensen’s inequality). Suppose ϕ is a convex function defined on an interval I,

and X is a random variable supported on I. Then

ϕ(E[X]) ≤ E[ϕ(X)].

Lemma 2.2. Suppose ϕ is a convex function defined on an interval I = [0,M]. For each n and

x1, . . . , xn ∈ I whose sum is also in I,

n

∑
i=1

ϕ(xi) ≤ ϕ(
n

∑
i=1

xi) + (n − 1)ϕ(0).

Proof. It is enough to prove the case n = 2, which we can rewrite as

ϕ(x) − ϕ(0) ≤ ϕ(x + y) − ϕ(y).

Let ψx(t) = ϕ(x+t)−ϕ(t). Since ϕ is convex, we have ϕ′′ ≥ 0, and so ψ′x(t) = ϕ′(x+t)−ϕ′(x) ≥ 0.

Therefore ψx(y) ≥ ψx(0).

2.4 Measures on families of sets

The Erdős–Ko–Rado theorem (stated in the introduction) concerns k-uniform families of sets

on n points, for k ≤ n/2. From our point of view, it is more natural to consider unconstrained

families of sets. To this end, we will consider various measures over 2[n] which highlight sets of

a certain size.

Let n ≥ 1 be a natural number, and p ∈ [0,1]. The measure µp on 2[n] (in the sense of

measure theory) is defined by its value on singletons, µp({S}) = p∣S∣(1 − p)n−∣S∣. This is a

probability measure, that is µp(2[n]) = 1, and it has the following probabilistic interpretation.

Let S be a random set chosen by putting each x ∈ [n] in S with probability p independently.

For every F ⊆ 2[n], µp(F) is the probability that S is in F . When p = 1/2, µ1/2(F) = 2−n∣F ∣.

We define µ = µ1/2 for short, and call this measure the uniform measure.

Intuitively, the measure µk/n highlights sets of size k: in the probabilistic interpretation, the

size of the set S is distributed Bin(n, k/n), which is concentrated around k. We develop some
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formal connections between the two settings in the context of intersecting families in Section 3.5.

Here we illustrate this connection by giving Katona’s beautiful proof of the Erdős–Ko–Rado

theorem [58] in both settings.

Classical setting. Let F be a k-uniform intersecting family of sets on n points, where k ≤ n/2.

Put the numbers 1 to n in a circle in random order, and let S be the set appearing in a random

interval of length k on the circle. On the one hand, µ(F) = Pr[S ∈ F]. On the other hand,

for each of the n! possible orders, any two intervals of length k which outline a set in F must

intersect (on the circle). This implies that Pr[S ∈ F] ≤ k/n.

Probabilistic setting. Let F be an intersecting family of sets on n points, and let p ≤ 1/2.

Put each number from 1 to n at a random point on the unit-circumference circle, and let S be the

set of points appearing in a random interval of length p. On the one hand, µp(F) = Pr[S ∈ F].

On the other hand, for each way of choosing the n points on the circle, any two intervals of

length p which outline a set in F must intersect (on the circle). This implies that Pr[S ∈ F] ≤ p.

An extension of Katona’s argument to cross-intersecting families (pairs of families in which

each set of the first family intersects each set of the second family) appears in Section 3.4. An

extension to r-wise intersecting families (families in which every r sets have a common element)

appears in [34]. Katona’s argument does not seem to extend to 2-intersecting families (families

in which any two sets intersect in at least two elements); see [53] for relevant work in that

direction.

2.5 Fourier analysis

A function f ∶{0,1}n → R is called a function on n bits. If the range of f is {0,1}, then f is a

Boolean function. For a subset S ⊆ [n], its characteristic vector 1S is defined by (1S)i = Ji ∈ SK.

Similarly, for a family F of sets on n points, its characteristic function 1F ∶{0,1}n → {0,1} is

defined by 1F(1S) = JS ∈ FK. In the sequel, we identify a subset with its characteristic vector.

This association between families of sets and Boolean functions allows us to analyze the former

using the latter.
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Let n ≥ 1 be a natural number. The inner product between two functions on n bits is defined

by

⟨f, g⟩ = E
x
f(x)g(x),

where x is a uniformly random point in {0,1}n. The norm of a function f is ∥f∥ =
√

⟨f, f⟩.

The Fourier basis functions χ
[n]
S for S ⊆ [n], also known as Fourier characters, are defined by

χ
[n]
S (T ) = (−1)∣S∩T ∣.

In terms of bit vectors,

χ[n]
x (y) = (−1)⟪x,y⟫,

where the inner product between two bit vectors x, y is simply ⟪x, y⟫ = ∑i xiyi (mod 2). When

n is understood from the context, as is the case for the rest of this section, we omit the

superscript.

The Fourier characters enjoy three basic properties: they are multiplicative, they form a

group, and they form a basis.

Lemma 2.3. Let x, y, z ∈ {0,1}n. We have χx(y ⊕ z) = χx(y)χx(z).

Proof. Easy calculation.

The analog version for sets states that for all X,Y,Z ⊆ [n], χX(Y∆Z) = χX(Y )χX(Z).

Lemma 2.4. Let x, y ∈ {0,1}n. We have χxχy = χx⊕y.

Proof. Easy calculation.

The analog version for sets states that for all X,Y ⊆ [n], χXχY = χX∆Y .

Lemma 2.5. Let n ≥ 1 be a natural number. The functions χx for x ∈ {0,1}n form an or-

thonormal basis to the vector space of all real-valued functions on n bits.

Proof. Let x, y ∈ {0,1}n. We have

⟨χx, χy⟩ = 2−n∑
z

(−1)⟪x,z⟫(−1)⟪y,z⟫ = 2−n∑
z

(−1)⟪x⊕y,z⟫.
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If x = y then x⊕ y = 0, and so ⟨χx, χx⟩ = 1. If x ≠ y then x⊕ y ≠ 0, say (x⊕ y)i = 1. Therefore

⟨χx, χy⟩ = 2−n ∑
z1,...,zi−1,zi+1,...,zn

(−1)∑j≠i(xj⊕yj)zj∑
zi

(−1)zi = 0.

Since the functions χx are orthogonal, they are linearly independent. Since there are 2n of

them, they form a basis.

Every function f on n bits can be expanded in terms of the Fourier basis (the Fourier

expansion):

f = ∑
S⊆[n]

f̂(S)χS .

The numbers f̂(S) are known as Fourier coefficients, and the function f̂ is called the Fourier

transform. The Fourier coefficient f̂(S) is said to belong to level ∣S∣. The first level is level 0,

and so on.

The Fourier transform, mapping f to f̂, is a linear operator, and so for scalars α,β and

functions f, g, the Fourier transform of h = αf + βg is ĥ = αf̂ + βĝ.

The following lemmas contain some basic properties of the Fourier transform.

Lemma 2.6 (Parseval’s identity). Let f, g be functions on n bits. We have

⟨f, g⟩ =∑
S

f̂(S)ĝ(S).

In particular,

∥f∥2 =∑
S

f̂(S)2.

Moreover, f̂(S) = ⟨f,χS⟩.

Proof. This follows directly from the fact that the Fourier characters form an orthonormal

basis.

Lemma 2.7. Let f be a Boolean function on n bits. Then

f̂(∅) =∑
S

f̂(S)2 = µ(f).

Proof. Since χ∅ is the constant 1 vector, f̂(∅) = Ex f(x) = µ(f). Since f is Boolean, ∥f∥2 =

Ex f(x)2 = Ex f(x) = µ(f). The proof is complete using Parseval’s identity.
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Lemma 2.8. Let f be a function on n bits which depends only on a subset S of the coordinates.

For any T ⊈ S, f̂(T ) = 0.

Proof. Suppose that f does not depend on the ith coordinate, and i ∈ T . Then

f̂(T ) = 2−n∑
x

f(x)(−1)∑j∈T xj

= 2−n ∑
x1,...,xi−1,xi+1,...,xn

(−1)∑j∈T∖{i} xj

(f(x1, . . . , xi−1,0, xi+1, . . . , xn) − f(x1, . . . , xi−1,1, xi+1, . . . , xn)) = 0,

since f does not depend on xi.

2.5.1 Generalization to Zk

Up to now, we have considered functions whose domain was {0,1}n. We can think of this

domain also as Zn2 . Replacing 2 with an arbitrary k ≥ 2, there is an analogous theory of the

Fourier transform for functions on Znk . For any two vectors x, y ∈ Znk , define ⟪x, y⟫ = ∑i xiyi

(all in Zk), and for any two functions f, g∶Znk → C, define ⟨f, g⟩ = Ex f(x)g(x), where x is a

random element of Znk , and the bar denotes complex conjugation (we need to consider complex

functions since the Fourier characters are complex). The Fourier characters χx are indexed by

elements x ∈ Znk , and defined by

χx(y) = ω⟪x,y⟫, ω = e2πi/k.

Here we could pick ω to be any primitive kth root of unity. When k > 2, the Fourier characters

are complex functions. We have the following analogs of Lemma 2.3, Lemma 2.4 and Lemma 2.5,

with very similar proofs.

Lemma 2.9. Let x, y, z ∈ Znk . We have χx(y + z) = χx(y)χx(z).

Lemma 2.10. Let x, y ∈ Znk . We have χxχy = χx+y.

Lemma 2.11. Let n ≥ 1 be a natural number. The functions χx for x ∈ Znk form an orthonormal

basis to the vector space of all complex-valued functions on Znk .
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Since the Fourier characters form a basis, every function f can be expanded as

f = ∑
x∈Zn

k

f̂(x)χx.

We have the following analogues of Lemma 2.6, Lemma 2.7 and Lemma 2.8.

Lemma 2.12 (Parseval’s identity). Let f, g be functions on Znk . We have

⟨f, g⟩ =∑
S

f̂(S)ĝ(S).

In particular,

∥f∥2 =∑
S

∣f̂(S)∣2.

Moreover, f̂(S) = ⟨f,χS⟩.

Lemma 2.13. Let f be a Boolean function on Znk . Then

f̂(∅) =∑
S

∣f̂(S)∣2 = µ(f),

where ∅ is the zero vector of length n.

Lemma 2.14. Let f be a function on Znk which depends only on a subset S of the coordinates.

For any T ⊈ S, f̂(T ) = 0.

2.5.2 Generalization to µp

In order to get a bound on the size of intersecting families via Fourier analysis, we will use

Lemma 2.7 to relate the Fourier expansion of a family of sets and its size. However, the relation

given by the lemma only holds for the measure µ. In order to get an analogous result for µp,

we will need to develop Fourier analysis with respect to a skewed inner product. While this

material is somewhat non-standard, the reader should rest assured that it is only marginally

more complicated than standard Fourier analysis.

Let p ∈ (0,1), and let f, g be two real-valued functions on n bits. The p-skewed inner product

of f and g is given by

⟨f, g⟩p = E
x∼µp

f(x)g(x).
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The corresponding norm is ∥f∥p =
√

⟨f, f⟩. Let q = 1−p. The Fourier characters χS,p for S ⊆ [n]

are given by

χS,p(T ) = (−q
p
)
∣S∩T ∣

√
p

q

∣S∣

.

This mysterious definition generalizes the usual definition while satisfying the following analog

of Lemma 2.5.

Lemma 2.15. Let n ≥ 1 be a natural number. The functions χS,p for S ⊆ [n] form an orthonor-

mal basis to the vector space of all real-valued functions on n bits, with respect to the p-skewed

inner product.

Proof. Let S,T ⊆ [n]. We have

⟨χS,p, χT,p⟩p =∑
U

p∣U ∣qn−∣U ∣(−q
p
)
∣S∩U ∣+∣T∩U ∣

√
p

q

∣S∣+∣T ∣

.

If S = T then this simplifies to

∥χS,p∥2
p =∑

U

p∣U ∣qn−∣U ∣(q
p
)

2∣S∩U ∣−∣S∣

=∑
U

p∣U ∣+∣S∣−2∣S∩U ∣qn−∣U ∣−∣S∣+2∣S∩U ∣

=∑
U

p∣U∆S∣qn−∣U∆S∣ =∑
U

p∣U ∣qn−∣U ∣ = 1.

If S ≠ T then, without loss of generality, there is an element i ∈ S ∖ T . In this case we have

⟨χS,p, χT,p⟩p = ∑
U⊆[n]∖{i}

p∣U ∣qn−∣U ∣(−q
p
)
∣S∩U ∣+∣T∩U ∣

√
p

q

∣S∣+∣T ∣

+ p∣U ∣+1qn−∣U ∣−1(−q
p
)
∣S∩U ∣+1+∣T∩U ∣

√
p

q

∣S∣+∣T ∣

= ∑
U⊆[n]∖{i}

p∣U ∣qn−∣U ∣(−q
p
)
∣S∩U ∣+∣T∩U ∣

√
p

q

∣S∣+∣T ∣

(1 + p
q
⋅ (−q

p
)) = 0.

In Section 2.6.1 we present a construction of the p-skewed Fourier characters using tensor

products, which will serve to demystify the explicit formula.

We have the following weakened form of Lemma 2.4.

Lemma 2.16. Let S,T ⊆ [n]. If S ∩ T = ∅ then χS,pχT,p = χS∪T,p.

Proof. Easy calculation.
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As before, we can expand every function in the new Fourier basis:

f = ∑
S⊆[n]

f̂p(S)χS,p.

This operation is known as the p-skewed Fourier transform, and the functions χS are known as

the p-skewed Fourier characters of basis vectors. When p is clear from context, we will just say

skewed Fourier transform, and drop the subscript p from f̂p and χS,p.

Here are the analogues of Lemma 2.6, Lemma 2.7 and Lemma 2.8.

Lemma 2.17 (Parseval’s identity). Let f, g be functions on n bits. We have

⟨f, g⟩p =∑
S

f̂p(S)ĝp(S).

In particular,

∥f∥2
p =∑

S

f̂p(S)2.

Moreover, f̂(S) = ⟨f,χS,p⟩p.

Proof. This follows directly from orthonormality.

Lemma 2.18. Let f be a Boolean function on n bits. Then

f̂(∅) =∑
S

f̂p(S)2 = µp(f).

Proof. Since χ∅ is the constant 1 vector, f̂p(∅) = Ex∼µp f(x) = µp(f). Since f is Boolean,

∥f∥2
p = Ex∼µp f(x)2 = Ex∼µp f(x) = µp(f). The proof is complete using Parseval’s identity.

Lemma 2.19. Let f be a function on n bits which depends only on a subset S of the coordinates.

For any T ⊈ S, f̂p(T ) = 0.

Proof. Suppose that f does not depend on the ith coordinate, and i ∈ T . Then

f̂p(T ) = ∑
S⊆[n]

µp(S)f(S)(−
q

p
)
∣S∩T ∣

√
p

q

∣T ∣

= ∑
S⊆[n]∖{i}

µp(S)(−
q

p
)
∣S∩T ∣

√
p

q

∣T ∣

[qf(S) + p ⋅ (−q
p
)f(S ∪ {i})] = 0,

since f does not depend on xi.
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2.6 Tensor products

The mysterious construction of the Fourier characters with respect to the µp measure becomes

clearer when its tensorial structure is revealed. In this section, we provide a short introduction

to tensor products of vectors and matrices, culminating in the construction of the µp measure.

Tensor products of matrices will be crucial in Chapters 3 and Chapter 4.

Suppose f is a function on one bit, which we identify with the column vector

f =
⎛
⎜⎜
⎝

f(0)

f(1)

⎞
⎟⎟
⎠
.

Consider the linear operator of replacing f with a constant function whose value is always

(f(0) + f(1))/2. This operator, which we call averaging, can be described by a matrix

A =
⎛
⎜⎜
⎝

1/2 1/2

1/2 1/2

⎞
⎟⎟
⎠
.

Now consider a function g on two bits, which we identify with the column vector

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g(0,0)

g(0,1)

g(1,0)

g(1,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The two operators of averaging over the first coordinate and over the second coordinate are

described by matrices

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The operator A1 operates on g to produce the function g1(x, y) = (g(0, y) + g(1, y))/2, and A2

operates on g to produce g2(x, y) = (g(x,0) + g(x,1))/2. If we apply both A1 and A2 on g, in

any order, we get a constant function whose value is always (g(0,0)+g(0,1)+g(1,0)+g(1,1))/4;

we say that A1 and A2 commute, since A1A2 = A2A1.
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We can think of the operator A1 as splitting g into two functions g(x,0) and g(x,1), and

applying A on each of the slices. Similarly, A2 splits g into two functions g(0, y) and g(1, y),

and applies A on both slices.

More generally, consider the space of functions on n +m bits. Suppose we have a linear

operator B which acts on functions on n bits, and a linear operator C which acts on functions

on m bits. We can lift B to functions on n +m bits by applying B separately to each of the

2m slices formed by fixing the last m coordinates. This function is denoted B ⊗ I2m (here I2m

represents the identity function on 2m values). Similarly, we can lift C to functions on n +m

bits by applying it separately to each of the 2n slices formed by fixing the first n coordinates.

This function is denoted by I2n ⊗C. The two linear operators commute, and we define

B ⊗C = (B ⊗ I2m)(I2n ⊗C) = (I2n ⊗C)(B ⊗ I2m).

The reader can check that if we take C = I2m then we indeed get B ⊗ I2m , per its previous

definition. The linear operator B ⊗C is called the tensor product of B and C.

Coming back to our previous example, A1 = A⊗ I2, A2 = I2 ⊗A, and A1A2 = A2A1 = A⊗A.

We also write A⊗A as A⊗2, the second tensor power of A.

Suppose the function g of our running example depended only on the first coordinate, that

is, g(x, y) = f(x) for some function f on one bit. In that case, A1g depends only on Af , and

(A1g)(x, y) = (Af)(x). This example can be generalized. Suppose f1, f2 are two functions on

one bit, and let g(x, y) = f1(x)f2(y). In this case we have (A1g)(x, y) = (Af1)(x)f2(y). More

generally, for any two linear operators B,C acting on one-bit functions,

((B ⊗C)g)(x, y) = (Bf1)(x)(Cf2)(y).

We say that g is the tensor product of f1 and f2, in symbols g = f1 ⊗ f2.

The definition generalized easily into the case where f1 is a function on n bits, f2 is a

function on m bits, B acts on n-bit functions, and C acts on m-bit functions. The function

f1 ⊗ f2 on n +m bits is defined by

(f1 ⊗ f2)(x, y) = f1(x)f2(y), x ∈ {0,1}n, y ∈ {0,1}m,
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and we have the identity

(B ⊗C)(f1 ⊗ f2) = (Bf1)⊗ (Cf2).

A similar property holds for the (usual) inner product of two functions. If f1, g1 are functions

on n bits and f2, g2 are functions on m bits then

∑
x,y

(f1 ⊗ f2)(x, y)(g1 ⊗ g2)(x, y) =∑
x,y

f1(x)f2(y)g1(x)g2(y)

= (∑
x

f1(x)g1(x))
⎛
⎝∑y

f2(y)g2(y)
⎞
⎠
.

We are interested in the tensor product due to the following elementary result, which allows

us to determine the eigenvalues and eigenvectors of a tensor product in terms of the eigenvalues

and eigenvectors of its constituents.

Lemma 2.20. If Av = λv and Bu = µu then (A⊗B)(u⊗ v) = λµ(u⊗ v).

Another property which will be useful is the following result concerning linear independence.

Lemma 2.21. Suppose v1, . . . , vn are linearly independent vectors of length N , and u1, . . . , um

are linearly independent vectors of length M . The nm vectors vi ⊗ uj of length NM are also

linearly independent.

Proof. Let V be the n×N matrix whose rows are the vectors v1, . . . , vn, and define U similarly.

Since v1, . . . , vn are linearly independent, V has a right inverse RV , which is an N × n matrix

satisfying V RV = In. Similarly, U has a right inverse RU . The matrix V ⊗ U contains the nm

vectors vi ⊗ uj as rows, and has a right inverse RV ⊗RU , showing that the vectors vi ⊗ uj are

linearly independent.

2.6.1 Tensorial construction of the Fourier transform

The Fourier basis vectors are examples of vectors constructed using tensor products. Consider

the ordinary Fourier transform, described in the beginning of Section 2.5. The two building

blocks are

ψ0(x) = 1, ψ1(x) = (−1)x.
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For functions on n bits, the Fourier basis vectors χ
[n]
x , where x ∈ {0,1}n, are defined by

χ[n]
x =

n

⊗
i=1

ψxi .

Indeed, the resulting function is

χ[n]
x (y) =

n

∏
i=1

ψxi(yi) = (−1)∑i xiyi .

The fact that the functions χ
[n]
x are orthonormal follows from the fact that the functions ψ0, ψ1

are. The derivation uses the fact that the underlying measure µ itself is a tensor power (as a

function from sets to R): µ[n] = (µ[1])⊗n, where µ[n] is the uniform measure for functions on n

bits. Lemma 2.8, which describes the Fourier transform of functions that do not depend on all

their arguments, also follows essentially from the tensorial construction of the Fourier basis.

This point of view allows us to explain where the skewed Fourier basis vectors, described

in Section 2.5.2, come from. We want to find two one-bit functions ψ0,p, ψ1, which form an

orthonormal basis with respect to µ
[1]
p . In order for the analog of Lemma 2.8 to hold, we need

ψ0,p to be constant (that is clear from considering the case n = 1). Since µ
[1]
p is a probabil-

ity measure and ψ0,p needs to have unit norm, we can conclude that ψ0,p = 1. As for ψ1,p,

orthonormality imposes the two equations (recall q = 1 − p)

qψ1,p(0)2 + pψ1,p(1)2 = 1,

qψ1,p(0) + pψ1,p(1) = 0.

Substituting the second equation into the first, we deduce that ψ1,p(0) = ±
√
p/q. In order to be

compatible with the case p = 1/2, we choose ψ1,p(0) =
√
p/q, and then ψ1,p(1) = −

√
q/p. The

diligent reader can check that if we define

χx,p =⊗
i

ψxi,p

then we get the same skewed Fourier basis as in Section 2.5.2.

A generalization of this construction in terms of reversible Markov chains appears in [16].
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2.7 Structure theorems for Boolean functions on the Boolean

cube

Friedgut’s method for intersection problems, described in Chapter 3, relies on structure the-

orems for Boolean functions on {0,1}n (which is also known as the Boolean cube) in order

to prove stability. The simplest theorem, due to Friedgut, Kalai and Naor [42], states that

a Boolean function whose Fourier spectrum is concentrated on the first two levels is close to

a dictatorship. The original theorem concerned the µ measure. Kindler and Safra [64, 63]

generalized the theorem to the µp measure for arbitrary p.

Theorem 2.22 (Friedgut–Kalai–Naor). For every p ∈ (0,1) there is a constant Cp such that

the following is true. If f is a Boolean function satisfying

∑
∣S∣>1

f̂p(S)2 < ε,

then there is some Boolean function g which depends on at most one coordinate such that

∥f − g∥2
p < Cpε.

This theorem has many proofs: the original paper [42] already contained two different proofs,

and Kindler and Safra [64, 63] contributed another one.

Kindler and Safra [64, 63] extended Friedgut–Kalai–Naor to functions whose Fourier spec-

trum is concentrated on the first k + 1 levels. In contrast to the case k = 1, for k ≥ 2 it is

no longer the case that we can approximate such a function with a function depending on k

coordinates. For example, the not-all-equal function on three inputs has the Fourier expansion

nae3(x, y, z) =
3

4
χ∅ −

1

4
χ{x,y} −

1

4
χ{x,z} −

1

4
χ{y,z}.

While the Fourier expansion is supported on the first 2 + 1 levels, nae3 depends strongly on all

its coordinates. This phenomenon is not without bounds: Nisan and Szegedy [68] proved that

a function whose Fourier spectrum is supported on the first k+1 levels depends on at most k2k

coordinates. Moreover, it turns out that if the Fourier spectrum is concentrated on the first

k + 1 levels, we can always find a good approximation which depends on Ok(1) coordinates.
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Theorem 2.23 (Kindler–Safra [63]). For every p ∈ (0,1) and every k ≥ 1 there are constants

Cp,k,Mp,k such that the following is true. If f is a Boolean function satisfying

∑
∣S∣>k

f̂p(S)2 < ε,

then there is some Boolean function g which only depends on Mp,k coordinates such that ∥f −

g∥2
p < Cp,kε. Furthermore, the constants Cp,k,Mp,k are continuous functions of p.

Kindler and Safra do not make explicit the fact that the constants Cp,k,Mp,k are continuous

in p. However, both are continuous functions of the parameter δ−2
p = 1+ (p(1− p))−1/2, which is

the Bonami–Beckner constant for the µp measure [69].
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Friedgut’s method

Ehud Friedgut has developed a principled method for proving Erdős–Ko–Rado-like results using

Fourier analysis. The method first appears in this context in [40], in which Friedgut proves a

generalization of Erdős–Ko–Rado: if F is a t-intersecting family of sets and p ≤ 1/(t + 1) then

µp(F) ≤ pt (a t-intersecting family is one in which any two sets intersect in at least t points; an

intersecting family is a 1-intersecting family). The second application is to intersecting families

of permutations, together with Ellis and Pilpel [28]. They show that a t-intersecting family of

permutations on n points contains at most (n − t)! permutations, when n is large enough (two

permutations are t-intersecting if they agree on at least t points). We discuss the case t = 1

of this result briefly in Chapter 7. The third application, to triangle-intersecting families of

graphs, is the subject of the following chapter.

Friedgut’s research program was initiated in his earlier paper with Alon, Dinur and Sudakov

on graph products [4]. Since this is a particularly simple example, we start our exposition of

Friedgut’s method by solving the traffic light puzzle described in that paper. Following that, we

reproduce his proof of the Erdős–Ko–Rado theorem. The chapter continues with a discussion

on how results utilizing the µp measure are related to results on uniform families of sets (families

in which each set contains the same prescribed number of elements). In particular, we relate

Friedgut’s method to a method due to Lovász [66, 37] and Wilson [79]. The chapter concludes

with a short comparison of Friedgut’s method and the Lovász theta function.

25



Chapter 3. Friedgut’s method 26

3.1 Traffic light puzzle

A (red-yellow-green) traffic light is controlled by n tristate switches, in such a way that if you

change the state of all the switches, then the color of the traffic light always changes. Show

that the light is controlled by a single switch. This puzzle appears in a paper by Greenwell and

Lovász [46], where the solution uses induction on n. In this section, we solve the puzzle using

Fourier analysis, following [4].

We can identify the set of states of the switches with Zn3 . Let f, g, h be the characteristic

functions corresponding to the states in which the traffic light is red, yellow, green (respectively).

Let A be a 3n × 3n matrix indexed by Zn3 in which Axy = Jxi ≠ yi for all iK. If the current light

is red and we change the state of all the switches, then the new light is not red. Therefore, if

we regard f as a column vector,

f ′Af = 0. (3.1)

(Here f ′ is the transpose of f .) Another way of stating this is that any two switch positions in

which the traffic light is red must agree on the position of at least one switch. This condition

is similar to the condition satisfied by intersecting families of sets.

We are now going to show that the Fourier characters are the eigenvectors of A. This will

enable us to deduce from (3.1) information on the Fourier expansion of f . Let x ∈ Zn3 , and recall

from Section 2.5.1 that χx(y) = ω∑i xiyi , where ω = e2πi/3 is a primitive third root of unity. We

have

(Aχx)y = ∑
z∈Zn3

Ayzχx(z)

= ∑
z1≠y1

⋯ ∑
zn≠yn

χx(z)

= ∑
z1≠y1

ωx1z1⋯ ∑
zn≠yn

ωxnzn .

Each of the factors in the sum above is equal to

∑
zi≠yi

ωxizi =
⎛
⎝ ∑zi∈Z3

ωxizi
⎞
⎠
− ωxiyi .

Now there are two possibilities. If xi = 0, then the sum is equal to 2 = 2ωxiyi . Otherwise, it is

equal to −ωxiyi . Let ∣x∣ be the number of coordinates such that xi ≠ 0. In total, we conclude
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that

(Aχx)y = (−1)∣x∣2n−∣x∣
n

∏
i=1

ωxiyi = 2n (−1

2
)
∣x∣

χx(y).

In other words, χx is an eigenvector of A with eigenvalue depending on ∣x∣:

Aχx = λ∣x∣χx, λk = 2n (−1

2
)
k

.

Consider now what happens to the Fourier expansion of f after applying A:

Af = A ∑
x∈Zn3

f̂(x)χx

= ∑
x∈Zn3

f̂(x)Aχx

= 2n ∑
x∈Zn3

(−1

2
)
∣x∣

f̂(x)χx.

In other words, the Fourier expansion of Af is given by

Âf (x) = 2n (−1

2
)
∣x∣

f̂(x). (3.2)

Parseval’s identity (Lemma 2.12), together with the fact that f is real, implies that

f ′Af = ⟨Af, f⟩ = ∑
x∈Zn3

2n (−1

2
)
∣x∣

∣f̂(x)∣2.

Combining this with equation (3.1), we get

∑
x∈Zn3

(−1

2
)
∣x∣

∣f̂(x)∣2 = 0. (3.3)

At this point, we appeal to the properties in Lemma 2.13:

µ(f) = f̂(∅) = ∑
x∈Zn3

∣f̂(x)∣2.

(Recall ∅ is identified with the zero vector of length n.) The idea is to consider (3.3) stated in

the following form:

∣f̂(∅)∣2 = ∑
x≠∅

−(−1

2
)
∣x∣

∣f̂(x)∣2. (3.4)

The left-hand side is equal to µ(f)2. On the right hand side, we have the squared norms of

the non-empty Fourier coefficients, scaled by the negated eigenvalues −2−nλ∣x∣. The right-hand

side has to balance exactly the left-hand side. The squared norms in the right-hand side sum
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to µ(f) − µ(f)2, and the negated eigenvalues are at most 1/2. Therefore the maximum value

that can be achieved by the right-hand side is (µ(f) − µ(f)2)/2, and we get the inequality

µ(f)2 ≤ µ(f) − µ(f)
2

2
. (3.5)

Algebra now yields µ(f) ≤ 1/3. The general idea of getting an upper bound on µ(f) via spectral

methods, crucial to Friedgut’s method, is due to Hoffman [50].

The same argument which gives µ(f) ≤ 1/3 also gives µ(g), µ(h) ≤ 1/3. On the other hand,

clearly µ(f) + µ(g) + µ(h) = 1, and we conclude that µ(f) = µ(g) = µ(h) = 1/3, that is, the

function mapping switch states to traffic light color is balanced.

If µ(f) = 1/3 then (3.5) is tight. This means that the right-hand side of (3.4) reaches

its maximum. Following our reasoning, this can happen only if f̂(x) = 0 for ∣x∣ ≥ 2, since

−2−nλk = −(−1/2)k < 1/2 for k ≥ 2. In other words, the Fourier expansion of f is supported on

the first two levels, and f has the general form

f = 1

3
χ∅ + ∑

∣x∣=1

f̂(x)χx.

Since f is Boolean, f2 = f . We can calculate the Fourier expansion of f2 using Lemma 2.10. Let

ei ∈ Zn3 denote the vector whose only non-zero coordinate is (ei)i = 1. For i ≠ j and c, d ∈ {1,2},

the lemma shows that χceiχdej = χdejχcei = χcei+dej , and furthermore these are the only ways

in which χcei+dej arises in f2. Therefore

f̂2(cei + dej) = 2f̂(cei)f̂(dej).

Since f = f2, this must be equal to zero. Taking c = d = 1, we get that for any two i ≠ j,

either f̂(ei) = 0 or f̂(ej) = 0. That can only be the case if f̂(ei) ≠ 0 for at most one value of i.

Considering other values of c, d, we get that f has the general form

f = 1

3
χ∅ + f̂(ei)χei + f̂(2ei)χ2ei .

Therefore f depends only on one coordinate, namely i. The functions g, h also depend only on

one coordinate, which must be the same, since otherwise the corresponding sets are not disjoint.

We conclude that the traffic light depends only on the switch i.
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3.2 Erdős–Ko–Rado using Fourier analysis

The solution of the traffic light puzzle given in the preceding section is a particularly simple

example of Friedgut’s method. In this section, we present Friedgut’s proof of the Erdős–Ko–

Rado theorem and one of its generalizations. Ingredients of this proof will be used in Chapter 4.

Friedgut’s method in a nutshell. Let us present the solution to the traffic light puzzle

in more abstract terms. We started with a family F we wanted to analyze (the set of switch

configurations resulting in a red light) and its characteristic function f . We found a matrix

A such that if F is intersecting (doesn’t contain two configurations that differ on all switches)

then

f ′Af = 0. (3.6)

The reason that this equation holds is that for any two intersecting elements (switch configu-

rations) x, y, we have

Axy = 1′{x}A1{y} = 0.

Equation (3.6), in turn, is equivalent to an equation

∑
x

λx∣f̂(x)∣2 = 0. (3.7)

This is the case since the Fourier basis vectors are the eigenvectors of A. In fact, the symmetry

of the construction of A implies that λx depends only on ∣x∣. In order to derive an upper bound

on ∣F ∣, we apply the following elementary lemma (due to Hoffman [50]).

Lemma 3.1 (Hoffman’s bound). Let λS , xS ∈ R for S ranging over some arbitrary index set

containing ∅. Suppose that the following two equations hold, for some m ∈ R:

m = x∅ =∑
S

x2
S ,

∑
S

λSx
2
S = 0.

Let λmin = minS λS be the minimal eigenvalue and let λ2 = minS∶λS>λmin
be the second smallest

eigenvalue.

Upper bound: We have m ≤mmax, where mmax =
−λmin

λ∅ − λmin
.
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Uniqueness: If m =mmax then xS = 0 unless S = ∅ or λS = λmin.

Stability: If m ≠ 0 then

∑′

S

x2
S ≤

−λmin

λ2 − λmin
(mmax −m),

where the primed sum ranges over all S ≠ ∅ such that λS ≠ λmin.

Proof. The first equation implies that ∑S≠∅ x2
S =m −m2. The second equation gives

0 =∑
S

λSx
2
S ≥ λ∅m2 + λmin(m −m2).

We can assume m ≠ 0, and so we can divide by m to obtain

0 ≥ λ∅m + λmin(1 −m) = λmin + (λ∅ − λmin)m.

The upper bound immediately follows, as does uniqueness. (Note that if λ∅ = λmin then the

second equation cannot possibly hold.)

In order to derive stability, we split the sum in the second equation into three parts:

0 =∑
S

λSx
2
S ≥ λ∅m2 + λmin ∑

S∶λS=λmin

x2
S + λ2∑′

S

x2
S .

Let ∑′

S
x2
S = rm. Dividing by m,

0 ≥ λ∅m + λmin(1 −m − r) + λ2r

= λmin + (λ∅ − λmin)m + (λ2 − λmin)r

= (λ∅ − λmin)(m −mmax) + (λ2 − λmin)r.

Therefore

r ≤ λ∅ − λmin

λ2 − λmin
(mmax −m).

The stability bound, which is a bound on rm, follows from

(λ∅ − λmin)m ≤ (λ∅ − λmin)mmax = −λmin.

In our case, m = µ(F) and xS = ∣f̂(S)∣, and the first equation holds due to Lemma 2.6 or one

of its analogues. For the traffic light puzzle, λ∅ = 1 and λmin = −1/2, and so we get the bound
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m ≤ (1/2)/(1 + 1/2) = 1/3. Also, λS = λmin for ∣S∣ = 1, from which we deduce the structure of

tight solutions.

Hoffman’s bound also contains a third part, stability. While this part isn’t needed for solving

the traffic light puzzle, we will use it to derive the stability version of Erdős–Ko–Rado.

We proceed to give Friedgut’s proof of the Erdős–Ko–Rado theorem, following his paper [40].

We will prove the Erdős–Ko–Rado theorem in the following form: if F is an intersecting family

of sets (of arbitrary size) and p ≤ 1/2 then µp(F) ≤ p. (Recall that a family F is intersecting

if any two sets in F intersect.) Section 3.5 explains the connection to the usual formulation of

the Erdős–Ko–Rado theorem, which was given in Chapter 1.

Since we are interested in the µp-measure of F , the eigenvectors of the operator A which we

propose to construct should be the p-skewed Fourier basis vectors, described in Section 2.5.2.

This will allow us to apply Lemma 2.17 and obtain a bound on µp(F). Following Friedgut’s

method, we need Axy = 0 whenever x, y intersect.

In order to construct the operator A, we focus on the case n = 1. The operator A[1] needs

to have the form

A[1] =
⎛
⎜⎜
⎝

α β

γ 0

⎞
⎟⎟
⎠
.

The two eigenvectors are

χ
[1]
∅,p =

⎛
⎜⎜
⎝

1

1

⎞
⎟⎟
⎠
, χ

[1]
{1},p

=
⎛
⎜⎜
⎝

√
p/q

−
√
q/p

⎞
⎟⎟
⎠
, q = 1 − p.

Hoffman’s bound is oblivious to multiplication by any positive constant, and intuitively we

should get a better bound if λ∅ is positive. We arbitrarily set λ∅ = 1, which implies that γ = 1

and β = 1 − α. Therefore

A[1]χ
[1]
{1},p

=
⎛
⎜⎜
⎝

1 − β β

1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

√
p/q

−
√
q/p

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

−(
√
p/q +

√
q/p)β +

√
p/q

√
p/q

⎞
⎟⎟
⎠
.

For this to be a multiple of χ
[1]
{1},p

, we must have

−(
√
p/q +

√
q/p)β +

√
p/q =

√
p/q

−
√
q/p

⋅
√
p/q = −(p/q)

√
p/q.
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Carrying the calculation out,

β =
√
p/q + (p/q)

√
p/q

√
p/q +

√
q/p

= 1 + p/q
1 + q/p = p

q
.

The corresponding eigenvalue can be gleaned from the second entry, namely

λ{1} =
√
p/q

−
√
q/p

= −p
q
.

Concluding, we have proved the following lemma.

Lemma 3.2. Let A[1] be the matrix defined by

A[1] =
⎛
⎜⎜
⎝

1 − p/q p/q

1 0

⎞
⎟⎟
⎠
.

The matrix has two eigenvectors: χ
[1]
∅ with eigenvalue λ∅ = 1 and χ

[1]
{1}

with eigenvalue λ{1} =

−(p/q).

In order to construct the matrix A for general n, we simply take the nth tensor power of A,

and use Lemma 2.20 to determine all the eigenvectors and eigenvalues of A.

Lemma 3.3. Let n ≥ 1 be an integer, and A[n] = (A[1])⊗n. The eigenvectors of A[n] are χ
[n]
S,p for

S ⊆ [n], with corresponding eigenvalues λS = (−(p/q))∣S∣. Furthermore, if S,T ⊆ [n] intersect

then 1′SA
[n]1T = 0.

Proof. The claim about the eigenvectors and eigenvalues follows directly from Lemma 3.2 by

way of Lemma 2.20 (see Section 2.6). For the other claim, notice that

1
[n]
S =

n

⊗
i=1

1
[1]
S∩{i}

, 1
[n]
T =

n

⊗
i=1

1
[1]
T∩{i}

,

where we identify {i} with {1} on the right-hand side. The formulas for tensor products

described in Section 2.6 imply that

(1[n]
S )′A[n]1

[n]
T =

n

∏
i=1

(1S∩{i})
′A[1]1T∩{i}.

The factor corresponding to any i ∈ S∩T in this product is zero, and the second claim follows.

The fact that the eigenvectors of A[n] are the p-skewed Fourier basis vectors allows us to

obtain an analogue of (3.7).
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Lemma 3.4. Let F be an intersecting family on n points, and f its characteristic function.

For every p ∈ [0,1) and q = 1 − p,

∑
S⊆[n]

λS f̂
2
p (S) = 0, where λS = (−p

q
)
∣S∣

. (3.8)

Proof. First, we claim the analogue of (3.6), namely

⟨A[n]f, f⟩p = 0. (3.9)

Indeed,

⟨A[n]f, f⟩p = ∑
S,T ∈F

⟨A[n]1S ,1T ⟩p = ∑
S,T ∈F

µp(T )1′TA[n]1S = 0,

using Lemma 3.3 and the fact that F is intersecting.

Consider the Fourier expansion of f ,

f = ∑
S⊆[n]

f̂p(S)χ[n]
S,p.

Applying A[n], we get (using Lemma 3.3)

A[n]f = ∑
S⊆[n]

λS f̂p(S)χ[n]
S,p.

The orthonormality of the Fourier characters now immediately implies (3.8).

At this stage, we can already derive the upper bound in Erdős–Ko–Rado.

Lemma 3.5. Let F be an intersecting family on n points. For every p ≤ 1/2, µp(F) ≤ p.

Proof. When p ≤ 1/2, p ≤ q, and so minS λS = −p/q. Applying Hoffman’s bound using xS = f̂p(S)

and m = µp(F), we deduce that

µp(F) ≤ p/q
1 + p/q = p.

When p < 1/2, the eigenvalue λS decreases in magnitude with ∣S∣, and so we can apply

Hoffman’s bound to deduce the structure of the Fourier expansion of 1F when µp(F) = p. In

order to conclude that F is a star, we need the following result.

Lemma 3.6. Suppose f is a Boolean function on n bits whose p-skewed Fourier expansion (for

some p ∈ (0,1)) is supported on the first two levels, that is f̂p(S) = 0 for ∣S∣ > 1. Then either f

is constant or it depends on one coordinate.
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Proof. The Fourier expansion of f is

f = f̂(∅) +
n

∑
i=1

f̂({i})χ{i}.

Since f is Boolean, f2 = f , where

f2 = f̂(∅) +
n

∑
i=1

[f̂({i})2χ2
{i} + 2f̂(∅)f̂({i})χ{i}] + 2∑

i<j

f̂({i})f̂({j})χ{i,j},

using Lemma 2.16. Since χ2
{i} depends only on coordinate i, its Fourier expansion is supported

by the coefficients at ∅ and {i}. Therefore the only contribution to f̂2({i, j}) is f̂({i})f̂({j}),

and we conclude that f̂({i})f̂({j}) = 0. This implies that f̂({i}) ≠ 0 for at most one index i,

and so either f is constant or it depends only on i.

Uniqueness now follows from the uniqueness part of Hoffman’s bound.

Lemma 3.7. Let F be an intersecting family on n points, and p ∈ (0,1/2). Then µp(F) = p if

and only if F is a star.

Proof. If F is a star then it is easy to check that µp(F) = p for all p. Now suppose p < 1/2 and

µp(F) = p. Since p < 1/2, p/q < 1, and so λS = λmin only for singletons. The uniqueness part of

Hoffman’s bound implies that the p-skewed Fourier expansion of 1F is supported on the first

two levels. Lemma 3.6 implies that F depends on at most one point. Since F is a non-empty

intersecting family, it must be a star.

In order to derive stability, we simply replace Lemma 3.6 with the much stronger Friedgut–

Kalai–Naor theorem (Theorem 2.22 on page 23).

Lemma 3.8. Let F be an intersecting family on n points, and p ∈ (0,1/2). If µp(F) ≥ p − ε

then µp(F∆G) = Op(ε) for some star G.

Proof. We can assume that n ≥ 3 and that ε is “small enough”. For large ε, we can choose the

implied constant in Op(ε) so that the result holds trivially for any choice of G.

When p < 1/2, p/q < 1 and so λ2 = −(p/q)3. Since λ2 and λmin don’t depend on n, the

stability part of Hoffman’s bound implies that

∑
∣S∣>1

f̂p(S)2 = Op(ε),
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where f = 1F . Theorem 2.22 implies that ∥f − g∥2
p = Op(ε) for some Boolean function g

depending on at most one coordinate. Since ∥f − 0∥2
p = µp(F) ≥ p − ε and ∥f − 1∥2

p ≥ 1 − p,

if ε is small enough then g cannot be constant. Thus either g or 1 − g is the characteristic

function of a star. If 1 − g is the characteristic function of a star then ∥g∥2
p = 1 − p and so

∥f − g∥2
p ≥ (∥f∥p − ∥g∥p)2 ≥ (

√
1 − p−√

p)2, which again cannot happen if ε is small enough. We

conclude that g is the characteristic function of a star, and so we can take G to be the family

satisfying g = 1G .

Putting all three parts together, we obtain a stability version of Erdős–Ko–Rado.

Theorem 3.9. Let F be an intersecting family on n points, and p ≤ 1/2.

Upper bound: µp(F) ≤ p.

Uniqueness: If p < 1/2, then µp(F) = p if and only if F is a star.

Stability: If p < 1/2 and µp(F) ≥ p − ε then µp(F∆G) = Op(ε) for some star G.

We remark that other stability versions exist, see for example Keevash and Mubayi [60]

(who use a result of Frankl [35]) and Keevash [59].

3.3 t-intersecting families

Friedgut’s paper [40] goes on to prove a generalization of Erdős–Ko–Rado to t-intersecting

families, which are families in which any two sets contain at least t points in common. The

generalization is as follows. For every p ≤ 1/(t + 1), if F is t-intersecting then µp(F) ≤ pt;

when p < 1/(t+ 1), this is tight only for t-stars, and we have stability. For a discussion of what

happens when p > 1/(t + 1), see Section 10.1.

Friedgut originally phrased his proof in terms of rings satisfying Xt = 0. Later on, he found

a more elementary presentation [41], which we follow here.

The proof of Lemma 3.5 uses the following properties of A to deduce the upper bound part

of Erdős–Ko–Rado:

• For every intersecting family F , f ′Af = 0, where f = 1F .
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• The eigenvectors of F are the p-skewed Fourier characters χS,p.

• The eigenvalue corresponding to χ∅,p is 1.

• When p ≤ 1/2, all other eigenvalues are at least −p/q.

In our case, we want to get a bound of pt instead of p, and so we need to construct a matrix

At with the following properties:

• For every t-intersecting family F , f ′Atf = 0, where f = 1F .

• The eigenvectors of F are the p-skewed Fourier characters χS,p.

• The eigenvalue corresponding to χ∅,p is 1.

• When p ≤ 1/(t + 1), all other eigenvalues are at least −pt/(1 − pt).

We construct At in two stages. First, we find a large linear space of matrices satisfying the

first two properties. Then, we identify a matrix inside this linear space which satisfies the other

two properties. To this end, we make the following definition.

Definition 3.1. Let n ≥ 1 be an integer and p ∈ (0,1). We say that a matrix B is admissible

for n, p if it satisfies the following two properties:

Intersection property If ∣S ∩ T ∣ ≥ t for some S,T ⊆ [n] then 1′SB1T = 0.

Eigenvector property The eigenvectors of F are the p-skewed Fourier characters χS,p. ◯

Fix n and p, and let q = 1 − p. We already know one matrix which is admissible, namely

the matrix A[n] = (A[1])⊗n constructed in the preceding section. The eigenvector property is

satisfied because the eigenvectors of each of the factors A[1] are the one-dimensional p-skewed

Fourier characters. Furthermore, the zero in the bottom-right corner of the ith factor A[1]

guarantees that 1′SA
[n]1T = 0 whenever i ∈ S ∩ T .

If S,T are t-intersecting, then we know that for all sets J ⊆ [n] of size at most t−1, the sets

S∖J,T ∖J intersect. Therefore if we replace up to t−1 factors A[1] with arbitrary other factors,

then the intersection property still holds. If the eigenvectors of each of these other factors are
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the one-dimensional p-skewed Fourier characters, as is the case for the identity matrix, for

example, then the eigenvector property holds. This gives us a large collection of admissible

matrices.

Lemma 3.10. Let J ⊆ [n] be a set of size ∣J ∣ < t. Define

BJ,i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A[1], if i ∉ J,

I2, if i ∈ J,

BJ =
n

⊗
i=1

BJ,i.

Here I2 is the 2 × 2 identity matrix. The matrix BJ is admissible, and the eigenvalue corre-

sponding to χS,p is

λJ,S = (−p
q
)
∣S∖J ∣

.

Proof. The eigenvector property and the formula for the eigenvalues follow directly from Lemma 3.2

by way of Lemma 2.20. For the intersection property, recall that

1
[n]
S =

n

⊗
i=1

1
[1]
S∩{i}

, 1
[n]
T =

n

⊗
i=1

1
[1]
T∩{i}

.

The formulas for tensor products described in Section 2.6 imply that

(1[n]
S )′BJ1

[n]
T =∏

i∈J

(1S∩{i})
′BJ,i1T∩{i}.

If ∣S ∩ T ∣ ≥ t then there must be some i ∈ (S ∩ T ) ∖ J . Then BJ,i = A[1], and the factor

corresponding to i in the product is zero, proving the intersection property.

Given an admissible matrix B with given λ∅ and λmin, we can create another admissible

matrix with the same (or better) properties using the process of symmetrization. For every

permutation π ∈ Sn, define π(B) in the natural way: π(B)S,T = Bπ(S),π(T ), and let B′ =

Eπ π(B). It is easy to check that λ∅(B′) = λ∅(B) and λmin(B′) ≥ λmin(B). We conclude that

it is enough to focus on symmetric admissible matrices. Applying the same process to the BJ ,

we get a dramatically smaller collection of symmetric admissible matrices.

Lemma 3.11. Let k < t, and define

Bk = (n
k
)
−1

∑
J⊂[n]∶∣J ∣=k

BJ .
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The matrix Bk is admissible, and the eigenvalue corresponding to χS,p is

λk,S = (−p
q
)
∣S∣

Pk(∣S∣),

where Pk is some polynomial of degree k (which depends on p).

Proof. Given S, enumerating over all possible sizes of ∣S ∩ J ∣, we get

λk,S = (n
k
)
−1

(−p
q
)
∣S∣ k

∑
j=0

(∣S∣
j
)(n − ∣S∣

k − j )(−q
p
)
j

,

which leads to

Pk(s) = (n
k
)
−1 k

∑
j=0

(s
j
)(n − s
k − j)(−q

p
)
j

.

If we open up the binomial coefficients, we see that Pk is a polynomial of degree at most k.

Moreover, the coefficient of sk is

(n
k
)
−1 k

∑
j=0

1

j!

(−1)k−j
(k − j)! (−

q

p
)
j

= (n
k
)
−1

(−1)k
k

∑
j=0

1

j!(k − j)! (
q

p
)
j

≠ 0,

and so degPk = k.

This prompts the following definition.

Definition 3.2. Let B be an admissible matrix having the property that the eigenvalue λS(B)

corresponding to χS,p depends only on ∣S∣. The function Λ∶{0, . . . , n} → R defined by Λ(s) =

λ{1,...,s}(B) is called an admissible spectrum. ◯

Using this terminology, we can rephrase our goal: find an admissible spectrum satisfying

Λ(0) = 1 and Λ(s) ≥ −pt/(1 − pt) for s ∈ {1, . . . , n}. Lemma 3.11 gives us a large collection of

admissible spectra.

Lemma 3.12. Let P be an arbitrary polynomial of degree smaller than t. Then

ΛP (s) = (−p
q
)
s

P (s)

is an admissible spectrum.

Proof. Any linear combination of B0, . . . ,Bt−1 is admissible, and so the lemma follows immedi-

ately from Lemma 3.11.
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We are now left with the daunting task of engineering a polynomial P for which ΛP satisfies

the two properties listed above. The task gets much simpler if we consider what happens when

the family F is a t-star, say F = {S ⊆ [n] ∶ S ⊇ [t]}. In this case µp(F) = pt, and so the

uniqueness part in Hoffman’s bound implies that the Fourier transform of 1F is supported on

χ∅,p and χS,p for those S such that λS,p(B) = λmin(B) = −pt/(1 − pt), where B is the matrix

we are trying to construct. Let δ(x) = Jx = 1K be a one-bit delta function, and c(x) = 1 be the

constant one-bit function. For s ≤ t,

1̂
F
([s]) = ⟨δ⊗t ⊗ c⊗n−t, (χ[1]

{1}
)s ⊗ (χ[1]

∅ )n−s⟩p

= ⟨δ,χ[1]
{1}

⟩sp ⋅ ⟨δ,χ
[1]
∅ ⟩t−sp ⋅ ⟨c, χ[1]

∅ ⟩n−tp = (−√pq)spt−s.

In particular, 1̂
F
([s]) ≠ 0, and so λ[s],p(B) = −pt/(1 − pt). In terms of the spectrum Λ, it must

satisfy

Λ(0) = 1, Λ(1) = ⋯ = Λ(t) = − pt

1 − pt .

If Λ is of the form ΛP , then this gives us t+1 points of the polynomial P , which has t degrees of

freedom. So there is at most one polynomial P which satisfies all the equations, and our hope

is that for this P (if it exists), ΛP (s) ≥ −pt/(1 − pt) for all s.

Lemma 3.13. Let P be the unique polynomial of degree smaller than t satisfying P (s) =

(−q/p)s(−pt/(1 − pt)) for s = 1, . . . , t. Then P (0) = 1 and if p ≤ 1/(t + 1), (−p/q)sP (s) ≥

−pt/(1 − pt) for all integers s ≥ 0.

If furthermore p < 1/(t + 1), then (−p/q)sP (s) > −pt/(1 − pt) for s > t. Moreover, there is

a rational function Rt satisfying Rt(p) > −pt/(1 − pt) for all p < 1/(t + 1) such that for s > t,

(−p/q)sP (s) ≥ Rt(p).

Since the proof of the lemma is technical and unenlightening, we relegate it to Section 3.3.2.

Applying Hoffman’s bound, we get a wealth of information on the Fourier coefficients of

t-intersecting families.

Lemma 3.14. Let F be a t-intersecting family with characteristic function f = 1F , and let

p ≤ 1/(t + 1).

Upper bound: µp(F) ≤ pt.
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Uniqueness: If p < 1/(t + 1) and µp(F) = pt then the p-skewed Fourier expansion of f is

supported on the first t + 1 levels, that is f̂p(S) = 0 for ∣S∣ > t.

Stability: If p < 1/(t + 1) and µp(F) ≥ pt − ε then

∑
∣S∣>t

f̂2
p (S) = Op,t(ε).

Moreover, for each t, the hidden constant depends continuously on p.

Proof. Let B be an admissible matrix whose admissible spectrum is ΛP , where P is the poly-

nomial given by Lemma 3.13. Since B is admissible and F is t-intersecting,

⟨Bf, f⟩p = ∑
S,T ∈F

⟨B1S ,1T ⟩p = ∑
S,T ∈F

µp(T )1′TB1S = 0.

Writing f and Bf in the Fourier basis, we conclude

∑
S⊆[n]

ΛP (∣S∣)f̂2
p (S) = 0.

Let λS = ΛP (∣S∣). Lemma 3.13 shows that λ∅ = 1 and λmin = minS λS = −pt/(1 − pt), hence the

upper bound in Hoffman’s bound shows that µp(F) ≤ pt.

When p < 1/(t+1), Lemma 3.13 shows that λS = λmin only when ∣S∣ ≤ t, and so the uniqueness

part of Hoffman’s bound implies uniqueness. Furthermore, the lemma shows that the second

smallest eigenvalue is λ2 = Rt(p) for some rational function Rt satisfying Rt(p) > −pt/(1 − pt)

for all p < 1/(t + 1). Hoffman’s bound shows that if µp(F) ≥ pt − ε then

∑
∣S∣>t

f̂2
p (S) ≤

−λmin

λ2 − λmin
ε = pt/(1 − pt)

Rt(p) + pt/(1 − pt)
ε.

Since Rt(p) > −pt/(1 − pt) for all p < 1/(t + 1), the expression in front of ε is continuous.

In the preceding section, when µp(F) = p we were able to conclude that F is a star by

considering the Fourier expansion of f = 1F and using f2 = f . This time the argument is more

complicated, since it is not the case that if f̂p is supported on the first t+1 levels then f depends

on at most t coordinates; we gave a counterexample in Section 2.7 for t = 2. However, it is the

case if F is monotone and µp(F) ≤ pt.
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Lemma 3.15. Let F be a monotone family of sets on n points (if S ∈ F and T ⊇ S then

T ∈ F), and define f = 1F . Suppose that for some p ∈ (0,1) and integer t, the p-skewed Fourier

expansion of f is supported on the first t + 1 levels and µp(F) ≤ pt. If µp(F) = pt then F is a

t-star, and otherwise F = ∅.

Proof. The proof is by induction on n + t. The claim trivially holds when t = 0, so suppose

t ≥ 1. Define f0(x) = f(x,0) and f1(x) = f(x,1), and let the corresponding monotone families

be F0,F1. If F0 = F1 then f doesn’t depend on the last coordinate, and the result follows by

applying the inductive hypothesis to F0.

Otherwise, since µp(F0) ≤ µp(F1) by monotonicity, we deduce that µp(F0) < µp(F) ≤ pt.

Hence the induction hypothesis applied to F0 shows that F0 = ∅, and so F = {S ∪{n} ∶ S ∈ F1}.

Therefore

f̂p(S) = ∑
T ∈F

µp(T )χ[n]
S,p(T )

= ∑
T ∈F1

µp(T ∪ {n})χ[n]
S,p(T ∪ {n})

= ∑
T ∈F1

pµp(T )χ[n−1]
S∩[n−1],p

(T )χ[1]
Jn∈SK({1}) = pχ[1]

Jn∈SK({1})f̂1(S ∩ [n − 1]).

In particular, if f̂1(T ) ≠ 0 then f̂p(T∪{n}) ≠ 0. This implies that the p-skewed Fourier expansion

of f1 is supported on the first t levels. Also, µp(F) = pµp(F1) implies that µp(F1) ≤ pt−1, with

equality only if µp(F) = pt. The result now follows by applying the inductive hypothesis to F1

and t − 1.

This lemma enables us to deduce the structure of t-intersecting families F satisfying µp(F) =

pt, as well as stability. For stability, Kindler and Safra’s theorem (Theorem 2.23 on page 24)

replaces Friedgut–Kalai–Naor, and the argument also gets more complicated.

Theorem 3.16. Let F be a t-intersecting family on n points, and p ≤ 1/(t + 1).

Upper bound: µp(F) ≤ pt.

Uniqueness: If p < 1/(t + 1), then µp(F) = pt if and only if F is a t-star.

Stability: If p < 1/(t + 1) and µp(F) ≥ pt − ε then µp(F∆G) = Op,t(ε) for some t-star G.

Furthermore, for each t, the hidden constant is a continuous function of p.
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Proof. Our starting point is Lemma 3.14. The upper bound is already stated in the lemma. For

uniqueness, suppose F is a t-intersecting family satisfying µp(F) = pt. The monotone closure

of F (defined as {S ⊆ [n] ∶ S ⊇ T for some T ∈ F}) is also t-intersecting and its µp-measure

is at least µp(F). In view of the upper bound, we can conclude that F is monotone. Hence

Lemma 3.15 applies and shows that F is a t-star.

For stability, suppose first that F is monotone. Theorem 2.23 implies that F is Dp,tε-close

to some family G on Mp,t coordinates, where the constant Dp,t is the product of Cp,t and the

hidden constant in Lemma 3.14. Moreover, for each t, Dp,t depends continuously on p, since

both its factors do. We show that if ε is small enough, then G must be a t-star. We assume

without loss of generality that G depends only on the coordinates [Mp,t].

Suppose first that G is not supported on the first t + 1 levels. Let g = 1G , define

f>t = ∑
∣S∣>t

f̂p(S)χS,p,

and define g>t similarly. Orthonormality of the Fourier characters implies that ∥f − g∥2
p ≥

∥f>t −g>t∥2
p ≥ (∥f>t∥p − ∥g>t∥p)2 ≥ (√ε− ∥g>t∥p∣)2, and so ∥g>t∥p ≤ (

√
Dp,t +1)√ε. Now, there are

only finitely many possible families G (up to choice of coordinates), and so if ε is small enough,

∥g>t∥p > (
√
Dp,t + 1)√ε for all of them, showing that G has to be supported on the first t + 1

levels.

Suppose next that G is not monotone, say for some S ⊂ T ⊆ [Mp,t], S ∈ G and T ∉ G. For

each X ⊆ [n] ∖ [Mp,t], either S ∪X ∉ F , in which case S ∪X ∈ F∆G, or S ∪X ∈ F , in which

case T ∪X ∈ F∆G. Since µ
[Mp,t]
p (T ) ≥ µ[Mp,t]

p ≥ pMp,t , we deduce that µp(F∆G) ≥ pMp,t . If ε is

small enough, this cannot be possible.

Consider now a monotone family G which is supported on the first t+1 levels. If µp(G) ≠ pt

then

∣µp(G) − pt∣ ≤ ∣µp(G) − µp(F)∣ + ε ≤ ∥f − g∥p + ε ≤ (Dp,t + 1)ε.

As before, if ε is small enough then this cannot happen. We conclude that G must be supported

on the first t + 1 levels and µp(G) = pt. Lemma 3.15 implies that G must be a t-star.

Summarizing, there is a function fp,t such that if ε < fp,t, G must be a t-star. Moreover,

since for each t, fp,t is obtained by considering finitely many families, fp,t is continuous in p.
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Let Kp,t =Dp,t+f−1
p,t , which for every t is a continuous function in p. We claim that there always

exists a t-star G′ such that µp(F∆G′) ≤ Kp,tε. If ε ≤ fp,t, then we can take G′ = G. Otherwise,

take G′ to be any t-star. Then µp(F∆G′) ≤ 1 ≤ f−1
p,tε ≤Kp,tε.

If F is not monotone, then consider the monotone closure of F , which we denote F↑. Since

F↑ is t-intersecting, µp(F↑) ≤ p, which implies that µp(F∆F↑) ≤ ε. Applying the reasoning

above to F↑, we obtain a t-star G satisfying µp(F↑∆G) ≤ Kp,tε. Therefore µp(F∆G) ≤ (Kp,t +

1)ε.

3.3.1 More on admissible spectra

Lemma 3.12 gives a wide choice of admissible spectra. In this section we show that this lemma

states all the admissible spectra. For the rest of this section, fix n, t and p, and define q = 1−p.

We start by determining all admissible matrices. The first step is to find a nice basis for

the space of functions satisfying the eigenvector property, and to this end the following lemma

will be useful.

Definition 3.3. Let B be the vector space of all matrices whose eigenvectors are the p-skewed

Fourier basis vectors. For B ∈ B, let λS(B) be the eigenvalue corresponding to χS,p. ◯

Lemma 3.17. Let J ⊆ [n]. For every function f ∶J → R, the linear span BJ of {BK ∶ K ⊆ J}

(where BK is given by Lemma 3.10) contains a matrix B whose eigenvalues satisfy λS(B) =

(−(p/q))∣S∣f(S ∩ J).

Proof. We use a dimension argument. The vector space B′J of all matrices B ∈ B such that

λS(B) = (−(p/q))∣S∣f(S ∩ J) for some f has dimension 2∣J ∣. Lemma 3.10 shows that

λS(BK) = (−p
q
)
∣S∣

(−q
p
)
∣S∩K∣

,

showing that BK ∈ B′J whenever K ⊆ J . To complete the proof, we show that the matrices

{BK ∶K ⊆ J} are linearly independent. Suppose that ∑K⊆J cKBK = 0. Then for all S ⊆ [n],

0 = λS (∑
K⊆J

cKBK) = (−p
q
)
∣S∣

∑
K⊆J

cK (−q
p
)
∣S∩K∣

.

In particular, there is a linear dependency among the vectors xK of length 2∣J ∣ defined by

xK,S = (−q
p
)
∣S∩K∣

, where S ⊆ J.
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Let y0 = (1 1)
′

and y1 = (1 −q/p)
′

. Then

xK =⊗
j∈J

yJj∈KK.

Since the vectors y0, y1 are linearly independent, so are the vectors xK by Lemma 2.21, and we

conclude that BJ = B′J .

This lemma immediately implies that the matrices BJ form a basis for all of B.

Corollary 3.18. The vector space B is spanned by the matrices BJ for J ⊆ [n].

We proceed to determine the subspace of admissible matrices within B.

Lemma 3.19. The vector space of all admissible matrices is spanned by BJ for ∣J ∣ < t.

Proof. Lemma 3.10 states that all BJ are admissible. Now suppose that B ∈ B is admissible.

We know by Corollary 3.18 that B must have the general form

B = ∑
J⊆[n]

cJBJ .

We show by reverse induction on ∣J ∣ that cJ = 0 for ∣J ∣ ≥ t. Given J such that ∣J ∣ ≥ t, B must

satisfy 1′JB1J = 0. Now

1
′[n]
J BK1

[n]
J =∏

i∈K

1
′[1]
J∩{i}

BK,i1
[1]
J∩{i}

,

where BJ,i = A[1] if i ∉ J , and BJ,i = I2 otherwise. Looking at the matrix A[1] (given in

Lemma 3.2), we deduce that

(1[n]
J )′BK1

[n]
J = (1 − p

q
)
([n]∖J)∩([n]∖K)

0J∖K = JJ ⊆KK(1 − p
q
)
([n]∖J)∩([n]∖K)

.

Therefore

0 = 1′JB1J = ∑
J⊆K

cK (1 − p
q
)
([n]∖J)∩([n]∖K)

.

By the induction hypothesis, cK = 0 for all K ⊋ J , and so we can conclude that cJ = 0 as

well.

Having determined the vector space of all admissible matrices, we can conclude that Lemma 3.12

is optimal.
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Lemma 3.20. Suppose B is an admissible matrix and λS(B) = (−(p/q))∣S∣f(∣S∣) for some

function f ∶N→ R. Then f is a polynomial of degree less than t.

Proof. Recall that for a permutation π ∈ Sn, π(B) is defined by π(B)S,T = Bπ(S),π(T ). It is

not difficult to see that π(B) is also admissible and λπ(S)(π(B)) = λS(B). This implies that

B = (1/n!)∑π π(B), since both sides have the same eigenvalues. In view of Lemma 3.19, we

see that B must be in the span of the matrices Bk defined in Lemma 3.11, and the lemma

follows.

3.3.2 Proof of Lemma 3.13

In order to complete the proof of Theorem 3.16, it remains to prove the technical Lemma 3.13.

The general plan is to explicitly construct the polynomial P using Lagrange interpolation.

Lemma 3.21. Let (x1, y1), . . . , (xm, ym) be m pairs of real points such that xi ≠ xj for i ≠ j.

The unique polynomial Q of degree smaller than m satisfying Q(xi) = yi for all i ∈ [m] is

Q(s) =
m

∑
i=1

yi∏
j≠i

s − xj
xi − xj

.

Proof. To see that Q(xk) = yk,

Q(xk) =
m

∑
i=1

yi∏
j≠i

xk − xj
xi − xj

= yk∏
j≠k

xk − xj
xk − xj

= yk,

since the terms i ≠ k all vanish. If there were another polynomial Q′ of degree smaller than m

satisfying Q′(xi) = yi for all i ∈ [m] then Q−Q′ would have been a polynomial of degree smaller

than m having m roots, namely x1, . . . , xm, which is impossible.

In our case, the polynomial P has the following form.

Lemma 3.22. There is a unique polynomial P of degree smaller than t satisfying (−p/q)sP (s) =

−pt/(1 − pt) for s ∈ [t], which is given by the following formula for s ∉ [t]:

P (s) = (−1)t+1 pt

1 − pt
t

∑
r=1

(q
p
)
r (s − 1)⋯(s − t)
(s − r)(r − 1)!(t − r)! . (3.10)
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Proof. According to Lemma 3.21, the unique polynomial P is given by

P (s) = −pt
1 − pt

t

∑
r=1

(−q
p
)
r t

∏
j=1
j≠r

s − j
r − j

= −pt
1 − pt

t

∑
r=1

(−q
p
)
r (s − 1)⋯(s − t)/(s − r)
(r − 1)⋯1 ⋅ (−1)⋯(−(t − r))

= −pt
1 − pt

t

∑
r=1

(−q
p
)
r (s − 1)⋯(s − t)/(s − r)
(r − 1)!(−1)t−r(t − r)!

= (−1)t+1 pt

1 − pt
t

∑
r=1

(q
p
)
r (s − 1)⋯(s − t)
(s − r)(r − 1)!(t − r)! .

Using the explicit form of P and some calculations, we can derive all the properties of P

that are needed for Lemma 3.13. Part (d) of the ensuing lemma simplifies the original argument

in [40].

Lemma 3.23. Let P be the polynomial given by (3.10), and suppose p ∈ (0,1) and q = 1 − p.

(a) (−1)t+1P (s) > 0 for s > t.

(b) P (0) = 1.

(c) (−p/q)t+2P (t + 2) > −pt/(1 − pt) if and only if p < 1/(t + 1).

(d) When p < 1/(t + 1), the sequence ys = ∣(−p/q)sP (s)∣ is decreasing for s ≥ t + 1, that is,

ys+1 < ys for s ≥ t + 1.

Proof. Item (a) is immediate from formula (3.10).

For item (b), calculation gives

P (0) = (−1)t+1 pt

1 − pt
t

∑
r=1

(q
p
)
r (−1)⋯(−t)
(−r)(r − 1)!(t − r)!

= pt

1 − pt
t

∑
r=1

(q
p
)
r t!

r!(t − r)!

= 1

1 − pt
t

∑
r=1

(t
r
)pt−rqr

= 1

1 − pt ((p + q)
t − (t

0
)pt−0q0) = 1,

using the binomial theorem in the penultimate step.
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For item (c), the first inequality is equivalent to D < 1, where

D ≜ ( −pt
1 − pt)

−1

(−p
q
)
t+2

P (t + 2)

=
t

∑
r=1

(p
q
)
t+2−r (t + 1)⋯2

(t + 2 − r)(r − 1)!(t − r)!

=
t

∑
r=1

(p
q
)
t+2−r (t + 1)!

(t + 2 − r)(r − 1)!(t − r)! .

To continue the calculation, let x = p/q:

D =
t

∑
r=1

xt+2−r (t + 1)!
(t + 2 − r)(r − 1)!(t − r)!

=
t

∑
r=1

xt+2−r (t + 1)!
(r − 1)!(t − r)! (

1

t + 1 − r −
1

(t + 2 − r)(t + 1 − r))

= (t + 1)
t

∑
r=1

xt+2−r( t

r − 1
) −

t

∑
r=1

xt+2−r(t + 1

r − 1
)

= (t + 1)x
t−1

∑
r=0

xt−r(t
r
) −

t−1

∑
r=0

xt+1−r(t + 1

r
)

= (t + 1)x((1 + x)t − 1) − ((1 + x)t+1 − 1 − (t + 1)x)

= (t + 1)x(1 + x)t − (1 + x)t+1 + 1 = 1 + (1 + x)t(tx − 1).

Therefore D < 1 if and only if p/q < 1/t, which is equivalent to p < 1/(t + 1).

For item (d), write

ys =
pt

1 − pt
t

∑
r=1

(p
q
)
s−r (s − 1)⋯(s − t)

(s − r)(r − 1)!(t − r)! .

Let Ys,r be the rth term in the sum. When p < 1/(t + 1) and s ≥ t + 1, we have

Ys+1,r

Ys,r
= p
q
⋅ s

s − t ⋅
s − r

s − r + 1
< 1

t
⋅ s

s − t ⋅
s − 1

s

= s − 1

t(s − t) = 1 + (t − 1)(t + 1 − s)
t(s − t) ≤ 1.

Hence Ys+1,r < Ys,r, and we conclude that ys+1 < ys.

Lemma 3.13 easily follows.

Lemma 3.13. Let P be the unique polynomial of degree smaller than t satisfying P (s) =

(−q/p)s(−pt/(1 − pt)) for s = 1, . . . , t. Then P (0) = 1 and if p ≤ 1/(t + 1), (−p/q)sP (s) ≥

−pt/(1 − pt) for all integers s ≥ 0.
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If furthermore p < 1/(t + 1), then (−p/q)sP (s) > −pt/(1 − pt) for s > t. Moreover, there is

a rational function Rt satisfying Rt(p) > −pt/(1 − pt) for all p < 1/(t + 1) such that for s > t,

(−p/q)sP (s) ≥ Rt(p).

Proof. Let Λ(s) = (−p/q)sP (s). Lemma 3.23 already shows that P (0) = 1. If p < 1/(t + 1) then

the lemma shows that Λ(t + 1) > 0 and ∣Λ(s)∣ < pt/(1 − pt) for integers s ≥ t + 2. Since ∣Λ(s)∣

decreases for s ≥ t+ 1, the minimum of Λ(s) for s > t is attained at s = t+ 2. Lemma 3.22 shows

that Λ(t + 2) is a rational function of p.

When p = 1/(t + 1), we get the required results by continuity.

3.4 Cross-intersecting families

Recall that a family is t-intersecting if any two sets intersect in at least t points. If instead we

take each of the two sets from a different family, we arrive at the concept of cross-t-intersecting

families, which we explore in this section. Apart from the generalization of Hoffman’s bound,

all the material in this section is new. Similar results have been obtained by Tokushige [78]

in the classical setting (see Section 3.5), who generalized a result of Wilson [79] to the cross-

intersecting setting. His proof also uses the generalized Hoffman’s bound, and we expand more

on the connection in Section 3.5.3.

Definition 3.4. Let F ,G be two families of sets on n points. We say that F ,G are cross-

intersecting if every S ∈ F and T ∈ G intersect. We say that F ,G are cross-t-intersecting if

every S ∈ F and T ∈ G intersect in at least t points. ◯

What can we say about the µp-measure of two families if they are cross-intersecting? The

following extension of Katona’s circle argument gives one possible answer.

Lemma 3.24. Suppose F ,G are two cross-intersecting families of sets on n points. Then for

all p ≤ 1/2, µp(F)µp(G) ≤ p2.

Proof. Let x1, . . . , xn be n random points on the unit-circumference circle, and let F,G be two

independent random intervals of length p on the circle. Let S(F ), S(G) denote the set of points
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falling in F,G, respectively. We have

µp(F)µp(G) = Pr[S(F ) ∈ F and S(G) ∈ G].

Fix some position of x1, . . . , xn. Let IF = {F ∶ S(F ) ∈ F} and IG = {G ∶ S(G) ∈ G}. We show

that µ(IF × IG) ≤ p2, where µ is the Haar measure on the circle (we represent each interval by

its starting point). If IF or IG is empty then µ(IF × IG) = 0, so assume both are non-empty.

Take an arbitrary F ∈ IF . Every interval in IG must intersect F , and so µ(IG) ≤ p. Similarly,

µ(IF ) ≤ p. Therefore µ(IF × IG) ≤ p2.

We comment that in the literature other bounds are considered, though only in the classical

regime of uniform families.

It turns out that we can extend the entire edifice considered in this chapter to cross-

intersecting families. We start by generalizing Hoffman’s bound, following Ellis, Friedgut and

Pilpel [28] (a similar bound appears in Alon et al. [5]). For simplicity, we only consider the

upper bound and uniqueness.

Lemma 3.25 (Hoffman’s bound, cross-intersecting version). Let λS , xS , yS ∈ R for S rang-

ing over some arbitrary index set containing ∅, with λ∅ > 0. Suppose that the following two

equations hold, for some mx,my ∈ R:

mx = x∅ =∑
S

x2
S ,

my = y∅ =∑
S

y2
S ,

∑
S

λSxSyS = 0.

Let λmax = maxS≠∅ ∣λS ∣.

Upper bound:
√
mxmy ≤mmax, where mmax =

λmax

λ∅ + λmax
.

Uniqueness: If
√
mxmy =mmax then mx =my =mmax, and moreover, for S ≠ ∅, if λS = −λmax

then xS = yS, if λS = λmax then xS = −yS, and xS = yS = 0 otherwise.

Proof. The arithmetic-geometric mean inequality shows that

(1 −mx)(1 −my) = 1 −mx −my +mxmy ≤ 1 − 2
√
mxmy +mxmy = (1 −√

mxmy)2.



Chapter 3. Friedgut’s method 50

Using that (in the last step) and the Cauchy–Schwartz inequality, we have

λ∅mxmy = ∑
S≠∅

(−λS)xSyS

≤ ∑
S≠∅

λmax∣xSyS ∣

≤
√
∑
S≠∅

λmaxx2
S

√
∑
S≠∅

λmaxy2
S

≤
√
mx(1 −mx)

√
my(1 −my)λmax

≤ √
mxmy(1 −

√
mxmy)λmax.

Rearrangement yields the desired bound.

If the inequality is tight then the arithmetic-geometric mean inequality is tight, showing

that mx = my = mmax. Since the Cauchy–Schwartz inequality is tight, for some α, ∣xS ∣ = α∣yS ∣

for all S ≠ ∅. Since ∑S≠∅ x2
S = ∑S≠∅ y2

S , we conclude that α = 1. Furthermore, we must have

−λSxSyS = λmax∣xSyS ∣, implying the conditions on xS , yS .

Using Hoffman’s bound, we can provide another proof of Lemma 3.24.

Lemma 3.26. Let F ,G be cross-intersecting families and p ≤ 1/2. Then µp(F)µp(G) ≤ p2,

with equality only if µp(F) = µp(G) = p. If furthermore p < 1/2, then equality is only possible if

F = G and F is a star.

Proof. Let f = 1F and g = 1G , and define q = 1−p. It is easy to generalize the proof of Lemma 3.4

to show that ⟨A[n]f, g⟩p = 0 and so

∑
S⊆[n]

λS f̂p(S)ĝp(S) = 0, where λS = (−p
q
)
∣S∣

.

Since λ∅ = 1 and λmax = p/q, Hoffman’s bound shows that µp(F)µp(G) ≤ p2. Furthermore,

equality is only possible if µp(F) = µp(G) = p.

Now suppose that p < 1/2 and µp(F)µp(G) = p2. Since ∣λS ∣ = λmax only when ∣S∣ = 1,

in which case λS = −λmax, Hoffman’s bound shows that F = G. We conclude that F is an

intersecting family of µp-measure p, and so a star.
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We proceed to generalize this lemma to cross-t-intersecting families. Let q = 1 − p. Recall

that the proof of Theorem 3.16 goes by constructing an admissible matrix B which satisfies

λS(B) = (−p
q
)
∣S∣

P (∣S∣),

where P is given by Lemma 3.13. We already know that λS(B) ≥ −pt/(1−pt) for all S. In fact,

our work in Section 3.3.2 implies that ∣λS(B)∣ ≤ pt/(1−pt) except, perhaps, for sets of size t+1.

We proceed to determine what happens when ∣S∣ = t + 1.

Lemma 3.27. Let P be the polynomial given by Lemma 3.13. If p ≤ 1−2−1/t then (p/q)s∣P (s)∣ ≤

pt/(1− pt) for all s > 0. If furthermore p < 1− 2−1/t then there is equality only for s ∈ {1, . . . , t}.

Proof. We show below that for p < 1 − 2−1/t, (p/q)t+1∣P (t + 1)∣ < pt/(1 − pt). Lemma 3.23(d,e)

shows that when p < 1/(t + 1), (p/q)s∣P (s)∣ < pt/(1 − pt) for all s ≥ t + 2. When t = 1, 1 − 2−1/t =

1/(t + 1). When t ≥ 2,

( t

t + 1
)
−t

= (1 + 1

t
)
t

≥ (1 + 1

2
)

2

> 2,

implying that 1 − 2−1/t < 1/(t + 1). This implies the lemma for p < 1 − 2−1/t. The result for

p = 1 − 2−1/t follows by continuity.

It remains to determine when (p/q)t+1∣P (t + 1)∣ < pt/(1 − pt). Lemma 3.22 shows that

∣P (t + 1)∣ = pt

1 − pt
t

∑
r=1

(q
p
)
r t!

(r − 1)!(t + 1 − r)!

= pt

1 − pt
t−1

∑
r=0

(q
p
)
r+1

(t
r
)

= pt

1 − pt
q

p
((1 + q

p
)
t

− (q
p
)
t

)

= pt

1 − pt
q − qt+1

pt+1
.

Therefore

(p
q
)
t+1

∣P (t + 1)∣ = pt

1 − pt(
1

qt
− 1).

The value on the right is smaller than pt/(1 − pt) when q−t < 2, which is the same as p <

1 − 2−1/t.

This implies the following theorem.
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Theorem 3.28. Let F ,G be cross-t-intersecting families and p ≤ 1−2−1/t. Then µp(F)µp(G) ≤

p2t, with equality only if µp(F) = µp(G) = pt. If furthermore p < 1 − 2−1/t, then equality is only

possible if F = G and F is a t-star.

Proof. Let f = 1F and g = 1G , and define q = 1 − p. Let B be the admissible matrix satisfy-

ing λS(B) = (−p/q)∣S∣P (∣S∣), where P is given by Lemma 3.13. Such a matrix exists due to

Lemma 3.12. Then

∑
S⊆[n]

λS(B)f̂p(S)ĝp(S) = 0.

Note that λ∅(B) = 1. When p ≤ 1 − 2−1/t, Lemma 3.27 shows that λmax = pt/(1 − pt), and

Hoffman’s bound shows that µp(F)µp(G) ≤ p2t. Furthermore, equality is only possible if

µp(F) = µp(G) = p2t.

Now suppose that p < 1 − 2−1/t and µp(F)µp(G) = pt. Lemma 3.27 shows that for S ≠ ∅,

∣λS ∣ = λmax only when ∣S∣ ≤ t, in which case λS = −λmax. Hoffman’s bound then shows that

F = G. We conclude that F is a t-intersecting family of µp-measure pt, and so a t-star.

Tokushige [78] obtains a very similar result for the classical setting: if F ,G are k-uniform

cross-t-intersecting families on n points and k/n < 1 − 2−1/t then ∣F ∣∣G∣ ≤ (n−t
k−t

)2
, with equality

only if F = G is a t-star.

3.5 Classical versus probabilistic setting

The classical Erdős–Ko–Rado theorem is stated in terms of k-uniform intersecting families

(families in which each set has size k): for k ≤ n/2, a k-uniform intersecting family on n points

contains at most (n−1
k−1

) sets. In this section we explore the connection between Theorem 3.9 and

the classical Erdős–Ko–Rado theorem. Section 3.5.1 shows how to convert results in the classical

(k-uniform) setting to results in the probabilistic (µp) setting, and Section 3.5.2 discusses the

other direction. Finally, Section 3.5.3 sketches how to translate Friedgut’s method into the

classical setting.
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3.5.1 Classical to probabilistic

We already hinted at a connection between the classical setting and the probabilistic setting

in Section 2.4, where we used Katona’s circle argument to prove the Erdős–Ko–Rado theorem

both in the k-uniform setting and in the µp-setting. For that proof, the connection between the

parameters k,n, p is p = k/n. Indeed, following Frankl and Tokushige [38], Tokushige [77] and

Dinur and Safra [19], it is easy to derive the µp versions of intersection theorems from k-uniform

versions.

We start by defining two useful operations, extension and slicing, and the concept of equiv-

alence.

Definition 3.5. Let F be a family of sets on n points. For m > n, its extension to m points is

Ex(F , [m]) = {S ⊆ [m] ∶ S ∩ [n] ∈ F}.

Its kth slice consists of all sets of size k:

Sl(F , k) = {S ∈ F ∶ ∣S∣ = k}.

Two families on n points are equivalent if they are the same up to a permutation on the

points. ◯

It is easy to see that the extension operation preserves the µp measure for all p.

Definition 3.6. Let P = (Pn)∞n=1 be a sequence of collections Pn, where Pn is a collection of

families of sets on n points. We say that P has the extension property if whenever F ∈Pn and

m ≥ n, Ex(F , [m]) ∈Pm. ◯

Examples of objects with the extension property are the objects Pt corresponding to t-

intersecting families: each Pt
n is the collection of t-intersecting families on n points.

Definition 3.7. An object P is dominated in an interval I by a family G on m points if there

exists an integer N ≥m such that for all n ≥ N , F ∈Pn and k/n ∈ I,

∣Sl(F , k)∣ ≤ ∣Sl(Ex(G, [n]), k)∣.

The domination is unique if equality is possible only if F and Ex(G, [n]) are equivalent.
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The object P is (uniquely) weakly dominated in an interval I = (p0, p1) by a family G if it

is (uniquely) dominated by G in the intervals J = (p0 + ε, p1 − ε) for all ε > 0. ◯

As an example, the Erdős–Ko–Rado theorem states that P1 is uniquely [0,1/2)-dominated.

The relevant family G is the star on one point, {{1}}. The extension Ex(G, [n]) is then simply

a star.

The Ahlswede–Khachatrian theorem, a far-reaching generalization of Erdős–Ko–Rado de-

scribed in Chapter 5, partitions [0,1/2) into intervals Ir such that Pr is weakly dominated

in each of them. In the Ahlswede–Khachatrian theorem, the connection between n, k, r is

f1(r) ≤ (k − t + 1)/n ≤ f2(r). The asymptotically negligible term (t + 1)/n forces us to use the

more robust notion of weak domination.

The main result of this section shows that the fact that an object P is dominated implies

upper bounds on the µp measure of families in P. As an example, the classical version of the

Erdős–Ko–Rado theorem directly implies Friedgut’s formulation µp(F) ≤ p. The proof of the

upper bound follows Dinur and Safra [19]; a similar proof appears in Tokushige [77]. The result

on uniqueness is novel.

Theorem 3.29. Let P have the extension property, and suppose that P is weakly dominated

in an open interval I by some family G. For every p ∈ I and F ∈Pn, µp(F) ≤ µp(G).

If furthermore the domination is unique, then equality is possible only if F is equivalent to

Ex(G, [n]).

Proof. Every p ∈ I belongs to some open interval strictly contained in I, so we can assume

that P is dominated in I. Let I = (p0, p1), let N be the integer promised by the definition

of domination, and let M ≥ N . Put FM = Ex(F , [M]) and GM = Ex(G, [M]). The extension

property shows that FM ∈PM . Domination implies that

µp(F) = µp(FM) =
M

∑
k=0

pk(1 − p)M−k∣Sl(FM , k)∣

≤ ∑
k∈(p0M,p1M)

pk(1 − p)M−k∣Sl(GM , k)∣ + ∑
k∉(p0M,p1M)

pk(1 − p)M−k(M
k
). (3.11)

Chernoff’s inequality shows that if X ∼ Bin(M,p) is a binomially-distributed random variable
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then

Pr[X ∉ (p0M,p1M)] < e−2(p0−p)
2M + e−2(p1−p)

2M = O(cM),

for some c < 1. Hence as M Ð→ ∞, the second term in (3.11) tends to zero. The first term is

clearly bounded by µp(GM) = µp(G). By letting M Ð→∞, we deduce that µp(F) ≤ µp(G).

Suppose now that the domination is unique and µp(F) = µp(G). By extending F or G, we

can assume that both F and G are families on n points, and so for M and k ∈ (p0M,p1M),

∣Sl(GM , k)∣ − ∣Sl(FM , k)∣ =
n

∑
i=0

(∣Sl(G, i)∣ − ∣Sl(F , i)∣)(M − n
k − i ).

The binomial coefficients are increasing: (M−n
k−i+1

)/(M−n
k−i

) = (M −n−k+ i)/(k− i+1) = Θ(M). We

want to show that ∣Sl(G, i)∣ = ∣Sl(F , i)∣ for all i. If not, consider the smallest index such that

∣Sl(G, i)∣ − ∣Sl(F , i)∣ = α ≠ 0. Then

∣Sl(GM , k)∣ − ∣Sl(FM , k)∣ = αΘ(Mn−i)(M − n
k − n ) = αΘ(M−i)(M

k
).

Therefore

µp(F) = µp(FM) =
M

∑
k=0

pk(1 − p)M−k∣Sl(FM , k)∣

≤ ∑
k∈(p0M,p1M)

pk(1 − p)M−k∣Sl(GM , k)∣

− αΘ(M−i) ∑
k∈(p0M,p1M)

pk(1 − p)M−k(M
k
) + ∑

k∉(p0M,p1M)

pk(1 − p)M−k(M
k
)

= µp(G) −O(c−M) − αΘ(M−i)(1 −O(c−M)) +O(c−M).

Here all the asymptotic terms are positive, but the constant α need not be. Since by assumption

µp(F) = µp(G), we conclude that αΘ(M−i)(1 − O(c−M)) = O(c−M) − O(c−M). This is only

possible when α = 0, and so ∣Sl(F , i)∣ = ∣Sl(G, i)∣ for all i ∈ {0, . . . , n}.

Repeating the same argument for FM ,GM , we deduce that ∣Sl(FM , i)∣ = ∣Sl(GM , i)∣ for all

i ∈ {0, . . . ,M}. Let M ≥ max(2n + 1, n/p0), and let k = ⌈pM⌉ ≥ n. For large enough M ,

k ∈ (p0M,p1M) and so unique domination implies that Sl(FM , k) is equivalent to Sl(GM , k),

say Sl(FM , k) = π(Sl(GM , k)) for some π ∈ SM .

For a slice X, call two coordinates i, j congruent if X is invariant under permuting i and j.

For example, the last M − n coordinates in both Sl(FM , k) and Sl(GM , k) are congruent. Let
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F be the congruence class of coordinates congruent to the last M − n coordinates with respect

to Sl(FM , k), and define G similarly with respect to Sl(GM , k). Since F and G are the unique

congruence classes with at least n + 1 coordinates, we must have F = π(G). Without loss of

generality, we can assume that π fixes the last M − n coordinates, and so π([n]) = [n].

Let l ∈ {0, . . . , n}, and let Sl ⊆ [M]∖ [n] be a set of size k − l. Notice that {S ⊆ [n] ∶ S ∪Sl ∈

FM} is equal to Sl(F , l), and so Sl(F , l) = π(Sl(G, l)). We conclude that F = π(G), and so F

is equivalent to G.

An application of this theorem appears in Section 10.1.

3.5.2 Probabilistic to classical

We now turn to the other direction. Following Friedgut [40], we will show how to deduce a

stability version of the Erdős–Ko–Rado theorem from Theorem 3.9. Our techniques apply to

monotone objects.

Definition 3.8. Let P = (Pn)∞n=1 be a sequence of collections Pn, where Pn is a collection

of families of sets on n points. We say that P has the monotone property if for every family

F ∈Pn, every S ∈ F and every T ⊃ S, F ∪ {T} ∈Pn. ◯

The objects Pt of t-intersecting families are monotone since if F is t-intersecting and S ∈ F ,

then F ∪ {T} is t-intersecting for all T ⊃ S. Next, we adapt Definition 3.7 to the µp setting.

Definition 3.9. An object P is µ-dominated in an interval I = (p0, p1) by a family G if for all

p ∈ I and F ∈Pn, µp(F) ≤ µp(G).

The domination is unique if equality is possible only if F and Ex(G, [n]) are equivalent. It

is stable if there is a constant C such that for every p ∈ I, whenever µp(F) > (1− ε)µp(G), there

exists a family H equivalent to Ex(F , [n]) such that µp(G∆H) < Cε.

The domination is weakly stable if the domination is stable in the intervals J = (p0, p1 − ε)

for all ε > 0. ◯

The notion of weak stability arises for technical reasons: in our applications, the constant

C depends continuously on p, and as p Ð→ p1, C Ð→ ∞. Therefore the domination is not
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stable on the entire interval (p0, p1), but it is stable on the smaller intervals (p0, p1 − ε) due to

continuity.

Our argument makes use of the operation of taking an upset.

Definition 3.10. Let F be a family of sets on n points. Its upset is given by

F↑ = {S ⊆ [n] ∶ S ⊇ T for some T ∈ F}.

A family F is monotone if whenever T ∈ F and S ⊇ T , also S ∈ F . ◯

As an example, the family F↑ is always monotone. Monotone families are useful because of

the following result and its corollary.

Lemma 3.30. Let F be a monotone family on n points. For every k ∈ {0, . . . , n − 1},

∣Sl(F , k + 1)∣
( n
k+1

)
≥ ∣Sl(F , k)∣

(n
k
)

.

Proof. Consider the bipartite graph in which the left side is Sl(F , k), the right side is Sl(F , k+1),

and two sets are connected if the left set is a subset of the right set. The degree of every set

on the left is n − k, and the degree of every set on the right is at most k + 1. Considering the

number of edges incident to both sides,

(k + 1)∣Sl(F , k + 1)∣ ≥ (n − k)∣Sl(F , k)∣,

which directly implies the statement of the theorem.

Corollary 3.31. Let F be a monotone family on n points, let k < n and let p = k/n + η < 1.

We have

µp(F) ≥ (1 − e−2η2n) ∣Sl(F , k)∣
(n
k
)

.

Proof. The lemma implies that

µp(F) ≥
n

∑
l=k

pl(1 − p)n−l∣Sl(F , l)∣

≥
n

∑
l=k

pl(1 − p)n−l(n
l
)∣Sl(F , k)∣

(n
k
)

= ∣Sl(F , k)∣
(n
k
)

Pr[Bin(n, p) ≥ k].
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Chernoff’s inequality shows that

Pr[Bin(n, p) < k] ≤ e−2n(p−k/n)2 = e−2η2n,

completing the proof.

We will need the following estimate on binomial coefficients.

Lemma 3.32. Let m, l be integers satisfying 0 ≤ l ≤ m. For any n ≥ m and k in the range

l ≤ k ≤ n − (m − l) we have

(n−m
k−l

)
(n
k
)

= pl(1 − p)m−l ±Θm( 1

n
), p = k

n
.

Proof. We have

(n−m
k−l

)
(n
k
)

= k⋯(k − l + 1) ⋅ (n − k)⋯(n − k − (m − l) + 1)
n⋯(n −m + 1)

= k
n
⋯k − l + 1

n − l + 1
⋅ n − k
n − l ⋯

n − k − (m − l) + 1

n −m + 1
.

We want to estimate these fractions using p and 1 − p. For a, b ≤m and n ≥ 2m,

∣k − a
n − b −

k

n
∣ = ∣ bk − an

n(n − b)∣ ≤
mn

n(n −m) ≤ 2m

n
.

This shows that for some ε1, . . . , εm satisfying ∣εi∣ ≤ 2m/n,

(n−m
k−l

)
(n
k
)

=
l

∏
i=1

(p + εi)
m

∏
i=l+1

(1 − p + εi).

Expanding the right-hand side, each term which includes any εi is bounded in absolute value

by 2m/n, and there are 2m − 1 of these, and so

RRRRRRRRRRR

(n−m
k−l

)
(n
k
)

− pl(1 − p)m−l
RRRRRRRRRRR
< 2m+1m

n
.

The main result of this section shows that if an object P is µ-dominated then it is almost

(but not quite) dominated, and furthermore stability carries over. This extends Tokushige’s

result from [77] and Friedgut’s result from [40]. Tokushige only proved the upper bound part.

Friedgut only proved the stability part, and in a weaker form (bounding ∣Sl(F , k) ∖ Sl(H, k)∣

instead of ∣Sl(F , k)∆ Sl(H, k)∣).

We will employ the shorthand notation C(n, k) = (n
k
) for the duration of the proof.
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Theorem 3.33. Let P have the monotone property, and suppose that P is weakly µ-dominated

in an open interval I = (p0, p1) by some family G.

Upper bound: For every δ, ε > 0 there is a constant Nδ,ε such that whenever n ≥ Nδ,ε and

k/n ∈ (p0, p1 − δ), every family F ∈Pn satisfies

∣Sl(F , k)∣ < (µk/n(G) + ε)(
n

k
).

Stability: For every δ > 0 there are constants Cδ,Nδ such that for n ≥ Nδ, k/n ∈ (p0, p1 − δ)

and every ε > 0 and family F ∈Pn satisfying

∣Sl(F , k)∣ > (µk/n(G) − ε)(
n

k
),

there exists a family H which is equivalent to Ex(G, [n]) and satisfies

∣Sl(F , k)∆ Sl(H, k)∣ < Cδ
⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
).

Proof. We will need the following easy fact: since p↦ µp(G) has a continuous derivative, there

is some constant B such that ∣µk/n+η(G) − µk/n(G)∣ ≤ B∣η∣.

Upper bound. Suppose ∣Sl(F , k)∣/C(n, k) ≥ µk/n(G)+ ε. Since µk/n+η(G) ≤ µk/n(G)+Bη, for

some η < δ we have µk/n+η(G) ≤ µk/n(G) + ε/2. Let p = k/n + η, and apply Corollary 3.31 to

deduce

µp(F↑) ≥ (1 − e−2η2n) ∣Sl(F , k)∣
(n
k
)

≥ (1 − e−2η2n)(µk/n(G) + ε).

When n is large enough,

µp(F↑) > µk/n(G) + ε/2 ≥ µp(G),

contradicting the fact that P is µ-dominated by G.

Stability. Suppose that the domination is stable on (p0, p1 − δ/2) with constant C, and for

some ε > 0, ∣Sl(F , k)∣/C(n, k) ≥ µk/n(G) − ε. We let m denote the size of the support of G.
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Let η =
√

logn/n, and p = k/n + η. When n is large enough, p < p1 − δ/2. Corollary 3.31

shows that

µp(F↑) ≥ (1 − e−2η2n) ∣Sl(F , k)∣
(n
k
)

≥ (1 − e−2η2n)(µk/n(G) − ε) ≥

(1 − e−2η2n)(µp(G) −Bη − ε) ≥ µp(G) −Bη − ε − e−2η2n ≥ µp(G) − ε − 2Bη,

for large enough n, since e−2η2n = 1/n2 = o(
√

logn/n). Let ε′ = ε+2Bη. Stability on (p0, p1−δ/2)

implies that there is a family H which is equivalent to Ex(G, [n]) and satisfies µp(H∆F↑) ≤ Cε′.

We proceed to show that ∣Sl(F ∖H, k)∣ is small. Without loss of generality, we can assume

that the original coordinates of G form the first m coordinates of H. For each A ⊆ [m], let

HA = {S ⊆ [n] ∖ [m] ∶ S ∪A ∈H}, and define FA similarly. We have

µp(F ∖H) = ∑
A⊆[m]

p∣A∣(1 − p)m−∣A∣µp(FA ∖HA).

Corollary 3.31, together with p − (k − ∣A∣)/n ≥ η, shows that

µp(FA) ≥ (1 − e−2η2n) ∣Sl(FA, k − ∣A∣)∣
(n−m
k−∣A∣

)
= (1 − 1/n2) ∣Sl(FA, k − ∣A∣)∣

(n−m
k−∣A∣

)
.

When n is large enough, Lemma 3.32 shows that

(k/n)∣A∣(1 − k/n)m−∣A∣µp(FA) ≥ (1 − 2/n2) ∣Sl(FA, k − ∣A∣)∣
(n
k
)

.

As nÐ→∞, pÐ→ k/n, and so for large enough n,

p∣A∣(1 − p)m−∣A∣µp(FA) ≥ (1 − 3/n2) ∣Sl(FA, k − ∣A∣)∣
(n
k
)

.

For each A ⊆ [m], either HA = ∅ or HA = 2[n]∖[m]. Therefore

∣Sl(F ∖H, k)∣
(n
k
)

= ∑
A⊆[m]∶

HA=∅

∣Sl(FA, k − ∣A∣)∣
(n
k
)

≤ (1 − 3/n2)−1 ∑
A⊆[m]∶

HA=∅

p∣A∣(1 − p)m−∣A∣µp(FA)

= (1 − 3/n2)−1µp(F ∖H) ≤ 2Cε′,

for large enough n.
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We would like to deduce that ∣Sl(H∖F , k)∣ is also small. To that end, we show that Sl(F , k)

and Sl(H, k) have roughly the same size. Corollary 3.31 shows that

µk/n(G) +Bη ≥ µp(G) ≥ µp(F↑) ≥ (1 − e−2η2n) ∣Sl(F , k)∣
(n
k
)

.

Therefore for large enough n,

ε < µk/n(G) −
∣Sl(F , k)∣

(n
k
)

< 2Bη.

For the family H, using Lemma 3.32 we get

∣Sl(H, k)∣
(n
k
)

=
m

∑
l=0

∣Sl(G, l)∣(n−mk−l )
(n
k
)

=
m

∑
l=0

((k
n
)
l

(1 − k
n
)
m−l

±Θ( 1

n
))∣Sl(G, l)∣ = µk/n(G) ±Θ( 1

n
).

Therefore for large enough n,

RRRRRRRRRRR

∣Sl(F , k)∣ − ∣Sl(H, k)∣
(n
k
)

RRRRRRRRRRR
< ε′.

Therefore

∣Sl(F∆H, k)∣
(n
k
)

≤ 2
∣Sl(F ∖H, k)∣

(n
k
)

+ ε′ ≤ (4C + 1)ε′.

As a consequence, Theorem 3.16 has the following implication in the classical setting. Recall

that in a k-uniform family, every set has size exactly k.

Theorem 3.34. For every t ≥ 1 and δ > 0 there are constants Ct,δ,Nt,δ such that for any

k ∈ (0, n/(t + 1) − δn) and any k-uniform t-intersecting family F on n ≥ Nt,δ points satisfying

∣F ∣ > (n − t
k − t) − ε(

n

k
)

there exists a t-star H such that

∣F∆ Sl(H, k)∣ < Ct,δ
⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
).

Proof. Theorem 3.16 shows that for every t-intersecting family F and p < 1/(t + 1), if µp(F) ≥

pt − ε then there exists a t-star G such that µp(F∆G) ≤ Kp,tε, where Kp,t is continuous as a

function of p. In every interval (0,1/(t + 1) − δ), Kp,t is bounded, showing that the monotone

object Pt of t-intersecting families is weakly µ-dominated in (0,1/(t + 1) − δ/2) by G = {[t]}.
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Suppose F is a k-uniform t-intersecting family satisfying

∣F ∣ > (n − t
k − t) − ε(

n

k
).

Lemma 3.32 shows that for some constant Kt depending only on t,

∣F ∣ > (n
k
)((k

n
)

3

− Kt

n
− ε).

Let ε′ = ε +Kt/n. Theorem 3.33 shows that if n is large enough, there exists a t-star H such

that

∣F∆ Sl(H, k)∣ < C ′
t,δ

⎛
⎝
ε′ +

√
logn

n

⎞
⎠
(n
k
) ≤ 2C ′

t,δ

⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
),

when n is large enough. Here C ′
t,δ is the constant given by the theorem. The proof is complete

by taking Ct,δ = 2C ′
t,δ.

3.5.3 Lovász’s method

In his groundbreaking paper on the Shannon capacity of graphs [66], Lovász presents, as an

application of his methods, a spectral proof of the classical Erdős–Ko–Rado theorem. He starts

by noticing that a k-uniform intersecting family on n points is the same as an independent set

in the Kneser graph Kn(n;k).

Definition 3.11. Let n, k ≥ 1 be integers satisfying n ≥ 2k. The Kneser graph Kn(n;k) has

the vertex set ([n]
k
) consisting of all subsets of [n] of size k, and two vertices A,B are connected

if the sets A,B are disjoint. (When 2k > n, the Kneser graph has no edges.) ◯

Fact 3.35 ([37]). The eigenvalues of the Kneser graph Kn(n;k) (that is, of its adjacency

matrix) are λi = (−1)i(n−k−ik−i
) = (−1)i(n−k−in−2k

) for i ∈ {0, . . . , k}. The eigenvalue λi has multiplicity

(n
i
)−( n

i−1
), where ( n

−1
) = 0. Let the corresponding eigenspace be Vi. The subspace Ui = V0⊕⋯⊕Vi

is spanned by the (linearly independent) characteristic vectors of all i-stars.

We can define a Fourier transform with respect to the Kneser graph. In contrast to the

usual Fourier transform, here each Fourier coefficient is a vector in one of the sets Vi. For a

similar situation arising when considering functions on Sn, consult Chapter 6.
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Definition 3.12. Let f ∶ ([n]k ) → R be a Boolean function. For i ∈ {0, . . . , k}, f̂(i) is the

projection of f to Vi. ◯

Lemma 3.36. Let f ∶ ([n]k )→ R be a Boolean function. We have ∥f̂(0)∥2 = µ(f)2 and

k

∑
i=0

∥f̂(i)∥2 = µ(f),

where µ(f) = EX f(X) and ∥f∥2 = EX f(X)2.

More generally, for any two arbitrary functions f, g∶ ([n]k )→ R,

⟨f, g⟩ =
k

∑
i=0

⟨f̂(i), ĝ(i)⟩,

where ⟨f, g⟩ = EX f(X)g(X).

Proof. Let 1 be the constant 1 vector. Since the Vi are eigenspaces corresponding to different

eigenvalues and the adjacency matrix is symmetric, the Vi are orthogonal to each other. Since

∥1∥ = 1, it is not hard to check that f̂(0) = µ(f)1, and so ∥f̂(0)∥2 = µ(f)2. The other identities

follow directly from the orthogonality of the Vi together with ∥f∥2 = µ(f) for Boolean f .

As a consequence, we can apply Hoffman’s bound.

Theorem 3.37. Let n, k ≥ 1 be integers satisfying n ≥ 2k. Every k-uniform intersecting family

on n points contains at most (n−1
k−1

) sets. If furthermore n > 2k, then this bound is achieved only

by stars.

Furthermore, if F ,G are k-uniform cross-intersecting families on n points then ∣F ∣∣G∣ ≤

(n−1
k−1

)2
. When n > 2k, this bound is achieved only if F = G is a star.

Proof. Let f be the characteristic vector of a k-uniform intersecting family F . Since f is

intersecting, f ′ Kn(n;k)f = 0, and Lemma 3.36 implies that

k

∑
i=0

λi∥f̂(i)∥2 = 0.

We identify λ∅ with λ0 = (n−k
k

) in Hoffman’s bound. Fact 3.35 implies that λmin = λ1 = −(n−k−1
k−1

).

Hoffman’s bound implies that the measure of any intersecting family is at most

−λmin

λ∅ − λmin
=

(n−k−1
k−1

)
(n−k
k

) + (n−k−1
k−1

)
= 1
n−k
k + 1

= k
n
.
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Hence such a family contains at most this many sets:

k

n
(n
k
) = (n − 1

k − 1
).

Since λi = (−1)i(n−k−in−2k
), when n > 2k the eigenvalues λi decrease in magnitude, and so

µ(F) = k/n is only possible if f ∈ V0 ⊕ V1 = U1. In view of Fact 3.35, f is of the form

f(A) =
n

∑
i=1

ciJi ∈ AK =∑
i∈A

ci.

Let A be a set such that i ∈ A and j ∉ A. Since f(A∆{i, j}) = f(A) + cj − ci and f is Boolean,

we conclude that cj − ci ∈ {0,±1}. Let cmin, cmax be the smallest and largest values among the

ci. Since f is not constant, cmin < cmax, and so cmax = cmin + 1, and every ci is equal to either of

these values.

If there are at least k of the ci which are equal to cmin then we can form a set containing

all of them, on which f attains its minimum value 0. This implies that cmin = 0 and cmax = 1.

Since f is Boolean, we conclude that there is exactly one i for which ci = cmax = 1, and so F is

an {i}-star.

Otherwise, since 2k < n, there are at least k of the ci which are equal to cmax. Running the

same argument as before, we deduce that cmax = 1/k, and that there is exactly one i for which

ci = cmin = 1/k − 1. The corresponding function is f(A) = Ji ∉ AK, which corresponds to a family

F with the wrong measure µ(F) = 1 − k/n ≠ k/n.

The cross-intersecting version of the result follows using similar arguments by applying the

cross-intersecting version of Hoffman’s bound.

The eigenvalues λi are related to λ0 by the formula

λi = (−1)i k

n − k⋯
k − i + 1

n − (k − i + 1)λ0 ≈ (− k

n − k)
i

.

The eigenvalues we obtained in Lemma 3.3 were (−p/(1−p))i. If we put p = k/n then we obtain

λi/λ0 ≈ (−p/(1 − p))i, showing that the eigenvalues in both cases behave in similar ways.

How do we generalize this proof method to t-intersecting families? It is natural to consider

the extended Kneser graph whose edges connect vertices A,B such that ∣A∩B∣ < t. However, the

eigenvalues of this graph are somewhat awkward to compute. Instead, we will follow Wilson [79]

and consider different weighted graphs.
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Fact 3.38 ([79]). Let n, k ≥ 1 be integers satisfying n ≥ 2k. For s ∈ {0, . . . , k}, let C(s) be

the matrix indexed by ([n]
k
) given by C

(s)
A,B = ( s

∣A∩B∣
) (which equals zero if ∣A ∩ B∣ > s). The

eigenspaces of C(s) are the subspaces Vi given in Fact 3.35, and the corresponding eigenvalues

are

λ
(s)
i = (−1)i(k − i

s
)(n − k − i + s

n − 2k + s ).

(Wilson uses the notation B(k−s) for C(s).)

Note that C(0) = Kn(n;k). The surprising property that all the matrices C(s) have the

same eigenspaces is explained by the fact that these matrices commute. A deeper explanation

lies in their forming a basis for the Bose–Mesner algebra of the Johnson association scheme (see

Wilson [79] for references): Bose–Mesner algebras are always simultaneously diagonalizable.

The definition of C(s) makes it clear that f ′C(s)f = 0 whenever f is the characteristic

function of a t-intersecting family and s < t. Therefore the admissible spectra (so to speak) are

given by functions of the form

λ∗i =
t−1

∑
s=0

cs(−1)i(k − i
s

)(n − k − i + s
n − 2k + s ).

Since (n−k−i+s
n−2k+s

) = (n−k−i+s
k−i

), if n is large then (n−k−i+s
n−2k+s

) ≈ (n−k−i
n−2k

) (recall that i ≤ k is small).

Consequently,

λ∗i ≈
t−1

∑
s=0

cs(−1)i(k − i
s

)(n − k − i
n − 2k

) = (−1)iP (i)(n − k − i
n − 2k

),

where P is some polynomial of degree degP < t depending on the coefficients cs. Conversely,

given such a polynomial P , we can calculate corresponding coefficients cs. Putting p = k/n, we

can further approximate

λ∗i ≈ P (i)(− p

1 − p)
i

.

This suggests that if we mimic the proof of Lemma 3.14, then we obtain an upper bound of

roughly pt(nk) = (k/n)t(nk) on the size of k-uniform t-intersecting families for large enough n.

Wilson [79] laboriously carries out this idea, and shows that it works as long as n ≥ (t+1)(k−t+1),

obtaining the correct upper bound (n−t
k−t

) ≈ (k/n)t(nk). When n > (t+1)(k− t+1), he is also able

to prove uniqueness, that is the bound is achieved only for t-stars. Tokushige [78], whose work

has already been mentioned in Section 3.4, extends this result to cross-t-intersecting families.
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When n < (t + 1)(k − t + 1), t-stars are no longer the optimal families. The optimal families

are given by the Ahlswede–Khachatrian theorem, described in Chapter 10.

3.6 Friedgut’s method and the Lovász theta function

Our solution of the traffic light puzzle in Section 3.1 involved proving the following theorem:

if F ⊆ {0,1,2}n is a family of vectors such that any two x, y ∈ F agree on some index, then

∣F ∣ ≤ 3n−1. Our proof went along the following lines:

1. Let G = (V,E) be the graph whose vertex set is V = {0,1,2}n, and two vectors x, y ∈ V

are connected if xi ≠ yi for all i ∈ [n].

2. Let f be the characteristic vector of a family F as above, and let A be the adjacency

matrix of G. Since F is an independent set of G, f ′Af = 0.

3. The graph G is 2n-regular and A has a minimal eigenvalue of −2n−1, and so Hoffman’s

bound implies that ∣F ∣/∣V ∣ ≤ 2n−1/(2n + 2n−1) = 1/3.

A similar argument is used to prove Theorem 3.16 on page 41, which states that a t-

intersecting family has µp-measure at most pt whenever p ≤ 1/(t + 1):

1. Given n, we construct an edge-weighted directed graph G = (V,E,w) on the vertex set

V = 2[n] satisfying two properties:

(a) For every edge {S,T} ∈ E, ∣S ∩ T ∣ < t.

(b) The adjacency matrix A of G has a µp-orthonormal set of eigenvectors, and A1 = 1.

2. If f is the characteristic function of a t-intersecting family F then f ′Af = 0, since F is

an independent set in G.

3. Hoffman’s bound implies that µp(F) ≤ −λmin/(1−λmin), where λmin is the minimal eigen-

value of A. Since λmin = −pt/(1 − pt), we conclude that µp(F) ≤ pt.

In other words, in both cases we reduce the problem of bounding the size of some constrained

family to the problem of bounding the size of an independent set in an appropriate graph, and

then use Hoffman’s bound to obtain such a bound.
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In the course of his exploration of the Shannon capacity of graphs, Lovász [66] came up with

a different method of bounding the size of independent sets in graphs. As we show below, his

method is stronger than Hoffman’s bound. Chung and Richardson [9], adapting a method of

Delsarte [12], were able to strengthen Lovász’s method even further. We describe these various

bounds and the relations among them in Section 3.6.1. We then explain in Section 3.6.2 how

symmetry considerations lead to the precise way in which Friedgut’s method employs Hoffman’s

bound.

3.6.1 Bounds on independent sets in graphs

In this section we explore the following problem: Given a graph G and a positive measure w

on its vertices, what is the largest w-measure of an independent set in G? We will explore two

different methods, one due to Hoffman and the other due to Lovász, leading to four different

bounds. We will use the following two pieces of notation: 1 is the constant 1 vector (its length

would be clear from context), and for a vector x ∈ Rn, diag(x) is the n × n diagonal matrix

satisfying diag(x)ii = xi.

We start by defining weighted graphs and their independence number.

Definition 3.13. A weighted graph G = (V,E,w) consists of a non-empty graph (V,E) along

with a positive measure w on V . The independence number α(G) is the largest w-measure of

an independent set in G. ◯

Hoffman’s method relies on the following version of Hoffman’s bound [50, 51].

Lemma 3.39. Let G = (V,E,w) be a weighted graph. Suppose that A is a V × V matrix

satisfying the following properties:

1. Aij ≤ 0 whenever (i, j) ∉ E.

2. A1 = λ1.

3. Aijw(i) = Ajiw(j) for all i, j ∈ V .

If λmin is the minimal eigenvalue of A then

α(G) ≤ −λmin

λ − λmin
w(V ).
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Proof. Let n = ∣V ∣. Without loss of generality, we can assume that w(V ) = 1. Let B be a V ×V

matrix given by Bij = Aij
√
w(i)/w(j). Since

Bji = Aji

¿
ÁÁÀw(j)

w(i) = Aij
w(i)
w(j)

¿
ÁÁÀw(j)

w(i) = Aij

¿
ÁÁÀw(i)

w(j) = Bij ,

the matrix B is symmetric, and so has an orthonormal set of eigenvectors v1, . . . , vn with

corresponding eigenvalues λ1, . . . , λn. Writing B =
√
DA

√
D
−1

, where D = diag(w), we see that

vi corresponds to an eigenvector ui of A given by (ui)k = (vi)k/
√
w(k). In particular, we can

assume that v1 corresponds to 1, and so (v1)k =
√
w(k) and λ1 = λ. Note that v1 has unit norm

since w(V ) = 1.

Let I be any independent set in G, and let f be its characteristic function. Define a vector

g by gk =
√
w(k)fk. Since I is an independent set,

0 ≥ g′Bg =
n

∑
i=1

λi⟨g, vi⟩2 ≥ λ⟨g, v1⟩2 + λmin

n

∑
i=2

⟨g, vi⟩2 = λ⟨g, v1⟩2 + λmin(∥g∥2 − ⟨g, v1⟩2).

Easy calculation shows that ⟨g, v1⟩ = ∥g∥2 = w(I). Therefore

0 ≥ λw(I)2 + (λ − λmin)(w(I) −w(I)2).

Dividing by w(I) and rearranging, we get the stated bound.

The third property of A in Lemma 3.39 guarantees that A has a w-orthonormal set of

eigenvectors.

As an example, in Section 3.2 we dealt with the following situation. The graph G has as

vertex set all subsets of [n]. The weight of a subset i ⊆ [n] is w(i) = µp(i), for some p ∈ (0,1).

Two subsets i, j ⊆ [n] are connected if i∩ j = ∅, and so we have a self-loop on ∅. We considered

the matrix

A =
⎛
⎜⎜
⎝

1 − p
q

p
q

1 0

⎞
⎟⎟
⎠

⊗n

with eigenvalues λ = 1 and λmin = −p/q (where q = 1 − p), and concluded α(G) ≤ p. The

corresponding matrix B appearing in the proof is

B =
⎛
⎜⎜
⎝

1 − p
q

√
p
q

√
p
q 0

⎞
⎟⎟
⎠

⊗n

,
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showing that the third property of A is satisfied.

In all applications described in this chapter, we always had equality in the first property of

A listed in Lemma 3.39. Indeed, if the bound is tight, then we must have Aij = 0 whenever i, j

both belong to some maximum independent set.

Given a graph G, the best possible bound obtainable using Hoffman’s method can be de-

termined by solving a semidefinite program. This was first noticed by Grötschel, Lovász and

Schrijver [47] in the context of Lovász’s bound.

Lemma 3.40. Let G = (V,E,w) be a weighted graph, and consider the following two semidefi-

nite programs:

θH(G) = min
symmetric B∈RV ×V

λmin∈R

−λmin

1 − λmin
w(V ) θ′H(G) = min

symmetric B∈RV ×V
λmin∈R

−λmin

1 − λmin
w(V )

s.t. Bij = 0 whenever (i, j) ∉ E s.t. Bij ≤ 0 whenever (i, j) ∉ E

B
√
w =

√
w B

√
w =

√
w

B ⪰ λminI B ⪰ λminI

Here
√
w is the vector given by

√
wi =

√
w(i), and I is the V × V identity matrix.

Then α(G) ≤ θ′H(G) ≤ θH(G).

Proof. Let A be a matrix satisfying the conditions of Lemma 3.39, and define a V ×V matrix B

by Bij = Aij
√
w(i)/w(j). It is not hard to check that B satisfies the conditions of the program

for θ′H , and vice versa.

Since G is non-empty and θH(G) ≥ θ′H(G) ≥ α(G), we get that in both cases λmin ≥

−α(G)/(w(V ) − α(G)), and so the minimum is actually obtained.

The parameter θ′H(G) equals the best possible bound which can be obtained using Lemma 3.39,

while θH(G) corresponds to the version of Hoffman’s bound used in the rest of this chapter.

An even better bound on the measure of independent sets is due to Lovász [66].

Lemma 3.41. Let G = (V,E,w) be a weighted graph. Suppose that A is a symmetric V × V

matrix satisfying the following property: Aij ≥ 0 whenever (i, j) ∉ E. Let W be the V ×V matrix
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given by Wij =
√
w(i)w(j), and suppose that the maximal eigenvalue of A +W is λ. Then

α(G) ≤ λ.

Proof. Since A and W are symmetric, v′(A +W )v ≤ λ∥v∥2 for any vector v. Let I be an

independent set, let f be its characteristic function, and define a vector g by gk =
√
w(k)fk.

Then

λw(I) = λ∥g∥2 ≥ g′(A +W )g ≥ g′Wg = w(I)2.

Here we used ∥g∥2 = w(I) and g′Wg = w(I)2. For the latter, note that W = √
w
√
w
′

and so

g′Wg = g′√w√
w
′
g = ⟨√w, g⟩2 = w(I)2. We conclude that w(I) ≤ λ.

In fact, Lovász only considered the case in which the condition Aij ≥ 0 is always tight. The

more general condition was used by Delsarte [12] in the context of error-correcting codes and

ported to graphs by Chung and Richardson [9]; see also Schrijver [73]. As before, if Lovász’s

bound is tight then Aij = 0 whenever i, j both belong to some maximum independent set.

Continuing our preceding example, the following matrix satisfies the conditions of Lemma 3.41:

A′ =
⎛
⎜⎜
⎝

p − q −√pq

−√pq 0

⎞
⎟⎟
⎠

⊗n

, A′ +W =
⎛
⎜⎜
⎝

p − q −√pq

−√pq 0

⎞
⎟⎟
⎠

⊗n

+
⎛
⎜⎜
⎝

q
√
pq

√
pq p

⎞
⎟⎟
⎠

⊗n

.

When n = 1, A′ +W = diag(p, p), and in general, the maximal eigenvalue of A′ +W is p.

As in the case of Hoffman’s method, the best bound obtainable using Lovász’s method is

the solution of a semidefinite program.

Lemma 3.42. Let G = (V,E,w) be a weighted graph, and consider the following two semidefi-

nite programs:

θL(G) = min
symmetric A∈RV ×V

λ∈R

λ θ′L(G) = min
symmetric A∈RV ×V

λ∈R

λ

s.t. Aij = 0 whenever (i, j) ∉ E s.t. Aij ≥ 0 whenever (i, j) ∉ E

A +W ⪯ λI A +W ⪯ λI

Here W is the V × V matrix given by Wij =
√
w(i)w(j), and I is the V × V identity matrix.

Then α(G) ≤ θ′L(G) ≤ θL(G).
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The usual Lovász theta function is θL(G). Sometimes the Lovász theta function is defined

so that it coincides with θL(G), where G is the complemented graph.

It turns out that Lovász’s method is stronger than Hoffman’s method.

Lemma 3.43. Let G = (V,E,w) be a weighted graph. We have θL(G) ≤ θH(G) and θ′L(G) ≤

θ′H(G).

Let
√
w be the vector defined by

√
wi =

√
w(i). If the optimum of θL(G) is achieved for

some matrix A having
√
w as an eigenvector then θL(G) = θH(G), and similarly for θ′L(G) and

θ′H(G).

Proof. We start by proving that θ′L(G) ≤ θ′H(G). Let B be any solution to the program for

θ′H(G), with minimal eigenvalue λmin. We will construct a matrix A which is a solution to the

program for θ′L(G) and whose maximal eigenvalue is at most −λmin/(1−λmin) ⋅w(V ). It follows

that θ′L(G) ≤ θ′H(G).

Let W be the matrix given by Wij =
√
w(i)w(j). It is easy to check that W is a rank 1

matrix satisfying W
√
w = w(V )√w. The matrix A will have the form A = −xB, for an x > 0 to

be determined. Clearly Aij ≥ 0 whenever (i, j) ∉ E. Since B
√
w = √

w, the maximal eigenvector

of B +W is max(w(V )−x,−xλmin). Choosing x = w(V )/(1−λmin), both expressions are equal

to −λmin/(1 − λmin) ⋅w(V ).

Next, suppose that the optimum of θ′L(G) is achieved for some matrix A having
√
w as an

eigenvector with eigenvalue λ. Since G is non-empty, θ′L(G) ≤ θL(G) < w(V ). Indeed, if M

is the adjacency matrix then the maximal eigenvalue of (−εM) +W is smaller than w(V ) for

small enough ε > 0.

Let λ′ be the maximal eigenvalue of A among all eigenvectors different from
√
w. We claim

that λ′ = θ′L(G). Indeed, since W
√
w = v(W )√w, the maximal eigenvalue of xA +W for x > 0

is λ(x) = max(xλ′, xλ + w(V )), which implies (putting x = 1) that λ ≤ θ′L(G) − w(V ) < 0. If

λ′ < λ + w(V ) then for small enough ε > 0, λ(1 + ε) < λ(1), contradicting the definition of A.

Similarly, λ +w(V ) = θ′L(G), since otherwise λ(1 − ε) < λ(1) for small enough ε > 0.

Let B = A/λ. Clearly B
√
w = √

w and so B is feasible for the semidefinite program for
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θ′H(G). Moreover, the minimal eigenvalue of B is λmin = min(1, λ′/λ) = θ′L(G)/λ, and so

−λmin

1 − λmin
w(V ) = θ′L(G)

−λ + θ′L(G)w(V ) = θ′L(G).

We conclude that θ′H(G) ≤ θ′L(G) and so θ′H(G) = θ′L(G).

The argument for θL(G), θH(G) is completely analogous.

3.6.2 Symmetry considerations

When constructing the matrix used to prove Theorem 3.16 on the maximum µp-measure

of t-intersecting families, we were looking for a matrix whose eigenvectors are the p-skewed

Fourier characters. Why is this condition meaningful? While we are not able to provide

a satisfactory answer for the p-skewed case, when p = 1/2 we can show that the bounds

θH(G), θ′H(G), θL(G), θ′L(G) are attained for matrices whose eigenvectors are the Fourier basis

vectors. As we show below, this implies that θH(G) = θL(G) and θ′H(G) = θ′L(G), and so in

this case Lovász’s bound is as strong as Hoffman’s bound.

Our argument will apply to agreement graphs.

Definition 3.14. An agreement graph is a non-empty graph G = (V,E) where V = Znm for

some n,m and E = {{S,T} ∶ S − T ∈ G} for some G ⊆ V .

We view an agreement graph G as a weighted graph by giving all the vertices weight 1. ◯

Here are two examples:

1. The graph considered in Section 3.1 on the traffic light puzzle has V = Zn3 and E = {{S,T} ∶

S − T ∈ {1,2}n}.

2. Chapter 4 considers triangle-agreeing families of graphs. These are families of graphs on

the vertex set [n] such that the agreement G1∇G2 = G1∆G2 of any two graphs G1,G2

in the family contains a triangle. In this case V = Z(
n
2
)

2 and G consists of all triangle-free

graphs.

Since every triangle-intersecting family (in which the intersection of any two graphs con-

tains a triangle) is a fortiori triangle-agreeing, a bound on the size of triangle-agreeing

families is stronger than a bound on the size of triangle-intersecting families. In fact,
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Theorem 4.27 on page 100 shows that the maximal size of a triangle-intersecting family

is the same as the maximal size of a triangle-agreeing family (the theorem works for any

choice of G).

An agreement graph has many automorphisms: for every x ∈ V , S ↦ S + x is an auto-

morphism. This allows us to symmetrize the matrices appearing in the various semidefinite

programs considered in the preceding section.

Lemma 3.44. Let G = (V,E) be an agreement graph, and let θ ∈ {θH , θ′H , θL, θ′L}. There is an

optimal matrix for the semidefinite program for θ(G) whose eigenvectors are the Fourier basis

vectors (defined in Section 2.5.1).

Proof. We only prove the case θ = θH , the other cases being similar. Let B be any matrix

which is feasible for the semidefinite program for θH(G). For every x ∈ V , define a matrix

Bx by Bx
S,T = BS+x,T+x, and note that Bx is similar to B. It is not hard to check that Bx is

also feasible with the same minimal eigenvalue λmin. Therefore C = Ex∈V Bx is also feasible.

Furthermore, for every vector f we have f ′Cf = Ex∈V f ′Bxf ≥ λmin∥f∥2, showing that the

minimal eigenvalue of C is at least λmin. Clearly CS,T = CS+x,T+x, and we conclude that

the optimum in the semidefinite program for θH(G) is obtained for some matrix C satisfying

CS,T = CS+x,T+x for all x ∈ V , since the objective value −λmin/(1 − λmin) = 1 − 1/(1 − λmin) is

monotone decreasing with λmin.

In order to complete the proof, we show that if C satisfies CS,T = CS+x,T+x for all x ∈ V then

its eigenvectors are the Fourier basis vectors. Let V = Znm, and let ω = e2πi/m be a primitive

mth root of unity. Recall that the Fourier basis vectors are given by χx(y) = ω⟪x,y⟫, where

⟪x, y⟫ = ∑ni=1 xiyi. We have

(Cχx)(y) = ∑
z∈V

Cy,zχx(z) = ∑
z∈V

C0,z−yχx(z) = ∑
z∈V

C0,zχx(z + y)

= χx(y)∑
z∈V

C0,zχx(z) = χx(y)(Cχx)(0),

since χx(z + y) = χx(z)χx(y); here 0 is the zero vector.

Corollary 3.45. Let G = (V,E) be an agreement graph. Then θL(G) = θH(G) and θ′L(G) =

θ′H(G).
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Proof. The lemma shows that each of the semidefinite programs θL(G), θ′L(G) has an optimal

solution for which 1 is an eigenvector, and so the claim follows from Lemma 3.43.

If V = Zn2 and G is downwards-closed (using the identification Zn2 = 2n), then the development

in Section 3.3.1 restricts the structure of an optimal matrix for θH(G) even further.

Lemma 3.46. Let G = (V,E) be an agreement graph with V = 2n, and suppose that G = {S ∈

V ∶ {V,∅} ∈ E} is downwards-closed. Then there is a matrix B achieving the optimum in the

semidefinite program for θH(G) which is in the span of the matrices {BJ ∶ J ∈ G}, where BJ is

the matrix defined in Lemma 3.10 on page 37 for p = 1/2.

Proof. The proof is the same as the proof of Lemma 3.19 on page 44.

Corollary 3.47. Let G = (V,E) be an agreement graph with V = 2n, and suppose that G = {S ∈

V ∶ {V,∅} ∈ E} is downwards-closed. Then θH(G) is given by the following linear program:

min
cJ for J∈G

−λmin

1 − λmin
∣V ∣

s.t. c∅ = 1

(−1)∣S∣ ∑
J∈G

cJJJ ⊆ SK ≥ λmin for all S ⊆ V.

Equivalently, θH(G) = −λmin/(1 − λmin) ⋅ ∣V ∣, where

λmin = max
cJ for J∈G

c∅=1

min
S⊆V

(−1)∣S∣ ∑
J∈G

cJJJ ⊆ SK.

Proof. For a matrix B whose eigenvectors are the Fourier basis vectors, let λS(B) be the

eigenvalue corresponding to χS . Lemma 3.17 on page 43 shows that for each J ∈ G and for

each function f on J , there is a matrix B in the span of {BK ∶ K ∈ G} such that λS(B) =

(−1)∣S∣f(S ∩J). Lemma 3.10 on page 37 shows that λS(BJ) = (−1)∣S∣(−1)∣S∩J ∣. Together, these

lemmas imply (using inclusion-exclusion) that for B in the span of {BK ∶ K ∈ G}, λS(B) is

always of the form

λS(B) = (−1)∣S∣ ∑
J∈G

cJJJ ⊆ SK,

and furthermore all such functions are achievable. Since
√
w = 1 = χ∅, the condition B

√
w = √

w

corresponds to λ∅(B) = 1, which is the same as c∅ = 1.
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A similar situation arises in the context of Section 3.5.3 on page 62, in which a similar argu-

ment shows that the optimal matrix has the subspaces Vi given by Lemma 3.35 as eigenspaces,

and we can use a similar argument to reduce the computation of θH , θL to a linear program.



Chapter 4

Triangle-intersecting families of

graphs

How big can a family of graphs on n vertices be, if the intersection of any two of them contains

a triangle? Simonovits and Sós were the first to raise this question, around 1976, in the context

of their studies of graphical intersection problems. They conjectured that such a family can

contain at most 2(
n
2
)−3 graphs, the optimal families being △-stars, supersets of a fixed triangle.

A decade later, Chung, Frankl, Graham and Shearer [10] were the first to prove a non-

trivial upper bound on the size of triangle-intersecting families of graphs. Using Shearer’s

lemma, they gave an upper bound of 2(
n
2
)−2. Finally, 25 years later, together with David Ellis

and Ehud Friedgut, we were able to settle the conjecture in the affirmative [27].

Surprisingly, all known upper bounds on triangle-intersecting families apply to the wider

class of odd-cycle-intersecting families, in which we only require the intersection of any two

graphs in the family to contain an odd cycle. In other words, the intersection of any two graphs

must be non-bipartite. (A similar phenomenon happens with respect to triangle-free graphs: a

maximum triangle-free graph is also bipartite.)

Moreover, all upper bounds apply to odd-cycle-agreeing families, in which instead of looking

at the intersection G1 ∩G2 of any two graphs, we look at their agreement G1∇G2 = G1∆G2 =

(G1 ∩G2) ∪ (G1 ∩G2). Chung, Frankl, Graham and Shearer showed that this phenomenon is

general, as we discuss in Section 4.4.

76
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Let us summarize all the definitions we have made so far.

Definition 4.1. The agreement of two sets A,B ⊆ U with respect to U is

A∇B = A∆B = (A ∩B) ∪ (A ∩B),

where all complements are with respect to U . ◯

Definition 4.2. A family of graphs on n vertices is a collection of graphs on the vertex set

[n], considered as sets of edges.

A family of graphs is triangle-intersecting if the intersection of any two graphs in the family

contains a triangle. It is odd-cycle-intersecting if the intersection of any two graphs in the

family contains an odd cycle. It is triangle-agreeing if the agreement of any two graphs in the

family (with respect to the complete graph on [n]) contains a triangle. It is odd-cycle-agreeing

if the agreement of any two graphs in the family contains an odd-cycle.

A △-star is a family of graphs of the form {G ⊆ Kn ∶ G ⊇ T}, where T is a triangle. A

△-semistar is a family of graphs of the form {G ⊆ Kn ∶ G ∩ T = S}, where T is a triangle and

S ⊆ T . ◯

We can now state the main theorem of this chapter, settling the Simonovits–Sós conjecture.

Theorem 4.1. Let F be an odd-cycle-agreeing family of graphs on n vertices.

Upper bound: µ(F) ≤ 1/8.

Uniqueness: µ(F) = 1/8 if and only if F is a △-semistar.

Stability: If µ(F) ≥ 1/8 − ε then there is a △-semistar G such that µ(F∆G) = O(ε).

Our proof generalizes to families of hypergraphs. A hypergraph is a collection of non-empty

subsets of [n], called hyperedges. The counterpart of a triangle is a Schur triple of hyperedges,

{A,B,A∆B}. Equivalently, it is a triple of hyperedges A,B,C satisfying A∆B∆C = ∅. The

counterpart of an odd cycle is an odd number of hyperedges A1, . . . ,A2k+1 whose symmetric

difference vanishes.
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Definition 4.3. A hypergraph on n points is a collection of non-empty subsets of [n], called

hyperedges. A family of hypergraphs on n points is a family consisting of hypergraphs on n

points.

A Schur triple consists of three sets A,B,A∆B. An odd circuit consists of 2k + 1 sets

A1, . . . ,A2k+1 satisfying A1∆⋯∆A2k+1 = ∅. (A Schur triple is an odd circuit of length 3.)

A family of hypergraphs is Schur-triple-intersecting if the intersection of any two hyper-

graphs contains a Schur triple. The concepts of odd-circuit-intersecting, Schur-triple-agreeing

and odd-circuit-agreeing are defined similarly.

A Schur-star is a family of hypergraphs of the form {H ⊆ 2[n] ∖ {∅} ∶H ⊇ T}, where T is a

Schur triple. A Schur-semistar is a family of hypergraphs of the form {H ⊆ 2[n] ∖{∅} ∶H ∩T =

S}, where T is a Schur triple and S ⊆ T . ◯

We can now state the analog of Theorem 4.1 for hypergraphs.

Theorem 4.2. Let F be an odd-circuit-agreeing family of hypergraphs on n points.

Upper bound: µ(F) ≤ 1/8.

Uniqueness: µ(F) = 1/8 if and only if F is a Schur-semistar.

Stability: If µ(F) ≥ 1/8 − ε then there is a Schur-semistar G such that µ(F∆G) = O(ε).

This theorem in fact generalizes Theorem 4.1: given a family of graphs, we can extend it

to a family of hypergraphs with the same measure by replacing each graph with all possible

hypergraphs containing it. If the original family is odd-cycle-agreeing then the new family will

be odd-circuit-agreeing.

Both of our main theorems generalize to the µp measure for p < 1/2 with p3 replacing 1/8,

at the cost of applying to intersecting families rather than agreeing families (when p ≠ 1/2, the

symmetry between edges and non-edges is lost); the µp measure of a graph G with m edges is

µp(G) = pm(1 − p)(
n
2
)−m.

Theorem 4.3. Let F be an odd-circuit-intersecting family of hypergraphs on n points, and

suppose 0 < p < 1/2.
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Upper bound: µp(F) ≤ p3.

Uniqueness: µp(F) = p3 if and only if F is a Schur-star.

Stability: If µp(F) ≥ p3−ε then µp(F∆G) ≤Kpε for some Schur-star G, where Kp is a constant

depending continuously on p in the interval (0,1/2).

This theorem enables us to use Theorem 3.33 to obtain results concerning odd-circuit-

intersecting families of hypergraphs with prescribed number of edges.

Theorem 4.4. For every δ > 0 there are constants Cδ,Nδ such that for any k ∈ (0, n/2 − δn)

and any odd-circuit-intersecting k-uniform family F of hypergraphs on n ≥ Nt,δ points,

∣F ∣ < (n − 3

k − 3
) + ε(n

k
).

If furthermore F satisfies

∣F ∣ > (n − 3

k − 3
) − ε(n

k
),

then there exists a Schur-star H such that

∣F∆ Sl(H, k)∣ < Cδ
⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
).

A similar theorem is true for odd-cycle-intersecting families of graphs.

Theorem 4.5. For every δ > 0 there are constants Cδ,Nδ such that for any k ∈ (0, n/2 − δn)

and any odd-cycle-intersecting k-uniform family F of graphs on n ≥ Nt,δ points,

∣F ∣ < (n − 3

k − 3
) + ε(n

k
).

If furthermore F satisfies

∣F ∣ > (n − 3

k − 3
) − ε(n

k
),

then there exists a △-star H such that

∣F∆ Sl(H, k)∣ < Cδ
⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
).



Chapter 4. Triangle-intersecting families of graphs 80

Roadmap. We start our exposition with the bound from [10], proven in Section 4.1. We

then present in Section 4.2 an unpublished proof of the Simonovits–Sós conjecture for families

of graphs on 8 vertices. Section 4.3 is devoted to our proof of the Simonovits–Sós conjecture

for odd-cycle-intersecting families of graphs, and is the main section of this chapter. While the

proof in Section 4.3 already gives the correct upper bound for odd-cycle-agreeing families of

graphs, uniqueness and stability need a further argument which appears in Section 4.4. The

extension to hypergraphs appears in Section 4.5. The chapter closes with the extension to µp

measures for p < 1/2. Relevant open problems are discussed in Chapter 10.

Unless otherwise specified, all the material is taken from our joint paper with David Ellis

and Ehud Friedgut [27].

We will use KA to denote the complete graph on the vertex set A and KA,B to denote the

complete bipartite graph with bipartitions A and B. Also, Kn =K[n].

4.1 Bound using Shearer’s lemma

Prior to our work, the best known upper bound on the size of triangle-intersecting families of

graphs was 2(
n
2
)−2. The proof, which consists of a simple application of Shearer’s lemma, brings

forth some ideas which will be useful later. The contents of this section are taken mainly from

Chung, Frankl, Graham and Shearer [10].

We begin by stating a generalization of Shearer’s lemma due to Friedgut [72, 39].

Lemma 4.6 (Shearer’s lemma). Let S be a finite set, and let A1, . . . ,Am be subsets of S which

cover every element of S exactly k times. For a family F of subsets of S and A ⊆ S, let the

projection of F to A be the family

proj(F ,A) = {B ⊆ A ∶X ∩A = B for some X ∈ F}.

For every p ∈ (0,1),

µp(F)k ≤
m

∏
i=1

µp(proj(F ,Ai)).

The idea of the upper bound is that if F is odd-cycle-intersecting and G is a bipartite graph,

then if we remove the edges in G, F must still be intersecting, as a family of unstructured sets.
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Since G can be chosen to contain roughly half the edges, Shearer’s lemma results in a good

upper bound.

Theorem 4.7. Let F be an odd-cycle-intersecting family of graphs on n points. Then for all

p ≤ 1/2, µp(F) ≤ p2. If p = 1/2, then it is enough to assume that F is odd-cycle-agreeing.

Proof. Let F be an odd-cycle-intersecting family of graphs on n points. Let A be the collection

of all complements of KL,R, where L,R form an unordered partition of [n]. For every A ∈ A,

the projection proj(F ,A) must be intersecting, and so the Erdős–Ko–Rado theorem implies

that µp(proj(F ,A)) ≤ p for all p ≤ 1/2. Each edge appears in exactly half of the graphs in

A (those for which one endpoint is in L and the other is in R). Therefore Shearer’s lemma

immediately gives µp(F) ≤ p2.

If F is odd-cycle-agreeing then the projection proj(F ,A) is an agreeing family: for every two

sets S,T ∈ proj(F ,A), S∇T ≠ ∅. Since S∇S = ∅, proj(F ,A) contains at most half of the sets,

that is µ(proj(F ,A)) ≤ 1/2. Applying Shearer’s lemma again, we conclude that µ(F) ≤ 1/4.

4.2 Families of graphs on eight vertices

In this section we prove that an odd-cycle-agreeing family of graphs on 8 vertices contains at

most 1/8 of the graphs, following our unpublished manuscript [33]. Unfortunately, we have not

been able to extend the proof beyond 8 vertices.

The basic idea is to divide all graphs on 8 vertices into sets of size 8. Each set S satisfies

the following property: the agreement of any two distinct graphs in S is bipartite. Therefore

an odd-cycle-agreeing family can contain at most one graph from S.

If we identify a graph on 8 vertices with a vector in Z28
2 , the set of all graphs on 8 vertices

becomes a vector space of dimension 28. Our sets will be cosets of a single vector space V of

dimension 3. The construction of V utilizes a permutation with a special property.

Definition 4.4. A permutation π ∈ S{0,...,7} is antilinear if π(0) = 0 and π(x)⊕π(y) ≠ π(x⊕y).

Here ⊕ is the familiar XOR operation, which corresponds to addition in Z3
2; we identify Z3

2 with

{0, . . . ,7} via the mapping (a, b, c)↦ 4a + 2b + c. ◯
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Lemma 4.8. The permutation π = (1234) is antilinear.

Proof. In order to verify the second constraint, we go over all possible unordered triplets x, y, x⊕

y, which are given by the seven lines of the Fano plane:

π(2)⊕ π(4)⊕ π(6) = 3⊕ 1⊕ 6 = 4,

π(1)⊕ π(4)⊕ π(5) = 2⊕ 1⊕ 5 = 6,

π(3)⊕ π(4)⊕ π(7) = 4⊕ 1⊕ 7 = 2,

π(1)⊕ π(2)⊕ π(3) = 2⊕ 3⊕ 4 = 5,

π(2)⊕ π(5)⊕ π(7) = 3⊕ 5⊕ 7 = 1,

π(1)⊕ π(6)⊕ π(7) = 2⊕ 6⊕ 7 = 3,

π(3)⊕ π(5)⊕ π(6) = 4⊕ 5⊕ 6 = 7.

Given an antilinear permutation, the construction of V is very simple.

Lemma 4.9. Let π ∈ S{0,...,7} be an antilinear permutation. Define a set V ⊂ Z28
2 by

V = {vk ∶ k ∈ {0, . . . ,7}}, vk(i, j) = ⟪π(i⊕ j), k⟫.

(Here ⟪4a1 + 2b1 + c1,4a2 + 2b2 + c2⟫ = a1a2 + b1b2 + c1c2 ∈ Z2 is an inner product on Z3
2.) The

set V is a vector space of dimension 3, and the agreement between any two distinct graphs in

V is a cube.

Proof. Since vi + vj = vi⊕j , V is a vector space of dimension 3. Hence it is enough to show that

for k ≠ 0, vk∇v0 = vk is a cube. The graph vk contains the edge (i, j) whenever ⟪π(i⊕j), k⟫ = 0,

or equivalently i ⊕ j ∈ π−1(k⊥). Here k⊥ is the orthogonal complement of k. Therefore i has

three neighbors i⊕π−1(k⊥∖{0}). We show below that the three points π−1(k⊥∖{0}) are linearly

independent, and so vk is a cube. Indeed, suppose π−1(k⊥ ∖ {0}) = {x, y, z}. If the vectors are

not linearly independent then z = x⊕y, but then π(x)⊕π(y)⊕π(z) ≠ 0 by antilinearity, whereas

the points in k⊥ sum to zero.

The upper bound easily follows.
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Theorem 4.10. Suppose F is an odd-cycle-agreeing family of graphs on n ≤ 8 vertices. Then

µ(F) ≤ 1/8.

Proof. By extending F if necessary, we can assume that n = 8. Let V be the vector space

constructed in Lemma 4.9 using π = (1234). For every graph G (regarded as a vector in Z28
2 ),

it is easy to see that the coset V + G also satisfies the property that the agreement between

any two distinct graphs in the coset is a cube. Hence F contains at most one graph from each

coset, implying µ(F) ≤ 1/8.

This proof idea cannot be extended beyond 8 vertices. Indeed, suppose V is a subspace

of dimension 3 of the vector space of all graphs on n ≥ 9 vertices, with the property that the

agreement between any two distinct graphs is triangle-free. Pick a basis for V . Assign to each

edge a color in Z3
2 according to its 0/1 status in each of the basis vectors.

Let a, b, c be the colors assigned to some triangle. For each k, there is a graph in V in which

the status of the edges in the triangle is ⟪a, k⟫,⟪b, k⟫,⟪c, k⟫. These can never be all zero, since

otherwise the complement of the respective graph in V contains a triangle. Hence a, b, c must

be linearly independent, and in particular different and non-zero.

Since there are only 7 non-zero colors but at least 8 edges incident to any vertex, the

pigeonhole principle shows that there must be some triangle whose colors are not linearly

independent (due to either a zero color or a repeated color). This shows that V cannot exist.

There are other ways to extend the argument. For example, we can drop the assumption

that V is a subspace, or we could demand that V have size 8k and that any set of k+1 distinct

graphs in it contains two whose agreement is triangle-free. Using similar but more elaborate

arguments, one can show that even with these extensions, the object V can only exist for

bounded n. More details can be found in [33].

4.3 Proof of the Simonovits–Sós conjecture

In this section, we prove Theorem 4.1 for odd-cycle-intersecting families. In fact, our proof will

already yield the upper bound for odd-cycle-agreeing families, but for uniqueness and stability

more work is necessary (this work is taken up in the next section). The proof, which employs
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Friedgut’s method, follows closely the steps outlined in Section 3.3, and the reader is advised

to read that section prior to the present one. For the rest of this section, fix the number of

vertices n.

Following our previous footsteps, the idea of the proof is to find a matrix A of dimension

(n
2
) satisfying the following properties:

• For every odd-cycle-intersecting family F , f ′Af = 0, where f = 1F .

• The eigenvectors of F are the Fourier characters χS .

• The eigenvalue corresponding to χ∅ is 1.

• All other eigenvalues are at least −1/7.

Since our goal is to get a bound of 1/8, Hoffman’s bound tells us that the eigenvalues need to

be at least −(1/8)/(1 − 1/8) = −1/7, which explains the last item. As before, our first step is

identifying the admissible matrices.

Definition 4.5. Let n ≥ 1 be an integer. We say that a matrix A is odd-cycle-admissible

(admissible for short) if it satisfies the following two properties:

Intersection property If G,H are graphs whose intersection contains an odd cycle then

1′GA1H = 0.

Eigenvector property The eigenvectors of F are the Fourier characters χS .

If A is admissible then we use λG(A) to denote the eigenvalue corresponding to χG. ◯

Lemma 4.11. Let J be a set of edges. Define

BJ,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 1

1 0

⎞
⎟⎟⎟
⎠
, if i ∉ J,

⎛
⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟
⎠
, if i ∈ J,

BJ =
n

⊗
i=1

BJ,i.
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If J is bipartite then the matrix BJ is admissible, and the eigenvalue corresponding to χG is

λG(BJ) = (−1)∣S∖J ∣.

Furthermore, the vector space of all admissible matrices is spanned by BJ for all bipartite

J .

Proof. Note that when p = 1/2, the matrix A[1] of Lemma 3.2 becomes

A[1] =
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
.

The proof that BJ is admissible for bipartite J is a straightforward modification of the proof of

Lemma 3.10. The crucial point is that if the intersection of two graphs G,H contains an odd

cycle, then (G ∩H) ∖ J cannot be empty since J contains no odd cycles.

The other statement follows from a straightforward modification of the proof of Lemma 3.19.

Here the crucial point is that a supergraph of a non-bipartite graph is non-bipartite. This allows

the reverse induction argument to go through.

We are looking for an admissible matrix A such that λ∅(A) = 1 and λG(A) ≥ −1/7 for

all graphs G. Following our reasoning in Section 3.3, the existence of odd-cycle-intersecting

families of measure 1/8 (namely, △-stars) implies that λG(A) = −1/7 for non-empty subgraphs

G of any triangle. In Section 3.3, this was enough data to determine the matrix A. What makes

the present problem much more difficult is that these constraints are not enough to determine

A. Instead, we will restrict ourselves to a smaller supply of building blocks.

The proof of the upper bound 1/4 in Section 4.1 relied on projecting the family to the

complement of a random bipartite graph. The same construction will serve us here as well.

Definition 4.6. For a graph H, define a function qH on graphs by

qH(G) = Pr
L,R

[G ∩KL,R is isomorphic to H],

where L,R is a random bipartition of [n] chosen by putting each i ∈ [n] independently in L or

in R with equal probability 1/2. Similarly, for an integer k, define

qk(G) = Pr
L,R

[∣G ∩KL,R∣ = k].
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◯

Lemma 4.12. For every graph H there is an admissible matrix EH such that λG(EH) =

(−1)∣G∣qH(G).

For every integer k there is an admissible matrix Ek such that λG(Ek) = (−1)∣G∣qk(G).

Proof. We show that for every graph H there is an admissible matrix E′
H such that

λG(E′
H) = (−1)∣G∣ Pr

L,R
[G ∩KL,R =H].

Given the matrices E′
H , it is easy to construct the matrices EH and Ek.

We construct E′
H by taking an average over admissible matrices E′

H,L,R satisfying

λG(E′
H,L,R) = (−1)∣G∣JG ∩KL,R =HK.

The existence of admissible matrices E′
H,L,R satisfying this formula follows directly from Lemma 3.17.

It turns out that in order to get an upper bound of 1/8, it is enough to take a linear

combination of the matrices Ek. In order to get uniqueness, we will have to throw in some of

the matrices EH .

In order to construct the matrix A, consider the following table:

G q0(G) q1(G) q2(G) q3(G) q4(G)

∅ 1 0 0 0 0

− 1/2 1/2 0 0 0

∧ 1/4 1/2 1/4 0 0

△ 1/4 0 3/4 0 0

F4 1/16 4/16 6/16 4/16 1/16

K−
4 1/8 0 1/4 1/2 1/8

In this table, − is a single edge, ∧ is a path of length 2, △ is a triangle, F4 is any forest having

4 edges, and K−
4 is the diamond graph, obtained from K4 by removing one edge. Suppose we

are looking for a matrix A of the particularly simple form

A = c0E0 + c1E1 + c2E2 + c3E3 + c4E4,

λG(A) = (−1)∣G∣(c0q0(G) + c1q1(G) + c2q2(G) + c3q3(G) + c4q4(G)).
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The matrix A should satisfy λ∅(A) = 1, λ−(A) = λ∧(A) = λ△(A) = −1/7, and λG(A) ≥ −1/7 for

all graphs G. The first constraint already gives us c0 = 1. The second constraint gives c1 = −5/7

and c2 = −1/7. Substituting c0, c1, c2 into the inequalities corresponding to F4 and K−
4 gives us

a lower bound and an upper bound (respectively) on 4c3 + c4. Both bounds coincide, implying

that 4c3 + c4 = 3/7. This prompts the following choice for A:

A = E0 −
5

7
E1 −

1

7
E2 +

3

28
E3. (4.1)

Amazingly, this matrix A fits the bill.

Lemma 4.13. The matrix A given by (4.1) is admissible, and satisfies the following properties:

(a) λ∅(A) = 1.

(b) λG(A) ≥ −1/7 for all graphs G, with equality only for the following graphs: forests of one,

two or four edges; triangles; diamonds.

(c) If λG(A) > −1/7 then in fact λG(A) ≥ −1/8.

The proof of this rather technical lemma appears in Section 4.3.2. Using this lemma,

Hoffman’s bound immediately implies that the measure of any odd-cycle-intersecting family is

at most 1/8 (the argument is sketched below). However, the matrix A is not enough to prove

uniqueness, that is, that the unique maximal families are △-stars. The problem is that λG(A)

is tight for graphs other than subgraphs of triangles. However, this is easy to fix by perturbing

A by another matrix.

Lemma 4.14. Let B be the admissible matrix

B =∑
F

EF −E◻, (4.2)

where the sum goes over all forests containing 4 edges, and ◻ is a cycle of length 4.

(a) λG(B) = 0 whenever G contains less than 4 edges.

(b) λF (B) = 1/16 whenever F is a forest containing 4 edges.

(c) λK−
4
(B) = 1/8.

(d) ∣λG(B)∣ ≤ 1 for all graphs G.
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Proof. Item (a) is immediate since G ∩KL,R contains less than 4 edges.

For item (b), note first that λF (E◻) = 0 since F contains no ◻. Similarly λF (EF ′) for any

forest F ′ ≠ F . If L,R is a random partition of [n], then each edge in F belongs to F ∩KL,R

with probability 1/2, independently of the other edges (we show this formally in Section 4.3.2).

Therefore λF (EF ) = 1/16.

For item (c), note first that λK−
4
(EF ) = 0. In order to calculate λK−

4
(E◻) = −q◻(K−

4 ), label

K−
4 with {a, b, c, d} so that the missing edge is (a, c). We have K−

4 ∩KL,R = ◻ exactly when

a, c belong to the same side of the partition L,R and b, d to the other, which happens with

probability 1/8. Hence λK−
4
(E◻) = −1/8.

Item (d) follows from 0 ≤ q◻(G) ≤ 1 and 0 ≤ ∑F qF (G) ≤ 1, which in turn follow from q◻, qF

being probabilities, and the different events considered in ∑F qF being disjoint.

Now all we have to do is perturb A by an appropriate multiple of B.

Lemma 4.15. Let C = A + (2/119)B, where A is given by (4.1) and B is given by (4.2). The

matrix C is admissible and satisfies the following properties:

(a) λ∅(C) = 1.

(b) λG(C) ≥ −1/7 for all graphs G, with equality only for the following graphs: forests of one

or two edges; triangles.

(c) If λG(C) > −1/7 then in fact λG(C) ≥ −135/952.

Proof. The first item is immediate. We now consider several cases. If G is a graph for which

λG(A) > −1/7 then in fact λG(A) ≥ −1/8, and so ∣λG(B)∣ ≤ 1 implies that

λG(C) ≥ −1/8 − 2/119 = −135/952.

If G is a forest on one or two edges or a triangle then λG(B) = 0 and so λG(C) = −1/7. If G is

a forest on four edges then

λG(C) = −1/7 + (2/119)(1/16) = −135/952.

Finally, if G is a diamond then

λG(C) = −1/7 + (2/119)(1/8) > −135/952.
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Applying Hoffman’s bound, we get an analog of Lemma 3.14 on page 39, and from that an

analog of Theorem 3.16 on page 41, which is the main result of this section.

Lemma 4.16. Let F be an odd-cycle-intersecting family of graphs with characteristic function

f = 1F .

Upper bound: µ(F) ≤ 1/8.

Uniqueness: If µ(F) = 1/8 then the Fourier expansion of f is supported on the first 4 levels,

that is f̂(S) = 0 for ∣S∣ > 3.

Stability: If µ(F) ≥ 1/8 − ε then

∑
∣S∣>3

f̂2(S) = O(ε).

Proof. The proof is very similar to the proof of Lemma 3.14, using the matrix C given by

Lemma 4.15. Since C is admissible, ⟨Cf, f⟩ = 0, and so

∑
G

λG(C)f̂2(G) = 0.

Lemma 4.15 shows that λmin = minG λG(C) = −1/7 and λ2 = minG∶λG(C)>−1/7 λG(C) ≥ −135/192.

Hoffman’s bound implies that µ(F) ≤ −λmin/(λ∅(C) − λmin) = 1/8, hence the upper bound.

When µ(F) = −1/7, Hoffman’s bound implies that f̂(G) ≠ 0 only for G = ∅ or whenever

λG(C) = −1/7. Uniqueness follows from the fact that λG(C) = −1/7 only for graphs containing

at most three edges. Finally, stability follows from Hoffman’s bound since λ2 −λmin is bounded

from below by a positive constant.

Theorem 4.17. Let F be an odd-cycle-intersecting family of graphs.

Upper bound: µ(F) ≤ 1/8.

Uniqueness: µ(F) = 1/8 if and only if F is a △-star.

Stability: If µ(F) ≥ 1/8 − ε then µ(F∆G) = O(ε) for some △-star G.

Proof. The upper bound is already given by Lemma 4.16. For uniqueness, the argument in

the proof of Theorem 3.16 shows that if µ(F) = 1/8 then F is a 3-star. Since F is odd-cycle-

intersecting, it must be a △-star.
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For stability, suppose µ(F) ≥ 1/8 − ε. The stability part of Lemma 4.16 combined with

Theorem 2.23 on page 24 shows that F is Dε-close to a family G depending on M coordinates,

where D depends on the hidden constant in Lemma 4.16 as well as the constant C1/2,3 given

by Theorem 2.23.

We start by showing that if ε is small enough, then G must be odd-cycle-intersecting. Sup-

pose G is not odd-cycle-intersecting. Then there are two graphs G1,G2 ∈ G whose intersection

contains no odd cycles. We can assume furthermore that ∣G1∣, ∣G2∣ ≤M , say both are supported

on the edge set X of size M . Let F1 = {G ⊆X ∶ G ∪G1 ∈ F}, and define F2 similarly. If G ∈ F1

then X ∖ G ∉ F2, since F is odd-cycle-intersecting. Hence µ(F1) + µ(F2) ≤ 1. Since all the

corresponding graphs belong to G, this shows that µ(F∆G) ≥ 2−M , which is impossible if ε is

small enough.

Next, suppose G is odd-cycle-intersecting. Then µ(G) ≤ 1/8. Among all odd-cycle-intersecting

families on M coordinates with µ(G) < 1/8, let the one with largest measure have measure

1/8 − α. Then µ(F∆G) ≥ ∣µ(F) − µ(G)∣ ≥ α − ε, and so α ≤ (D + 1)ε. If ε is small enough, this

is impossible, and we conclude that µ(G) = 1/8. By uniqueness, G must be a △-star.

Concluding, we have shown that for some ε0, if ε ≤ ε0 then the family G given by Theo-

rem 2.23 is a △-star and µ(F∆G) ≤Dε. Otherwise, for any △-star G, µ(F∆G) ≤ ε−1
0 ε. In both

cases µ(F∆G) ≤ max(D, ε−1
0 )ε.

How did we know to choose A of the form c0E0+c1E1+c2E2+c3E3+c4E4? We were looking

for a matrix A whose eigenvalues are easy to analyze. Analyzing the eigenvalues of a matrix of

this form reduces to understanding the functions qk for small k, which are amenable to analysis.

Another possible choice with the same properties is

c0E0 + c1E1 + c2E2 + c3E3 + c′4(B∅ −E0 −E1 −E2 −E3).

It turns out that there is a matrix A′ of this form which satisfies a version of Lemma 4.13.

However, A′ has more tight graphs (graphs for which the eigenvalue is −1/7) than A, and so

we preferred to work with A.
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4.3.1 Cut statistics

The present and the following section are devoted to the proof of Lemma 4.13. To this end, we

develop a theory of cut statistics of graphs. Recall that the function qk(G) is the probability

that ∣G∩KL,R∣ = k, where L,R is a random partition of the vertices of G. We think of L,R as a

random cut in the graph, and G∩KL,R is the set of edges crossing the cut. The cut distribution

of a graph G is the distribution of ∣G∩KL,R∣. It will be useful to represent the cut distribution

by a generating function.

Definition 4.7. For a graph G, its cut function is

QG(x) =
∞

∑
k=0

qk(G)xk. ◯

Since G is finite, the cut function is a polynomial. As an example,

Q−(x) =
1

2
+ 1

2
x,

since the probability that a random cut separates an edge is exactly 1/2.

Generating functions are useful because if cuts in G1 and G2 are independent (say G1 and

G2 are disjoint) then QG1+G2 = QG1QG2 .

Definition 4.8. Let G be a graph. The vertex set of G is denoted V (G), and the number of

vertices is denoted v(G) = ∣V (G)∣. The edge set of G is denoted E(G), and the number of edges

is denoted e(G) = ∣E(G)∣. For U ⊆ V (G), G[U] is the graph induced by U . ◯

Lemma 4.18. Suppose a graph G is composed of two subgraphs G1,G2 having disjoint vertex

sets. Then QG = QG1QG2.

More generally, if the connected component of G are G1, . . . ,Gr, then QG = QG1⋯QGr .

Proof. A random partition of V [G] can be generated by joining together two independent

random partitions of V [G1] and V [G2]. Therefore

qk(G) =
k

∑
l=0

ql(G1)qk−l(G2).

This directly implies the formula QG = QG1QG2 .
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This lemma reduces understanding cut distributions to the case of connected graphs. The

following lemmas reduce it further to the case of biconnected graphs (graphs in which removing

any vertex does not disconnect the graph).

Lemma 4.19. Let G be a connected graph and v a vertex of G. Suppose that removing v

disconnects the graph into components G1, . . . ,Gr. Let Hi = G[V (Gi) ∪ {v}] be the graph

resulting from reintroducing v into Gi, preserving the original edges. Then QG = QH1⋯QHr .

Proof. Let qvk(G) be Pr[∣G∩KL∪{v},R∣ = k], where L,R is a random partition of V (G)∖{v}. It is

not hard to see that qvk(G) = qk(G). The same argument employed in the proof of Lemma 4.18

now shows that

qk(G) = qvk(G) = qvk(H1)⋯qvk(Hr) = qk(H1)⋯qk(Hr).

Definition 4.9. Let G be a connected graph. A bridge is an edge of G whose removal discon-

nects the graph. A biconnected component of G is a maximal bridge-less biconnected subgraph

of G. A block of G is either a bridge or a biconnected component.

The split of a graph G is obtained by replacing each block of each connected component

of G with a disjoint copy. So each block in G becomes a connected component in the split of

G. ◯

Lemma 4.20. Let Gs be the split of G. Then QGs = QG.

Proof. Using Lemma 4.18, we can assume that G is connected. If G is biconnected, we are

done. Otherwise, choose a cut vertex v of G (a vertex whose removal disconnects the graph).

Applying Lemma 4.19, G has the same cut function as the graph resulting from taking each

connected component of G and attaching to it its own copy of v. Keep applying this process

until all connected components are single edges or biconnected. The result is the split of G.

We need one more simple observation, and then we can state a formula for the first few

coefficients of the cut function of a graph (recall we are only interested in q0, . . . , q3).

Lemma 4.21. Let G be a bridge-less graph. Then q1(G) = 0.

Proof. Suppose there is a partition L,R such that G ∩KL,R = {e}. Then e is a bridge.
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Corollary 4.22. Let G be a graph with m bridges, and let H be the union of disjoint copies of

its biconnected components. Suppose

QH(x) = a0 + a1x + a2x
2 + a3x

3 +⋯.

Then a1 = 0 and

QG(x) =
1

2m
(a0 +ma0x + ((m

2
)a0 + a2)x2 + ((m

3
)a0 +ma2 + a3)x3) +⋯. (4.3)

Proof. The lemma shows that a1 = 0. The formula follows from Lemma 4.20 using the formula

Q−(x) = 1/2 + (1/2)x by expanding the product:

QG(x) = (1

2
+ 1

2
x)

m

(a0 + a2x
2 + a3x

3 +⋯)

= 1

2m
(1 +mx + (m

2
)x2 + (m

3
)x3 +⋯)(a0 + a2x + a3x

3 +⋯)

= 1

2m
(a0 +ma0x + ((m

2
)a0 + a2)x2 + ((m

3
)a0 +ma2 + a3)x3) +⋯.

4.3.2 Proof of Lemma 4.13

Armed with the theory of cut statistics developed in the preceding section, we are ready to

prove Lemma 4.13. Before starting the proof proper, we need two auxiliary results.

Lemma 4.23. Let G be a graph.

(a) If G has N connected components then q0(G) = 2N−v(G). (Recall v(G) is the number of

vertices in G.)

(b) If G has exactly m bridges then q1(G) =mq0(G).

(c) If G has a vertex of odd degree then qk(G) ≤ 1/2 for all k.

(d) For any odd k, qk(G) ≤ 1/2.

(e) Always q2(G) ≤ 3/4.

Proof. For item (a), let the connected components of G be G1, . . . ,GN . If G ∩KL,R = ∅ then

each of Gi lies entirely in L or in R. The probability of this is

q0(G) =
N

∏
i=1

2

2v(Gi)
= 2N

2v(G)
.
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Item (b) follows directly from (4.3).

For item (c), suppose G is a graph with a vertex v of odd degree. Let L′,R′ be a partition

of V (G) ∖ {v}. The set (G ∩KL′∪{v},R′) ∖ (G ∩KL′,R′) contains all neighbors of v belonging to

R′. Similarly, the set (G ∩KL′,R′∪{v}) ∖ (G ∩KL′,R′) contains all neighbors of v belonging to

L′. Therefore

(∣G ∩KL′∪{v},R′ ∣ − ∣G ∩KL′,R′ ∣) + (∣G ∩KL′,R′∪{v}∣ − ∣G ∩KL′,R′ ∣) = deg(v).

Since deg(v) is odd, we conclude that ∣G ∩KL′∪{v},R′ ∣ ≠ ∣G ∩KL′,R′∪{v}∣. Hence the probability

that ∣G∩KL,R∣ = k, conditioned on L′ ⊆ L and R′ ⊆ R, is at most 1/2. Averaging over all L′,R′,

the item follows.

For item (d), in view of item (c), we can assume that all vertices have even degree. This

implies that G can be partitioned into cycles (since a connected graph with even degrees has

an Eulerian tour). Each cut of G cuts either 0 or 2 edges of each cycle, and therefore an even

number of edges overall, showing that qk(G) = 0 for odd k.

For item (e), note that the average number of edges cut in a random cut is e(G)/2 (recall

that e(G) is the number of edges in G), and so

e(G)
2

=
e(G)

∑
k=0

kqk(G) < 2q2(G) + e(G)(1 − q2(G)) = e(G) + (2 − e(G))q2(G).

The inequality is strict since q0(G) > 0. If e(G) = 2 then

QG(x) = (1

2
+ 1

2
x)

2

= 1

4
+ 1

2
x + 1

4
x2,

so we can assume that e(G) > 2. This implies that

q2(G) < e(G)/2
e(G) − 2

= (e(G) − 2)/2 + 1

e(G) − 2
= 1

2
+ 1

e(G) − 2
.

Therefore q2(G) < 3/4 whenever e(G) ≥ 6. So we can assume that e(G) ≤ 5.

Let Gs be the split of G, which has the same cut function as G by Lemma 4.20. If G has

any bridges then Gs has vertices of degree 1, and so q2(G) ≤ 1/2 by part (c). Otherwise, since

each block of G contains at least 3 edges, G must be biconnected. So G is one of C3,C4,C5,K
−
4

(here Cl is the cycle of length l). One can check that q2(C3) = q2(C4) = 3/4, q2(C5) = 5/8 and

q2(K−
4 ) = 1/4.
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The following lemma focuses exclusively on q0.

Lemma 4.24. Let G be a graph with m bridges, and let H be the union of its biconnected

components.

(a) We have q0(∅) = 1, q0(−) = 1/2, and q0(G) ≤ 1/4 for all other graphs. (Here − is a single

edge.)

(b) If m = 0 and e(G) is odd then either q0(G) ≤ 1/16 or G is a triangle or a diamond.

(c) If H is non-empty then q0(H) ≤ 1/4.

Proof. For item (a), if G is connected and ∣G∣ ≥ 2 then v(G) ≥ 3 and so Lemma 4.23(a) shows

that q0(G) = 21−v(G) ≤ 1/4. If G has N ≥ 2 connected components, then since every connected

component contains at least two vertices, the same item shows that q0(G) = 2N−v(G) ≤ 2−N ≤ 1/4.

For item (b), notice that since m = 0, every connected component of G contains at least

three vertices. Lemma 4.23(a) implies that q0(G) ≤ (1/4)N , where N is the number of connected

components. If N ≥ 2 then q0(G) ≤ 1/16, so we can assume G is connected. Lemma 4.23(a)

again implies that q0(G) ≤ 21−v(G), hence q0(G) ≤ 1/16 if v(G) ≥ 5. The remaining case is

that G is a connected bridge-less graph on at most 4 vertices. Since e(G) is odd, G is either a

triangle or a diamond.

Item (c) follows directly from item (a).

We are finally ready to prove Lemma 4.13.

Lemma 4.13. The matrix A given by (4.1) is admissible, and satisfies the following properties:

(a) λ∅(A) = 1.

(b) λG(A) ≥ −1/7 for all graphs G, with equality only for the following graphs: forests of one,

two or four edges; triangles; diamonds.

(c) If λG(A) > −1/7 then in fact λG(A) ≥ −1/8.

The idea of the proof is to consider the matrix

A = E0 −
5

7
E1 −

1

7
E2 +

3

28
E3 (4.1)
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which has been engineered to satisfy the lemma for small graphs. For large graphs, all qk are

small, and so the eigenvalues tend to zero. It remains to consider what happens for graphs in

the medium range. Because of the (−1)∣G∣ factor (we remind the reader that ∣G∣ = e(G)), we

consider graphs with an even and an odd number of edges separately. Formula (4.3) shows that

the qk decay fast if G contains many bridges, so the proof will consist of a case analysis, where

the cases correspond to different numbers of bridges.

It is possible to considerably reduce the number of cases by computing the eigenvalues for

all graphs with a small number of edges. For graphs with many edges, it is relatively easy to

show that the eigenvalues are close enough to zero. However, we opted to present a completely

human-verifiable proof. This will also come in handy later on, when we generalize the framework

to p < 1/2.

Proof. In view of Lemma 4.12, the eigenvalues of A satisfy the formula

λG(A) = (−1)∣G∣(q0(G) − 5

7
q1(G) − 1

7
q2(G) + 3

28
q3(G)).

This formula already shows that λ∅(A) = 1. It will be less confusing to consider instead of

λG(A) the function

f(G) = q0(G) − 5

7
q1(G) − 1

7
q2(G) + 3

28
q3(G).

We now split the proof into two cases: ∣G∣ is odd and ∣G∣ is even.

Graphs with an odd number of edges. Suppose ∣G∣ is odd. We show that f(G) = 1/7 if

G is a single edge, a triangle or a diamond, and f(G) ≤ 1/8 otherwise.

Let m be the number of bridges in G. Lemma 4.23(b) shows that q1(G) =mq0(G), and so

f(G) = (1 − 5

7
m)q0(G) − 1

7
q2(G) + 3

28
q3(G).

We will use the bound q3(G) ≤ 1/2 given by Lemma 4.23(d).

When m = 0,

f(G) = q0(G) − 1

7
q2(G) + 3

28
q3(G).

If q0(G) ≤ 1/16 then using q3(G) ≤ 1/2,

f(G) ≤ 1

16
+ 3

28
⋅ 1

2
= 13

112
< 1

8
.
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If q0(G) > 1/16 then Lemma 4.24(b) shows that G is either a triangle or a diamond. In both

cases, we can explicitly compute f(△) = f(K−
4 ) = 1/7.

When m = 1,

f(G) = 2

7
q0(G) − 1

7
q2(G) + 3

28
q3(G).

If G = − then q0(G) = 1/2 and so f(G) = 1/7. Otherwise, Lemma 4.24(a) shows that q0(G) ≤ 1/4.

Therefore using q3(G) ≤ 1/2,

f(G) ≤ 2

7
⋅ 1

4
+ 3

28
⋅ 12 = 1/8.

When m ≥ 2,

f(G) ≤ −3

7
q0(G) − 1

7
q2(G) + 3

28
q3(G) ≤ 3

56
< 1

8
,

using q3(G) ≤ 1/2.

Graphs with an even number of edges. Suppose ∣G∣ is even. We show that f(G) = −1/7

if G is a forest on two or four edges, and f(G) ≥ −3/28 > −1/8 otherwise.

Let m be the number of bridges, let H be the union of all biconnected components of G,

and let ak = qk(H). Corollary 4.22 shows that

f(G) = 1

2m
(a0 −

5

7
ma0 −

1

7
((m

2
)a0 + a2) +

3

28
((m

3
)a0 +ma2 + a3))

= 1

2m
((1 − 5

7
m − 1

7
(m

2
) + 3

28
(m

3
))a0 + (−1

7
+ 3

28
m)a2 +

3

28
a3).

When m = 0,

f(G) = a0 −
1

7
a2 +

3

28
a3.

Lemma 4.23(e) shows that a2 ≤ 3/4, and so f(G) ≥ −(1/7)(3/4) = −3/28.

When m = 1,

f(G) = 1

7
a0 −

1

56
a2 +

3

56
a3.

Again, a2 ≤ 3/4 implies f(G) ≥ −(1/56)(3/4) = −3/223 > −3/28.

When m ≥ 2, the coefficients in front of a2 and a3 are positive, and so

f(G) ≥ 1

2m
(1 − 5

7
m − 1

7
(m

2
) + 3

28
(m

3
))a0.
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Denote the coefficient in front of f(G) by r(m). Lemma 4.24(c) shows that either H = ∅ or

a0 ≤ 1/4; the former case can happen only when m is even, since ∣G∣ is even. We list some

values of r(m):

m 2 3 4 5 6 7

−r(m) 1
7

41
224

1
7

41
448

23
448

13
512

Recall 2mr(m) is a third degree polynomial. It is not hard to check that the polynomial is

increasing in the range m ≥ (7 +
√

151)/3 ≈ 6.4. Therefore for m ≥ 7, r(m) ≥ 27−mr(7). If r(m)

is negative then this implies that r(m) ≥ r(7), and otherwise r(m) ≥ r(7) trivially.

The table shows that for m ≥ 5, f(G) ≥ −41/448 > −3/28. If H ≠ ∅, then a0 ≤ 1/4 and so

the table shows that for m ≥ 2, f(G) ≥ r(m)/4 ≥ −41/896 > −3/28. It remains to consider the

case that m ∈ {2,3,4} and H = ∅. Since ∣G∣ is even, m must be even, and so G is a forest with

two or four edges. Direct calculation shows that in both cases, f(G) = 1/7.

4.4 Agreeing families

The matrices constructed in Section 4.3 are admissible not only for odd-cycle-intersecting fam-

ilies but also for odd-cycle-agreeing families. The reason is that

χ
[1]′
S

⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
χ
[1]
T = 0

not only when S = T = {1}, but also when S = T = ∅.

Definition 4.10. Let n ≥ 1 be an integer. We say that a matrix A is odd-cycle-agreeing-

admissible (agreeing-admissible for short) if it satisfies the following two properties:

Intersection property If G,H are graphs whose agreement G∇H contains an odd cycle then

1′GB1H = 0.

Eigenvector property The eigenvectors of F are the Fourier characters χS .

If A is agreeing-admissible then we use λG(A) to denote the eigenvalue corresponding to χG. ◯
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Lemma 4.25. Let J be a set of edges. Define

BJ,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 1

1 0

⎞
⎟⎟⎟
⎠
, if i ∉ J,

⎛
⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟
⎠
, if i ∈ J,

BJ =
n

⊗
i=1

BJ,i.

If J is bipartite then the matrix BJ is agreeing-admissible, and the eigenvalue corresponding to

χG is

λG(BJ) = (−1)∣S∖J ∣.

Furthermore, the vector space of all agreeing-admissible matrices is spanned by BJ for all

bipartite J .

Proof. The proof uses the observation that for S,T ⊆ [1],

χ
[1]′
S

⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
χ
[1]
T = 0

whenever S∇T ≠ ∅. In all other respects, the proof is identical to that of Lemma 4.11.

We conclude that Lemma 4.16 is in fact true for odd-cycle-agreeing families as well.

Lemma 4.26. Let F be an odd-cycle-agreeing family of graphs with characteristic function

f = 1F .

Upper bound: µ(F) ≤ 1/8.

Uniqueness: If µ(F) = 1/8 then the Fourier expansion of f is supported on the first 4 levels,

that is f̂(S) = 0 for ∣S∣ > 3.

Stability: If µ(F) ≥ 1/8 − ε then

∑
∣S∣>3

f̂2(S) = O(ε).

Proof. Follow the proof of Lemma 4.16, replacing Lemma 4.11 with Lemma 4.25.
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This already gives us the correct upper bound. However, uniqueness doesn’t follow since

our argument for uniqueness relies heavily on the fact that maximal families are monotone.

Our proof of stability relies on uniqueness, so this also does not follow.

In order to amend this situation, we take inspiration from the following result of Chung,

Frankl, Graham and Shearer [10], which shows that upper bounds for intersection problems

always imply upper bounds for agreement problems. The proof uses the classical technique of

shifting.

Definition 4.11. Let X be a finite set, and let H be a family of subsets of X. A family of

subsets of X is H-intersecting if the intersection of any two members of the family contains

some H ∈ H. A family of subsets of X is H-agreeing if the agreement of any two members of

the family contains some H ∈H. ◯

Theorem 4.27. Let X be a finite set, and let H be a family of subsets of X. Then the maximal

size of an H-intersecting family is equal to the maximal size of an H-agreeing family.

Proof. Every H-intersecting family is also H-agreeing, and so it is enough to show that if F is

an H-agreeing family then there is an H-intersecting family of size ∣F ∣. We do that by applying

several cardinality-preserving operations on F which will make it H-intersecting.

For i ∈X and a family G, the monotonization operator Ci(G) is defined as follows. Partition

2X into pairs A,A ∪ {i}. Whenever G ∩ {A,A ∪ {i}} = {A}, replace A with A ∪ {i} in Ci(G).

Clearly ∣Ci(G)∣ = ∣G∣, and Ci(G) is i-monotone: if A ∈ Ci(G) then A∪{i} ∈ Ci(G). Moreover,

if G is j-monotone then so is Ci(G). Indeed, consider any A ∈ Ci(G). If i ∉ A then A,A∪{i} ∈ G

and so A∪{j},A∪{i, j} ∈ G. This shows that A∪{j} ∈ Ci(G). If i ∈ A and A ∈ G then A∪{j} ∈ G

and so A ∪ {j} ∈ Ci(G). Finally, if i ∈ A and A ∉ G then A ∖ {i},A ∖ {i} ∪ {j} ∈ G. Therefore

A ∪ {j} ∈ Ci(G).

The crucial property is that if G is H-agreeing then so is Ci(G). Indeed, let A,B ∈ Ci(G). If

A,B ∈ G then A,B are certainly H-agreeing. If A∖{i},B ∖{i} ∈ G then A∇B = (A∖{i})∇(B ∖

{i}), and again A,B are H-agreeing. The remaining case is when i ∈ A and A ∖ {i},B ∈ G. If

i ∈ B then A∇B ⊃ (A ∖ {i})∇B, and we’re again done. If i ∉ B then necessarily B ∪ {i} ∈ G,

since otherwise we would have replaced B with B ∪ {i}, and so A∇B = (A ∖ {i})∇(B ∖ {i})
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again shows that A,B are H-agreeing.

Let F ′ result from applying the operators Ci on F in sequence for all i ∈X. The family F ′

has the same size as F , it is H-agreeing, and it is monotone. These properties imply that for

any A,B ∈ F ′, (A ∪B)∇B = A ∩B contains some H ∈H, and so F ′ is H-intersecting.

Using the same monotonization operations Ci, we are able to prove a uniqueness counterpart

of Theorem 4.27.

Definition 4.12. Let X be a finite set, and let H be a family of subsets of X. An H-star is

an H-star for some H ∈H. An H-semistar is an H-semistar for some H ∈H, which is a family

of the form {A ⊆X ∶ A ∩H = J} for some J ⊆H. ◯

Theorem 4.28. Let X be a finite set, and let H be a family of subsets of X, and I ⊆ H be a

subfamily of H. Suppose that all maximal H-intersecting families are I-stars, and that for all

I ∈ I, x ∈ I and y ∉ I, neither I ∖ {x} nor I ∖ {x} ∪ {y} contain any H ∈ H. Then all maximal

H-agreeing families are I-semistars.

Proof. Let Ci be the monotonization operators defined in the proof of Theorem 4.27. Suppose

F is a maximal H-agreeing family. The proof of that theorem shows that if we apply the

operators Ci to F in sequence for all i ∈X, then we get a maximal H-intersecting family, which

is an I-star by assumption. Therefore the proof will be complete if we show that whenever G

is H-agreeing and Ci(G) is an I-semistar, then G is an I-semistar as well.

By possibly complementing some of the coordinates, we can further assume that Ci(G) is

an I-star, say it is an I-star, where I ∈ I. If i ∉ I then G = Ci(G), and so G is also an I-star.

Otherwise, we know that for each A ∈ Ci(G), either A ∈ G or A ∖ {i} ∈ G, but not both. Define

G+ = {A ⊆X ∖ I ∶ A ∪ I ∈ G},

G− = {A ⊆X ∖ I ∶ A ∪ (I ∖ {i}) ∈ G}.

We will show that whenever ∣A∇B∣ ≤ 1, either A,B ∈ G+ or A,B ∈ G−. If ∣A∆B∣ = 1 then

∣A∇A∣ = 0 while ∣A∇B∣ = 1, showing that either A,B ∈ G+ or A,B ∈ G−. It follows that either

G+ = ∅ or G− = ∅, and in both cases G is an H-semistar.
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Suppose to the contrary that ∣A∇B∣ ≤ 1 and A ∈ G+, B ∈ G−. Since A ∪ I,B ∪ (I ∖ {i}) ∈ G,

their agreement must contain some H ∈H. However,

D ≜ (A ∪ I)∇(B ∪ I ∖ {i}) = (A∇B) ∪ (I ∖ {i}).

By assumption, D does not contain any H ∈H. This contradiction shows that either A,B ∈ G+

or A,B ∈ G−.

In our case, H is the family of all odd cycles and I is the family of all triangles. The

condition in the theorem then states that the only way to introduce a cycle into a path of

length 2 with a single edge is to complete the triangle. This observation allows us to prove

Theorem 4.1.

Lemma 4.29. Let T be a triangle, x ∈ T and y ∉ T . Then neither T ∖ {x} nor T ∖ {x} ∪ {y}

contains any cycle.

Proof. Obvious.

Theorem 4.1. Let F be an odd-cycle-agreeing family of graphs on n vertices.

Upper bound: µ(F) ≤ 1/8.

Uniqueness: µ(F) = 1/8 if and only if F is a △-semistar.

Stability: If µ(F) ≥ 1/8 − ε then there is a △-semistar G such that µ(F∆G) = O(ε).

Proof. Lemma 4.26 already shows the upper bound. Alternatively, the upper bound follows

from Theorem 4.17 via Theorem 4.27. Uniqueness follows from Theorem 4.17 via Theorem 4.28.

For stability, we use an argument very similar to the proof of Theorem 4.17. The stability

part of Lemma 4.26 together with Theorem 2.23 shows that there is a family G depending

on M1/2,3 coordinates which is O(ε)-close to F . As in the proof of Theorem 4.17 (replacing

intersection with agreement), we argue that if ε is small enough, then G must be odd-cycle-

agreeing. Since µ(F∆G) ≥ ∣µ(F) − µ(G)∣ and there are only finitely many possible families G,

if ε is small enough then µ(G) = 1/8. Then G is a △-semistar by uniqueness.
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4.5 Extension to hypergraphs

In this section we generalize the work done in the previous sections to the hypergraph setting,

proving Theorem 4.2. For the rest of this section, fix the size n of the ground set. It will be

easier to consider the hypergraphs as collections of non-zero vectors in Zn2 rather than non-

empty subsets of [n]. Under this view, a hypergraph is a subset of {x ∈ Zn2 ∶ x ≠ 0} (where 0 is

the zero vector), and an odd circuit consists of an odd number of vectors x1, . . . , x2k+1 summing

to 0.

Our goal is to show that every odd-circuit-agreeing family contains at most 1/8 of the

hypergraphs. In view of Section 4.4, we can focus on odd-circuit-intersecting families. If

hypergraphs were allowed to contain the zero vector, then the 0-star is odd-circuit-intersecting

and contains at most 1/2 of the graphs, which is one reason to outlaw the zero vector. Even

if we insist that the odd circuit have size at least 3, the zero vector causes problems. First, it

is now important that the vectors in a circuit are all different: otherwise the {0, x}-star, which

contains 1/4 of the graphs, is odd-circuit-intersecting for all x ≠ 0, since 0 + x + x = 0. Even if

we disallow that, the zero vector can turn an odd circuit into an even circuit. While we believe

that the theorem should remain true even for circuit-agreeing families, this seems much harder

to prove. For all these reasons, we do not allow our hypergraphs to contain the zero vector.

We will mostly retrace our steps in Section 4.3. We start with some basic definitions.

Definition 4.13. We say that a matrix A is odd-circuit-admissible (admissible for short) if it

satisfies the following two properties:

Intersection property If G,H are hypergraphs whose intersection contains an odd circuit

then 1′GA1H = 0.

Eigenvector property The eigenvectors of F are the Fourier characters χS .

If A is admissible then we use λG(A) to denote the eigenvalue corresponding to χG. ◯
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Lemma 4.30. Let J be a set of edges. Define

BJ,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 1

1 0

⎞
⎟⎟⎟
⎠
, if i ∉ J,

⎛
⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟
⎠
, if i ∈ J,

BJ =
n

⊗
i=1

BJ,i.

If J contains no odd circuits then the matrix BJ is admissible, and the eigenvalue corresponding

to χG is

λG(BJ) = (−1)∣S∖J ∣.

Furthermore, the vector space of all admissible matrices is spanned by BJ for all bipartite

J .

Proof. The proof is the same as the proof of Lemma 4.11.

In the case of graphs, we made an essential use of randomly generated bipartite graphs,

which are graphs that we know do not contain odd cycles. The counterpart in the hypergraph

setting is hyperplanes.

Definition 4.14. Let y ∈ Zn2 be an arbitrary vector. The hyperplane defined by y is

Py = {x ∈ Zn2 ∶ ⟪x, y⟫ = 1}.

Here we understand ⟪x, y⟫ as a number in Z2. ◯

Lemma 4.31. Hyperplanes contain no odd circuits.

Proof. Let Py be a hyper plane and x1, . . . , x2k+1 ∈ Py. Then

⟪y, x1 +⋯ + x2k+1⟫ = ⟪y, x1⟫ +⋯ + ⟪y, x2k+1⟫ = 1,

and so x1 +⋯ + x2k+1 ≠ 0.
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We can think of every graph G as a hypergraph in which each vector has Hamming weight 2.

The complete bipartite graph KL,R corresponds naturally to a vector y ∈ Zn2 in which yi = 0

whenever i ∈ L, yi = 1 whenever i ∈ R. Under this correspondence, KL,R is the subset of

Py consisting of vectors of Hamming weight 2. This prompts the following generalization of

Lemma 4.12.

Definition 4.15. Two hypergraphs H1,H2 are isomorphic if there is an invertible linear oper-

ator L on Zn2 that maps H1 to H2.

For a hypergraph H, define a function qH on hypergraphs by

qH(G) = Pr
y∈Zn2

[G ∩ Py is isomorphic to H].

Similarly, for an integer k, define

qk(G) = Pr
y∈Zn2

[∣G ∩ Py ∣ = k],

The functions qH , qk are invariant under isomorphism. ◯

We reuse the same notation qk, qH since the two functions have the same values in both

contexts when the input G is a graph.

Lemma 4.32. For every hypergraph H there is an admissible matrix EH such that λG(EH) =

(−1)∣G∣qH(G).

For every integer k there is an admissible matrix Ek such that λG(Ek) = (−1)∣G∣qk(G).

Proof. The proof is the same as the proof of Lemma 4.12.

From this point on, the proof is substantially the same as in the graphical case. Before

embarking on the proof, we give suggestive names to some hypergraphs.

Definition 4.16. An edge is a non-zero vector.

A forest is a hypergraph in which all vectors are linearly independent. The (unique up to

isomorphism) forest containing n edges is denoted Fn. We sometimes call it an n-forest.

A cycle is a hypergraph of the form {x1, . . . , xn, x1+⋯+xn} such that x1, . . . , xn are linearly

independent. A cycle of size n is denoted Cn (the above cycle has size n+1). The cycle △ = C3

is also known as a triangle, and ◻ = C4 is also known as a square.
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A diamond is a hypergraph of the form {x, y, z, x + y, x + z}, where x, y, z are linearly

independent. We denote this hypergraph K−
4 . ◯

All these definitions agree with their graphical counterparts when the hypergraph in question

is indeed a graph. Also, note that all forests of a fixed size are now isomorphic to each other.

We construct the matrix A exactly as before (physically, though, the matrices are different):

A = E0 −
5

7
E1 −

1

7
E2 +

3

28
E3 (4.1)

The proof of Lemma 4.13 can be modified to yield the following.

Lemma 4.33. The matrix A given by (4.1) is admissible, and satisfies the following properties:

(a) λ∅(A) = 1.

(b) λH(A) ≥ −1/7 for all hypergraphs H, with equality only for the following hypergraphs:

forests of size one, two, or four; triangles; diamonds.

(c) If λH(A) > −1/7 then in fact λH(A) ≥ −1/8.

The proof appears in Section 4.5.1 below. The next step is to take care of the tight hyper-

graphs.

Lemma 4.34. Let B be the admissible matrix

B = EFn −E◻. (4.4)

(a) λG(B) = 0 whenever G contains less than 4 edges.

(b) λF4(B) = 1/16.

(c) λK−
4
(B) = 1/8.

(d) ∣λG(B)∣ ≤ 1 for all hypergraphs G.

Proof. Items (a) is immediate.

For item (b), λF4(B) is the probability that F4 ⊆ Py when y is chosen randomly. Since all

vectors in F4 are linearly independent, it is easy to check that the probability is 1/16.

For item (c), we show that the probability that K−
4 ∩ Pw is a square is 1/8 when w is

chosen randomly. Let K−
4 = {x, y, z, x + y, x + z}, where x, y, z are linearly independent. The
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only square contained in K−
4 is {y, z, x + y, x + z} (this is easy to check: these are the only four

vectors summing to zero). The vectors y, z, x+y are linearly independent, and so the probability

that all of them belong to K−
4 ∩Pw is 1/8. Since x+ z = y + z + (x+ y), in this case x+ z belongs

to the intersection as well.

Item (d) is clear since 0 ≤ λG(EX) ≤ 1 for all hypergraphs X.

This shows that the counterpart of Lemma 4.15 is true.

Lemma 4.35. Let C = A + (2/119)B, where A is given by (4.1) and B is given by (4.4). The

matrix C is admissible and satisfies the following properties:

(a) λ∅(C) = 1.

(b) λH(C) ≥ −1/7 for all hypergraphs H, for equality only for the following graphs: forests of

size one or two; triangles.

(c) If λH(C) > −1/7 then in fact λH(C) ≥ −135/952.

Proof. The proof is the same as the proof of Lemma 4.15.

At this point, we can prove Theorem 4.2.

Lemma 4.36. Let F be an odd-circuit-intersecting family of hypergraphs with characteristic

function f = 1F .

Upper bound: µ(F) ≤ 1/8.

Uniqueness: If µ(F) = 1/8 then the Fourier expansion of f is supported on the first 4 levels,

that is f̂(S) = 0 for ∣S∣ > 3.

Stability: If µ(F) ≥ 1/8 − ε then

∑
∣S∣>3

f̂2(S) = O(ε).

Proof. Proved like Lemma 4.16.

Theorem 4.37. Let F be an odd-circuit-intersecting family of hypergraphs.

Upper bound: µ(F) ≤ 1/8.
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Uniqueness: µ(F) = 1/8 if and only if F is a Schur-star.

Stability: If µ(F) ≥ 1/8 − ε then µ(F∆G) = O(ε) for some Schur-star G.

Proof. Proved like Theorem 4.17. Note that a Schur-star is the same as a △-star.

Theorem 4.2. Let F be an odd-circuit-agreeing family of hypergraphs on n points.

Upper bound: µ(F) ≤ 1/8.

Uniqueness: µ(F) = 1/8 if and only if F is a Schur-semistar.

Stability: If µ(F) ≥ 1/8 − ε then there is a Schur-semistar G such that µ(F∆G) = O(ε).

Proof. Proved like Theorem 4.1, since the condition in Theorem 4.28 is satisfied: if H = {x, y, x+

y} is a triangle and z ∉H then neither {x, y} nor {x, y, z} contain any cycles.

4.5.1 Proof of Lemma 4.33

We start by generalizing our development of cut statistics. The cut function is defined as before.

Definition 4.17. For a hypergraph H, its cut function is

QH(X) =
∞

∑
k=0

qk(G)Xk. ◯

In the case of graphs, we decomposed a given graph into its connected components and then

into its blocks. Here, it will be enough to consider a much coarser decomposition, in which only

the bridges are distinguished.

Definition 4.18. Let H be a hypergraph. A hyperedge x ∈ H is a bridge if no cycle in H

contains x. Alternatively, x ∉ Span(H ∖ {x}). Denote the set of bridges in H by B(H), and let

B̄(H) =H ∖B(H). ◯

Lemma 4.38. Let H be a hypergraph, and m = ∣B(H)∣. We have

QH(X) = (1

2
+ 1

2
X)

m

QB̄(H).
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Proof. It is easy to check that Q−(X) = 1/2 + (1/2)X, where − is an edge. The proof will be

complete if we show that whenever H is a hypergraph and v ∉ Span(H) then QH∪{v} = QHQ{v}.

Let u ∈ Span(H)⊥ be some vector satisfying ⟪u, v⟫ = 1. Let y = y1 + y2, where y1 is

chosen randomly from {v}⊥ and y2 is chosen randomly from {0, u}. The vector y is distributed

uniformly on Zn2 , H ∩ Qy depends only on y1, and {v} ∩ Qy depends only on y2. Hence the

formula QH∪{v} = QHQ{v} follows from basic properties of generating functions (like in the

proof of Lemma 4.18).

Corollary 4.39. Let H be a hypergraph with m = ∣B(H)∣, and let ak = qk(B̄(H)). Then a1 = 0

and

QH(X) = 1

2m
(a0 +ma0X + ((m

2
)a0 + a2)X2 + ((m

3
)a0 +ma2 + a3)X3) +⋯. (4.3’)

Proof. We start by proving that a1 = 0. Suppose B̄(H) ∩ Py = {z}. If there were a cycle

C ⊆ B̄(H) containing z then

0 = ⟪y,∑
c∈C

c⟫ = ∑
c∈C

⟪y, c⟫ = 1.

We conclude that z is a bridge, yet by construction B̄(H) has no bridges. Therefore a1 = 0.

The rest of the proof follows from Lemma 4.38 like in the proof of Corollary 4.22.

We now generalize the two auxiliary lemmas Lemma 4.23 and Lemma 4.24. The only major

difference is that a new tight case appears in the counterpart of Lemma 4.24(b).

Definition 4.19. Let H be a hypergraph. A vertex is any element of [n]. The neighborhood

of a vertex i in H is N(i) = {x ∈ H ∶ xi = 1}. The degree of a vertex is the size of its

neighborhood. ◯

Lemma 4.40. Let H be a hypergraph.

(a) q0(H) = 2− rank(H).

(b) q1(H) = ∣B(H)∣q0(H).

(c) If H has a vertex of odd degree then qk(H) ≤ 1/2 for all k.

(d) For any odd k, qk(H) ≤ 1/2.
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(e) Always q2(H) ≤ 3/4.

Proof. For item (a), let R be a basis of H. Clearly H ∩Qy = ∅ if and only if R ∩Qy = ∅. The

formula immediately follows.

Item (b) follows directly from (4.3’).

For item (c), let i ∈ [n] have odd degree, and notice that

(H ∩Qy)∆(H ∩Qy+ei) = N(i),

where ei is the vector whose only non-zero coordinate is i. Since ∣N(i)∣ is odd, ∣H ∩ Qy ∣ ≠

∣H ∩Qy+ei ∣, and so at most one of them can be equal to k.

For item (d), we can assume that all vertices have even degree. In that case, for each y ∈ Zn2
we have

∑
x∈H

⟪x, y⟫ = ∑
i∈[n]∶yi=1

∑
x∈H ∶xi=1

1 = ∑
i∈[n]∶yi=1

deg(i) = 0,

(the calculation taking place in Z2), and so ∣H ∩ Py ∣ is always even.

For item (e), follow the proof of Lemma 4.23(e) to show that q2(H) < 3/4 whenever ∣H ∣ ≥ 6.

We can further restrict ourselves to the case in which all vertices have even degree, and so

the vectors in H sum to zero. In particular, H is linearly dependent. Let H ′ be the smallest

subset of H which is linearly dependent. Thus ∣H ′∣ ≥ 3 and H ∖H ′ also sums to zero. Since

∣H ∖H ′∣ ≤ 2, we conclude that H is minimally linearly dependent, and so a cycle. One checks

that q2(C3) = q2(C4) = 3/4 and q2(C5) = 5/8.

Definition 4.20. A hypergraph is a k-hyperclique if it consists of a linear subspace of dimension

k, minus 0. We denote a k-hyperclique by Kk. ◯

Note that a clique on k vertices corresponds to a (k − 1)-hyperclique.

Lemma 4.41. Let H be a hypergraph.

(a) We have q0(∅) = 1, q0(−) = 1/2, and q0(H) ≤ 1/4 for all other hypergraphs.

(b) If ∣B(H)∣ = 0 and ∣H ∣ is odd then either q0(H) ≤ 1/16 or H is one of the following: a

triangle, a diamond or a 3-hyperclique.

(c) If B̄(H) is non-empty then q0(B̄(H)) ≤ 1/4.
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Note that a 3-hyperclique is not isomorphic to any graph.

Proof. Item (a) follows directly from Lemma 4.23(a).

For item (b), note that if rankH ≥ 4 then q0(H) ≤ 1/16 by Lemma 4.23(a). Otherwise, H is

a bridge-less hypergraph of rank at most 3 with an odd number of vectors. A hypergraph of rank

1 is a bridge. The only bridge-less hypergraph of rank 2 is a triangle. A hypergraph of rank 3

with an odd number of vectors contains either 3, 5 or 7 vectors. In the first case, the hypergraph

consists of bridges. In the second case, it consists either of a 3-cycle and two additional vectors,

which must be bridges, or of a 4-cycle and an additional vertex contained in their span, a

hypergraph which is isomorphic to a diamond. In the third case, it is a 3-hyperclique.

Item (c) follows directly from item (a).

We are now ready to prove Lemma 4.33.

Lemma 4.33. The matrix A given by (4.1) is admissible, and satisfies the following properties:

(a) λ∅(A) = 1.

(b) λH(A) ≥ −1/7 for all hypergraphs H, with equality only for the following hypergraphs:

forests of size one, two, or four; triangles; diamonds.

(c) If λH(A) > −1/7 then in fact λH(A) ≥ −1/8.

Proof. The proof of Lemma 4.13 relies only on formula (4.3), Lemma 4.23 and Lemma 4.24.

Formula (4.3) has its exact analog in formula (4.3’), and the lemmas have their analogs in

Lemma 4.40 and Lemma 4.41. The only difference is the additional tight case in Lemma 4.41(b),

a 3-hyperclique. In addition, some translation is needed: m should be replaced by ∣B(H)∣, and

H by B̄(H).

Going through the proof of Lemma 4.13, the only point in which Lemma 4.24(b) is used is

the case where ∣H ∣ is odd, ∣B(H)∣ = 0 and q0(H) = 1/16. The proof is complete if we verify that

f(K3) ≤ 1/8. Recall that

f(K3) = q0(K3) −
1

7
q2(K3) +

3

28
q3(K3).

It is easy to check that either K3∩Py = ∅ (if y is in the orthogonal complement) or ∣K3∩Py ∣ = 4.

The first event happens with probability 1/8 by Lemma 4.40, and so f(K3) = 1/8.
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4.6 Extension to skewed measures

We now generalize all the work done so far to the µp-setting for p < 1/2. Our aim is to prove an

upper bound of p3 on odd-circuit-intersecting families, along with the related uniqueness and

stability results. We already have the upper bound for p ≤ 1/4 by Theorem 3.16 on page 41,

and uniqueness and stability follow for p < 1/4 as in the proof of Theorem 4.17 on page 89.

In this section we bridge the gap between p = 1/4 and p = 1/2. This will enable us to use

Theorem 3.33 to get results on uniform odd-cycle-intersecting families of graphs and uniform

odd-circuit-intersecting families of hypergraphs.

For the rest of this section, fix some p < 1/2, and let q = 1 − p. We start by generalizing the

construction of the matrix A.

Definition 4.21. We say that a matrix A is odd-circuit-admissible (admissible for short) if it

satisfies the following two properties:

Intersection property If G,H are hypergraphs whose intersection contains an odd circuit

then 1′GA1H = 0.

Eigenvector property The eigenvectors of F are the Fourier characters χS,p.

If A is admissible then we use λH(A) to denote the eigenvalue corresponding to χH . ◯

Lemma 4.42. Let J be a set of vectors. Define

BJ,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 − p
q

p
q

1 0

⎞
⎟⎟⎟
⎠
, if i ∉ J,

⎛
⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟
⎠
, if i ∈ J,

BJ =
n

⊗
i=1

BJ,i.

If J contains no odd circuits then the matrix BJ is admissible, and the eigenvalue corresponding

to χH is

λH(BJ) = (−p
q
)
∣S∖J ∣

.
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Furthermore, the vector space of all admissible matrices is spanned by BJ for all bipartite

J .

Proof. The proof is the same as the proof of Lemma 4.11, generalizing to arbitrary p.

Lemma 4.43. For every hypergraph H there is an admissible matrix EH such that λG(EH) =

(−p/q)∣G∣qH(G).

For every integer k there is an admissible matrix Ek such that λG(Ek) = (−p/q)∣G∣qk(G).

Proof. The proof is the same as the proof of Lemma 4.12.

The definition of A has to be adapted. This time we are opting for a minimal eigenvalue of

−p3/(1 − p3). We are again looking for a matrix of the form

Ap = c0E0 + c1E1 + c2E2 + c3E3 + c4E4,

λG(Ap) = (−p
q
)
∣G∣

(c0q0(G) + c1q1(G) + c2q2(G) + c3q3(G) + c4q4(G)).

As in Section 4.3, by considering small graphs we get the following constraints on the

coefficients:

c0 = 1,

c1 =
p2 − p − 1

p2 + p + 1
,

c2 =
p2 − 3p + 1

p2 + p + 1
,

5p2 − 27p + 45 − 16/p
p2 + p + 1

≤ 4c3 + c4 ≤
5p2 − 27p + 45 − 32/p + 8/p2

p2 + p + 1
.

When p = 1/2, the two bounds on 4c3 + c4 coincide. When p > 1/2, they contradict one another,

so the method fails. When p < 1/2, there is a gap, and choosing any value inside the gap, the

corresponding eigenvalues are tight on neither 4-forests nor K−
4 . As before, we choose c4 = 0.

A judicious choice of c3 is:

c3 =
5p2 − 27p + 45 − 28/p + 6/p2

4(p2 + p + 1) .

This choice guarantees that c3 > 0 for all p ∈ (0,1/2]. Summarizing, we define Ap as follows:

Ap = E0 +
p2 − p − 1

p2 + p + 1
E1 +

p2 − 3p + 1

p2 + p + 1
E2 +

5p2 − 27p + 45 − 28/p + 6/p2

4(p2 + p + 1) E3. (4.5)

We have the following generalization of Lemma 4.33.
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Lemma 4.44. Let τ = 0.248, and suppose τ ≤ p < 1/2. The matrix Ap given by (4.5) is

admissible, and satisfies the following properties:

(a) λ∅(A) = 1.

(b) λH(Ap) ≥ −p3/(1 − p3) for all hypergraphs H, with equality only for the following hyper-

graphs: forests of size one or two; triangles.

The reason we only prove the lemma for p ≥ τ is that it is false for p below some critical

point smaller than τ = 0.248. We prove the lemma in Section 4.6.1. The proof is very similar to

the earlier proofs, but is complicated by the fact that we have to care about a range of values

of p.

Using Lemma 4.44 we can generalize Theorem 4.17 to all p < 1/2. First we prove a general-

ization of Lemma 4.36.

Lemma 4.45. Let F be an odd-circuit-intersecting family of hypergraphs with characteristic

function f = 1F , and suppose τ ≤ p < 1/2.

Upper bound: µp(F) ≤ p3.

Uniqueness: If µp(F) = p3 then the Fourier expansion of f is supported on the first 4 levels,

that is f̂p(S) = 0 for ∣S∣ > 3.

Stability: If µp(F) ≥ p3 − ε then

∑
∣S∣>3

f̂2
p (S) ≤ Tpε,

where Tp is a continuous function of p which doesn’t depend on n.

Proof. The lemma is proved much like Lemma 4.16. In order to show that Cp is a continuous

function of p, recall that Cp derives from Hoffman’s bound:

Tp =
−λmin

λ2 − λmin
.

In our case λmin = −p3/(1 − p3), and λ2 is the second minimal eigenvalue of Ap.

First we show that for each p there is some constant Tp that doesn’t depend on n. Lemma 4.44

shows that λH(Ap) > λmin for all graphs other than the graphs listed there. As ∣H ∣ Ð→ ∞,
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∣λH(Ap)∣ Ð→ 0, and so λ2 is bounded away from λmin, showing that we can choose Tp that

doesn’t depend on n.

Second, we show that Tp is continuous on each interval [τ,1/2 − δ]. For each δ we can find

Nδ such that if ∣H ∣ > Nδ then ∣λH(Ap)∣ ≤ ∣λmin∣/2 for all p in the interval. Hence λ2 depends

only on finitely many hypergraphs, and because λH(Ap) is continuous for every H, we deduce

that Tp is continuous.

As pÐ→ 1/2, the constant Tp tends to ∞ due to the hypergraphs △,K−
4 which are tight for

p = 1/2. We can perturb Ap as in Section 4.3, using the same matrix B and constructing Cp in

a similar way: Cp = Ap + (16/17)(λ2(Ap)−λmin(Ap))B. As a result, we can obtain a version of

Lemma 4.45 in which Tp is bounded as pÐ→ 1/2. The interested reader can consult the details

in [27]. We omit this step since it is not needed for any of our results.

Now we are ready to prove the generalization of Theorem 4.17.

Theorem 4.3. Let F be an odd-circuit-intersecting family of hypergraphs on n points, and

suppose 0 < p < 1/2.

Upper bound: µp(F) ≤ p3.

Uniqueness: µp(F) = p3 if and only if F is a Schur-star.

Stability: If µp(F) ≥ p3−ε then µp(F∆G) ≤Kpε for some Schur-star G, where Kp is a constant

depending continuously on p in the interval (0,1/2).

Proof. The upper bound is given by Lemma 4.45 for p ≥ τ and by Theorem 3.16 for p ≤ τ . For

uniqueness, the argument in the proof of Theorem 3.16 shows that if µ(F) = p3 then F is a

3-star. Since F is odd-circuit-intersecting, it must be a Schur-star.

For stability, suppose µ(F) ≥ p3 − ε. Suppose first that p ≥ τ . The stability part of

Lemma 4.45 combined with Theorem 2.23 shows that F is Dpε-close to a family G depend-

ing on Mp coordinates, where Dp = TpCp,3 (Tp coming from the lemma and Cp,3 from the

theorem) and Mp are continuous.

We claim that if ε is small enough then G is odd-circuit-intersecting. Suppose G is not odd-

circuit-intersecting. Thus there are two hypergraphs H1,H2 ∈ G whose intersection contains no



Chapter 4. Triangle-intersecting families of graphs 116

odd cycles. We can assume furthermore that ∣H1∣, ∣H2∣ ≤ Mp, say both are supported on the

edge set X of size Mp. Let F1 = {H ⊆ X ∶ H ∪H1 ∈ F}, and define F2 similarly. If H ∈ F1

then X ∖H ∉ F2, since F is odd-cycle-intersecting. Therefore F1,F2 are cross-intersecting, and

Lemma 3.24 shows that µp(F1)µp(F2) ≤ p2. Thus either µp(F1) ≤ p or µp(F2) ≤ p. Without

loss of generality, assume µp(F1) ≤ p. Since all the corresponding graphs belong to G, this

shows that µp(F∆G) ≥ (1 − p)µ[X]
p (H1) ≥ (1 − p)pMp , which is impossible if ε < (1 − p)pMp .

There are only finitely many odd-circuit-intersecting families G depending onMp coordinates

such that µp(G) < p3. Let the maximal µp-measure among all of them be p3 − α. Note that α

is continuous in p. If µp(G) ≠ p3 then µp(F∆G) ≥ ∣µp(F) − µp(G)∣ ≥ α − ε and so α ≤ (Dp + 1)ε,

which is impossible if ε < α/(Dp + 1). By uniqueness, the only odd-circuit-intersecting family

with measure p3 is a Schur-star.

Taking K ′
p = max(Dp, ((1 − p)pMp)−1, (α/(Dp + 1))−1), we deduce that for some Schur-star

G, µp(F∆G) ≤K ′
pε, for any value of ε. Notice that K ′

p is continuous in p.

Suppose next that p ≤ τ . Replacing Lemma 4.45 with Lemma 3.14, the same argument

shows that for some Schur-star G, µp(F∆G) ≤K ′′
p ε, where K ′′

p is continuous in p.

We can find a continuous function Kp defined for all p ∈ (0,1/2) larger than both K ′
p and

K ′′
p in their respective intervals, completing the proof of stability.

Applying Theorem 3.33, we deduce the following version of our main theorem for uniform

families of odd-circuit-intersecting hypergraphs.

Theorem 4.4. For every δ > 0 there are constants Cδ,Nδ such that for any k ∈ (0, n/2 − δn)

and any odd-circuit-intersecting k-uniform family F of hypergraphs on n ≥ Nt,δ points,

∣F ∣ < (n − 3

k − 3
) + ε(n

k
).

If furthermore F satisfies

∣F ∣ > (n − 3

k − 3
) − ε(n

k
),

then there exists a Schur-star H such that

∣F∆ Sl(H, k)∣ < Cδ
⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
).
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Proof. Let P△ be the monotone object of odd-circuit-intersecting families of hypergraphs. The-

orem 4.3 shows that P△ is weakly µ-dominated in (0,1/2). The result now follows as in the

proof of Theorem 3.34 on page 61.

A similar result can be proved for uniform families of odd-cycle-intersecting graphs.

Theorem 4.5. For every δ > 0 there are constants Cδ,Nδ such that for any k ∈ (0, n/2 − δn)

and any odd-cycle-intersecting k-uniform family F of graphs on n ≥ Nt,δ points,

∣F ∣ < (n − 3

k − 3
) + ε(n

k
).

If furthermore F satisfies

∣F ∣ > (n − 3

k − 3
) − ε(n

k
),

then there exists a △-star H such that

∣F∆ Sl(H, k)∣ < Cδ
⎛
⎝
ε +

√
logn

n

⎞
⎠
(n
k
).

Proof. The proof is the same as Theorem 4.4.

4.6.1 Proof of Lemma 4.44

The proof of Lemma 4.44 is complicated by the fact that instead of the arithmetic inequalities

appearing in the proof of Lemma 4.13, this time we get polynomial inequalities. Furthermore,

the sign of some of the coefficients will depend on p. To handle the latter problem, when we want

to lower bound an expression ckα given bounds 0 ≤ α ≤ B, we will replace it by min(ckB,0). If

ck ≥ 0 then ckα ≥ 0, and otherwise ckα ≥ ckB.

As a result, we will get expressions involving (at times) multiple invocations of min. Each

such inequality is equivalent to an inequality of the form minS ≥ 0, where S is a finite set of

polynomials. In order to verify these inequalities, we check that P ≥ 0 for each P ∈ S. In order

to check that P ≥ 0, we check that P (3/8) > 0 and that P has no zeroes in [τ,1/2); the latter

can be done formally using Sturm chains [76]. This tedious verification has been done for all

the inequalities appearing in this section, and so the reader can rest assured that the proof is

correct.

The proof requires one additional auxiliary lemma.
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Lemma 4.46. Let H be a hypergraph.

(a) If ∣B(H)∣ = 1 and ∣H ∣ > 1 then ∣H ∣ ≤ 4.

(b) If ∣B(H)∣ = 0 and ∣H ∣ ≤ 5 then H is one of the following hypergraphs: the empty hyper-

graph, C3, C4, C5, K−
4 .

Proof. For item (a), if ∣H ∣ > 1 then B̄(H) ≠ ∅ and so ∣B̄(H)∣ ≥ 3, since B̄(H) must contain a

cycle.

For item (b), notice that if H is non-empty then H must contain a cycle. If ∣H ∣ = 3 then

H = C3. If ∣H ∣ = 4 then either H = C4, or H contains a triangle, and so it is of the form

H = {x, y, x + y, z}; clearly z must be a bridge. If ∣H ∣ = 5 then either H = C5, H contains a

triangle, or H contains a square. If H contains a triangle then since H is bridge-less, it must

be of the form H = {x, y, x+y, z, x+z} which is a diamond. If H contains a square then it must

be of the form H = {x, y, z, x + y + z, x + y}, again a diamond.

Lemma 4.44. Let τ = 0.248, and suppose τ ≤ p < 1/2. The matrix Ap given by (4.5) is

admissible, and satisfies the following properties:

(a) λ∅(A) = 1.

(b) λH(Ap) ≥ −p3/(1 − p3) for all hypergraphs H, with equality only for the following hyper-

graphs: forests of size one or two; triangles.

Proof. Let c0 = 1, c1, c2, c3 be the coefficients of E0,E1,E2,E3 in (4.5). One checks that c1 is

always negative on [τ,1/2) and c3 is always positive. The coefficient c2 is more troublesome: it

changes sign from positive to negative at (3 −
√

5)/2 ≈ 0.382.

In view of Lemma 4.43, the eigenvalues of A satisfy the formula

λH(Ap) = (− p

1 − p)
∣H ∣

(q0(H) + c1q1(H) + c2q2(H) + c3q3(H)).

This formula already shows that λ∅(Ap) = 1. Let m = ∣B(H)∣. We split the proof into two

cases: ∣H ∣ is odd and ∣H ∣ is even.
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Hypergraphs with an odd number of vectors. Suppose ∣H ∣ is odd. We show that

λH(Ap) ≥ −p3/(1−p3), with equality only if H is a single vector or a triangle. Lemma 4.40(d,e)

implies the general bound

λH(Ap) ≥ −(
p

1 − p)
∣H ∣

[q0(H)(1 +mc1) +max(3

4
c2,0) +

1

2
c3].

It can be checked that 1 + c1 > 0, whereas 1 +mc1 < 0 for m ≥ 2.

When m = 0, Lemma 4.46(b) shows that either H is a triangle, C5 or K−
4 , or ∣H ∣ ≥ 7. If H is a

triangle then λH(Ap) = −p3/(1−p3). If H is C5 or K−
4 , we can verify that λH(Ap) > −p3/(1−p3)

by direct calculation, except that for K−
4 , we get equality when p = 1/2. If ∣H ∣ ≥ 7 then

Lemma 4.41(b) shows that either H = K3 or q0(H) ≤ 1/16. In the former case, one can verify

that λH(Ap) > −p3/(1 − p3) directly. In the latter case,

λH(Ap) ≥ −(
p

1 − p)
7

[ 1

16
+max(3

4
c2,0) +

1

2
c3].

One can check that the right-hand side is always larger than −p3/(1 − p3).

When m = 1, Lemma 4.46(a) implies that either ∣H ∣ = 1 or ∣H ∣ ≥ 5. In the former case,

λH(Ap) = −p3/(1 − p3). In the latter case, Lemma 4.41(a) implies that q0(H) ≤ 1/4, and

therefore

λH(Ap) ≥ −(
p

1 − p)
5

[1

4
(1 + c1) +max(3

4
c2,0) +

1

2
c3].

It can be checked that the right-hand side is always larger than −p3/(1 − p3).

When m ≥ 2, since 1 +mc1 < 0, we have the sharper estimate

λH(Ap) ≥ −(
p

1 − p)
∣H ∣

[max(3

4
c2,0) +

1

2
c3].

If ∣H ∣ = 3 then H = F3, and we can verify that λH(Ap) > −p3/(1 − p3) directly. Otherwise,

−(p/(1 − p))∣H ∣ ≥ −(p/(1 − p))5, and so

λH(Ap) ≥ −(
p

1 − p)
5

[max(3

4
c2,0) +

1

2
c3].

It can be checked that the right-hand side is always larger than −p3/(1 − p3).
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Hypergraphs with an even number of vectors. Suppose ∣H ∣ is even. We show that

λH(Ap) ≥ −p3/(1 − p3), with equality only if H consists of two vectors. Formula (4.3’) implies

that

λH(Ap) = ( p

1 − p)
∣H ∣

(d0(m)a0 + d2(m)a2 + d3(m)a3),

where d0, d2, d3 are defined by

d0(m) = 2−m [1 +mc1 + (m
2
)c2 + (m

3
)c3] ,

d2(m) = 2−m(c2 +mc3),

d3(m) = 2−mc3.

Since c3 > 0, we know that d3(m) > 0. We can further check that d2(m) > 0 when m ≥ 2; this

just involves checking that c2 + 2c3 > 0.

We claim that d0(m) > 0 for m ≥ 10. To see this, check first that c1+7c3 > 0 and c2+2c3 > 0.

Note that

2m+1d0(m + 1) − 2md0(m) = c1 +mc2 + (m
2
)c3

≥ (c1 + 7c3) +m(c2 + 2c3) > 0,

using (m
2
) ≥ 2m + 7, which is true for m ≥ 7. It remains to check by direct calculation that

d1(10) > 0.

We have shown that when m ≥ 10, λH(Ap) > 0. If m < 10 and H is a forest, then H is either

a 2-forest, a 4-forest, a 6-forest or an 8-forest. If H is a 2-forest, then λH(Ap) = −p3/(1 − p3).

For the other forests listed, direct calculation shows that λH(Ap) > −p3/(1 − p)3, except that

for 4-forests, we get equality when p = 1/2.

The remaining case is when m < 10 and H is not a forest. Lemmas 4.40(e) and 4.41(c) give

the following bound:

λH(Ap) ≥ ( p

1 − p)
2

[min(1

4
d0(m),0) +min(3

4
d2(m),0)].

It can be checked that for all m < 10, the right-hand side is larger than −p3/(1 − p3).



Chapter 5

The Ahlswede–Khachatrian theorem

The Erdős–Ko–Rado theorem determines the largest µp-measure of an intersecting family of

sets. In this chapter, we consider the analogue of this theorem to t-intersecting families (families

in which any two sets have at least t elements in common), following Ahlswede and Khacha-

trian [2, 3]. We present a proof of the µp version of their theorem, which is adapted from the

earlier proofs. Due to the simpler nature of the µp setting, our proof is simpler and cleaner.

We have already considered t-intersecting families in Section 3.3, in which we proved a

theorem of Friedgut showing that if F is a t-intersecting family of sets and p ≤ 1/(t + 1) then

µp(F) ≤ pt. The upper bound on p came naturally from the proof. This limitation is not

arbitrary. Indeed, when p > 1/(t + 1), the bound pt is incorrect. The correct bound was found

by Ahlswede and Khachatrian [2, 3] in the k-uniform setting. We state it in the language of

slices, defined in Section 3.5.1 on page 53: for a family of sets F , Sl(F , k) = {A ∈ F ∶ ∣A∣ = k}.

Definition 5.1. The (t, r) Frankl family Ft,r is the t-intersecting family defined by

Ft,r = {S ⊆ [t + 2r] ∶ ∣S∣ ≥ t + r}. ◯

Theorem 5.1 (Ahlswede–Khachatrian). Let 1 ≤ t ≤ k ≤ n and r ≥ 0, and let F be a t-

intersecting family. When

(k − t + 1) (2 + t − 1

r + 1
) < n < (k − t + 1) (2 + t − 1

r
) ,

we have ∣Sl(F , k)∣ ≤ ∣Sl(Ft,r, k)∣, with equality only if the slices are equivalent.

121
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When

n = (k − t + 1) (2 + t − 1

r + 1
) ,

we have ∣Sl(F , k)∣ ≤ ∣Sl(Ft,r, k)∣ = ∣Sl(Ft,r+1, k)∣, with equality only if Sl(F , k) is equivalent to

either Sl(Ft,r, k) or Sl(Ft,r+1, k).

Theorem 3.29 on page 54 implies the following counterpart in the µp setting.

Corollary 5.2. If F is t-intersecting then for r ≥ 0, when

r

t + 2r − 1
< p < r + 1

t + 2r + 1
,

we have µp(F) ≤ µp(Ft,r) with equality only if F is equivalent to Ft,r.

If p = (r + 1)/(t + 2r + 1) then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1).

Corollary 5.2 covers all p < 1/2 (and for t = 1, all p ≤ 1/2). For p > 1/2, there is no meaningful

bound in sight: the µp-measure of the t-intersecting family consisting of all sets of size at least

(n + t)/2 approaches 1. For p = 1/2, the measure of this family approaches 1/2.

Theorem 3.29 isn’t strong enough to handle equality when there are two different optimal

families. In the rest of this chapter, we adapt the proof of the Ahlswede–Khachtrian theorem

to the µp setting, thereby settling the cases p = (r + 1)/(t + 2r + 1). We will prove the following

version of the Ahlswede–Khachatrian theorem, which uses the notion of extension, also defined

in Section 3.5.1: for a family of sets F on m points, Un(F) = {A ⊆ [n] ∶ A ∩ [m] ∈ F}.

Theorem 5.3. Let F be a t-intersecting family on n points for t ≥ 2. If r/(t + 2r − 1) < p <

(r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r), with equality if and only if F is

equivalent to Un(Ft,r).

If p = (r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1), with equality if

and only if F is equivalent to either Un(Ft,r) or Un(Ft,r+1).

5.1 Proof overview

Our proof of the Ahlswede–Khachatrian theorem in the µp setting combines the approaches in

the two papers [2, 3] in which Ahlswede and Khachatrian proved their theorem in the classical
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setting (the two papers present two different proofs). Theorem 3.9 on page 35 covers the case of

intersecting families (the classical Erdős–Ko–Rado theorem), and therefore we will concentrate

on t-intersecting families for t ≥ 2.

Given t ≥ 2 and p ∈ (0,1/2), our goal is to determine the t-intersecting families of maximum

µp-measure. In general, the maximum µp-measure of a t-intersecting family depends on the size

of its support: for example, the maximum µp-measure of a 2-intersecting family on 2 points is p2

for all p < 1/2, but for any p > 1/3 there is a 2-intersecting family of larger measure 4p3 −3p4 on

4 points, namely the Frankl family F2,1. We will not be interested in the maximum µp-measure

of a t-intersecting family on n points. Rather, we will be interested in the supremum of the

µp-measures of t-intersecting families on any number of points; we will show that for all p < 1/2,

the supremum is attained at one of the Frankl families.

The proof uses the technique of shifting. A t-intersecting family F on n points is left-

compressed if for all A ∈ F , j ∈ A and i ∈ [n] ∖ A satisfying i < j, we have A ∖ {j} ∪ {i} ∈ F .

Using shifting, we can show that given any t-intersecting family, there is a left-compressed t-

intersecting family with the same µp-measure for all p. Therefore as far as upper bounds are

concerned, it is enough to consider left-compressed families.

Let F be a left-compressed t-intersecting family, let r ≥ 0 be an integer, and suppose that

r/(t + 2r − 1) < p < (r + 1)/(t + 2r + 1). We can also assume that F is monotone (if A ∈ F and

B ⊇ A then B ∈ F). The proof consists of two steps. In the first step, we show that if F depends

(as a Boolean function) on some i > t+ 2r then we can construct from F a t-intersecting family

of larger µp-measure. This implies that the maximum µp-measure of a t-intersecting family is

attained at some family on t+2r points. In the second step, we show that if F is not symmetric

with respect to its first t+ 2r coordinates then we can construct from F a t-intersecting family

of larger µp-measure. This implies that the maximum µp-measure of a t-intersecting family is

attained (uniquely) at a family of the form {A ⊆ [t + 2r] ∶ ∣A∣ ≥ k}, and so at the Frankl family

Ft,r.

A similar but more delicate argument handles the case p = (r + 1)/(t + 2r + 1), and this

completes the proof for left-compressed t-intersecting families. The upper bound on the µp-

measure holds for arbitrary t-intersecting families. An argument similar in spirit to the one
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in Section 4.4 shows that t-intersecting families of maximum µp-measure are equivalent to the

corresponding Frankl family or families.

For the duration of the proof, we will use µXp (F) to denote the µp-measure of a family F

as a subset of 2X .

5.2 Shifting

In this section we develop formally the classical technique of shifting. We start by defining the

shifting operator.

Definition 5.2. Let F be a family of sets on n points, and let i, j ∈ [n], i ≠ j. For A ∈ F , let

Si←j(A) = A∖{j}∪{i} if j ∈ A, i ∉ A and A∖{j}∪{i} ∉ F , and let Si←j(A) = A otherwise. The

shifted family Si←j(F) consists of the sets Si←j(A) for all A ∈ F . ◯

As an example, let F = {{2},{13},{23}}. Then S1←2(F) = {{1},{13},{23}}. Since

∣Si←j(A)∣ = ∣A∣, shifting doesn’t change the µp-measure of a family. Shifting also maintains

the property of being t-intersecting.

Lemma 5.4. Let F be a family of sets on n points, and let i, j ∈ [n], i ≠ j. If F is t-intersecting

for some t ≥ 1 then Si←j(F) is also t-intersecting.

Proof. Let A′ = Si←j(A),B′ = Si←j(B) ∈ Si←j(F), where A,B ∈ F . We consider several cases.

If A′ = A and B′ = B then ∣A′ ∩B′∣ = ∣A ∩B∣ ≥ t since F is t-intersecting. If A′ ≠ A and B′ ≠ B

then i ∈ A′,B′ and j ∈ A,B, and so ∣A′ ∩B′∣ = ∣(A ∩B) ∖ {j} ∪ {i}∣ = ∣A ∩B∣ ≥ t. The remaining

case is when A′ ≠ A and B′ = B. If j ∉ B then ∣A′∩B′∣ ≥ ∣(A∖{j})∩B∣ = ∣A∩B∣ ≥ t. If j ∈ B and

i ∈ B then ∣A′∩B′∣ = ∣(A∖{j}∪{i})∩B∣ = ∣A∩B∣ ≥ t. If j ∈ B and i ∉ B then by the definition of

Si←j(B), we must have B′′ = B∖{j}∪{i} ∈ F . Hence ∣A′∩B∣ = ∣(A′∖{i}∪{j})∩(B∖{j}∪{i})∣ =

∣A ∩B′′∣ ≥ t. Therefore Si←j(F) is t-intersecting.

By shifting a given family toward smaller elements, we can obtain a left-compressed family.

Definition 5.3. A family F on n points is left-compressed if Si←j(F) = F for all i, j ∈ [n] such

that i < j. ◯
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Lemma 5.5. Let F be a t-intersecting family on n points. There is a left-compressed t-

intersecting family G on n points such that µp(G) = µp(F) for all p ∈ [0,1]. Furthermore,

G can be obtained from F by a sequence of applications of the operators Si←j for various i, j.

Proof. Let Φ(F) be the sum of all elements in all sets in F . It is easy to see that Φ(Si←j(F)) ≤

Φ(F) whenever i < j, with equality only if Si←j(F) = F . Let S(F) result from applying in

sequence the operators Si←j for all i, j ∈ [n] such that i < j, and define a sequence F0 = F ,

Fs+1 = S(Fs). Since Φ(Fs+1) ≤ Φ(Fs) and Φ(Fs) is a non-negative integer, Φ(Fs) reaches

its minimum at some s = T . Since Φ(FT+1) = Φ(FT ) and so FT+1 = FT , we conclude that

Si←j(FT ) = FT for all i, j ∈ [n] such that i < j, and so FT is left-compressed. Lemma 5.4 shows

that FT is t-intersecting. Finally, it is easy to check that shifting preserves the µp-measure for

all p ∈ [0,1].

From now on until Section 5.5 we will only be interested in left-compressed families.

5.3 Generating sets

In this section we implement the first step of the proof, following [2]. In this step, we show that

if F is a monotone left-compressed t-intersecting family and p < (r + 1)/(t+ 2r + 1), then either

F depends only on the first t + 2r points, or we can modify F to obtain a t-intersecting family

of larger measure. The tool we will use is generating sets.

Definition 5.4. Let F be a family of sets on n points. Its generating set G(F) is the family

of inclusion-minimal sets in F . Its extent m(F) is the largest integer appearing in any set in

G(F).

Let G be a family of sets on n points. Its upset Un(G) is the family F = {A ⊆ [n] ∶ A ⊇

B for some B ∈ G}.

A family of sets F on n points is monotone if for all B ∈ F , we have A ∈ F whenever

B ⊆ A ⊆ [n]. An upset is always monotone. If F is monotone then F = Un(G(F)). ◯

For example, G(Ft,r) = {A ⊆ [t + 2r] ∶ ∣A∣ = t + r} and m(Ft,r) = t + 2r. In the language of

monotone Boolean functions, if F is monotone then G(F) is its set of minterms.
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Our goal in this section is to show that if F is a monotone t-intersecting family, p < (r +

1)/(t+2r+1) and m(F) > t+2r then there is another t-intersecting family G with µp(G) > µp(F).

We will construct G by modifying the generating set of F , guided by the following easy lemma.

Lemma 5.6. Let F be a left-compressed t-intersecting family with m =m(F), and suppose that

A,B ∈ F both contain m. If ∣A ∩B∣ = t then A ∪B = [m] and so ∣A∣ + ∣B∣ =m + t.

Proof. Let A,B ∈ F be as indicated. Clearly A ∪ B ⊆ [m]. Suppose that for some i ∈ [m],

i ∉ A ∪B. By assumption, i <m. Since F is left-compressed, A′ = A ∖ {m} ∪ {i} ∈ F . However,

∣A′ ∩B∣ = ∣A∩B∣− 1 = t− 1, contradicting the assumption that F is t-intersecting. We conclude

that A ∪B = [m] and so ∣A∣ + ∣B∣ = ∣A ∪B∣ + ∣A ∩B∣ =m + t.

This lemma suggests separating the sets in G(F) containing m according to their size.

Definition 5.5. Let F be a family of sets with m = m(F). We define G∗(F) = {A ∈ G(F) ∶

m ∈ A} and G∗
a(F) = {A ∈ G∗(F) ∶ ∣A∣ = a}. In words, G∗(F) consists of those sets in G(F)

containing m, and G∗
a(F) consists of those sets in G(F) containing m and of size a.

For a family G on n points and m ∈ [n], we define G ∖m = {A ∖ {m} ∶ A ∈ G}. ◯

Suppose a+ b =m(F)+ t and a ≠ b. Lemma 5.6 implies that Un(G(F)∖ (G∗
a(F)∪G∗

b (F))∪

(G∗
a(F)∖m(F))) is t-intersecting. Moreover, it turns out that this transformation can be used

to increase the µp-measure.

We start by proving two easy auxiliary results.

Lemma 5.7. Let F be a monotone left-compressed family on n points with m =m(F) and let

A ∈ G∗(F). Then

F ∖Un(G(F) ∖ {A}) = {A} × 2[n]∖[m].

In words, if A ∈ G∗(F) then the sets generated by A are exactly {A} × 2[n]∖[m].

Proof. Suppose B ∈ F ∖Un(G(F)∖{A}). Clearly B ⊇ A. We would like to show that B∩[m] =

A. If not, then let x ∈ (B ∩ [m]) ∖A. Since F is left-compressed, C = Sx←m(A) ∈ F . Clearly

C ∈ Un(G(F) ∖ {A}), and since B ⊇ C, also B ∈ Un(G(F) ∖ {A}), contrary to the assumption.

Hence B ∩ [m] = A.
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For the other direction, let B = A ∪ C, where C ⊆ [n] ∖ [m]. If B ∈ Un(G(F) ∖ {A}) then

B ⊇D for some D ∈ G(F) ∖ {A}. Since maxD ≤m, necessarily D ⊆ B ∩ [m] = A, contradicting

the fact that A is inclusion-minimal. This completes the proof of the lemma.

Lemma 5.8. Let F be a family of sets on n points with m = m(F) and let A ∈ G∗(F). If

B ∈ F and B ∩ [m − 1] = A ∖ {m} then m ∈ B.

Proof. Suppose that m ∉ B. Since B ∈ F , B ⊇ C for some C ∈ G(F). Since maxC ≤ m and

m ∉ B, C ⊆ B ∩ [m] = A ∖ {m}, contradicting the fact that A is inclusion-minimal.

Next, we describe the transformation itself.

Lemma 5.9. Let F be a monotone left-compressed t-intersecting family on n points with m =

m(F), and let a + b =m + t for some non-negative integers a ≠ b. Define

Ha = G(F) ∖ (G∗
a(F) ∪G∗

b (F)) ∪ (G∗
a(F) ∖m), Ga = Un(Ha),

Hb = G(F) ∖ (G∗
a(F) ∪G∗

b (F)) ∪ (G∗
b (F) ∖m), Gb = Un(Hb).

The families Ga,Gb are t-intersecting. Furthermore, if G∗
a(F) ≠ ∅ or G∗

b (F) ≠ ∅ then for all

p < 1/2, max(µp(Ga), µp(Gb)) > µp(F).

Proof. In order to show that Ga is t-intersecting, it is enough to show that Ha is t-intersecting.

Let A,B ∈ Ha. If A,B ∉ G∗
a(F) ∖m then A,B ∈ G(F) and so ∣A ∩ B∣ ≥ t, so suppose that

A ∈ G∗
a(F)∖m. Notice that A∪ {m} ∈ G∗

a(F). If B ∉ G∗(F) then m ∉ B and B ∈ G(F), and so

∣A∩B∣ = ∣(A∪{m})∩B∣ ≥ t. If B ∈ G∗
c (F) then c ≠ b and so ∣A∪{m}∣+ ∣B∣ = a+ c ≠ a+ b =m+ t.

Therefore Lemma 5.6 implies that ∣(A∪{m})∩B∣ ≥ t+1 and so ∣A∩B∣ ≥ t. A similar argument

applies if B ∈ G∗
a(F) ∖ {m} (with a in place of c), and we conclude that GA is t-intersecting.

The proofs for Gb are analogous.

Let p < 1/2. We proceed to calculate µp(Ga) and µp(Gb). Lemma 5.7 shows that

F ∖ Ga = G∗
b (F) × 2[n]∖[m],

and Lemma 5.8 shows that

Ga ∖F = (G∗
a(F) ∖m) × 2[n]∖[m].
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Therefore

µp(Ga) = µp(F) − µ[m]
p (G∗

b (F)) + µ[m]
p (G∗

a(F) ∖m)

= µp(F) − µ[m]
p (G∗

b (F)) + 1 − p
p

µ[m]
p (G∗

a(F)).

Without loss of generality, suppose that µ
[m]
p (G∗

a(F)) ≥ µ
[m]
p (G∗

b (F)), which implies that

µ
[m]
p (G∗

a(F)) > 0 by assumption. Then

µp(Ga) ≥ µp(F) + (1 − p
p

− 1)µ[m]
p (G∗

a(F)) > 0,

since p < 1/2 implies (1 − p)/p > 1.

This lemma allows us to achieve our goal whenever G∗
a(F) ≠ ∅ for some a ≠ (m(F) + t)/2.

When a = (m(F)+ t)/2, the construction in the lemma doesn’t result in a t-intersecting family.

In order to fix the construction, we will focus on a subset of G∗
a(F) not containing some

common element. This property will guarantee that the result is t-intersecting. If p is small

enough (depending on m(F)), then the construction still increases the µp-measure.

Lemma 5.10. Let F be a monotone left-compressed t-intersecting family on n points with

m =m(F) > t + 2r for some r ≥ 0, and let a = (m + t)/2 be integral. For i ∈ [m − 1], define

Hi = G(F) ∖G∗
a(F) ∪ {A ∈ G∗

a(F) ∖m ∶ i ∉ A}, Gi = Un(Hi).

The families Gi are t-intersecting. Furthermore, if p < (r + 1)/(t + 2r + 1) and G∗
a(F) ≠ ∅ then

maxi∈[m−1] µp(Gi) > µp(F).

Proof. Let i ∈ [m − 1]. We proceed to show that Gi is t-intersecting. As in the proof of the

corresponding part of Lemma 5.9, it is enough to show that Hi is t-intersecting. If A,B ∈Hi and

not both A,B ∈ G∗
a(F)∖m then the argument in Lemma 5.9 shows that ∣A∩B∣ ≥ t, so suppose

that A,B ∈ G∗
a(F)∖m. Note that i ∉ A,B. Lemma 5.6 shows that ∣(A∪ {m})∩ (B ∪ {m})∣ > t,

and so ∣A ∩B∣ ≥ t, unless (A ∪ {m}) ∪ (B ∪ {m}) = [m]. However, the latter is impossible since

i ∉ A ∪B. This shows that Gi is t-intersecting.

Let Ki = {A ∈ G∗
a(F) ∶ i ∉ A}. We proceed to calculate µp(Gi). Lemma 5.7 shows that

F ∖ Gi = (G∗
a(F) ∖Ki) × 2[n]∖[m],
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and Lemma 5.8 shows that

Gi ∖F = (Ki ∖m) × 2[n]∖[m].

Therefore

µp(Gi) = µp(F) − µ[m]
p (G∗

a(F) ∖Ki) +
1 − p
p

µ[m]
p (Ki)

= µp(F) − µ[m]
p (G∗

a(F)) + 1

p
µ[m]
p (Ki).

(5.1)

In view of this, we would like to maximize µ
[m]
p (Ki). Since all sets in Ki have Hamming weight

a, µ
[m]
p (Ki) = ∣Ki∣pa(1−p)m−a, and similarly µ

[m]
p (G∗

a(F)) = ∣G∗
a(F)∣pa(1−p)m−a. We therefore

want to maximize ∣Ki∣. Since each A ∈ G∗
a(F) satisfies ∣A∩ [m− 1]∣ = a− 1, it is easy to see that

E
i∈[m−1]

∣Ki∣ =
m − a
m − 1

∣G∗
a(F)∣.

There must be some i ∈ [m−1] which satisfies ∣Ki∣ ≥ (m−a)/(m−1) ⋅ ∣G∗
a(F)∣, and so µ

[m]
p (Ki) ≥

(m − a)/(m − 1) ⋅ µ[m]
p (G∗

a(F)). Substituting this in (5.1), we obtain

µp(Gi) − µp(F) ≥ (1

p
⋯m − a
m − 1

− 1)µ[m]
p (G∗

a(F))

= m − a − p(m − 1)
p(m − 1) µ[m]

p (G∗
a(F)).

The proof will be complete if we show that m−a > p(m−1). Since m > t+2r and m+ t is even,

m ≥ t + 2r + 2, and so

2[m − a − p(m − 1)] =m − t − 2p(m − 1)

= (1 − 2p)m − t + 2p

≥ (1 − 2p)(t + 2r + 2) − t + 2p

= 2r + 2 − 2p(t + 2r + 1)

= 2[r + 1 − p(t + 2r + 1)] > 0.

Combining Lemma 5.9 and Lemma 5.10, we obtain the following result.

Lemma 5.11. Let F be a monotone left-compressed t-intersecting family on n points with

m = m(F) > t + 2r for some r ≥ 0. If p < (r + 1)/(t + 2r + 1) then there exists a t-intersecting

family G on n points satisfying µp(G) > µp(F).
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Proof. By definition, G∗(F) ≠ ∅, and so G∗
a(F) ≠ ∅ for some a. If a ≠ (m+ t)/2 then the result

follows from Lemma 5.9, otherwise it follows from Lemma 5.10.

We can conclude an important corollary.

Corollary 5.12. Let t ≥ 1, r ≥ 0 and p < (r + 1)/(t + 2r + 1). There exists a monotone left-

compressed t-intersecting family F on t + 2r points such that for every t-intersecting family G,

µp(G) ≤ µp(F). Furthermore, equality is only possible if m(G) ≤ t + 2r.

Proof. Lemma 5.5 implies that it is enough to construct a (not necessarily left-compressed) t-

intersecting family F on t+2r points. We let F be a t-intersecting family of maximal µp-measure

among those on t + 2r points.

Now let G be a t-intersecting family on n points. In order to show that µp(G) ≤ µp(F),

we can assume that G has maximal µp-measure among t-intersecting families on n points.

Lemma 5.11 implies that m(G) ≤ t + 2r, and so µp(G) ≤ µp(F) by definition. The lemma also

implies that equality is only possible if m(G) ≤ t + 2r.

At this point, [2] considers the complemented family F̄ = {[n] ∖ A ∶ A ∈ F}. When F is

a k-uniform t-intersecting family, F̄ is an (n − k)-uniform (n − 2k + t)-intersecting family, and

we can apply Corollary 5.12 to F̄ . However, in our setting F̄ need not even be intersecting.

Instead, we turn to the argument in [3].

5.4 Pushing-pulling

In this section we implement the second step of the proof, following [3]. We will show that if F

is a left-compressed t-intersecting family of maximal µp-measure, where p > r/(t + 2r − 1), then

the first t+2r coordinates of F are symmetric. We start by formalizing the notion of symmetry.

Definition 5.6. A family of sets F is `-invariant if for all i ≠ j in the range 1 ≤ i, j ≤ `,

Si←j(F) = F .

The symmetric extent `(F) of a family of sets F on n points is the maximal ` ≤ n such that

F is `-invariant. ◯
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Our goal in this section is to show that if p > r/(t + 2r − 1) and `(F) < t + 2r for some

t-intersecting family F then we can come up with a t-intersecting family of larger µp-measure.

Since we are focusing on left-compressed families, the only way in which `-invariance can fail

is if S`←i(F) ≠ F for some i < `. The following definition singles out the sets which determine

the symmetric extent of a family.

Definition 5.7. Let F be a family of sets on n points with ` = `(F). If n > ` then its boundary

sets are given by

X(F) = {A ∈ F ∶ S`+1←i(A) ∉ F for some i ≤ `}.

if n = ` then we define X(F) = ∅. ◯

Our starting point is the following analog of Lemma 5.6.

Lemma 5.13. Let F be a left-compressed t-intersecting family with ` = `(F), and let A,B ∈

X(F). If ∣A ∩B∣ = t then A ∩B ⊆ [`] and A ∪B ⊇ [`], and so ∣A ∩ [`]∣ + ∣B ∩ [`]∣ = ` + t.

Proof. Let A,B ∈ X(F) be as given, and note that ` + 1 ∉ A,B. We start by showing that

A ∩B ⊆ [`]. Suppose that x ∈ A ∩B satisfies x > `. Since ` + 1 ∉ A,B, in fact x > ` + 1. Since

F is left-compressed, S`+1←x(A) ∈ F . However, ∣S`+1←x(A) ∩B∣ = ∣A ∩B∣ − 1 = t − 1, contrary to

assumption. We conclude that A ∩B ⊆ [`].

Next, we show that A ∪ B ⊇ [`]. Suppose that x ∉ A ∪ B for some x ∈ [`]. Since t ≥ 1

and A ∩B ⊆ [`], there is some y ∈ A ∩B ∩ [`]. Since F is `-invariant, Sx←y(A) ∈ F . However,

∣Sx←y(A) ∩B∣ = ∣A ∩B∣ − 1 = t − 1, contrary to assumption. We conclude that A ∪B ⊇ [`].

Finally, let A′ = A ∩ [`] and B′ = B ∩ [`]. We have A′ ∪B′ = [`] and ∣A′ ∩B′∣ = ∣A ∩B∣ = t,

and so ∣A′∣ + ∣B′∣ = ∣A′ ∪B′∣ + ∣A′ ∩B′∣ = ` + t.

This suggests breaking down X(F) according to the size of the intersection with [`].

Definition 5.8. Let F be a family of sets on n points with ` = `(F). Its ith boundary marginal

is given by

Xi(F) = {B ⊆ [n] ∖ [` + 1] ∶ [i] ∪B ∈X(F)}. ◯

The part played by the sets [i] is arbitrary. Indeed, we have the following easy lemma.
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Definition 5.9. For a set X and an integer i, we define

(X
i
) = {A ⊆X ∶ ∣A∣ = i}. ◯

Lemma 5.14. Let F be a family of sets on n points with ` = `(F). Then

X(F) =
`

⋃
i=1

([`]
i
) ×Xi(F).

Proof. If A ∈X(F) then S`+1←i(A) ≠ A for some i ≤ `, and in particular i ∈ A. This shows that

X0(F) = ∅. Also, clearly ` + 1 ∉ A for all A ∈ X(F). The lemma now follows directly from the

`-equivalence of F .

We now present two different constructions that attempt to increase the µp-measure of a

t-intersecting family. The first construction is the counterpart of Lemma 5.9.

Lemma 5.15. Let F be a t-intersecting left-compressed family on n points with ` = `(F), and

let a + b = ` + t for some non-negative integers a ≠ b. Define

Ga = F ∖ ([`]
b
) ×Xb(F) ∪ ( [`]

a − 1
) × {` + 1} ×Xa(F),

Gb = F ∖ ([`]
a

) ×Xa(F) ∪ ( [`]
b − 1

) × {` + 1} ×Xb(F).

The families Ga,Gb are t-intersecting. Furthermore, if G∗
a(F) ≠ ∅ or G∗

b (F) ≠ ∅ and t ≥ 2 then

for all p ∈ (0,1), max(µp(Ga), µp(Gb)) > µp(F).

Proof. We start by showing that Ga is t-intersecting. Let A,B ∈ Ga. If A,B ∉ ( [`]
a−1

) × {` + 1} ×

Xa(F) then A,B ∈ F and so ∣A∩B∣ ≥ t, so assume that A ∈ ( [`]
a−1

)× {`+ 1}×Xa(F). Pick some

x ∈ [`] such that x ∉ A, and notice that A′ = A ∖ {` + 1} ∪ {x} ∈ F .

Suppose first that B ∈ F . If ` + 1 ∈ B or x ∉ B then ∣A ∩B∣ ≥ ∣A′ ∩B∣ ≥ t, so suppose that

` + 1 ∉ B and x ∈ B. If B′ = S`+1←x(B) ∈ F then ∣A ∩B∣ = ∣A′ ∩B′∣ ≥ t. Otherwise, B ∈ X(F)

and since ` + 1 ∉ B, ∣B ∩ [`]∣ ≠ b. Since ∣A′ ∩ [`]∣ = a, ∣A′ ∩ [`]∣ + ∣B ∩ [`]∣ ≠ a + b = ` + t, and so

Lemma 5.13 shows that ∣A′ ∩B∣ ≥ t + 1, which implies ∣A ∩B∣ ≥ ∣A′ ∩B∣ − 1 ≥ t.

Finally, suppose that A,B ∉ F . Pick some y ∈ [`] such that y ∉ B, and notice that B′ =

B ∖ {` + 1} ∪ {y} ∈ F . Since ∣A′ ∩ [`]∣ + ∣B′ ∩ [`]∣ = 2a ≠ a + b = ` + t, Lemma 5.13 shows that

∣A′ ∩B′∣ ≥ t + 1. Therefore ∣A ∩B∣ = ∣[(A′ ∖ {x}) ∩ (B′ ∖ {y})] ∪ {` + 1}∣ ≥ t. We conclude that

Ga is t-intersecting.
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It is straightforward to compute the µp-measures of Ga and Gb:

µp(Ga) = µp(F) − (`
b
)pb(1 − p)`+1−bµ[n]∖[`+1]

p (Xb(F)) + ( `

a − 1
)pa(1 − p)`+1−aµ[n]∖[`+1]

p (Xa(F)),

µp(Gb) = µp(F) − (`
a
)pa(1 − p)`+1−aµ[n]∖[`+1]

p (Xa(F)) + ( `

b − 1
)pb(1 − p)`+1−bµ[n]∖[`+1]

p (Xb(F)).

These formulas become simpler if we put

γa = (`
a
)pa(1 − p)`+1−aµ[n]∖[`+1]

p (Xa(F)), γb = (`
b
)pb(1 − p)`+1−bµ[n]∖[`+1]

p (Xb(F)).

By assumption, either γa > 0 or γb > 0. Substituting these variables, we get

µp(Ga) = µp(F) − γa +
a

` − a + 1
γb, µp(Gb) = µp(F) − γb +

b

` − b + 1
γa.

Multiply the first equation by ` − a + 1, the second equation by ` − b + 1, and sum to get

(`−a+1)(µp(Ga)−µp(F))+(`−b+1)(µp(Gb)−µp(F)) = (a+b−`−1)(γa+γb) = (t−1)(γa+γb) > 0.

We conclude that either µp(Ga) > µp(F) or µp(Gb) > µp(F).

The second construction, which is the counterpart of Lemma 5.10, concerns a = (` + t)/2,

and works by adjoining a new element, which ensures that the resulting family is t-intersecting.

Lemma 5.16. Let F be a t-intersecting left-compressed family on n points with ` = `(F), and

let a = (` + t)/2 be integral. Define

G = F ∖ ([`]
a

) ×Xa(F) × 2{n+1} ∪ ([` + 1]
a

) ×Xa(F) × {n + 1}.

Note that G is a family on n+1 points. The family G is t-intersecting. Moreover, if Xa(F) ≠ ∅,

t ≥ 2 and r/(t + 2r − 1) < p < 1/2, ` < t + 2r for some r ≥ 0, then µp(G) > µp(F).

Proof. Put F ′ = G × 2{n+1}, and note that F ′ is t-intersecting and µp(F ′) = µp(F). We start by

showing that G is t-intersecting. Let A,B ∈ G. If A,B ∈ F ′ then clearly ∣A ∩B∣ ≥ t, so suppose

that A ∈ ([`+1]
a

) ×Xa(F) × {n + 1} and ` + 1 ∈ A. Pick some x ∈ [`] such that x ∉ A, and notice

that A′ = A ∖ {` + 1, n + 1} ∪ {x} ∈ F ′.

Suppose first that B ∈ F ′. If ` + 1 ∈ B or x ∉ B then ∣A ∩B∣ ≥ ∣A′ ∩B∣ ≥ t, so suppose that

` + 1 ∉ B and x ∈ B. If B′ = S`+1←x(B) ∈ F ′ then ∣A ∩B∣ = ∣A′ ∩B′∣ ≥ t. Otherwise, B ∈ X(F ′).
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We distinguish between two cases. If ∣B ∩ [`]∣ ≠ a then ∣A′ ∩ [`]∣ + ∣B ∩ [`]∣ ≠ 2a = ` + t, and so

Lemma 5.13 shows that ∣A′∩B∣ ≥ t+1, which implies ∣A∩B∣ ≥ ∣A′∩B∣−1 ≥ t. If ∣B∩[`]∣ = a then

necessarily n+1 ∈ B, and so B′ = B∖{n+1} ∈ F ′. Therefore ∣A∩B∣ ≥ ∣[(A′∖{x})∩B′]∪{n+1}∣ ≥

∣A′ ∩B′∣ ≥ t.

Finally, suppose that A,B ∉ F ′. Pick some y ∈ [`] such that y ∉ B, and notice that B′ =

B∖{`+1, n+1}∪{y} ∈ F ′. We have ∣A∩B∣ = ∣[(A′∖{x})∩(B′∖{y})]∪{`+1, n+1}∣ ≥ ∣A′∩B′∣ ≥ t.

We conclude that G is t-intersecting.

It is straightforward to compute the µp-measure of G:

µp(G) = µp(F) − (`
a
)pa(1 − p)`−a+1µ[n]∖[`+1]

p (Xa(F)) + (` + 1

a
)pa+1(1 − p)`−a+1µ[n]∖[`+1]

p (Xa(F))

= µp(F) + (−1 + ` + 1

` − a + 1
p)(`

a
)pa(1 − p)`−a+1µ[n]∖[`+1]

p (Xa(F)).

Since Xa(F) ≠ ∅, in order to complete the proof we need to show that the expression inside

the parentheses is positive. Since ` < t + 2r and ` + t is even, ` ≤ t + 2r − 2. Clearly a ≤ ` and so

` − a + 1 > 0, hence the parenthesized expression is positive if the following expression is:

2[(` + 1)p − (` − a + 1)] = 2a − 2(1 − p)(` + 1)

= t − 1 − (1 − 2p)(` + 1)

≥ t − 1 − (1 − 2p)(t + 2r − 1)

= 2p(t + 2r − 1) − 2r > 0,

using in the third line the assumption p < 1/2.

Combining Lemma 5.15 and Lemma 5.16, we obtain the following result.

Lemma 5.17. Let F be a left-compressed t-intersecting family on n points with ` = `(F) < t+2r

for some r ≥ 0. If t ≥ 2 and r/(t+ 2r − 1) < p < 1/2 then there exists a t-intersecting family G on

n + 1 points satisfying µp(G) > µp(F).

Proof. By definition, X(F) ≠ ∅, and so Xa(F) ≠ ∅ for some a. If a ≠ (` + t)/2 then the result

follows from Lemma 5.15, otherwise it follows from Lemma 5.16.

Combining this result with Corollary 5.12, we can prove the Ahlswede–Khachatrian theorem

for left-compressed families.
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Theorem 5.18. Let F be a left-compressed t-intersecting family on n points for t ≥ 2. If

r/(t+ 2r − 1) < p < (r + 1)/(t+ 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r), with equality if and

only if F = Un(Ft,r).

If p = (r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1), with equality if

and only if either F = Un(Ft,r) or F = Un(Ft,r+1).

Proof. Suppose first that r/(t+2r−1) < p < (r+1)/(t+2r+1) for some r ≥ 0. Corollary 5.12 gives

a monotone left-compressed t-intersecting family F∗ on t+2r points such that µp(F) ≤ µp(F∗),

with equality only if m(F) ≤ t+ 2r. Lemma 5.17 shows that `(F∗) = t+ 2r, and so F∗ must be

of the form

F∗s = {A ⊆ [t + 2r] ∶ ∣A∣ ≥ s}

for some s. This family is t-intersecting for s ≥ t + r, and the optimal choice s = t + r shows

that F∗ = F∗t+r = Ft,r. The corollary and the lemma together show that µp(F) = µp(F∗) is

only possible if m(F) = `(F) = t+ 2r, and so F = Un(F∗s ) for some s. This readily implies that

F = Un(F∗).

Suppose next that p = (r + 1)/(t + 2r + 1) for some r ≥ 0. Corollary 5.12 gives a monotone

left-compressed t-intersecting family F∗ on t + 2r + 2 points such that µp(F) ≤ µp(F∗), with

equality only if m(F) ≤ t+2r+2. Since µp is continuous and there are finitely many families on

t + 2r + 2 points, we see that µp(F∗) = µp(Ft,r) = µp(Ft,r+1). Corollary 5.12 and Lemma 5.17

show that µp(F) = µp(F∗) is only possible if m(F) ≤ t + 2r + 2 and `(F) ≥ t + 2r. Assume for

simplicity that n = t + 2r + 2. The family F has the following general form:

F = F∗a ∪F∗b × {t + 2r + 1} ∪F∗c × {t + 2r + 2} ∪F∗d × {t + 2r + 1, t + 2r + 2}.

Some of these parts may be missing, in which case we use F∗∞. Since F is t-intersecting,

d ≥ t + r − 1. If d = t + r − 1 then since F is t-intersecting, a ≥ t + r + 1 and b, c ≥ t + r. Therefore

F ⊆ Ft,r+1 and so F = Ft,r+1. Otherwise, d ≥ t+ r, and so monotonicity shows that a, b, c ≥ t+ r.

Therefore F ⊆ Un(Ft,r) and so F = Un(Ft,r).
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5.5 Culmination of the proof

Combined with Lemma 5.5, Theorem 5.18 already provides a tight upper bound on the µp-

measure of arbitrary t-intersecting families. In order to complete the proof of the Ahlswede–

Khachatrian theorem, it remains to prove uniqueness.

Recall that two families F ,G on n points are equivalent if they differ by a permutation of

the coordinates. We start by showing that the families Ft,r are resilient to shifting in the case

of t-intersecting families, using an argument from [2]. We need a preparatory lemma.

Lemma 5.19. Let t, r ≥ 0, and consider the following graph. The vertices are subsets of [t+2r]

of size [t + r]. Two subsets A,B are connected if ∣A ∩B∣ = t (note that ∣A ∩B∣ ≥ t). Then the

graph is connected.

Proof. If r = 0 then the graph contains a single vertex and there is nothing to prove, so suppose

r ≥ 1. We start by showing that A = [t + r] and B = [t + r]∆{1, t + r + 1} = {2, . . . , t + r + 1} are

connected. Let C = [t] ∪ {t + r + 1, . . . , t + 2r}. Then

∣A ∩C ∣ = ∣[t]∣ = t,

∣B ∩C ∣ = ∣{2, . . . , t} ∪ {t + r + 1}∣ = t.

Hence A and B are connected via C. This shows that any two sets A,B with ∣A∆B∣ = 2 are

connected, and so the graph is connected.

Now we can prove the desired result on shifting.

Lemma 5.20. Let F be a t-intersecting family on n points, and suppose that for some i, j ∈ [n],

Si←j(F) is equivalent to Ft,r. Then F is equivalent to Ft,r.

Proof. We can assume that Si←j(F) = Un(Ft,r). If j ∈ [t+2r] then since Si←j(F) depends only

on the first t+2r coordinates, necessarily i ∈ [t+2r] and so Si←j(F) = F . Similarly, if i ∉ [t+2r]

then necessarily j ∉ [t+2r] and again Si←j(F) = F . In both cases the lemma trivially holds. So

without loss of generality, suppose that n = t+ 2r + 1, i = t+ 2r and j = t+ 2r + 1. The following
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two subfamilies are involved in the shift:

F1 = {A ∈ F ∶ j ∈ A, i ∉ A,A∆{i, j} ∉ F},

F2 = {A ∈ F ∶ i ∈ A, j ∉ A,A∆{i, j} ∉ F}.

We have

Si←j(F) = F ∖F1 ∪ {A∆{i, j} ∶ A ∈ F1}.

If F1 = ∅ then Si←j(F) = F , and the lemma clearly holds. If F2 = ∅ then Si←j(F) results from

F by switching the coordinates i and j, and again the lemma holds. It remains to consider the

case F1,F2 ≠ ∅. Consider the family

G = {A ⊆ [t + 2r − 1] ∶ ∣A∣ = t + r − 1}.

For every A ∈ G, A ∪ {i} = A ∪ {t + 2r} ∈ Ft,r, and so either A ∪ {i} ∈ F2 or A ∪ {j} ∈ F1 (but

not both). Form a graph whose vertices are the sets in G, and two sets A,B are connected

if ∣A ∩ B∣ = t − 1. Color a vertex A with 1 if A ∪ {j} ∈ F1, and with 2 if A ∪ {i} ∈ F2. Since

F1,F2 ≠ ∅, the coloring is not monochromatic. Lemma 5.19 shows that the graph is connected,

and so there is some bichromatic edge (A,B), say A′ = A ∪ {j} ∈ F1 and B′ = B ∪ {i} ∈ F2.

However, ∣A′ ∩B′∣ = ∣A∩B∣ = t− 1, contradicting the fact that F is t-intersecting. We conclude

that either F1 = ∅ or F2 = ∅.

The Ahlswede–Khachatrian theorem is an easy corollary.

Theorem 5.3. Let F be a t-intersecting family on n points for t ≥ 2. If r/(t + 2r − 1) < p <

(r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r), with equality if and only if F is

equivalent to Un(Ft,r).

If p = (r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1), with equality if

and only if F is equivalent to either Un(Ft,r) or Un(Ft,r+1).

Proof. Let G be the left-compressed family satisfying µp(G) = µp(F) given by Lemma 5.5.

Theorem 5.18 implies the upper bounds. Together with Lemma 5.20, the theorem implies the

cases of equality.



Chapter 6

Fourier analysis on the symmetric

group

In this chapter we introduce Fourier analysis on the symmetric group, which is the group Sn of

all permutations on [n]. Our goal in this chapter is to sketch the Fourier-theoretic proof of the

Deza–Frankl conjecture [13] on intersecting families of permutations, due to Ellis, Friedgut and

Pilpel [28]. These are families in which any two permutations agree on at least one point. Deza

and Frankl proved that such families contain at most (n − 1)! permutations, and conjectured

that the optimal families are of the form {π ∈ Sn ∶ π(i) = j} (we call these families cosets).

While the material in this chapter is not strictly used in the rest of the thesis, the chapter

serves as a bridge between the first part of the thesis, intersection theorems, and the second

part, stability theorems. The investigations in Chapter 7 and Chapter 8 were motivated by the

work of Ellis, Friedgut and Pilpel, and the main theorem in Chapter 7 can be used to prove

the stability part of their main result.

We start the chapter by highlighting in Section 6.1 some properties of the Fourier trans-

form on {0,1}n that are exploited by Friedgut’s method. The Fourier transform on Sn satisfies

similar properties, and this explains why it is useful for extremal combinatorics. Section 6.2

describes the Fourier transform on Sn from a slightly unorthodox perspective. The more or-

thodox perspective is sketched in Section 6.3, in which we also prove that our description in

Section 6.2 matches the classical description; to this effect, we use a method of Ellis [23]. The

138
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Deza–Frankl conjecture and its Fourier-analytic proof are sketched in Section 6.4.

The only possibly original contribution of this chapter is the unorthodox presentation of

the Fourier transform on Sn. The material on the Deza–Frankl conjecture is taken from Ellis,

Friedgut and Pilpel [28], and the rest is classical representation theory.

For permutations α,β ∈ Sn, we follow the convention that αβ is the permutation resulting

from applying β then α. For example, (13)(12) = (123).

6.1 Friedgut’s method and the symmetric group

Our proof of the Simonovits–Sós conjecture in Chapter 4 (for the usual µ measure) uses the fol-

lowing general plan. Start with a triangle-intersecting family of graphs F and its characteristic

function f = 1F . Construct a matrix A such that f ′Af = 0, whose eigenvectors are the Fourier

characters. Conclude an equation of the form

∑
G

λGf̂(G)2 = 0,

and use Hoffman’s bound to deduce a bound on µ(F). The last step uses the identities

µ(F) = f̂(∅) =∑
G

f̂(G)2,

which follow from two properties of the Fourier characters: χ∅ is the constant 1 vector, and

the Fourier characters are orthonormal. Hoffman’s bound also implies that when µ(F) = 1/8,

the Fourier expansion of F must be supported on the first four levels, and this implies that F

is a △-star.

The matrix A, in turn, is a linear combination of the matrices BJ described in Lemma 4.11

for various bipartite graphs J . Looking closely at the matrices BJ , we find that their effect on

a vector v is shifting by J :

(BJv)G = vG⊕J ,

where ⊕ is the exclusive-or operation. Therefore

f ′Bjf = ∣F ∩ (F ⊕ J)∣, where F ⊕ J = {G⊕ J ∶ G ∈ F}.
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Since F is triangle-intersecting, whenever J is bipartite, the two families F and F ⊕ J are

disjoint, since

G ∩ (G⊕ J) ⊆ G∇(G⊕ J) = G∇(G∇J) = J.

(Recall that ∇ is the agreement operator, G∇H = (G ∩H) ∪ (G ∩H).)

Summarizing, let us take stock of the features of the Fourier transform which are used in

our proof:

• If F is triangle-intersecting then F ∩ (F ⊕ J) = ∅ for every bipartite J , and the operator

taking 1F to 1
F⊕J

has the Fourier basis vectors as eigenvectors (this is used to get the

fundamental equation f ′Af = 0).

• The Fourier basis is orthonormal, and the constant 1 vector is one of the basis vectors

(this is used for the upper bound).

• If a Boolean function is supported on the first k + 1 levels and has measure 2−k then it is

a k-star (this is used for uniqueness).

• If a Boolean function is concentrated on the first k + 1 levels then it is close to a Boolean

function depending on O(1) coordinates (Kindler–Safra; this is used for stability).

The Fourier basis which we will construct for Sn will satisfy similar properties:

• If F ⊆ Sn is intersecting then πF = {πα ∶ α ∈ F} is disjoint from F whenever π is fixed-

point free, and the operator taking 1F to ∑π∈FPFn 1πF has the Fourier basis vectors as

eigenvectors (here FPFn ⊆ Sn is the set of all fixed-point free permutations).

• The Fourier basis for Sn is orthonormal, and the constant 1 vector is a basis vector.

• If a Boolean function on Sn is supported on the first two levels then it is the disjoint union

of cosets.

• If a Boolean function on Sn is concentrated on the first two levels and has measure roughly

1/n then it is close to a coset.

The last property is the subject of Chapter 7.
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6.2 Fourier analysis on the symmetric group

Our goal in this section is to construct a Fourier basis for Sn, which is an orthonormal basis

for the space R[Sn] of all real functions on Sn. This basis will enjoy the properties listed in the

previous section. We endow R[Sn] with the inner product

⟨f, g⟩ = 1

n!
∑
π∈Sn

f(π)g(π).

Our basis will be orthonormal with respect to this inner product.

Recall that for a function f on {0,1}n, the kth level of the Fourier transform consists of

those Fourier coefficients f̂(S) of size ∣S∣ = k.

Definition 6.1. A function f on {0,1}n is k-simple if its Fourier expansion is supported on

the first k + 1 levels.

A k-semistar is a family of sets on n points of the form τA,B = {X ⊆ [n] ∶X ∩A = B} where

∣A∣ = k and B ⊆ A. ◯

Lemma 6.1. The space L
{0,1}n

k of k-simple functions on {0,1}n is spanned by the characteristic

functions of all k-semistars.

Proof. If f is an A-semistar for ∣A∣ = k then Lemma 2.8 shows that f̂(T ) ≠ 0 only for B ⊆ A,

hence f is k-simple. For the other direction, we show that χA can be written as a linear

combination of k-semistars whenever ∣A∣ ≤ k. First, note that every l-semistar for l ≤ k can be

written as a combination of k-semistars. Second,

χA = ∑
B⊆A

(−1)∣B∣1τA,B .

We will define the levels of the Fourier transform of Sn by analogy, and through this the

Fourier basis. We start with the analogs of k-stars.

Definition 6.2. A k-coset is a family of permutations of the form T(a1,b1),...,(ak,bk) = {π ∈ Sn ∶

π(a1) = b1, . . . , π(ak) = bk}, where ai ≠ aj and bi ≠ bj whenever i ≠ j.

The space LSnk ⊆ R[Sn] is the linear span of the characteristic functions of all k-cosets. We

say that a function on Sn is k-simple if it belongs to LSnk . ◯
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Like their analogs in the Boolean cube, the spaces Lk (we omit the superscript Sn for

clarity) get increasingly bigger: L0 ⊂ L1 ⊂ ⋯ ⊂ Ln = R[Sn]. It is not hard to verify directly

that Lk ⊂ Lk+1 by writing a k-coset as the disjoint union of (k + 1)-cosets. We can write Lk

as an orthogonal sum of two subspaces Lk = Lk−1 ⊕R′
k (in other words, R′

k is the orthogonal

complement of Lk−1 with respect to Lk). The kth level of the Fourier transform corresponds to

the subspace R′
k.

We can now describe a coarse version of the Fourier transform: given a function f ∈ R[Sn],

define f̂ ′(k) to be the projection of f to R′
k. The coarse Fourier expansion of f is

f =
n

∑
k=0

f̂ ′(k).

This looks quite different from the Fourier expansion of functions on {0,1}n. There, the Fourier

coefficients were scalars, while here, each Fourier coefficient is a function belonging to some

subspace. The two views can be unified if we replace the scalar f̂(A) with the function f̂(A)χA

which belongs to the one-dimensional subspace {αχA ∶ α ∈ R}.

6.2.1 A finer decomposition

One crucial property of the Fourier transform on {0,1}n is the convolution property: the

operator taking 1F to 1F⊕A has the Fourier basis as eigenvectors. In order to obtain a similar

property for Sn, we need to refine the Fourier transform constructed heretofore.

Definition 6.3. A partition of n is a non-increasing sequence of positive integers summing to

n, for example λ = (2,1,1) is a partition of 4. We also write λ = (2,12) in this case. The parts

of λ are λ1 = 2 and λ2 = λ3 = 1. If λ has k parts, we use the convention that λ` = 0 whenever

` > k. The expression λ ⊢ n means that λ is a partition of n.

For a partition λ of n, a (Young) tabloid of [n] of shape λ = λ1, . . . , λk is an ordered partition

A1, . . . ,Ak of [n] (collectively known as A) with ∣Ai∣ = λi. We also say that A is a λ-tabloid.

For a partition λ = λ1, . . . , λk of n, a λ-coset is a family of permutations of the form

TA,B = {π ∈ Sn ∶ π(A1) = B1, . . . , π(Ak) = Bk}, where A,B have shape λ.

For a partition λ of n, the space LSnλ ⊆ R[Sn] is the linear span of the characteristic functions

of all λ-cosets. We say that a function on Sn is λ-simple if it belongs to LSnλ . ◯
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Here are some examples. A k-coset is the same as an (n − k,1k)-coset. An (n − k, k)-coset

is a family of the form {π ∈ Sn ∶ π(A) = B}, where ∣A∣ = ∣B∣ = k. It is easy to see that every

(n − k, k)-coset is a disjoint union of k-cosets, and so L(n−k,k) ⊆ L(n−k,1k). For two partitions

λ,µ, there is a general condition for the containment Lλ ⊆ Lµ.

Definition 6.4. Let λ,µ be two partitions of n. We say that λ dominates µ, in symbols λ ⊵ µ,

if ∑ji=1 λi ≥ ∑
j
i=1 µi for all j (recall λi = 0 if λ has fewer than i parts). If λ ⊵ µ and λ ≠ µ, then

we say that λ strictly dominates µ, in symbols λ▷ µ. ◯

Claim 6.2. Let λ,µ be two partitions of n. Then Lλ ⊆ Lµ if and only if λ ⊵ µ, and Lλ ⊊ Lµ if

and only if λ▷ µ.

For example, (n − k,1k)▷ (n − (k + 1),1k+1), and so L(n−k,1k) ⊂ L(n−(k+1),1k+1). Similarly,

(n − k, k)▷ (n − k,1k) implies L(n−k,k) ⊂ L(n−k,1k). The domination order on partitions is only

a partial order: for example the two partitions (32) and (4,12) are incomparable. Claim 6.2,

like Claim 6.3 below, is proven in Section 6.3 by appealing to the representation theory of Sn.

Mirroring our definition of the kth level R′
k, we define the subspaces Rλ and note their

crucial property.

Definition 6.5. For a partition λ of n, let Rλ be the subspace of Lλ consisting of all vectors

orthogonal to Lµ for all µ▷ λ. The Fourier expansion of a function f ∈ R[Sn] is

f = ∑
λ⊢n

f̂(λ),

where f̂(λ) is the projection of f to Rλ. ◯

Definition 6.6. For a function f ∈ R[Sn] and a permutation π ∈ Sn, the function πf ∈ R[Sn]

is defined by (πf)(πα) = f(α) for all α ∈ Sn. ◯

Claim 6.3. Let P ⊆ Sn be a set of permutations which is closed under conjugation (we say that

P is conjugation-invariant). For each partition λ of n there is a constant CP,λ such that for all

f ∈ R[Sn],

ĝ(λ) = CP,λf̂(λ), where g = ∑
π∈P

πf.
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As an example, we could take P to be all transpositions or all fixed-point free permutations.

When P is not conjugation-invariant, the relation between the Fourier transforms of f and g

is more complicated, and outside the scope of this thesis.

The subspaces Rλ are orthogonal by construction, and so we get Parseval’s identity.

Lemma 6.4. Let f, g ∈ R[Sn]. We have

∥f∥2 = ∑
λ⊢n

∥f̂(λ)∥2

and

⟨f, g⟩ = ∑
λ⊢n

⟨f̂(λ), ĝ(λ)⟩.

Corollary 6.5. Let P ⊆ Sn be a conjugation-invariant set of permutations. Let BP be the

operator taking f to ∑π∈P πf . For every function f ∈ R[Sn],

f ′BP f = ∑
λ⊢n

CP,λ∥f̂(λ)∥2,

where CP,λ are the constants given by Claim 6.3.

To complete the picture, we show how to extract µ(F) from the Fourier expansion of its

characteristic function.

Lemma 6.6. Let F ⊆ Sn, and let f = 1F be its characteristic function. Then

µ(F) = ∥f̂((n))∥ = ∑
λ⊢n

∥f̂(λ)∥2.

Proof. The subspace R(n) = L(n) consists of all constant functions, and so f̂((n)) = µ(F)1Sn .

Therefore µ(F) = ∥f̂((n))∥. The second equality follows from Parseval’s identity since ∥f∥2 =

⟨f, f⟩ = µ(f).

Finally, in order to obtain an orthonormal Fourier basis, it suffices to choose an orthonor-

mal basis for each subspace Rλ. This choice is arbitrary to some extent, and the literature

contains several different canonical choices. For our purposes, the decomposition of R[Sn] into

orthogonal subspaces Rλ suffices.
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6.3 Representation theory of the symmetric group

We proceed to broadly outline classical representation theory, and some elements of the repre-

sentation theory of Sn. Our account follows standard textbook treatments. For general repre-

sentation theory, the standard text is Serre [74], and an introductory textbook is James and

Liebeck [56]. For the representation theory of Sn, the standard text is James and Kerber [55].

For a quick overview of both, see Diaconis [14].

The purpose of this section is to connect our somewhat unorthodox description in Section 6.2

to the classical point of view, thereby proving the two unproved claims in that section. The

reader who is willing to believe these claims can safely skip this section. Conversely, our account

assumes familiarity with the rudiments of representation theory.

6.3.1 General representation theory

Representations The traditional way of developing the Fourier transform over an arbitrary

group is through representation theory. A representation ρ of a group G is a homomorphism

from G to the group of linear transformations over some finite vector space V . In other words, ρ

assigns to each α ∈ G a linear operator ρ(α) acting on V in such a way that ρ(αβ) = ρ(α)ρ(β).

The dimension of ρ is dimρ = dimV . We sometimes write the representation as (ρ, V ), to

emphasize the role of V .

For example, let G = Sn and let V be an abstract vector space of dimension n with basis

e1, . . . , en. For each π ∈ Sn, we define ρ(π) by sending ei to eπ(i). This is known as the

permutation representation, since in matrix form, ρ(π) is the permutation matrix corresponding

to π.

Reducibility A representation ρ acting on V is reducible if there is a non-trivial subspace

0 ⊊W ⊊ V such that ρ(α)W =W for each α ∈ G (this means that for each w ∈W , ρ(α)w ∈W ).

Such a subspace is called an invariant subspace. If no such subspace exists, the representation

is called irreducible.

For example, the permutation representation of Sn is reducible since the subspace W1

spanned by e1 + ⋯ + en is invariant. Another invariant subspace W2 is spanned by the vec-
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tors ei − en for i < n, and we have V =W1 ⊕W2. The representation ρ thus decomposes to two

subrepresentations ρ1, ρ2 acting on W1,W2, respectively. The representation ρ1, known as the

trivial representation, is trivially irreducible (any representation of dimension 1 is irreducible),

and it turns out that ρ2 is also irreducible.

Every representation can be decomposed into irreducible subrepresentations. More explic-

itly, given any representation ρ on V , there is a way of decomposing V into orthogonal invariant

subspaces V1, . . . , Vk, such that the restriction of ρ to each Vi is irreducible. Here orthogonality

is with respect to the inner product

⟨f, g⟩ = 1

∣G∣ ∑α∈G
f(α)g(α).

Equivalence We say that two representations (ρ1, V1) and (ρ2, V2) are equivalent if there is

a bijection T between V1 and V2 such that for all α ∈ G and v ∈ V1, T (ρ1(α)v) = ρ2(α)(Tv).

For example, take n = 2 in the previous example. The representation ρ1 is equivalent to

the representation ρ′1(e) = ρ′1((12)) = 1 acting on C by multiplication. The representation ρ2 is

equivalent to the representation ρ′2(e) = 1, ρ′2((12)) = −1 acting on C. The two representations

are inequivalent.

In general, the decomposition of a representation into irreducible subrepresentations need

not be unique (we give an example below). However, if we lump all equivalent subrepresenta-

tions together, we get a coarser decomposition which is unique.

Group algebra We can turn C[G] into an algebra by defining a multiplication operation

between any two f, g ∈ C[G]:

(fg)(α) = ∑
β∈G

f(αβ−1)g(β).

In Section 6.2, we defined a similar operation αf , which is equal to 1αf .

The regular representation The regular representation ρreg on C[G] is defined by ρreg(α)f =

αf . A subrepresentation of C[G] is determined by a subspace W ⊆ C[G] which is invariant,

that is, satisfies αw ∈W for all α ∈ G, w ∈W . From now on, we identify the subrepresentation

with W .
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For example, consider the group G = S3. Define

W1 = {f ∈ C[S3] ∶ f(π) = f(π(23)),∑
π

f(π) = 0}.

The first condition states that f(π) depends only on π(1). It is not hard to check that dimW1 =

2 and that W1 is invariant. Similarly we can define subspaces W2 and W3. It is not hard to

check that W1(132) =W2 and W1(123) =W3, and so W1,W2,W3 are all equivalent.

More generally, if W is an invariant subspace of C[G], then for each f ∈ C[G], Wf = {wf ∶

w ∈W} is another invariant subspace. It turns out that if W,W ′ are equivalent subrepresenta-

tions of C[G] then W ′ =Wf for some f ∈ C[G].

An important property of the regular representation ρreg is that each irreducible repre-

sentation is equivalent to some subrepresentation of ρreg. Moreover, in any decomposition of

C[Sn] into irreducible invariant subrepresentations, there are dimρ factors equivalent to each

irreducible representation ρ.

Continuing our example, for G = S3, every decomposition of ρreg into irreducible subrepre-

sentations contains two subrepresentations equivalent to W1. In any such decomposition which

contains W1, the other subrepresentation equivalent to W1 is W1(1(132) − 1
(123)). Different

decompositions are available, for example there is one containing W2 as a factor and another

containing W3 as a factor. In all such decompositions, the sum of the two subrepresentations

equivalent to W1 is the invariant subspace

W = {f ∈ C[S3] ∶∑
π

f(π) =∑
π

(−1)πf(π) = 0},

where (−1)π is the sign of π.

Fourier transform The Fourier transform of a function f ∈ C[G] at a representation ρ on

V is

f̂(ρ) = ∑
α∈G

f(α)ρ(α),

which is a linear transformation on V . By choosing a basis for V , we can think of f̂(ρ) as a

matrix of dimension dimV . This definition is different than the one we gave in Section 6.2; we

explain the connection below.
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For example, if ρ is the one-dimensional trivial representation (available at any group), then

f̂(ρ) = ∑α f(α).

The Fourier transform of f consists of f̂(ρ) for all irreducible representations ρ. The Fourier

transform of f determines f , that is, given matrices Aρ of dimensions dimρ, there is a unique

function f such that f̂(ρ) = Aρ for all ρ. This is proved by recourse to the regular representation.

The homomorphism property of ρ shows that

f̂g(ρ) = ∑
α∈G

(fg)(α)ρ(α) = ∑
α,β∈G

f(αβ−1)g(β)ρ(αβ−1)ρ(β) = f̂(ρ)ĝ(ρ).

For each irreducible representation ρ, f̂(ρ) is a matrix with (dimρ)2 entries. In each decom-

position of ρreg into irreducible subrepresentations, there are dimρ subrepresentations which are

equivalent to ρ, each of dimension ρ. The sum of all the corresponding subspaces is a subspace

Uρ of C[Sn] of dimension (dimρ)2. One basis of Uρ is given by the functions fij(α) = ρ(α)ij .

In this way, we can think of f̂(ρ) as an element of Uρ. This connects the description of the

Fourier transform in this section to its definition in Section 6.2. The advantage of the latter

definition is that it is basis-free. Moreover, the formula f̂g(ρ) = f̂(ρ)ĝ(ρ) remains true under

the latter definition.

Class functions A class function f ∈ C[G] is a function which is constant on conjugacy

classes, that is f(α) = f(β) if α,β ∈ G are conjugate. If ρ is an irreducible representation then

f̂(ρ) is a scalar (multiple of the identity). This is the property behind Claim 6.3.

Characters Each representation ρ has an associated character χρ defined by χρ(α) = Trρ(α).

It is easy to see that χρ is a class function:

χρ(βαβ−1) = Trρ(β)ρ(α)ρ(β)−1 = Trρ(α) = χρ(α),

using the homomorphism property of ρ. It turns out that the vector space of all class func-

tions is spanned by the characters of all irreducible representations. Therefore the number of

inequivalent irreducible representations is equal to the number of conjugacy classes of G.

It is easy to see that dimρ = χρ(e), where e ∈ G is the identity element. Also, calculation
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shows that for every α ∈ G,

1̂{βαβ−1∶β∈G}(ρ) =
χρ(α)
dimρ

∣{βαβ−1 ∶ β ∈ G}∣.

Therefore, in order to calculate the constants CP,λ in Claim 6.3, it is enough to know all the

characters of irreducible representations of G.

If a representation ρ decomposes into subrepresentations ρi, then it is easy to see that

χρ = ∑i χρi . We will use this fact to calculate the characters of Sn.

6.3.2 The symmetric group

In the previous section, we considered the space of all complex-valued functions over a group G.

Such generality is needed, for example, in the case of the groups Znk for k > 2. This is manifested

by the fact that the Fourier characters in this case are complex. However, for G = Sn, there is

a real-valued Fourier basis, and so we consider for simplicity R[Sn] instead of C[Sn].

The irreducible representations of the symmetric group are indexed by partitions of n.

This is not surprising, since the conjugacy classes of Sn (known in this context as cycle types)

are also indexed by partitions of n, and we know that the number of inequivalent irreducible

representations is the same as the number of conjugacy classes.

Before constructing the actual irreducible representations, we construct the permutation

modules Mλ. (A module here is the same as a vector space.) For each partition λ of n, consider

the set P (λ) of all λ-tabloids. A permutation π ∈ Sn acts on a λ-tabloid A = (A1, . . . ,Ak) by

permuting the numbers: Aπ = (π(A1), . . . , π(Ak)). In this way, we get a representation ρ on a

vector space of dimension ∣P (λ)∣: given a basis {eA ∶ A ∈ P (λ)}, ρ(π)(eA) = eAπ .

The representation corresponding to Mλ is reducible, but it contains an irreducible sub-

representation which corresponds to a submodule Sλ known as a Specht module. We do not

construct Sλ explicitly here. The decomposition of Mλ into irreducible representations contains

representations isomorphic to Sµ if and only if µ ⊵ λ, and furthermore Sλ appears only once,

and this fact can be used to construct the modules Sλ.

The regular representation decomposes into irreducible representations, and there is a cor-

responding decomposition of R[Sn] into subspaces which are equivalent to irreducible represen-
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tations. For a partition λ of n, let Uλ ⊆ R[Sn] be the sum of all such subspaces equivalent to

Sλ, and let Vλ be the sum of Uµ for all µ ⊵ λ. While the decomposition of R[Sn] into irreducible

subspaces is not unique, the subspaces Uλ and Vλ are uniquely defined. Following Ellis [23],

the following lemma shows that Vλ = Lλ for all λ, where Lλ is the space defined in Section 6.2.

Lemma 6.7. For every partition λ of n, Vλ = Lλ.

Proof. For a tabloid A ∈ P (λ), let V (A) be the subspace of R[Sn] spanned by {TA,B ∶ B ∈

P (λ)}. It is not hard to check that for π ∈ Sn, πTA,B = TA,Bπ . From the definition it is obvious

that the restriction of ρreg to V (A) is equivalent to Mλ. If we decompose V (A) into irreducible

subrepresentations, all the irreducible representations we obtain in this way are equivalent to

Sµ for some µ ⊵ λ (this is a property of Mλ). Hence V (A) ⊆ Vλ. Since Lλ is the sum of V (A)

over all A ∈ P (λ), we conclude that Lλ ⊆ Vλ.

For the other direction, take any µ ⊵ λ, and pick an arbitrary A ∈ P (λ). Since V (A) is equiv-

alent to Mλ, it contains some subrepresentation W equivalent to Sµ. Every subrepresentation

of R[Sn] equivalent to Sµ is of the form Wf for some f ∈ R[Sn]. Since V (A)1
{π−1} = V (Aπ),

we see that V (A)f ⊆ Lλ, and so Wf ⊆ Lλ. Therefore Uµ ⊆ Lλ. Considering all µ ⊵ λ, we

conclude that Vλ ⊆ Lλ.

Corollary 6.8. For every partition λ of n, Uλ = Rλ.

Another immediate corollary is Claim 6.2. To prove Claim 6.3, recall that for every class

function g and irreducible representation λ, ĝ(λ) is equal to some scalar multiple of the identity

CP,λ. Therefore ĝf (λ) = ĝ(λ)f̂(λ) = CP,λf̂(λ). In other words, the effect of multiplying by g

from the left on the projection to Uλ = Rλ is to multiply the projection by CP,λ. Taking g = 1P

for some conjugation-invariant family of permutations, we get Claim 6.3, since

1P f = ∑
π∈P

πf.

6.3.3 Some formulas

In order to satisfy the curiosity of the reader, we now give some formulas for the characters of

Sn. For a partition λ, let ξλ be the character of Mλ, and let χλ be the character of Sλ.
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Lemma 6.9 (Young’s rule). Let µ be a partition of n. The module Mµ decomposes as

Mµ = ⊕
λ⊵µ

Kλ,µS
λ,

that is, there are Kλ,µ submodules equivalent to Sλ, where the Kostka number Kλ,µ is the number

of solutions of the following problem. For each part λi, choose λi integers Ni,1 < . . . < Ni,λi under

the following constraints: Ni+1,j ≥ Ni,j for all i, j such that Ni,j ,Ni+1,j exist; and each integer

k is chosen exactly µk times.

Corollary 6.10. Let µ be a partition of n. We have

ξµ = ∑
λ⊵µ

Kλ,µχλ.

Young’s rule gives us a way of calculating the characters χλ from the characters ξµ. The

latter have an explicit formula.

Lemma 6.11. Let µ be a partition of n, and π ∈ Sn. The character ξµ(π) is equal to the

number of µ-tabloids fixed by π.

There are many other formulas which help calculating the characters Sn. For a list, consult

for example [28].

6.4 Intersecting families of permutations

Having developed Fourier analysis over Sn, we now put it to use to study intersecting families

of permutations.

Definition 6.7. A family of permutations F ⊆ Sn is intersecting if every two permutations

α,β ∈ Sn agree on at least one point. ◯

Lemma 6.12. An intersecting family of permutations in Sn contains at most (n − 1)! permu-

tations.

Proof. Let σ = (12 . . . n). For i ≠ j ∈ {0, . . . , n−1} and π ∈ Sn, the permutations πσi, πσj do not

intersect. Indeed, πσi(t) = π(i + t) whereas πσj(t) = π(j + t), where addition is modulo n. For
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each permutation π, define S(π) = {πσi ∶ i ∈ {0, . . . , n − 1}}. It is easy to check that the sets

{S(π) ∶ π(1) = 1} partition Sn. Every intersecting family contains at most one permutation

from each of these (n − 1)! sets.

This proof comes from Deza and Frankl’s paper [13]. Deza and Frankl conjectured that

the only intersecting families of permutations of size (n − 1)! are cosets. This turned out to

be much harder to prove, and the first proofs, due to Cameron and Ku [7] and to Larose and

Malvenuto [65] appeared only 25 years later.

In this section we present an alternative proof of this uniqueness result due to Ellis, Friedgut

and Pilpel [28]. Their proof follows Friedgut’s method, and has the advantage of providing a

stability result: if an intersecting family of permutations has size (1− ε)(n− 1)!, then it is close

to a coset.

Definition 6.8. For an integer n, let FPFn ⊆ Sn consist of all permutations having no fixed

points. ◯

Lemma 6.13. A family F ⊆ Sn is intersecting if and only if F is disjoint from πF for every

π ∈ FPFn.

Proof. If F intersects πF for some π ∈ FPFn, say α = πβ for some α,β ∈ F , then for all i ∈ [n],

α(i) = πβ(i) ≠ β(i), and so F is not intersecting. Conversely, if F is not intersecting then there

are some α,β ∈ F which agree on no point. Hence αβ−1 ∈ FPFn, and F intersects αβ−1F .

The family FPFn is conjugation-invariant, and so we can apply Claim 6.3 to obtain a

condition on the Fourier expansion of the characteristic function of every intersecting family.

Lemma 6.14. Let F be an intersecting family of permutations, and let f = 1F . There are

coefficients Cλ such that

∑
λ⊢n

Cλ∥f̂(λ)∥2 = 0.

The coefficients Cλ satisfy the following properties:

(a) C(n) = ∣FPFn∣.

(b) When n ≥ 4, maxλ≠(n)∣Cλ∣ = ∣FPFn∣/(n − 1).
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(c) When n ≥ 5, ∣Cλ∣ = ∣FPFn∣/(n − 1) is attained only at C(n−1,1) = −∣FPFn∣/(n − 1).

(d) We have maxλ≠(n),(n−1,1)∣Cλ∣ = O((n − 2)!). (Note that ∣FPFn∣ = Θ(n!).)

Proof. Let Bπ denote the operator mapping f to πf , and define

A = ∑
π∈FPFn

Bπ.

Lemma 6.13 shows that

f ′Af = 0.

Claim 6.3 implies that for some constants Cλ,

Âf (λ) = Cλf̂(λ).

Hence the claimed formula follows from Parseval’s identity.

Clearly C(n) = ∣FPFn∣. All other properties of Cλ are proved in Ellis [22]. See also

Renteln [71], who proves the first three properties.

Applying Hoffman’s bound, we get an alternative proof of the upper bound (n − 1)! on

intersecting families.

Theorem 6.15. Let F be an intersecting family of permutations.

Upper bound: If n ≥ 4 then µ(F) ≤ 1/n.

Uniqueness: If n ≥ 5 and µ(F) = 1/n then 1F ∈ L(n−1,1).

Stability: If µ(F) ≥ 1/n − ε then ∥f − f1∥2 = O(ε), where f = 1F and f1 is the projection of f

to L(n−1,1).

Proof. All items follows from Lemma 6.14 via Hoffman’s bound, with ∅ replaced by the partition

(n). To avoid confusion, we replace λ with C in Hoffman’s bound. We have C(n) = ∣FPFn∣.

When n ≥ 4, Cmin = −∣FPFn∣/(n − 1). Hence

µ(F) ≤mmax =
∣FPFn∣/(n − 1)

∣FPFn∣ + ∣FPFn∣/(n − 1) = 1

n
.
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When n ≥ 5, µ(F) = mmax only if ∥f̂(λ)∥ = 0 unless λ ∈ {(n), (n − 1,1)}, proving uniqueness.

For stability, note that C2 = O((n − 2)!) = O(∣FPFn∣/n2). Hence µ(F) ≥ (1 − ε)/n implies that

∑
λ≠(n),(n−1,1)

∥f̂(λ)∥2 ≤ ∣FPFn∣/(n − 1)
∣FPFn∣/(n − 1) −O(∣FPFn∣/n2)ε = O(ε).

Using the cross-intersecting version of Hoffman’s bound, we get in the same way that for

n ≥ 4, if F and G are cross-intersecting then ∣F ∣∣G∣ ≤ (n − 1)!2. This is false for n = 3, as the

example F = {e, (123), (132)}, G = {(12), (13), (23)} given by Ellis [22] demonstrates.

Ellis, Friedgut and Pilpel [28] proved an analog of Theorem 6.15 for t-intersecting families of

permutations (families in which every two permutations agree on t points), and Ellis [23] proved

an analog of the theorem for t-set-intersecting families of permutations (families in which every

two permutations agree on the image of some set of size t).

We use an argument due to Ellis, Friedgut and Pilpel to show that cosets are the unique

maximal intersecting families.

Lemma 6.16. Suppose f ∈ L(n−1,1) satisfies f ≥ 0. Then f can be expressed as a non-negative

linear combination of the cosets 1Ti,j .

Proof. Since f ∈ L(n−1,1), for some coefficients αi,j ,

f =
n

∑
i,j=1

αi,j1Ti,j . (6.1)

While the functions 1αi,j span L(n−1,1), they don’t form a basis since they are not linearly inde-

pendent. In other words, there are many different ways of expressing f as a linear combination

of 1αi,j . Indeed, for any βi, γj satisfying ∑i βi +∑j γj = 0, another such linear combination is

f =
n

∑
i,j=1

(αi,j + βi + γj)1Ti,j . (6.2)

We claim that there is such a linear combination in which all coefficients are non-negative.

Suppose to the contrary that (6.1) is a linear combination maximizing the value m =

mini,j αi,j , and m < 0 (the maximum is achieved since m is the solution to a bounded lin-

ear program). Let G be a bipartite graph with n vertices on both sides, in which i and j are

connected if αi,j =m. We claim that G has no perfect matching. Indeed, if {(i, π(i)) ∶ i ∈ [n]}

is a perfect matching, then

f(π) =
n

∑
i=1

αi,j = nm < 0,
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contradicting the fact that f ≥ 0. Here we use the fact that π ∈ Ti,j if and only if j = π(i).

Choose an arbitrary entry αk,l = m, and consider the graph H obtaining by deleting the

two corresponding vertices from G. The graph H has no perfect matching, and so there is

some set A of rows whose neighbor set B has cardinality ∣B∣ < ∣A∣. For some small ε > 0, let

βi = −Ji ∈ AKε and let γj = Jj ∈ BKε + Jj = lK(∣A∣ − ∣B∣)ε. Note that ∑i βi +∑j γj = 0. If ε is small

enough, the linear combination (6.2) has mini,j(αi,j + βi + γj) ≥ m, and m occurs less times

among the coefficients as before (since αk,l + βk + γl > m). Repeating this operation enough

times, eventually we get a linear combination whose minimal coefficient is strictly larger than

m, contradicting the choice of αi,j .

Lemma 6.17. Suppose f ∈ L(n−1,1) is a function with non-negative integer values. Then f can

be expressed as a non-negative integral combination of the functions 1Ti,j for i, j ∈ [n].

In particular, if f is Boolean, then f is the characteristic function of a disjoint union of

cosets.

Proof. The proof is by induction on ∑π f(π). If f = 0 then the result is trivial. Otherwise,

let f = ∑i,j αi,j1Ti,j be the non-negative linear combination given by Lemma 6.16. Since f ≠ 0,

there must be some positive coefficient αk,l > 0. Hence f(π) > 0 for every π ∈ Tk,l. Since all

values of f are integers, this shows that f(π) ≥ 1 for all π ∈ Tk,l. Hence f − 1Tk,l is again a

function with non-negative integer values. Applying the induction hypothesis, we deduce that

f is a non-negative integral combination of the functions 1Ti,j for i, j ∈ [n].

If f is Boolean then f must be a sum of distinct 1Ti,j . Furthermore, the cosets Ti,j appearing

in this sum must be disjoint, for otherwise the sum is not Boolean.

Ellis, Friedgut and Pilpel [28] prove a similar result for L(n−k,1k). Ellis [21] shows that a

similar result is not true for An, the alternating group (for the analog of L(n−1,1)).

As a simple corollary, we obtain a proof of the Deza–Frankl conjecture.

Theorem 6.18. For n ≥ 5, if F ⊆ Sn is an intersecting family of permutations of size (n − 1)!

then F is a coset.

Proof. Theorem 6.15 shows that in this case, 1F ∈ L(n−1,1). Lemma 6.17 shows that F is



Chapter 6. Fourier analysis on the symmetric group 156

a disjoint union of cosets. Since ∣F ∣ = (n − 1)!, this disjoint union must consist of a single

coset.

The generalization of Lemma 6.17 to L(n−t,1t) implies a similar generalization of Theo-

rem 6.18 to t-intersecting families of permutations. Ellis [23] proved a similar result for t-set-

intersecting families of permutations, which are families in which any two permutations agree

on the unordered image of a set of size t. His proof does not involve the analog of Lemma 6.17

for L(n−t,t), though it does use the analog for L(n−t,1t).

In the next chapter, we prove a stability result which will allow us to conclude that an

intersecting family of size (1− ε)(n−1)! has to be O(ε/n)-close to a coset. For the proof as well

as other results in this vein, consult Section 7.6.



Chapter 7

A structure theorem for small

dictatorships on Sn

The classical theorem by Friedgut, Kalai and Naor [42], Theorem 2.22, shows that a Boolean

function on {0,1}n whose Fourier expansion is concentrated on the first two levels must be close

to a Boolean function whose Fourier expansion is supported on the first two levels (which must

be a function depending on at most one coordinate). In this chapter and the next, we prove

similar results for Boolean functions on Sn.

In Chapter 3 we showed that an intersecting family of sets of maximal µp-measure (for

p < 1/2) has the property that the Fourier expansion of its characteristic function is supported

on the first two levels. Similarly, if the family has almost maximal measure, then the Fourier

expansion must be concentrated on the first two levels. The Friedgut–Kalai–Naor theorem then

implies stability: such a family must be close to a star. Similarly, in Chapter 6 we showed that

an intersecting family of permutations of maximal size has the property that its characteristic

function belongs to the space L(n−1,1) spanned by {1Ti,j ∶ i, j ∈ [n]}. Moreover, if the family

has almost maximal size, then the characteristic function is close to its projection to L(n−1,1).

Using the main theorem proved in this chapter, we will prove stability: such a family must be

close to a coset. In other words, we will show that if a Boolean family of permutations of size

roughly (n− 1)! is close to a function in L(n−1,1) then it must be close to a Boolean function in

L(n−1,1).

157



Chapter 7. A structure theorem for small dictatorships on Sn 158

Our goal in this chapter is to prove the following theorem.

Theorem 7.1. There is an ε0 > 0 such that the following holds.

Let F ⊆ Sn be a family of permutations of size c(n − 1)!, where c ≤ n/2. Let f = 1F (so

E[f] = c/n) and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).

If E[(f − f1)2] = εc/n, where ε ≤ ε0, then there exists a family G ⊆ Sn which is the union of

⌈c⌋ cosets satisfying

∣F∆G∣ = O(
√
ε + 1

n
)c2(n − 1)!.

Moreover,

∣c − ⌈c⌋∣ = O(
√
ε + 1

n
)c2.

Here and in the rest of the chapter, ⌈c⌋ is the integer closest to c, breaking ties arbitrarily,

and x = O(y) means that for some constant C > 0, x ≤ Cy for large enough n.

The cosets comprising the family G need not be disjoint, and so it need not be the case that

1G ∈ L(n−1,1). This is unavoidable, for consider the family F = T1,1 ∪ T2,2. We have

∥f − f1∥ ≤ ∥f − 1T1,1 − 1T2,2∥ = ∥1T(1,1),(2,2)∥ =
1

n(n − 1) ,

where T(1,1),(2,2) = T(1,1)∩T(2,2). Therefore we can take ε ≈ 1/(2n). On the other hand, it is not

hard to check that ∣F∆G∣ = Ω((n− 1)!) for every family G which is the disjoint union of cosets.

So on the one hand, the Fourier expansion of f = 1F is concentrated on the first two levels, and

on the other hand, it cannot be approximated with an error which is o(∣F ∣) by a family which

is the disjoint union of cosets.

Because the cosets comprising the family G are not necessarily disjoint, Theorem 7.1 is

not a classical stability result. A classical stability result has the following form: if a Boolean

family is close to a collection L, then it is close to a Boolean member of L. As shown in the

preceding paragraph, such a result isn’t true in our case (unless c = 1). In the following chapter,

we prove a similar result which corresponds to the case c = Θ(n). In that regime, we are able

to approximate F with a family which is the disjoint union of cosets, and so the theorem we

obtain there is a classical stability result.
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In subsequent work [25], we generalize Theorem 7.1 to Boolean functions of size c(n − t)!

supported on the first t + 1 levels (in other words, close to Ln−t,1t). This enables us to deduce

stability for t-intersecting families of permutations.

This chapter follows our joint work with David Ellis and Ehud Friedgut [24].

7.1 Overview of the proof

The rest of this chapter, up to Section 7.6, contains the proof of Theorem 7.1. We will assume

throughout that the family F and the related functions and quantities n, f, f1, c, ε are given.

The idea of the proof is to analyze the n × n matrix B whose entries are given by

bij =
∥F ∩ Ti,j∥
(n − 1)! − ∥F∥

n!
= n⟨f,1Ti,j ⟩ −

c

n
.

When F is a disjoint union of c cosets, the matrix B takes one of the following forms:

c

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − c
n ⋯ 1 − c

n − cn ⋯ − cn
− n−c
n(n−1) ⋯ − n−c

n(n−1)
c

n(n−1) ⋯ c
n(n−1)

⋮ ⋮ ⋮ ⋮

− n−c
n(n−1) ⋯ − n−c

n(n−1)
c

n(n−1) ⋯ c
n(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

or

c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − c
n − n−c

n(n−1) ⋯ − n−c
n(n−1)

⋮ ⋮ ⋮

1 − c
n − n−c

n(n−1) ⋯ − n−c
n(n−1)

− cn
c

n(n−1) ⋯ c
n(n−1)

⋮

− cn
c

n(n−1) ⋯ c
n(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(7.1)

As we can see, in these cases B contains c “strong” entries (close to 1), and all other entries

are of order O(c/n). While we cannot expect B to be of similar form in general (since F might

not be close to a family which is a disjoint union of cosets), we will show that B has roughly c

strong entries, and all other entries are small.

In order to analyze the entries of B, we will estimate their sum of squares and their sum

of cubes. It will turn out that both quantities are roughly equal to c, which implies (together

with easy bounds on the individual entries) that B has roughly c strong entries.

It remains to analyze the moments of the entries of B. To this end, we define an auxiliary

function

h =∑
i,j

bij1Ti,j =
n

n − 1
f1 −

c

n − 1
.
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The moments of this function are directly related to the moments of the entries of B:

E[h2] = 1

n − 1
∑
i,j

b2ij ,

E[h3] = n

(n − 1)(n − 2)∑i,j
b3ij .

We will be able to estimate E[h2] using E[f2] = E[f] = c/n and E[(f −f1)2] ≤ εc/n. Estimating

E[h3] is the most technically difficult part of the proof.

7.2 Basic definitions

In this section we start the proof proper. We make the following crucial definitions:

aij =
∣F ∩ Ti,j ∣
(n − 1)! , (7.2)

bij = aij −
c

n
, (7.3)

g =
n

∑
i,j=1

aij1Ti,j , (7.4)

h =
n

∑
i,j=1

bij1Ti,j . (7.5)

The entries aij and bij form two n×n matrices A and B, respectively. We start by calculating

the row and column sums of these matrices.

Lemma 7.2. Each row and each column in A sums to c. Each row and each column in B

sums to zero.

Proof. We have
n

∑
i=1

a1i =
n

∑
i=1

∣F ∩ T1,i∣
(n − 1)! = ∣F ∣

(n − 1)! = c.

A similar calculation shows that each other row and each column in A sums to c. The other

claim follows directly from bij = aij − c/n.

Corollary 7.3. For each i, j ∈ [n],

∑
k≠i

∑
l≠j

bkl = bij .

(The first sum is over k ∈ [n] ∖ {i}, and the second is over l ∈ [n] ∖ {j}.)
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Proof. Using the fact that rows and columns sum to zero,

∑
k≠i

∑
l≠j

bkl =∑
k≠i

(−bkj) = bij .

Next, we relate g and h to f1 (the projection of f to L(n−1,1)). We need first an easy result

on the size of the intersection of two cosets.

Lemma 7.4. Let Tij , Tkl be two cosets and S = ∣Tij ∩ Tkl∣. If i = k and j = l then S = (n − 1)!.

If i ≠ k and j ≠ l then S = (n − 2)!. Otherwise, S = 0.

Lemma 7.5. We have

g = n

n − 1
f1 +

n − 2

n − 1
c,

h = n

n − 1
f1 −

c

n − 1
.

Proof. It is easy to see that h = g − c, and so it is enough to prove the second formula. Since

both sides of the formula are in L(n−1,1), it is enough to show that both sides have the same

inner product with each 1Ti,j (since these functions span L(n−1,1)). We have

⟨h,1Ti,j ⟩ =
n

∑
k,l=1

bkl⟨1Tk,l ,1Ti,j ⟩

= 1

n!

n

∑
k,l=1

bkl∣Tk,l ∩ Ti,j ∣

= bij
n
+ 1

n(n − 1)∑k≠i
∑
l≠j

bkl

= bij
n
+ bij

n(n − 1) = bij

n − 1
,

using Lemma 7.4. On the other hand,

bij =
∣F ∩ Ti,j ∣
(n − 1)! −

c

n
= n⟨f,1Ti,j ⟩ −

c

n
= n⟨f1,1Ti,j ⟩ −

c

n
.

Therefore

⟨h,1Ti,j ⟩ =
bij

n − 1
= n

n − 1
⟨f1,1Ti,j ⟩ −

c

n(n − 1) = n

n − 1
⟨f1,1Ti,j ⟩ −

c

n − 1
⟨1Sn ,1Ti,j ⟩.
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7.3 Moment formulas

We proceed to relate the moments of h and the moments of B, making repeated use of the fact

that the rows and columns of B sum to zero.

Lemma 7.6. We have

E[h2] = 1

n − 1

n

∑
i,j=1

b2ij .

Proof. Squaring the defining expression (7.5) of h, we get

h2 =
n

∑
i,j,k,l=1

bijbkl1Ti,j1Tk,l =
n

∑
i,j=1

b2ij1Ti,j + ∑
i,j,k,l∶
i≠k,j≠l

bijbkl1T(i,j),(k,l) .

Taking expectations,

E[h2] = 1

n

n

∑
i,j=1

b2ij +
1

n(n − 1)
n

∑
i,j=1

bij∑
k≠i

∑
l≠j

bkl

= 1

n

n

∑
i,j=1

b2ij +
1

n(n − 1)b
2
ij =

1

n − 1

n

∑
i,j=1

b2ij ,

using Corollary 7.3.

The calculation for the third power is similar but longer.

Lemma 7.7. We have

E[h3] = n

(n − 1)(n − 2)
n

∑
i,j=1

b3ij .

Proof. Cubing the defining expression (7.5) of h, we get

h3 =
n

∑
i,j=1

b3ij1Ti,j + 3
n

∑
i,j=1

∑
k≠i
l≠j

b2ijbkl1T(i,j),(k,l) +
n

∑
i,j=1

∑
k≠i
l≠j

∑
p≠i,k
q≠j,l

bijbklbpq1T(i,j),(k,l),(p,q) .

Taking expectations,

E[h3] = 1

n

n

∑
i,j=1

b3ij +
3

n(n − 1)
n

∑
i,j=1

∑
k≠i
l≠j

b2ijbkl +
1

n(n − 1)(n − 2)
n

∑
i,j=1

∑
k≠i
l≠j

∑
p≠i,k
q≠j,l

bijbklbpq. (7.6)

The sum in the second term simplifies to

n

∑
i,j=1

∑
k≠i
l≠j

b2ijbkl =
n

∑
i,j=1

b3ij ,
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using Corollary 7.3. Simplifying the sum in the third term requires more work. First,

∑
p≠i,k

∑
q≠j,l

bpq = − ∑
p≠i,k

(bpj + bpl) = bij + bil + bkj + bkl.

Therefore for each i, j,

∑
k≠i
l≠j

∑
p≠i,k
q≠j,l

bklbpq =∑
k≠i
l≠j

bkl(bij + bil + bkj + bkl).

Summing over all i, j,

n

∑
i,j=1

∑
k≠i
l≠j

∑
p≠i,k
q≠j,l

bijbklbpq =
n

∑
i,j=1

bij∑
k≠i
l≠j

bkl(bij + bil + bkj + bkl)

=
n

∑
i,j,k,l=1

bijbkl(bij + bil + bkj + bkl)

−
n

∑
i,j,k=1

bijbkj(2bij + 2bkj)

−
n

∑
i,j,l=1

bijbil(2bij + 2bil)

+
n

∑
i,j=1

b2ij(4bij) = 4
n

∑
i,j=1

b3ij .

All other terms other than the last vanish due to Corollary 7.3, since in each case we can find at

least one index which appears only once. For example, in the first term b2ijbkl, both k, l appear

only once, and in the second term bijbklbil, both j, k appear only once. Substituting everything

in (7.6), we get

E[h3] = ( 1

n
+ 3

n(n − 1) +
4

n(n − 1)(n − 2))
n

∑
i,j=1

b3ij =
n

(n − 1)(n − 2)
n

∑
i,j=1

b3ij .

7.4 Bounding the moments

Having related the moments of B to the moments of h, we estimate the moments of h.

Lemma 7.8. We have E[f1] = c/n, E[g] = c, E[h] = 0.

Proof. The first formula follows from the fact that the constant vector is in L(n−1,1). For the

second formula, Lemma 7.5 implies that

E[g] = n

n − 1
E[f1] +

n − 2

n − 1
c = 1

n − 1
c + n − 2

n − 1
c = c.

The third formula follows from h = g − c.
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Lemma 7.9. We have

E[g2] = (1 − ε) n2

(n − 1)2

c

n
+ n(n − 2)

(n − 1)2
c2,

E[h2] = (1 − ε) n2

(n − 1)2

c

n
− c2

(n − 1)2
.

Proof. Since f1 is a projection,

E[f2
1 ] = E[f2] −E[(f − f1)2] = (1 − ε) c

n
.

Using Lemma 7.5,

E[g2] = E[( n

n − 1
f1 +

n − 2

n − 1
c)

2

]

= n2

(n − 1)2
E[f2

1 ] + 2
n(n − 2)
(n − 1)2

cE[f1] +
(n − 2)2

(n − 1)2
c2

= (1 − ε) n2

(n − 1)2

c

n
+ 2

n − 2

(n − 1)2
c2 + (n − 2)2

(n − 1)2
c2

= (1 − ε) n2

(n − 1)2

c

n
+ n(n − 2)

(n − 1)2
c2.

Similarly,

E[h2] = E[( n

n − 1
f1 −

c

n − 1
)

2

]

= n2

(n − 1)2
E[f2

1 ] − 2
n

(n − 1)2
cE[f1] +

c2

(n − 1)2

= (1 − ε) n2

(n − 1)2

c

n
− 2

c2

(n − 1)2
+ c2

(n − 1)2

= (1 − ε) n2

(n − 1)2

c

n
− c2

(n − 1)2
.

Estimating E[h3] is more difficult. Instead of estimating E[h3], we estimate the related

quantity E[g3], using the fact that g ≥ 0 and that g = n/(n − 1)f1 + (n − 2)/(n − 1)c is close to

the function n/(n − 1)f + (n − 2)/(n − 1)c, which takes only two different values. We will use

the following inequality.

Lemma 7.10. Let θ ∈ (0,1/2] and let H,L, η ≥ 0, where H > L. Suppose F is a measurable

function defined on [0,1] such that the measure of F −1(H) is θ and the measure of F −1(L)

is 1 − θ. If G ≥ 0 is a measurable function defined on [0,1] satisfying E[G] = E[F ] and
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E[(G − F )2] ≤ η, where η ≤ θ(1 − θ)(H −L)2, then

E[G3] ≥ E[F 3] − 3(H2 −L2)
√
θη − 1√

θ/2
η3/2.

Here the expectations are over a random x ∈ [0,1].

Proof. Without loss of generality, we can assume that F is given by

F (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H if 0 ≤ x < θ,

L if θ ≤ x ≤ 1.

Let G̃ be another function on [0,1] given by

G̃(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
θ ∫

θ
0 G(x)dx if 0 ≤ x < θ,

1
1−θ ∫

1
θ G(x)dx if θ ≤ x ≤ 1.

Clearly E[G̃(x)] = E[G(x)]. The Cauchy–Schwarz inequality (or the convexity of x2 via

Jensen’s inequality) shows that

E[(G − F )2] = ∫
θ

0
(G(x) −H)2 dx + ∫

1

θ
(G(x) −L)2 dx

≥ 1

θ
(∫

θ

0
(G(x) −H)dx)

2

+ 1

1 − θ(∫
1

θ
(G(x) −L)dx)

2

= θ(1

θ
∫

θ

0
G(x)dx −H)

2

+ (1 − θ)( 1

1 − θ ∫
1

θ
G(x)dx −L)

2

= E[(G̃ − F )2].

Moreover, since x3 is convex, Jensen’s inequality shows that

E[G3] = ∫
θ

0
G(x)3 dx + ∫

1

θ
G(x)3 dx

= θ ⋅ 1

θ
∫

θ

0
G(x)3 dx + (1 − θ) ⋅ 1

1 − θ ∫
1

θ
G(x)3 dx

≥ θ(1

θ
∫

θ

0
G(x)dx)

3

+ (1 − θ)( 1

1 − θ ∫
1

θ
G(x)dx)

3

= E[G̃3].

Since G̃ ≥ 0, we see that the minimum of E[G3] is attained on functions of the form G̃.

The function G̃ attains only two values: G̃(0) in the range [0, θ), and G̃(1) in the range

[θ,1]. Since E[G̃] = E[F ] = θH + (1 − θ)L, if we put δ = (H − G̃(0))/(1 − θ) then

G̃(0) =H − (1 − θ)δ,

G̃(1) = L + θδ.
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The first formula is by definition, and to verify the second, it is enough to check that these

formulas agree with θG̃(0)+ (1− θ)G̃(1) = θH + (1− θ)L. We get a bound on δ from the second

moment:

η ≥ E[(G̃ − F )2] = θ((1 − θ)δ)2 + (1 − θ)(θδ)2 = θ(1 − θ)δ2.

Moreover,

E[G3] ≥ E[G̃3] = θ(H − (1 − θ)δ)3 + (1 − θ)(L + θδ)3.

The derivative of the right-hand side with respect to δ is

3θ(1 − θ)[−(H − (1 − θ)δ)2 + (L + θδ)2]

=3θ(1 − θ)[(θ2 − (1 − θ)2)δ2 + 2(θL + (1 − θ)H)δ +L2 −H2]

=3θ(1 − θ)(δ − (H −L))(H +L − (1 − 2θ)δ).

In particular, the right-hand side is decreasing in the range

−H +L
1 − 2θ

≤ δ ≤H −L.

Hence, provided
√
η/(θ(1 − θ)) ≤H −L, we can conclude that

E[G3] ≥ θ(H − (1 − θ)δ0)3 + (1 − θ)(L + θδ0)3, where δ0 =
√

η

θ(1 − θ) .

(Note that −(H +L)/(1 − 2θ) ≤ −(H −L) since L ≥ 0 and θ ≤ 1/2.) Calculating,

E[G3] ≥ θH3 + (1 − θ)L3 − 3θ(1 − θ)(H2 −L2)δ0

+ 3θ(1 − θ)((1 − θ)H + θL)δ2
0 + θ(1 − θ)(θ2 − (1 − θ)2)δ3

0

= E[F 3] − 3
√
θ(1 − θ)(H2 −L2)√η + 3((1 − θ)H + θL)η − 1 − 2θ√

θ(1 − θ)
η3/2.

The third term is positive, and the lemma follows using 0 ≤ θ ≤ 1/2.

We can now get a lower bound on E[g3].

Lemma 7.11. Assuming ε0 ≤ 1/2,

E[g3] ≥ n2

(n − 1)3
c + 3

n(n − 2)
(n − 1)3

c2 + (n − 2)2(n + 1)
(n − 1)3

c3 −O(
√
ε(1 + c) c

n
).
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Proof. Define a function F by

F = n

n − 1
f + n − 2

n − 1
c.

Although F and g are functions on Sn rather than on [0,1], we can think of them as functions

on [0,1] by assigning each permutation π ∈ Sn an interval of length 1/n!; a random x ∈ [0,1] cor-

responds to a random π ∈ Sn. Clearly E[F ] = E[g] and g ≥ 0, and so we can apply Lemma 7.10.

The relevant parameters are

θ = c

n
,

H = n

n − 1
+ n − 2

n − 1
c,

L = n − 2

n − 1
c,

η = E[(F − g)2] = n2

(n − 1)2
E[(f − f1)2] = ε n2

(n − 1)2

c

n
.

Note that

θ(1 − θ)(H −L)2 ≥ c

2n

n2

(n − 1)2
,

and so η ≤ θ(1 − θ)(H −L)2 whenever ε ≤ 1/2. Therefore the lemma applies, and we get

E[g3] ≥ E[F 3] − 3( n2

(n − 1)2
+ 2

n(n − 2)
(n − 1)2

c) n

n − 1

c

n

√
ε −

√
2n

c

n3

(n − 1)3

c3/2

n3/2
ε3/2

= E[F 3] −O(
√
ε(1 + c) c

n
).

To complete the proof of the lemma, we compute E[F 3]:

E[F 3] = θH3 + (1 − θ)L3

= c

n
( n3

(n − 1)3
+ 3

n2(n − 2)
(n − 1)3

c + 3
n(n − 2)2

(n − 1)3
c2 + (n − 2)3

(n − 1)3
c3) + (1 − c

n
)(n − 2)3

(n − 1)3
c3

= n2

(n − 1)3
c + 3

n(n − 2)
(n − 1)3

c2 + 3
(n − 2)2

(n − 1)3
c3 + (n − 2)3

(n − 1)3
c3

= n2

(n − 1)3
c + 3

n(n − 2)
(n − 1)3

c2 + (n − 2)2(n + 1)
(n − 1)3

c3.

Using our calculation of E[h2], we can conclude a bound on E[h3].

Lemma 7.12. Assuming ε0 ≤ 1/2,

E[h3] ≥ n2

(n − 1)3
c − 3n

(n − 1)3
c2 + 2

(n − 1)3
c3 −O(

√
ε(1 + c) c

n
).
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Proof. The starting point is

E[g3] = E[(h + c)3] = E[h3] + 3cE[h2] + 3c2 E[h] + c3.

Lemma 7.8 shows that E[h] = 0, and Lemma 7.9 gives the value of E[h2]. Using the lower

bound on E[g3] given by Lemma 7.11, we get a lower bound on E[h3]:

E[h3] = E[g3] − 3cE[h2] − c3

≥ n2

(n − 1)3
c + 3

n(n − 2)
(n − 1)3

c2 + (n − 2)2(n + 1)
(n − 1)3

c3 −O(
√
ε(1 + c) c

n
)

− 3(1 − ε) n

(n − 1)2
c2 + 3

c3

(n − 1)2
− c3

= n2

(n − 1)3
c − 3n

(n − 1)3
c2 + 2

(n − 1)3
c3 −O(

√
ε(1 + c) c

n
).

Applying Lemma 7.6 and Lemma 7.7, we get good estimates on the moments of the matrix

B.

Lemma 7.13. Assuming ε0 ≤ 1/2,

n

∑
i,j=1

b2ij = (1 − ε) n

n − 1
c − 1

n − 1
c2,

n

∑
i,j=1

b3ij ≥
n(n − 2)
(n − 1)2

c − 3(n − 2)
(n − 1)2

c2 + 2(n − 2)
n(n − 1)2

c3 −O(
√
ε(1 + c)c).

Proof. The first formula follows from Lemma 7.6 and Lemma 7.9. The second formula follows

from Lemma 7.7 and Lemma 7.12.

If F is a sum of c disjoint cosets then ε = 0, and in this case

n

∑
i,j=1

b2ij =
n

n − 1
c − 1

n − 1
c2 = c(n − c)

n − 1
,

n

∑
i,j=1

b3ij =
n(n − 2)
(n − 1)2

c − 3(n − 2)
(n − 1)2

c2 + 2(n − 2)
n(n − 1)2

c3 = (n − 2)(n − c)(n − 2c)c
n(n − 1)2

.

This can be checked either directly or by going through the proof: we have been careful not

to drop any term which isn’t multiplied by a power of ε. For general F , the values of these

moments are somewhat smaller. When c is small, the difference is not significant, and it is this

fact that drives our proof.
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7.5 Culmination of the proof

We start by giving a lower bound on c. This will allow us to replace 1 + c with O(c) in the

statement of Lemma 7.13.

Lemma 7.14. Assuming ε0 is small enough and n is large enough, c ≥ 1/2.

Proof. Suppose that c ≤ 1. Lemma 7.13 shows that the second moment of B is at most (1 +

O(1/n))c. The convexity of x3/2 implies (via Lemma 2.2) that

∑
i,j

b3ij =∑
i,j

(b2ij)3/2 ≤
⎛
⎝∑i,j

b2ij
⎞
⎠

3/2

= (1 +O(1/n))3/2c3/2 = (1 +O(1/n))c3/2.

On the other hand, Lemma 7.13 shows that

∑
i,j

b3ij ≥ (1 −O(1/n) −O(
√
ε))c.

Together, we get
√
c ≥ 1 − O(1/n) − O(√ε), and so for ε0 small enough and n large enough,

c ≥ 1/2. (Here 1/2 is an arbitrary constant smaller than 1.)

This allows us to rewrite Lemma 7.13 more succinctly.

Lemma 7.15. Assuming ε0 is small enough and n is large enough,

c −O(εc + c
2

n
) ≤

n

∑
i,j=1

b2ij ≤ c +O( c
n
),

n

∑
i,j=1

b3ij ≥ c −O(
√
εc2 + c

2

n
).

The idea now is to subtract the two moments, and conclude that there must be roughly c

strong values.

Lemma 7.16. Assuming ε0 is small enough and n is large enough, there exists a set M ⊆ [n]2

of size m such that

∑
(i,j)∈M

bij ≥m −O(
√
εc2 + c

2

n
).

Furthermore,

∣m − c∣ = O(
√
εc2 + c

2

n
).
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Proof. Let E = √
εc2 + c2/n. By Lemma 7.14, we can assume that c ≥ 1/2. Lemma 7.15 implies

that
n

∑
i,j=1

b2ij(1 − bij) = O(E).

Let M = {(i, j) ∈ [n]2 ∶ bij ≥ 1/2} be the set of strong entries, and let m = ∣M ∣. We have

∑
(i,j)∉M

b2ij ≤ 2 ∑
(i,j)∉M

b2ij(1 − bij) = O(E).

Therefore

m ≥ ∑
(i,j)∈M

b2ij ≥ c −O(E), (7.7)

since bij ≤ aij ≤ 1. On the other hand,

∑
(i,j)∈M

(1 − bij) ≤ 4 ∑
(i,j)∈M

b2ij(1 − bij) = O(E).

Therefore

∑
(i,j)∈M

bij ≥m −O(E).

Using x2 ≥ 2x − 1, we also get

∑
(i,j)∈M

b2ij ≥ ∑
(i,j)∈M

(2bij − 1) =m −O(E).

On the other hand,

∑
(i,j)∈M

b2ij ≤
n

∑
i,j=1

b2ij = c +O( c
n
).

The last two equations together show thatm−c = O(E). Equation (7.7) shows that c−m = O(E),

and we conclude that ∣m − c∣ = O(E).

By modifying M slightly, we deduce a version of Lemma 7.16 in which ∣m − c∣ < 1.

Lemma 7.17. Assuming ε0 is small enough and n is large enough, there exists a set M ⊆ [n]2

of size m such that

∑
(i,j)∈M

bij ≥m −O(
√
εc2 + c

2

n
).

Furthermore,

∣m − c∣ < min(1,O(
√
εc2 + c

2

n
)).
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Proof. Let M ′ be the set of size m′ given by Lemma 7.16. If ∣m′ − c∣ < 1 then we take M =M ′.

Otherwise, it is enough to find a set M whose size m satisfies ∣m − c∣ < 1.

If m′ ≤ c then we let M consist of M ′ along with d = ⌊c⌋−m′ additional arbitrary elements.

Note that d ≤ c −m′ = O(√εc2 + c2/n). Since bij ≥ −c/n, we have

∑
(i,j)∈M

bij ≥m′ −O(
√
εc2 + c

2

n
)

≥m − d − cd
n
−O(

√
εc2 + c

2

n
)

≥m −O(
√
εc2 + c

2

n
).

If m′ ≥ c then let M contain the m = ⌈c⌉ largest elements in M ′. Since m ≤m′, we have

∑
(i,j)∈M

bij ≥
m

m′
m′ − m

m′
O(

√
εc2 + c

2

n
) ≥m −O(

√
εc2 + c

2

n
).

Using this lemma, we can essentially prove our main theorem.

Lemma 7.18. There is an ε0 > 0 such that the following holds.

There exists a family G which is the union of m cosets satisfying

∣F∆G∣ = O(
√
ε + 1

n
)c2(n − 1)!.

Furthermore,

∣m − c∣ < min(1,O(
√
εc2 + c

2

n
)).

Proof. Pick ε0 so that the conditions in Lemma 7.14 and Lemma 7.17 hold given n ≥ N , for

some N . For n < N , if c = 0 then the lemma trivially holds, and otherwise we can choose the

constant in the first O(⋅) so that the theorem becomes trivial. From now on, assume n ≥ N .

Let M be the set of m indices given by Lemma 7.17, and let the family G be given by

G = ⋃
(i,j)∈M

Ti,j .

Lemma 7.16 shows that

∑
(i,j)∈M

∣F ∩ Ti,j ∣ ≥ (n − 1)! ∑
(i,j)∈M

bij = (n − 1)!(m −O(
√
εc2 + c

2

n
)).

= (n − 1)!(c −O(
√
εc2 + c

2

n
)).
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Since ∣Ti,j ∩ Tk,l∣ ≤ (n − 2)! whenever (i, j) ≠ (k, l),

∣F ∩ G∣ ≥ (n − 1)!(c −O(
√
εc2 + c

2

n
)) − (m

2
)(n − 2)!

= (n − 1)!(c −O(
√
εc2 + c

2

n
+ m

2

n
))

= (n − 1)!(c −O(
√
εc2 + c

2

n
)).

We used m < c + 1 = O(c), since c ≥ 1/2 by Lemma 7.14. Therefore

∣F∆G∣ = ∣F ∣ + ∣G∣ − 2(∣F ∩ G∣)

≤ (m + c)(n − 1)! − 2c(n − 1)! +O(
√
εc2 + c

2

n
)(n − 1)!

≤ O(
√
εc2 + c

2

n
)(n − 1)!.

The main theorem easily follows

Theorem 7.1. There is an ε0 > 0 such that the following holds.

Let F ⊆ Sn be a family of permutations of size c(n − 1)!, where c ≤ n/2. Let f = 1F (so

E[f] = c/n) and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).

If E[(f − f1)2] = εc/n, where ε ≤ ε0, then there exists a family G ⊆ Sn which is the union of

⌈c⌋ cosets satisfying

∣F∆G∣ = O(
√
ε + 1

n
)c2(n − 1)!.

Moreover,

∣c − ⌈c⌋∣ = O(
√
ε + 1

n
)c2.

Proof. Let G′ be the family given by Lemma 7.18. Since m is an integer, the inequality on

∣m − c∣ implies that

∣c − ⌈c⌋∣ = O(
√
εc2 + c

2

n
).

If m = ⌈c⌋ then we can take G = G′. Otherwise, form G by taking G′ and either adding or

removing ∣m − ⌈c⌋∣ cosets (note that ∣m − ⌈c⌋∣ = 1). Since

∣m − ⌈c⌋∣ ≤ ∣m − c∣ + ∣c − ⌈c⌋∣ = O(
√
εc2 + c

2

n
),

we deduce

∣F∆G∣ ≤ ∣F∆G′∣ + ∣m − ⌈c⌋∣(n − 1)! = O(
√
ε + 1

n
)c2(n − 1)!.
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7.6 Intersecting families of permutations

As an application of Theorem 7.1, we prove two stability results for intersecting families of

permutations. Our first stability result is a straightforward application of Theorem 7.1.

Theorem 7.19. Let F ⊆ Sn be an intersecting family of permutations of measure (1 − δ)/n,

where δ is small enough. Then there is a coset G such that

∣F △ G∣ = O(
√
δ + 1

n
)(n − 1)!.

Proof. Let f = 1F . Theorem 6.15 shows that ∥f − f1∥2 = O(δ/n). We apply Theorem 7.1 with

c = 1 − δ and ε = O(δ). If δ is small enough then ε ≤ ε0. Theorem 7.1 then gives us a family G

which is the union of ⌈c⌋ = 1 cosets satisfying

∣F∆G∣ = O(
√
δ + 1

n
)(n − 1)!.

Using a slightly more complicated argument, we get a stronger stability result.

Theorem 7.20. There exists δ > 0 such that for large enough n, every intersecting family of

permutations of measure at least (1 − δ)/n is contained in a coset.

Proof. Let F be an intersecting family of permutations of size at least (1 − δ)/n. If δ is small

enough, then Theorem 7.19 applies, and there is a coset Ti,j such that

∣F △ Ti,j ∣ = O(
√
δ + 1

n
)(n − 1)!.

Suppose F is not contained in G, and pick some π ∈ F ∖ G. Without loss of generality, assume

i = j = 1 and π = (12). Every fixed-point free permutation in S{2,...,n} lifts to a permutation in

T1,1 which does not intersect π. Since there are (1 − 1/e ±O(1/n))(n − 1)! of these,

∣F △ Ti,j ∣ ≥ (1

e
−O( 1

n
))(n − 1)!.

If δ is small enough and n is large enough, this leads to a contradiction.

Using more complicated arguments (and before Theorem 7.1 was proved), Ellis [22] was able

to prove a much sharper result: the largest intersecting family of permutations not contained

in a coset has size (1 − 1/e +O(1/n))(n − 1)!. In fact, for n ≥ 6, the maximal family is

F = {π ∈ Sn ∶ π(1) = 1 and π(i) = i for some i > 2} ∪ {(12)}.
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Moreover, all maximal families are of the form αFβ. For n ≤ 5, another optimal family is the

one in which every permutation has at least two fixed points.

Ellis [21] proved a similar result for t-intersecting families of permutations. Such a family

must be contained in a t-coset (a family of the form T(i1,j1),...,(it,jt)) unless it is smaller than

(1 − 1/e +O(1/n))(n − t)!, and for large enough n, the maximal families are of the form αFβ,

where

F = {π ∈ Sn ∶ π(1) = 1 and π(i) = i for some i > t + 1} ∪ {(i (t + 1)) ∶ 1 ≤ i ≤ t}.

These results are analogous to a classical result by Hilton and Milner [49] in the context of

k-uniform intersecting families of sets on n points. They proved that for k < n/2, the maximal

families not contained in a star are of the form

F = {A ⊆ [n] ∶ ∣A∣ = k,1 ∈ A,A ∩ {2, . . . , k + 1} ≠ ∅} ∪ {2, . . . , k + 1}.

Ahlswede and Khachatrian [1] proved a similar theorem for t-intersecting uniform families of

sets. In this case, the optimal family is always one of the families described in Section 10.1

(other than the restriction of a t-star).



Chapter 8

A structure theorem for balanced

dictatorships on Sn

In this chapter we continue our study of Boolean functions on Sn whose Fourier expansion is

concentrated on the first two levels. In the previous chapter, we considered functions which

contained c(n − 1)! permutations, where c is small. In this chapter we consider the case where

c = Θ(n). We will use the slightly different parametrization c = c/n. Our goal in this chapter is

to prove the following theorem.

Theorem 8.1. Let F ⊆ Sn be a family of permutations of size cn!, and let η = min(c,1− c). Let

f = 21F − 1, and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).

If E[(f −f1)2] = ε then there exists a family G ⊆ Sn which is the union of ⌈cn⌋ disjoint cosets

satisfying

∣F∆G∣ = O(1

η
(ε1/7 + 1

n1/3
))n!.

Moreover,

∣cn − ⌈cn⌋∣ = O((ε1/7 + 1

n1/3
)n).

A minor difference from Theorem 7.1 is our definition of f : there, we defined f = 1F ,

whereas here, we define f = 21F − 1. Let f (1), f
(1)
1 correspond to the definition in Theorem 7.1,

and let f (2), f
(2)
1 correspond to the definition in Theorem 8.1. We have f (2) = 2f (1) − 1 and

175
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f
(2)
1 = 2f

(1)
1 − 1, and so

E[(f (2) − f (2)
1 )2] = 4E[(f (1) − f (1)

1 )]2.

Therefore if we replace the definitions of f and f1 with their definitions in Theorem 8.1, we get

essentially the same result. We use the present definition so that f becomes a ±1 function, a

convenient device often used in Fourier analysis.

In contrast to Theorem 7.1, in this theorem we are guaranteed that the family G is a union

of disjoint cosets. Therefore G is either of the form

G = {π ∈ Sn ∶ π(i) ∈ A}

or of the form

G = {π ∈ Sn ∶ π−1(i) ∈ A},

where ∣A∣ = ⌈cn⌋.

In the case of Theorem 7.1, we were not able to guarantee the disjointness of the cosets

forming G since a family of the form T1,1 ∪ T2,2 satisfies the hypotheses of the theorem. In the

regime considered in the present chapter, a union of cn arbitrary cosets will be far from its

projection to L(n−1,1): E[(f − f1)2] = Θ(c2). This is intuitively why we are able to guarantee

the disjointness in the present case.

The proofs of Theorem 7.1 and Theorem 8.1 are rather different. While the proof of Theo-

rem 7.1 consists of analyzing the first few moments of a matrix consisting, essentially, of entries

∣F ∩ Ti,j ∣/(n − 1)!, in the present case these moments are not enough to distinguish a matrix

corresponding to the union of roughly cn cosets from an arbitrary matrix. The argument is

therefore completely different.

The material in this chapter is taken from our joint paper with David Ellis and Ehud

Friedgut [26].

8.1 Overview of the proof

For simplicity in this overview, we assume throughout that c = n/2. For technical reasons, for

most of the proof we make the assumption ε ≥ 1/n7/3.
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Our starting point is the matrix A given by

aij = (n − 1)⟨f, Ti,j⟩.

This is different from the matrix A appearing in the proof of Theorem 8.1, though it is an affine

shift of the matrices A and B appearing there. When F = T1,1 ∪⋯∪ T1,n/2, the matrix A looks

like this:
n
2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − 1
n ⋯ 1 − 1

n
1
n − 1 ⋯ 1

n − 1

− 1
n ⋯ − 1

n
1
n ⋯ 1

n

− 1
n ⋯ − 1

n
1
n ⋯ 1

n

⋮ ⋮ ⋮ ⋮

− 1
n ⋯ − 1

n
1
n ⋯ 1

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The matrix has a strong first row, consisting of entries which are close to ±1, and all other

entries are small, of order 1/n.

The coefficients aij satisfy the equation

f1 =
n

∑
i,j=1

aij1Ti,j .

Indeed, this is the reason behind choosing this particular formula for aij . This equation implies

the fundamental formula

f1(π) =
n

∑
i=1

aiπ(i),

which we will use over and over again.

The proof breaks down into three main parts. In the first part, we show that for almost all

π ∈ Sn, the generalized diagonal defined by π in A, namely {aiπ(i) ∶ i ∈ [n]}, has precisely one

entry which is large (close to ±1), and all the rest of its entries are small. In the second part,

we deduce that A has either a row or a column in which almost all entries are large. In the

third part, we extract a good approximation to F from the strong row or column highlighted

by the second part.

The first part, comprising Sections 8.4 to 8.6, consists of two steps. In the first step, we

consider a restriction of f1 into permutations belonging to a set of the form TX,Y = {π ∈ Sn ∶
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π(X) = Y }. The value of f1 on permutations from TX,Y depends only on entries aij for which

(i, j) ∈ X × Y or (i, j) ∈ X × Y (here X = [n] ∖ X). We separate the effects of these two

submatrices by defining

g1(π1) = ∑
i∈X

aiπ1(i), g2(π2) = ∑
i∈X

aiπ2(i), g(π) = g1(π1) + g2(π2).

Here π1 = π∣X and π2 = π∣X , and the domain of all functions is TX,Y . Using straightforward

estimates, we show in Section 8.4 that for most choices of X,Y , the functions g1, g2, g are well-

behaved: the function g is close to ±1, and E g1 ≈ E g2 ≈ 0. Using the decomposition g = g1 + g2,

we conclude in Section 8.5 that one of g1, g2 must be essentially constant, and the other must

be close to ±1. This is intuitively obvious: there is no other way for g to be close to ±1.

In the second step, we turn the table around: instead of first choosing the restriction (X,Y )

and then looking at all permutations π ∈ TX,Y , we first choose the permutation π ∈ Sn and then

consider all restrictions (X,Y ) such that π ∈ TX,Y . Essentially using the Friedgut–Kalai–Naor

theorem, we conclude in Section 8.6 that for almost all π ∈ Sn, the generalized diagonal defined

by π in A has precisely one entry which is close to ±1, and n − 1 small entries.

The second part, consisting of Section 8.7, is largely independent of the first part. We

consider the following abstract problem. We are given a matrix in which entries are either

large or small. Furthermore, a 1− δ fraction of the generalized diagonals in this matrix contain

exactly one large entry. We show that the matrix must contain a strong line: either a row or a

column in which 1 −O(δ) of the entries are large.

In the third part, consisting of Sections 8.8 and 8.9, we combine the results in both parts

to prove the main theorem. Section 8.8 applies the result of the second part to the matrix

A, and obtains the desired approximating family G in a straightforward manner. Finally, in

Section 8.9 we discharge the assumption ε ≥ 1/n7/3 using a perturbation argument, as well as

other assumptions detailed in Section 8.3.

8.2 Nomenclature

In this section we collect some simple definitions which will be during the proof.
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The notation x±γ is shorthand for the closed interval [x−γ, x+γ] (γ will usually be a small

positive number). We say that x is γ-close to y if ∣x − y∣ ≤ γ, which is the same as x ∈ y ± γ or

y ∈ x± γ. Otherwise, we say that x is γ-far from y. We say that x is γ-close to y in magnitude

if ∣x∣ is γ-close to y. We say that x is γ-close to y ± z if either x is γ-close to y + z or x is γ-close

to y − z. For a set S, we say that x is γ-close to S if x is γ-close to some y ∈ S.

Given a function φ and a probability distribution X over its domain (which will always be

clear from the context), we say that φ is (δ, γ)-almost close to C if

Pr
x∼X

[φ(x) ∈ C ± γ] ≥ 1 − δ.

In words, with probability 1 − δ, φ(x) is γ-close to C. Similarly, we say that φ is (δ, γ)-almost

Boolean if ∣φ∣ is (δ, γ)-close to 1, that is

Pr
x∼X

[∣φ(x)∣ ∈ 1 ± γ] ≥ 1 − δ.

We will apply this terminology to restrictions of f1, which is why by almost Boolean we actually

mean close to ±1.

For a permutation π ∈ Sn and X ⊆ [n], π∣X is the restriction of π to the set X, which is a

bijection from X to π(X).

Other notation will be defined along the way.

8.3 Basic definitions

We now begin the proof proper. For most of the proof (until Section 8.9), we make the following

assumptions:

n ≥ 4,
1

n7/3
≤ ε ≤ c0η

7. (8.1)

Here c0 is a constant which arises from the proof. In fact, during the proof, we will use the

phrase since ε is small enough compared to η7. By that we mean that the proposition qualified

by the phrase holds if ε is small enough compared to η7, and by choosing c0 appropriately,

we can assume that the required condition on ε is satisfied. Since η ≤ 1/2, these assumptions

also imply that ε ≤ c0/27. When we use the phrase since ε is small enough, we mean that the
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qualified proposition holds if ε is small enough, which again can be guaranteed by choosing c0

appropriately.

We also assume throughout the proof (until Section 8.9) that F , f, f1, c, η, ε are all given.

The rest of this section mirrors Section 7.2. However, since the basic definitions are slightly

different, we repeat all of the proofs.

Since f1 ∈ L(n−1,1), it can be written as a linear combination of Ti,j . We single out one such

way. Let

aij = (n − 1)⟨f,1Ti,j ⟩ −
n − 2

n
(2c − 1). (8.2)

The entries aij form an n × n matrix A.

Lemma 8.2. Each row and each column of A sums to 2c − 1.

Proof. Since the cosets T1,j partition Sn, we have

n

∑
j=1

a1j = (n − 1)⟨f,1Sn⟩ − (n − 2)(2c − 1) = (n − 1)(2c − 1) − (n − 2)(2c − 1) = 2c − 1.

A similar argument works for the sum of any other row or of any column.

This implies the following formula for double sums.

Lemma 8.3. For each i, j ∈ [n],

∑
k≠i

∑
l≠j

akl = aij + (n − 2)(2c − 1).

Proof. Using Lemma 8.2,

∑
k≠i

∑
l≠j

akl =∑
k≠i

(2c − 1 − akj) = (n − 1)(2c − 1) − (2c − 1 − aij) = aij + (n − 2)(2c − 1).

We can now prove the formula for f1.

Lemma 8.4. We have

f1 =
n

∑
i,j=1

aij1Ti,j ,

and so for all π ∈ Sn,

f1(π) =
n

∑
i=1

aiπ(i).
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Proof. Since both sides in the first equation belong to L(n−1,1), it is enough to show that both

sides have the same inner product with each 1Tk,l . Using Lemma 7.4 and Lemma 8.3, we have

⟨
n

∑
i,j=1

aij1Ti,j ,1Tk,l⟩ =
n

∑
i,j=1

aij⟨1Ti,j ,1Tk,l⟩

= akl
n

+ 1

n(n − 1)∑i≠k
∑
j≠l

aij

= akl
n

+ akl
n(n − 1) +

n − 2

n(n − 1)(2c − 1)

= akl
n − 1

+ n − 2

n(n − 1)(2c − 1) = ⟨f,1Tk,l⟩ = ⟨f1,1Tk,l⟩.

The second equation follows from the first since π ∈ Ti,j if and only if j = π(i).

We proceed to calculate the sum of squares of the entries of A.

Lemma 8.5. We have

n

∑
i,j=1

a2
ij = (n − 1)(1 − ε) − (n − 2)(2c − 1)2.

Proof. Since f1 is an orthogonal projection of f and f(π) ∈ {±1},

∥f1∥2 = ∥f∥2 − ∥f − f1∥2 = 1 − ε.

Using Lemma 8.4, Lemma 7.4 and Lemma 8.2, we get

∥f1∥2 =
n

∑
i,j,k,l=1

aijakl⟨1Ti,j ,1Tk,l⟩

= 1

n

n

∑
i,j=1

a2
ij +

1

n(n − 1)
n

∑
i,j=1

aij∑
k≠i

∑
l≠j

akl

= 1

n

n

∑
i,j=1

a2
ij +

1

n(n − 1)
n

∑
i,j=1

(a2
ij + (n − 2)(2c − 1)aij)

= 1

n − 1

n

∑
i,j=1

a2
ij +

n(n − 2)(2c − 1)2

n(n − 1) = 1

n − 1

⎛
⎝

n

∑
i,j=1

a2
ij + (n − 2)(2c − 1)2⎞

⎠
.

8.4 Random restrictions

In this section, we analyze the behavior of f1 under random restrictions1.

1Pun intended.
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Definition 8.1. A restriction (X,Y ) is composed of two subsets X,Y ⊆ [n] of the same

magnitude. We define a distribution R over restrictions as follows: choose X by including each

i ∈ [n] with probability 1/2 independently, and choose Y at random among all sets of size ∣X ∣.

If (X,Y ) ∼R then we call (X,Y ) a random restriction.

Given a restriction (X,Y ), its complement (X,Y ) is given by X = [n]∖X, Y = [n]∖Y . ◯

The idea is to look at the behavior of f1 for all permutations π ∈ Sn satisfying π(X) = Y .

The behavior of f1 on permutations of that form depends only on the two submatrices of

A supported by X × Y and by X × Y . We decouple the effects of the two submatrices by

decomposing f1 on this set of permutations as a sum of two functions.

Definition 8.2. For a restriction (X,Y ), the associated set of permutations is

TX,Y = {π ∈ Sn ∶ π(X) = Y }.

We define the following functions, whose domain is TX,Y :

gX,Y1 = ∑
i∈X
j∈Y

aij1Ti,j , gX,Y2 = ∑
i∈X
j∈Y

aij1Ti,j , gX,Y = gX,Y1 + gX,Y2 .

Let mX,Y = E[gX,Y1 ], where the expectation is taken over all π ∈ TX,Y . ◯

The function gX,Y is in fact identical to f1 on TX,Y .

Lemma 8.6. For a restriction (X,Y ) and π ∈ TX,Y , gX,Y (π) = f1(π).

Proof. Follows immediately from Lemma 8.4.

The goal of this section is to determine some typical properties of the functions gX,Y1 , gX,Y2 , gX,Y

which hold for a random restriction (X,Y ). We start by determining the expectation and vari-

ance of mX,Y = E[gX,Y1 ]. This will allow us to determine the value of mX,Y to a large accuracy.

Lemma 8.7. Let (X,Y ) ∼R. Then E[mX,Y ] = c − 1/2 and V[mX,Y ] ≤ 1/(2n).

Proof. We start with an explicit formula for mX,Y :

mX,Y = E[gX,Y1 ] = ∑
i∈X
j∈Y

aij E
TX,Y

[1Ti,j ] =
1

∣X ∣ ∑i∈X
j∈Y

aij .
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Conditioned on ∣X ∣ = x, the probability that i ∈ X is x/n, as is the probability that j ∈ Y , and

both events are independent. Therefore

E[mX,Y ∣∣X ∣ = x] = 1

x
⋅ x

2

n2

n

∑
i,j=1

aij =
x

n2
n(2c − 1) = x

n
(2c − 1),

using Lemma 8.2. Since E[∣X ∣] = n/2, we deduce that

E[mX,Y ] =
n

∑
x=0

Pr[∣X ∣ = x]x
n
(2c − 1) = n/2

n
(2c − 1) = c − 1

2
.

The variance requires a similar but longer calculation. The formula for mX,Y implies the

following formula for its square:

m2
X,Y = 1

∣X ∣2
⎛
⎜⎜
⎝
∑
i∈X
j∈Y

a2
ij + ∑

i≠k∈X
j∈Y

aijakj + ∑
i∈X
j≠l∈Y

aijail + ∑
i≠k∈X
j≠l∈Y

aijakl

⎞
⎟⎟
⎠
.

Given ∣X ∣ = x, the probability that i, k ∈ X for i ≠ k is x(x − 1)/n(n − 1). The same formula

applies for the probability that j, l ∈ Y for j ≠ l, and the two events are independent. Therefore

E[m2
X,Y ∣∣X ∣ = x] = 1

x2

⎛
⎝
x2

n2

n

∑
i,j=1

a2
ij +

x2(x − 1)
n2(n − 1)

n

∑
i,j=1

aij∑
k≠i

akj+

x2(x − 1)
n2(n − 1)

n

∑
i,j=1

aij∑
l≠j

ail +
x2(x − 1)2

n2(n − 1)2

n

∑
i,j=1

aij∑
k≠i

∑
l≠j

akl
⎞
⎠

= 1

n2

n

∑
i,j=1

a2
ij + 2

x − 1

n2(n − 1)
n

∑
i,j=1

aij(2c − 1 − aij)

+ (x − 1)2

n2(n − 1)2

n

∑
i,j=1

aij(aij + (n − 2)(2c − 1))

= (n − x)2

n2(n − 1)2

n

∑
i,j=1

a2
ij +

2(x − 1)(n − 1) + (n − 2)(x − 1)2

n2(n − 1)2
n(2c − 1)2,

using Lemma 8.2 and Lemma 8.3. Routine calculation gives E[(n − ∣X ∣)2] = n(n + 1)/4 and

E[(∣X ∣ − 1)2] = n(n − 3)/4 + 1 (these can be verified by checking the cases n = 0,1,2), and so

E[m2
X,Y ] = n + 1

4n(n − 1)2

n

∑
i,j=1

a2
ij +

4(n − 2)(n − 1) + (n − 2)(n(n − 3) + 4)
4n(n − 1)2

(2c − 1)2

= n + 1

4n(n − 1)2

n

∑
i,j=1

a2
ij +

(n − 2)(n + 1)
4(n − 1)2

(2c − 1)2

≤ n + 1

4n(n − 1)2
((n − 1) − (n − 2)(2c − 1)2) + (n − 2)(n + 1)

4(n − 1)2
(2c − 1)2

= n + 1

4n(n − 1) +
(n − 2)(n + 1)

4n(n − 1) (2c − 1)2,
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using Lemma 8.5. Subtracting E[mX,Y ]2 = (2c − 1)2/4, we deduce

V[mX,Y ] ≤ n + 1

4n(n − 1) +
(n − 2)(n + 1) − n(n − 1)

4n(n − 1) (2c − 1)2

= n + 1

4n(n − 1) −
(2c − 1)2

2n(n − 1) ≤ n + 1

4n(n − 1) ≤ 1

2n
,

using the assumption n ≥ 4.

The main result of this section is that for almost all restrictions (X,Y ), the resulting

functions gX,Y1 , gX,Y2 , gX,Y are nicely behaved, in a way which is summarized by the ensuing

definition.

Definition 8.3. A restriction (X,Y ) is typical if the functions gX,Y1 , gX,Y2 , gX,Y satisfy the

following properties:

(a) gX,Y is (ε4/7, ε1/7)-almost Boolean.

(b) E[gX,Y1 ] and E[gX,Y2 ] are ε1/7-close to c − 1/2.

(c) E[(∣gX,Y ∣ − 1)2] ≤ ε6/7. ◯

For the definitions of almost Boolean and γ-close, see Section 8.2. The specific powers of ε

were chosen by optimizing the parameters, taking into account the rest of the proof.

Lemma 8.8. The probability that a random restriction is typical is at least 1 − 3ε1/7.

Proof. We will show that each of the three properties listed in Definition 8.3 fails with proba-

bility at most ε1/7, and the lemma then follows via a union bound. We will repeatedly use the

fact that choosing (X,Y ) ∼R and then choosing π ∈ TX,Y randomly is the same as choosing a

random permutation π ∈ Sn. The reason is that given X, the sets TX,Y partition Sn and they

all have the same size.

Since f is ±1-valued,

E[(∣f1∣ − 1)2] ≤ E[(f1 − f)2] = ε. (8.3)

Property (a). For a restriction (X,Y ), let

αX,Y = Pr[∣gX,Y ∣ ∉ 1 ± ε1/7].
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Using the observation about choosing π ∈ TX,Y for a random restriction (X,Y ) together with

Lemma 8.6,

E
(X,Y )∼R

[αX,Y ] = Pr[∣f1∣ ∉ 1 ± ε1/7] = Pr[(∣f1∣ − 1)2 > ε2/7] < ε5/7,

using (8.3) and Markov’s inequality. Another application of Markov’s inequality shows that

Pr[αX,Y > ε4/7] < ε1/7.

Property (b). This is a straightforward application of Lemma 8.7. Chebyshev’s inequality

implies that

Pr[∣E[gX,Y1 ] − (c − 1/2)∣ > ε1/7] < ε
−2/7

2n
≤ ε

1/7

2
,

since 1/n ≤ ε3/7 by assumption (8.1). Since gX,Y2 = gX,Y1 and (X,Y ) has the same distribution

as (X,Y ), we get a similar bound for E[gX,Y2 ].

Property (c). For a restriction (X,Y ), let

βX,Y = E[(∣gX,Y ∣ − 1)2].

Again using the observation on choosing π ∈ TX,Y for a random restriction (X,Y ),

E
(X,Y )∼R

[βX,Y ] = E[(∣f1∣ − 1)2] ≤ ε,

using (8.3). Markov’s inequality now implies

Pr[βX,Y > ε6/7] < ε1/7.

8.5 Decomposition under a typical restriction

In this section we analyze the functions gX,Y1 , gX,Y2 , gX,Y for a typical restriction (X,Y ) (see

Definition 8.3). If (X,Y ) is typical then gX,Y is almost Boolean. Now gX,Y can be written as

gX,Y = gX,Y1 + gX,Y2 , where gX,Y1 (π) only depends on π∣X , and gX,Y2 (π) only depends on π∣X .

How can an independent sum of two functions be almost Boolean? Intuitively, it is obvious that

one of gX,Y1 , gX,Y2 must be almost constant C, and the other must be almost close to two values

−C ± 1. Since E[gX,Y1 ] ≈ E[gX,Y2 ] ≈ c − 1/2, we can actually determine the constants involved,

namely C ≈ c − 1/2.
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Turning this intuitive argument into a formal proof, we reach the following difficulty: given

that (say) gX,Y1 is almost constant and E[gX,Y1 ] ≈ c − 1/2, can we conclude that gX,Y1 is almost

close to c − 1/2? In general, the answer is false: it could be that most of the contribution

to E[gX,Y1 ] arises from some rare extreme values. Property (c) in the definition of a typical

restriction will be used to show that this cannot happen in our case. To that end, we need the

following technical lemma.

Lemma 8.9. Suppose that a function φ on a probability space satisfies the following two prop-

erties:

(a) φ is (p, γ)-almost close to 0.

(b) For some C ∈ R, E[(∣φ +C ∣ − 1)2] ≤ δ, where δ ≤ 1.

Then

∣E[φ]∣ ≤ 3γ + 3p + 6

√
δ

1 − p. (8.4)

Moreover,

∣∣C ∣ − 1∣ ≤ γ +
√

δ

1 − p. (8.5)

Proof. Without loss of generality, we assume for the entire proof that C ≥ 0. We start by

proving (8.5). If ∣C − 1∣ ≤ γ then (8.5) clearly holds. Otherwise, there are two possibilities:

C < 1 − γ and C > 1 + γ.

Suppose first that C < 1 − γ. Whenever ∣φ∣ ≤ γ we have C + φ ≤ C + γ and C + φ ≥ C − γ ≥

−(C +γ), and so ∣C +φ∣ ≤ C +γ. Therefore 1− ∣C +φ∣ ≥ 1−C −γ > 0. Since ∣φ∣ ≤ γ happens with

probability at least 1 − p, we conclude that

δ ≥ E[(∣φ +C ∣ − 1)2] ≥ (1 − p)(1 −C − γ)2.

Therefore ∣1 −C − γ∣ ≤
√
δ/(1 − p), implying (8.5).

The case C > 1 + γ is similar. Whenever ∣φ∣ ≤ γ we have C + φ ≥ C − γ. Since C − γ > 0, we

conclude that ∣C + φ∣ ≥ C − γ. Therefore ∣C + φ∣ − 1 ≥ C − 1 − γ > 0. Since ∣φ∣ ≤ γ happens with

probability at least 1 − p, we conclude that

δ ≥ E[(∣φ +C ∣ − 1)2] ≥ (1 − p)(C − 1 − γ)2.
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Therefore ∣C − 1 − γ∣ ≤
√
δ/(1 − p), implying (8.5).

Concluding, in all cases (8.5) holds. We now turn to prove (8.4). The idea is to consider

separately the points in which ∣φ + C ∣ ≥ 2, the points in which ∣φ + C ∣ < 2 and ∣φ∣ > γ, and the

points in which ∣φ∣ < γ (these categories are exhaustive but need not be mutually exclusive).

For points of the first type, we use the inequality x ≤ x2 (valid for x ≥ 1) to deduce that their

contribution to E[∣φ + C − 1∣] is small, using assumption (b). For points of the second type,

we use assumption (a) to show that their contribution to E[∣φ + C − 1∣] is small. Finally, the

contribution of points of the third type to E[∣φ +C − 1∣] is trivially small. Equation (8.5) then

completes the proof.

We start with points of the first type. Assumption (b) implies that

E[∣∣φ +C ∣ − 1∣ ⋅ Jφ +C ≥ 2K] ≤ E[(∣φ +C ∣ − 1)2 ⋅ Jφ +C ≥ 2K] ≤ δ.

(Recall that Jφ +C ≥ 2K is equal to 1 if φ +C ≥ 2 and 0 otherwise.) Therefore

E[∣φ +C − 1∣ ⋅ Jφ +C ≥ 2K] = E[∣∣φ +C ∣ − 1∣ ⋅ Jφ +C ≥ 2K] ≤ δ.

When φ + C < 0, it is no longer the case that ∣φ + C − 1∣ = ∣∣φ + C ∣ − 1∣, and the first term is

actually larger than the second. However, if φ +C ≤ −2 then

∣φ +C − 1∣ = 1 − (φ +C) = −3 + (4 − (φ +C)) ≤ −3 − 3(φ +C) = 3(∣φ +C ∣ − 1) = 3∣∣φ +C ∣ − 1∣.

Therefore as before,

E[∣φ +C − 1∣ ⋅ Jφ +C ≥ 2K] ≤ 3E[∣∣φ +C ∣ − 1∣ ⋅ Jφ +C ≥ 2K] ≤ 3δ.

Putting both cases together, we get

E[∣φ +C − 1∣ ⋅ J∣φ +C ∣ ≥ 2K] ≤ 4δ.

We continue with points of the second type. When ∣φ+C ∣ ≤ 2, the triangle inequality shows

that ∣φ +C − 1∣ ≤ 3. Assumption (a) implies that

E[∣φ +C − 1∣ ⋅ J∣φ +C ∣ ≤ 2 and ∣φ∣ > γK] ≤ 3p.
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Finally, we handle points of the third type. If ∣φ∣ ≤ γ then (8.5) shows that ∣φ + C − 1∣ ≤

2γ +
√
δ/(1 − p). Therefore

E[∣φ +C − 1∣ ⋅ J∣φ∣ < γK] ≤ 2γ +
√

δ

1 − p.

Since all three types of points are exhaustive, we conclude that

E[∣φ +C − 1∣] ≤ 4δ + 3p + 2γ +
√

δ

1 − p.

Using the triangle inequality (twice) and (8.5),

∣E[φ]∣ ≤ E[∣φ∣] ≤ E[∣φ +C − 1∣] + ∣1 −C ∣ ≤ 4δ + 3p + 3γ + 2

√
δ

1 − p.

Since δ ≤ 1, δ ≤
√
δ ≤

√
δ/(1 − p), which completes the proof.

During the rest of this section, we will always have some typical restriction (X,Y ) in mind.

Therefore we use the shorthand notations g1, g2, g for gX,Y1 , gX,Y2 , gX,Y . Other useful pieces of

notation are π1 = π∣X and π2 = π∣X . Since g1 depends only on π1, we can think of g1 as a

function whose domain is the set B1 of bijection from X to Y . Similarly, g2 depends only on

π2, and we can think of it as a function whose domain is the set B2 of bijections from X to Y .

Under these conventions, we have the identity

g(π) = g1(π1) + g2(π2), where π ∈ TX,Y . (8.6)

Given π1 ∈ B1 and π2 ∈ B2, we will denote by π1;π2 the permutation which restricts to π1 on

X and to π2 on X.

Our end goal in this section is showing that for a typical restriction (X,Y ), one of g1, g2 is

almost constant, and the other is (up to a shift) almost Boolean. The next lemma shows that

this is the case locally: if we sample two permutations α,β ∈ TX,Y , then the values of g1 and

g2 on these two permutations behave as if one of these functions were almost constant, and the

other almost Boolean (up to a shift).

Lemma 8.10. Suppose (X,Y ) is a typical restriction. Choose α,β uniformly and independently

from TX,Y . Let

δ1 = g1(α1) − g1(β1), δ2 = g2(α2) − g2(β2).

With probability at least 1 − 8ε2/7, one of the following three cases holds:
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(a) ∣δ1∣ ≤ 2ε1/7 and ∣δ2∣ ≤ 2ε1/7.

(b) ∣δ1∣ ≤ 2ε1/7 and ∣δ2∣ ∈ 2 ± 2ε1/7.

(c) ∣δ1∣ ∈ 2 ± 2ε1/7 and ∣δ2∣ ≤ 2ε1/7.

(Since ε is small enough, these cases are mutually exclusive.)

Proof. Property (c) in Definition 8.3 states that

E
π∈TX,Y

[(∣g(π)∣ − 1)2] ≤ ε6/7.

Markov’s inequality implies that

Pr
π∈TX,Y

[∣∣g(π)∣ − 1∣ > ε1/7] < ε4/7.

We can choose the permutation π by choosing π1 ∈ B1 and π2 ∈ B2 independently. Markov’s

inequality shows that

Pr
π1∈B1

[ Pr
π2∈B2

[∣∣g(π1;π2)∣ − 1∣ > ε1/7] > ε2/7] < ε2/7.

We will choose α and β by choosing α1, β1 ∈ B1 and α2, β2 ∈ B2 independently. With probability

at least 1 − 2ε2/7 over the choice of α1, β1, we have

Pr
π2∈B2

[∣∣g(α1;π2)∣ − 1∣ > ε1/7] ≤ ε2/7,

Pr
π2∈B2

[∣∣g(β1;π2)∣ − 1∣ > ε1/7] ≤ ε2/7.

Hence with probability at least 1− 4ε2/7 over the choice of α1, β1, α2, β2, all the following quan-

tities are ε1/7-close in magnitude to 1:

g(α1;α2), g(α1;β2), g(β1;α1), g(β1;β2).

We now consider several cases. Without loss of generality, suppose that g(α1;α2) is ε1/7-close

to 1. If g(α1;β2) and g(β1;α2) are also ε1/7-close to 1, then

∣δ1∣ = ∣g1(α1) − g1(β1)∣ = ∣g(α1;α2) − g(β1;α2)∣ ≤ 2ε1/7,

∣δ2∣ = ∣g2(α2) − g2(β2)∣ = ∣g(α1;α2) − g(α1;β2)∣ ≤ 2ε1/7.



Chapter 8. A structure theorem for balanced dictatorships on Sn 190

This is case (a). If g(α1;β2) is ε1/7-close to −1 and g(β1;α2) is ε1/7-close to 1 then

∣δ1∣ = ∣g1(α1) − g1(β1)∣ = ∣g(α1;α2) − g(β1;α2)∣ ≤ 2ε1/7,

∣δ2∣ = ∣g2(α2) − g2(β2)∣ = ∣g(α1;α2) − g(α1;β2)∣ ∈ 2 ± 2ε1/7.

This is case (b). Similarly, if g(α1;β2) is ε1/7-close to 1 and g(β1;α2) is ε1/7-close to −1 then we

are in case (c). It remains to rule out the case that both g(α1;β2) and g(β1;α2) are ε1/7-close

to −1. In this case

g(β1;β2) = g(β1;α2) + g(α1;β2) − g(α1;α2) ∈ −3 ± 3ε1/7,

which contradicts ∣g(β1;β2)∣ ∈ 1 ± ε1/7 since ε1/7 is small enough.

We are now ready to prove the main lemma of this section, which states that if (X,Y ) is

typical then either g1 is almost close to c−1/2 and g2 + (c−1/2) is almost Boolean, or the same

is true with the roles of g1 and g2 reversed. The appearance of the constant c− 1/2 stems from

the fact that E[g1] ≈ E[g2] ≈ c − 1/2. As mentioned in the beginning of the section, Lemma 8.9

is crucial to translate this fact into a statement about values which g1, g2 are close to.

Lemma 8.11. Suppose (X,Y ) is a typical restriction. Either g1 is (3ε1/7,19ε1/7)-close to c−1/2

and g2 + (c − 1/2) is (4ε1/7,24ε1/7)-almost Boolean, or the same is true with the roles of g1 and

g2 reversed.

Here and elsewhere in this chapter, the constants 3,19,4,24 are not optimal, and are stated

explicitly only for later convenience.

Proof. The first step is to determine which of g1, g2 is almost constant and which is almost

Boolean (up to a shift). To that end, define the following two probabilities:

p1 = Pr
α1,β1∈B1

[∣g1(α1) − g1(β1)∣ > 2ε1/7],

p2 = Pr
α2,β2∈B2

[∣g2(α2) − g2(β2)∣ > 2ε1/7].

Lemma 8.10 shows that p1p2 ≤ 8ε2/7, since choosing α,β ∈ TX,Y is equivalent to choosing

α1, β1 ∈ B1 and α2, β2 ∈ B2 independently. Therefore either p1 ≤ 3ε1/7 or p2 ≤ 3ε1/7 (or both).
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Without loss of generality, suppose for the rest of the proof that p1 ≤ 3ε1/7. This will imply

that g1 is almost constant and that g2 is almost Boolean (up to a shift).

Analyzing g1. Since p1 ≤ 3ε1/7, a simple averaging argument shows that for some σ1 ∈ B1,

Pr
α1∈B1

[∣g1(α1) − g1(σ1)∣ > 2ε1/7] ≤ 3ε1/7.

We conclude that g1 is (3ε1/7,2ε1/7)-close to C1 = g1(σ1). We would like to show that C1 ≈ c−1/2,

and to that effect we appeal to Lemma 8.9. We will apply this lemma to the function φ = g1−C1,

which is (3ε1/7,2ε1/7)-close to 0. This satisfies the first condition of the lemma, with p = 3ε1/7

and γ = 2ε1/7. For the second condition, we rewrite property (c) in Definition 8.3 as

E
π2∈B2

E
π1∈B1

[(∣g1(π1) + g2(π2)∣ − 1)2] ≤ ε6/7.

Thus for some σ2 ∈ B2,

E
π1∈B1

[(∣g1(π1) + g2(σ2)∣ − 1)2] ≤ ε6/7.

This shows that the second condition of Lemma 8.9 is satisfied, with C = C1 + g2(σ2) and

δ = ε6/7. Note that δ ≤ 1 since ε is small enough. The lemma shows that

∣E[g1] −C1∣ = ∣E[g1 −C1]∣ ≤ 3 ⋅ 2ε1/7 + 3 ⋅ 3ε1/7 + 6

√
ε6/7

1 − 3ε1/7
≤ 16ε1/7,

since ε is small enough. On the other hand, property (b) of Definition 8.3 shows that E[g1] is

ε1/7-close to c−1/2. We conclude that C1 is 17ε1/7-close to c−1/2, and so g1 is (3ε1/7,19ε1/7)-close

to c − 1/2.

Analyzing g2. The argument for g2 is similar, but the details are more complicated.

Lemma 8.10 shows for random α2, β2 ∈ B2, with probability at least 1 − 8ε2/7, either ∣g2(α2) −

g2(β2)∣ ≤ 2ε1/7 or ∣g2(α2)−g2(β2)∣ ∈ 2±2ε1/7. A simple averaging argument shows that for some

σ2 ∈ B2,

Pr
α2∈B2

[∣g2(α2) − g2(σ2)∣ ≤ 2ε1/7 or ∣g2(α2) − g2(σ2)∣ ∈ 2 ± 2ε1/7] ≥ 1 − 8ε2/7.

In other words, g2 is concentrated around the three values C2 −2,C2,C2 +2, where C2 = g2(σ2).

Since we want to show that (up to a shift) g2 is almost Boolean, we need to eliminate one of
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these values, either C2 − 2 or C2 + 2. To that end, define

q− = Pr
α2∈B2

[g2(α2) ∈ C2 − 2 ± 2ε1/7],

q+ = Pr
β2∈B2

[g2(β2) ∈ C2 + 2 ± 2ε1/7].

If both events whose probabilities are measure by q−, q+ happen then ∣g2(α2)−g2(β2)∣ ∈ 4±4ε1/7.

Since ε is small enough, Lemma 8.10 implies that q−q+ ≤ 8ε2/7. Therefore either q− ≤ 3ε1/7 or

q+ ≤ 3ε1/7 (or both). Without loss of generality, we assume that q− ≤ 3ε1/7, and so g2 is

concentrated around the two values C2,C2 + 2. Putting D2 = C2 + 1, we conclude that with

probability at least 1−8ε2/7−3ε1/7 ≥ 1−4ε1/7 (since ε is small enough), g2 is 2ε1/7-close to either

D2 − 1 or D2 + 1. In other words, g2 −D2 is (4ε1/7,2ε1/7)-almost Boolean.

It remains to show that D2 is close to −(c − 1/2). Since g1 is (3ε1/7,19ε1/7)-close to c − 1/2,

we conclude that g−(c−1/2)−D2 = (g1−(c−1/2))+(g2−D2) is (7ε1/7,21ε1/7)-almost Boolean.

On the other hand, property (a) in Definition 8.3 states that g is (ε4/7, ε1/7)-almost Boolean.

Therefore with probability at least 1 − 7ε1/7 − ε4/7 ≥ 1 − 8ε1/7 (since ε is small enough) over

π ∈ TX,Y , g(π) is simultaneously 21ε1/7 close to (D2+(c−1/2))±1 and ε1/7-close to ±1. Call a π

satisfying this property reasonable. So π ∈ TX,Y is reasonable with probability at least 1−8ε1/7.

We would like to conclude that D2 + (c−1/2) is 22ε1/7-close to 0. However, this need not be

the case: it could (a priori) be that whenever π is reasonable, g(π) is always positive or always

negative. We rule out these cases using Lemma 8.9. Suppose that whenever π is reasonable,

g(π) is always ε1/7-close to 1. Therefore g−1 is (8ε1/7, ε1/7)-close to 0. Thus the first hypothesis

of Lemma 8.9 is satisfied for φ = g − 1 with p = 8ε1/7 and γ = ε1/7. Property (c) in Definition 8.3

shows that the second hypothesis of the lemma is satisfied with C = 1 and δ = ε6/7 (note δ ≤ 1

since ε is small enough). Therefore the lemma shows that

∣E[g] − 1] = ∣E[g − 1]∣ ≤ 3ε1/7 + 3 ⋅ 8ε1/7 + 6

√
ε6/7

1 − 8ε1/7
≤ 28ε1/7,

since ε is small enough. On the other hand, Property (b) in the definition shows that E[g] is

2ε1/7-close to 2c − 1. We conclude that 2c − 1 is 30ε1/7-close to 1, or in other words, η ≤ ∣c − 1∣ ≤

15ε1/7. This contradicts the fact that ε is small enough compared to η7. Therefore there must

exist some reasonable π− such that g(π) is ε1/7-close to −1.
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Using very similar reasoning, we conclude that there must exist some reasonable π+ such

that g(π) is ε1/7-close to 1 (this time the contradiction is η ≤ ∣c∣ ≤ 15ε1/7). From π− we get that

one of (D2+(c−1/2))±1 is 22ε1/7-close to −1, and from π+ we get that one of (D2+(c−1/2))±1

is 22ε1/7-close to 1. Since ε is small enough, we conclude that ∣D2 + (c − 1/2)∣ ≤ 22ε1/7. Since

g2 −D2 is (4ε1/7,2ε1/7)-almost Boolean, we conclude that g2 + (c− 1/2) is (4ε1/7,24ε1/7)-almost

Boolean.

8.6 Random partitions

The main result of the preceding section states that for most random partitions (X,Y ), either

g1 − (c − 1/2) is almost zero and g2 + (c − 1/2) is almost Boolean, or the same is true with the

roles of g1, g2 reversed. In other words, if we choose a random partition (X,Y ) and a random

π ∈ TX,Y , then for P1, P2 given by

P1 = ∑
i∈X

aiπ(i), P2 = ∑
i∈X

aiπ(i),

either P1 − (c − 1/2) is close to zero and P2 + (c − 1/2) is close to ±1, or the reverse is true. In

this section we reverse the order of the random choice: we first choose π ∈ Sn and then (X,Y )

compatible with π. For most permutations π, it will be the case the for most choice of (X,Y ),

P1, P2 satisfy the given property. For such a permutation π, we will be able to deduce strong

information on the values aiπ(i).

We start by formally defining the property of permutations outlined above, and proving

that almost all permutations satisfy this property.

Definition 8.4. A random partition2 X is a uniformly random subset of [n]. We denote the

corresponding probability distribution by P. (Note that if (X,Y ) ∼R then X ∼ P).

For a permutation π ∈ Sn and a partition X, define

P1 = ∑
i∈X

aiπ(i), P2 = ∑
i∈X

aiπ(i),

2The reader might object that calling X a partition is a misnomer. However, every X defines a partition
X,X.
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A partition X is good for π if either P1 is 25ε1/7-close to c − 1/2 and P2 is 25ε1/7-close to

−(c − 1/2) ± 1, or the same is true with the roles of P1, P2 reversed. Otherwise, X is bad for π.

A permutation π ∈ Sn is good if a random partition X is bad for π with probability at most

1/5. Otherwise, π is bad. ◯

The next lemma shows that almost all permutations are good. This is an easy consequence

of Lemma 8.11.

Lemma 8.12. The probability that a random permutation π ∈ Sn is good is at least 1 − 50ε1/7.

Proof. Let (X,Y ) be a random restriction. Lemma 8.8 shows that (X,Y ) is typical with

probability at least 1 − 3ε1/7. If (X,Y ) is typical, then Lemma 8.11 shows that either g1 is

(3ε1/7,19ε1/7)-close to c− 1/2 and g2 + (c− 1/2) is (4ε1/7,24ε1/7)-almost Boolean, or the same is

true with the roles of g1, g2 reversed. In particular, with probability at least 1 − 7ε1/7 over the

choice of π ∈ TX,Y , X is good for π.

Summarizing, if we choose a random restriction (X,Y ) and a random permutation π ∈ TX,Y ,

then with probability at least 1 − 10ε1/7, X is good for π. Reversing the order of the random

choices,

E
π∈Sn

Pr
X∼P

[X is bad for π] ≤ 10ε1/7.

Markov’s inequality shows that

Pr
π∈Sn

[ Pr
X∼P

[X is bad for π] > 1/5] < 50ε1/7.

If a permutation is good, then if we randomly partition the values aiπ(i) into two parts,

with probability at least 4/5 one of them will sum roughly to c − 1/2, and the other will sum

roughly to −(c−1/2)±1. Intuitively, that can only happen if most of the values aiπ(i) are small,

and one of them is large. The large value determines which part sums to c − 1/2 and which to

−(c − 1/2) ± 1. To make this intuition precise, we use the Berry–Esseen theorem.

Lemma 8.13. Suppose π ∈ Sn is a good permutation. For some m ∈ [n], ∣amπ(m)∣ is 50ε1/7-close

to 2c or to 2(1 − c), and for i ≠m, ∣aiπ(i)∣ ≤ 50ε1/7.

Proof. The proof is inspired by one of the proofs in [64]. Considering the effect of an element

aiπ(i) “switching sides”, we can group the elements aiπ(i) into two types: “small” elements (close
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to 0) and “large” elements (close to 2c or to 2(1−c), depending on ∑i aiπ(i)). For similar reasons,

there can be at most one large element. The difficult part is showing that not all elements can

be small. The intuitive reason is that if all elements are small then the distribution of P1 is

approximately normal, whereas P1 should be bimodal.

For the rest of the proof, we use the shorthands

ζ = c − 1

2
, si = aiπ(i) and S =

n

∑
i=1

si.

Since π is good, S must be 50ε1/7-close to ±1. Let K ∈ {1,−1} be the value which S is 50ε1/7-

close to. We conclude that whenever X is good for π, the values P1, P2 are 25ε1/7-close to

ζ,K − ζ.

For a partition X, let

T (X) = ∑
i∈X

si =
S

2
+

n

∑
i=1

Wi(x), where Wi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

si/2 if i ∈X,

−si/2 if i ∉X.

We start by showing that each element si is either small or large (we define these properties

formally below). Consider an arbitrary element si. For a random partition Y , the probability

that both Y ∖ {i} and Y ∪ {i} are good for π is at least 1− 2/5 = 3/5. Hence for some partition

Y , both Y ∖ {i} and Y ∪ {i} are good for π. Therefore T (Y ∖ {i}) and T (Y ∪ {i}) are both

25ε1/7-close to one of ζ,K − ζ. Since ∣T (Y ∖ {i}) − T (Y ∪ {i})∣ = ∣si∣, this shows that either

∣si∣ ≤ 50ε1/7 (we say that si is small) or ∣si∣ is 50ε1/7-close to ∣ζ − (K − ζ)∣ = ∣2ζ −K ∣ (we say that

si is large). When K = 1, a large element is 50ε1/7-close to 2(1 − c), and when K = −1, a large

element is 50ε1/7-close to 2c. In both cases,

∣2ζ −K ∣ ≥ 2η. (8.7)

Having grouped the elements si into small and large elements, we proceed to show that there

is at most one large element. Intuitively, if there are two large elements, then by considering all

possible ways of their switching sides, we eventually reach a value of T which is close to neither

ζ nor K − ζ.

Suppose si, sj are both large. For a random partition Y , the probability that all of Y ∖

{i, j}, Y ∖{i}∪{j}, Y ∖{j}∪{i}, Y ∪{i, j} are good for π is at least 1−4/5 = 1/5. Hence for some
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partition Y , all these partitions are good for π. To simplify notation, suppose that i, j ∉ Y . All

of the following values must be 25ε1/7-close to either ζ or K − ζ:

T (Y ), T (Y ) + si, T (Y ) + sj , T (Y ) + si + sj .

Furthermore, ∣si∣ and ∣sj ∣ are 50ε1/7-close to ∣2ζ −K ∣. Intuitively, si and sj must have the same

sign, and therefore T (Y ), T (Y ) + si, T (Y ) + si + sj cannot all be 25ε1/7-close to the two values

ζ and K − ζ.

Without loss of generality, suppose that T (Y ) is 25ε1/7-close to ζ (the argument for the

other case is similar). If T (Y ) + si were 25ε1/7-close to ζ then ∣si∣ ≤ 50ε1/7, which contradicts

the assumption that ∣si∣ is 50ε1/7-close to ∣2ζ −k∣ ≥ 2η (since ε is small enough compared to η7).

Therefore T (Y )+ si is 25ε1/7-close to K − ζ, showing that si is 50ε1/7-close to K − 2ζ. A similar

arguments shows that sj is 50ε1/7-close to K − 2ζ. Therefore T (Y ) + si + sj is 125ε1/7-close to

ζ + 2(K − 2ζ) = 2K − 3ζ. However,

∣(2K − 3ζ) − ζ ∣ = ∣2K − 4ζ ∣ ≥ 4η,

∣(2K − 3ζ) − (K − ζ)∣ = ∣K − 2ζ ∣ ≥ 2η.

Since ε is small enough compared to η7, we deduce that T (Y ) + si + sj is 25ε1/7-far from both

ζ and K − ζ, reaching a contradiction. We conclude that there is at most one large element.

It remains to rule out the case that all elements are small. For the rest of the proof, suppose

that all elements si are small. Note that a partition X is good for π if and only if X is good

for π, and both partitions X,X have the same probability under P. Therefore for a random

partition X, with probability at least 2/5, T (X) is 25ε1/7-close to ζ, and with probability at

least 2/5, T (X) is 25ε1/7-close to K − ζ.

Using the Berry–Esseen theorem, we will show that for a random partition X, T (X) is close

to a normal distribution. This contradicts the observation that 2/5 of the time, T (X) is close

to ζ, and 2/5 of the time, it is close to K − ζ.

Let X ∼ P be a random partition, and let T = T (X), Wi =Wi(X) be random variables. (The

functions Wi(X), attaining the values ±si/2, were defined above.) Applying the Berry–Esseen

theorem (see Section 2.2), X is Cψ-close in distribution (see below) to a normally distributed
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random variable N with mean S/2 and variance σ2 matching those of T , where

σ2 = 1

4

n

∑
i=1

s2
i , ψ = ∑ni=1 ∣si∣3

(∑ni=1 s
2
i )

3/2
.

Here Cψ-close in distribution means that for every interval I, ∣Pr[X ∈ I] −Pr[N ∈ I]∣ ≤ ψ, and

C is the constant in the statement of Berry–Esseen. Since each si is small, we have

ψ ≤ ∑
n
i=1 ∣si∣2 ⋅ 50ε1/7

(∑ni=1 s
2
i )

3/2
= 50ε1/7√

∑ni=1 s
2
i

= 25ε1/7

σ
.

In order to get a lower bound on σ2 = V[T ], we use the fact that with probability 2/5, T is

25ε1/7-close to ζ, and with probability 2/5, it is 25ε1/7-close to K − ζ. Recall that E[T ] = S/2 is

25ε1/7-close to K/2. Also,

∣ζ −K/2∣ = ∣(K − ζ) −K/2∣ ≥ η.

Since ε is small enough compared to η7, this shows that

σ2 = E[(T −ET )2] ≥ 4

5
(η − 50ε1/7)2.

Substituting this into the expression we got for ψ,

ψ ≤ 25ε1/7

σ
≤

√
5

2

25ε1/7

η − 50ε1/7
.

Since ε is small enough compared to η7, we get that Cψ ≤ 1/5. In other words, the normal

distribution approximates T reasonably well.

The distribution of T has two peaks, around ζ and around K−ζ, while a normal distribution

has a single peak. We want to use this fact to rule out the possibility that T is close to a normal

distribution. To that end, we use the following property of the normal distribution: its density

is bitonic (increasing and then decreasing).

Consider the following three intervals: I1 is the closed interval of radius 25ε1/7 around ζ,

I2 is the closed interval of radius 25ε1/7 around K − ζ, and I3 is the open interval of radius

∣2ζ −K ∣/2 − 25ε1/7 around K/2 (here we are using the fact that ∣2ζ −K ∣ ≥ 2η and ε is small

enough compared to η7). The interval I3 lies just between I1 and I2. The properties of T imply

that

Pr[T ∈ I1],Pr[T ∈ I2] ≥ 2/5, Pr[T ∈ I3] ≤ 1/5.
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Since Cψ ≤ 1/5 and N is Cψ-close to T in distribution,

Pr[N ∈ I1],Pr[N ∈ I2] ≥ 1/5, Pr[N ∈ I3] ≤ 2/5.

Since the density of the normal distribution is bitonic and I3 lies between I1 and I2,

Pr[N ∈ I3]
∣I3∣

≥ min(Pr[N ∈ I1]
∣I1∣

,
Pr[N ∈ I2]

∣I2∣
), (8.8)

where ∣I ∣ is the length of an interval I. However, on the one hand

Pr[N ∈ I3]
∣I3∣

≤ 2/5
∣2c − 1 −K ∣/2 − 25ε1/7

≤ 2/5
η − 25ε1/7

,

and on the other hand

Pr[N ∈ I1]
∣I1∣

,
Pr[N ∈ I2]

∣I2∣
≥ 1/5

25ε1/7
.

Plugging these estimates into (8.8), we get

2/5
η − 25ε1/7

≥ 1/5
25ε1/7

,

or equivalently

η − 25ε1/7 ≤ 50ε1/7,

which is impossible if ε is small enough compared to η7.

We conclude that not all elements can be small. Therefore there is exactly one large element,

and all other elements are small.

Lemma 8.13 is similar in spirit to the Friedgut–Kalai–Naor theorem, but the parameters

are somewhat different. To see the connection, compare the formula for T in the proof of the

lemma

T = S
2
+

n

∑
i=1

(−1)Ji∈XK si
2

to the Fourier expansion of a function supported on the first two levels: if we put xi = Ji ∈ XK,

then (−1)Ji∈XK becomes a Fourier character.

Combining Lemma 8.12 with Lemma 8.13, we get the following corollary, which summarizes

all our work in the first part of the proof.

Corollary 8.14. With probability at least 1−50ε1/7, a random permutation π ∈ Sn satisfies the

following property. For some m ∈ [n], ∣amπ(m)∣ is 50ε1/7-close to 2c or to 2(1−c), and for i ≠m,

∣aiπ(i)∣ ≤ 50ε1/7.
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8.7 Strong lines

Corollary 8.14 shows that almost all generalized diagonals in the matrix A (see definition below)

contain exactly one large element and n−1 small elements. Intuitively, that can only happen if

the matrix A contains a row or a column which consists almost entirely of large elements, and

the rest of the matrix contains small elements. Our proof of this fact will be inductive, and to

that end we define a generalized property of this form.

Definition 8.5. An element aij is large if it is 50ε1/7-close in magnitude to 2c or to 2(1 − c).

Otherwise, it is small.

For a restriction (X,Y ) (that is, X,Y ⊆ [n] and ∣X ∣ = ∣Y ∣), we denote by A[X,Y ] the

submatrix consisting of the entries aij for i ∈X and j ∈ Y . A generalized diagonal in A[X,Y ] is

a set of the form Dπ = {aiπ(i) ∶ i ∈X}, where π is a bijection from X to Y . A random generalized

diagonal is obtained by choosing π randomly from the set of all bijections from X to Y .

A generalized diagonal is good if it contains exactly one large entry.

A restriction (X,Y ) is q-good if with probability at least 1−q, a random generalized diagonal

in A[X,Y ] is good. ◯

In this language, Corollary 8.14 states that ([n], [n]) is 50ε1/7-good. The corollary distin-

guishes two kinds of elements: those that are close to 2c or to 2(1− c), and those that are close

to 0. However, since not every permutation satisfies the conclusion of the corollary, the matrix

A could also contain other elements. For our work in this section, it is enough to distinguish

large elements from all other elements, which for convenience we call small.

Having stated our premises in abstract form, we proceed to state our goal in an abstract

form.

Definition 8.6. For a restriction (X,Y ), a row i ∈X is p-strong for (X,Y ) if at least (1−p)∣Y ∣

of the entries {aij ∶ j ∈ Y } are large. Similarly, a column j ∈ Y is p-strong for (X,Y ) if at least

(1 − p)∣X ∣ of the entries {aij ∶ i ∈X} are large.

We say that a restriction (X,Y ) has a p-strong row (column) if some row i ∈ X (some

column j ∈ Y ) is p-strong for (X,Y ). We say that (X,Y ) has a p-strong line if it has either a

p-strong row or a p-strong column. ◯
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Using these definition, we can state the main result of this section.

Lemma 8.15. If (X,Y ) is q-good, where q < 1/50, then (X,Y ) has a 13q-strong line.

(We haven’t tried to optimize the constants 1/50 and 13.) We will apply this lemma to

([n], [n]) to deduce that A has a strong line.

Our work in this section is oblivious of the particular classification into large and small

elements. All we need to know is that most generalized diagonals contain exactly one large

element. Therefore, the main result of this section, Lemma 8.15, is of independent interest.

We start by estimating the number of large entries in a q-good restriction.

Lemma 8.16. If (X,Y ) is q-good then A[X,Y ] has at least (1 − q)∣X ∣ large entries.

Proof. We can pick a random entry from A[X,Y ] by picking a random generalized diagonal

Dπ and picking a random entry from Dπ. Since A[X,Y ] is q-good, we deduce that a random

entry in A[X,Y ] is large with probability at least (1 − q)/∣X ∣. Therefore A[X,Y ] contains at

least (1 − q)∣X ∣ large entries.

We will prove Lemma 8.15 by induction on ∣X ∣. The base case is the following lemma, in

which the size of X is not fixed but depends on q.

Lemma 8.17. If (X,Y ) is q-good, where ∣X ∣ > 1 and q < 1/(∣X ∣(∣X ∣ − 1)), then (X,Y ) has a

0-strong line.

Proof. Let ∣X ∣ =m. For simplicity of notation, assume X = Y = [m].

For a permutation π ∈ Sm, let π + i ∈ Sm be defined by (π + i)(x) = π(x) + i, where addition

is modulo m. For a random permutation π ∈ Sm, the probability that Dπ,Dπ+1, . . . ,Dπ+(m−1)

are all good is at least 1 −mq > 1 − 1/(m − 1) ≥ 0, and so there is some π ∈ Sm for which

all of Dπ, . . . ,Dπ+(m−1) are good. Without loss of generality, suppose that π is the identity

permutation.

The generalized diagonal Dπ contains a unique large entry. Without loss of generality,

suppose a11 is large. For each j ∈ [m], the generalized diagonal Dπ+j contains some strong

entry ai(i+j). If i, i + j ≠ 1 then a random generalized diagonal in A[X,Y ] passes through both

large entries a11, ai(i+j) with probability 1/m(m − 1), contrary to the assumption that (X,Y )
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is q-good. Therefore either i = 1 or i + j = 1. In other words, all large entries are either on the

first row or on the first column.

We claim that either all large entries are on the first row, or all of them are on the first

column. Otherwise, there are large entries a1j , ak1, where j, k ≠ 1. As before, the probability

that a random generalized diagonal passes through both of them is 1/m(m−1), contrary to the

assumption that (X,Y ) is q-good. We conclude that either the first row or the first column

consists entirely of large entries. In other words, (X,Y ) has a 0-strong line.

The inductive step uses the following simple lemma, which we will apply with ∣X ′∣ = ⌊∣X ∣/2⌋.

Lemma 8.18. Suppose that (X,Y ) is q-good, where q < 1/2. Every X ′ ⊂X can be completed to

a restriction (X ′, Y ′) such that either (X ′, Y ′) or (X ∖X ′, Y ∖ Y ′) is q-good. A similar claim

holds for every Y ′ ⊂ Y .

Proof. Let X ′ ⊂ X be an arbitrary subset of X. For Y ′ ⊂ Y of size ∣Y ′∣ = ∣X ′∣, let PX′,Y ′ be

the set of bijections from X to Y that send X ′ to Y ′. The sets PX′,Y ′ partition the set of all

bijections from X to Y , and so a simple averaging argument shows that for some set Y ′,

p = Pr
π∈PX′,Y ′

[Dπ is good] ≥ 1 − q.

For π ∈ PX′,Y ′ , let π1 = π∣X′ and π2 = π∣Y ′ . If Dπ is good then exactly one of Dπ1 ,Dπ2 is good.

We want to show that one of these events happens with probability 1−q for random π ∈ PX′,Y ′ .

Let

p1 = Pr
π∈PX′,Y ′

[Dπ1 is good], p2 = Pr
π∈PX′,Y ′

[Dπ2 is good].

Notice that if p1 ≥ 1−q then (X ′, Y ′) is q-good, and if p2 ≥ 1−q then (X ∖X ′, Y ∖Y ′) is q-good.

Our goal is to show that one of these inequalities holds.

Clearly p ≤ p1(1− p2)+ (1− p1)p2. We want to show that p ≥ 1− q forces max(p1, p2) ≥ 1− q.

To that end, let p1 = (1 + δ1)/2 and p2 = (1 + δ2)/2. Notice that ∣δ1∣, ∣δ2∣ ≤ 1. Calculation shows

that

p ≤ p1(1 − p2) + (1 − p2)p2 =
(1 + δ1)(1 − δ2) + (1 − δ1)(1 + δ2)

4
= 1 − δ1δ2

2
.
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Since p ≥ 1 − q > 1/2, we see that δ1δ2 < 0, and so one of δ1, δ2 is positive and the other is

negative. If δ1 > 0 then using δ2 ≥ −1,

p ≤ 1 − δ1δ2

2
≤ 1 + δ1

2
= p1,

and so p1 ≥ p ≥ 1 − q. Similarly, if δ2 > 0 then p2 ≥ p ≥ 1 − q, completing the proof.

Using Lemma 8.18 we will come up with several candidates for a strong line in A[X,Y ].

The next lemma will be used to show that all these candidates point at the same line.

Lemma 8.19. Suppose that (X,Y ) is q-good, and let (X1, Y1), (X2, Y2) be subrestrictions of

(X,Y ), that is X1,X2 ⊂X and Y1, Y2 ⊂ Y . Suppose that (X1, Y1) has a p1-strong line and that

(X2, Y2) has a p2-strong line. Let t1 = ⌈(1 − p1)∣X1∣⌉ and t2 = ⌈(1 − p2)∣X2∣⌉. If

t1, t2 ≥ 2 and t1t2 ≥ 4q∣X ∣2

then the two strong lines are the same (that is, they are defined by the same row of X or by the

same column of Y ).

Note that t1, t2 are the number of large entries in the strong lines whose existence is assumed.

Proof. Suppose, for the sake of contradiction, that the two strong lines are not the same. Let

L1 ⊆ X1 × Y1 consist of the first t1 indices of large entries in the first strong line, and let

L2 ⊆ X2 × Y2 consist of the first t2 indices of large entries in the second strong line. Say

that (i1, j1) ∈ L1 and (i2, j2) ∈ L2 conflict if either i1 = i2 or j1 = j2. A generalized diagonal in

A[X,Y ] never contains two conflicting entries, but has a chance of 1/(∣X ∣(∣X ∣−1)) of containing

two non-conflicting entries. We want to show that the number of conflicting pairs of entries, one

from L1 and one from L2, is small, and so the probability that a generalized diagonal contains

two large entries is large. That will imply the desired contradiction.

If L1 corresponds to row i and L2 corresponds to column j then an entry from L1 not on

column j doesn’t conflict with an entry from L2 not on row i. Therefore there are at least

(t1 − 1)(t2 − 1) non-conflicting pairs. If L1 and L2 both correspond to rows then an entry from

L1 conflicts with an entry from L2 only if they are both on the same column, and so there are
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at least t1t2 −min(t1, t2) non-conflicting pairs. Without loss of generality, t1 ≤ t2, and so

t1t2 −min(t1, t2) = t1t2 − t1 ≥ t1t2 − t1 − (t2 − 1) = (t1 − 1)(t2 − 1).

Summarizing, there must be at least (t1 − 1)(t2 − 1) non-conflicting pairs. The probability that

a generalized diagonal contains each non-conflicting pair is 1/(∣X ∣(∣X ∣− 1)). Since L1, L2 lie on

lines, these events are disjoint, and so the probability that a generalized diagonal contains at

least two large entries is at least

(t1 − 1)(t2 − 1)
∣X ∣(∣X ∣ − 1) > (t1 − 1)(t2 − 1)

∣X ∣2 ≥ t1t2
4∣X ∣2 ≥ q,

using t1, t2 ≥ 2. This contradicts the assumption that (X,Y ) is q-good, completing the proof.

As a warm-up illustrating how to use the preceding two lemmas, we prove another base

case of our general inductive claim, which is itself proved by induction, with Lemma 8.17 as

the base case.

Lemma 8.20. If (X,Y ) is q-good and q < 1/(4∣X ∣), then (X,Y ) has a 0-strong line.

Proof. The proof is by induction on m = ∣X ∣. When m = 1, the claim is trivial. When 2 ≤m ≤ 5,

the claim follows from Lemma 8.17, so assume m ≥ 6.

Let X ′ be an arbitrary subset of X of size s = ⌊m/2⌋. Use Lemma 8.18 to complete X ′ to a

restriction (X ′, Y ′) such that either (X ′, Y ′) or (X ∖X ′, Y ∖Y ′) is q-good. Since q < 1/(4m) <

1/(4s), the induction hypothesis implies that either (X ′, Y ′) or (X ∖X ′, Y ∖Y ′) has a 0-strong

line. Similarly, each Y ′ ⊂ Y of size s can be extended to a restriction (X ′, Y ′) such that either

(X ′, Y ′) or (X ∖X ′, Y ∖ Y ′) has a 0-strong line.

Each of the 0-strong lines obtained in this way contains either s ≥ 3 or m − s ≥ s ≥ 3 strong

entries. Since m ≥ 6 and s/m ≥ 3/7,

s2 ≥ 9

49
m2 >m > 4qm2.

Therefore Lemma 8.19 shows that all the 0-strong lines are the same. Without loss of generality,

we can assume that they are all defined by row i. We will show that row i is 0-strong for (X,Y ).
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We start by showing that row i can contain at most one small entry. If it contained two

small entries aij , aik, then we could choose Y ′ ⊂ Y of size s that contains j but not k. There is

no way to complete Y ′ to a restriction (X ′, Y ′) such that row i is strong for either (X ′, Y ′) or

(X ∖X ′, Y ∖ Y ′), since if i ∈ X ′ then A[X ′, Y ′] contains the small entry aij , and if i ∈ X ∖X ′

then A[X ∖X ′, Y ∖ Y ] contains the small entry aik. This contradiction shows that row i can

contain at most one small entry.

Suppose now that row i contains exactly one small entry. Lemma 8.16 shows that A[X,Y ]

must contain at least (1− q)m >m− 1/4 large entries, and so at least m. By assumption, m− 1

of them are on row i. Let akl be a large entry not on row i. The probability that a random

generalized diagonal in A[X,Y ] contains both akl and one of the large entries on row i is at

least

1

m
⋅ (1 − 1

m − 1
) ≥ 4/5

m
> 1

4m
,

contradicting the fact that (X,Y ) is q-good. Here 1 − 1/(m − 1) accounts for the single small

entry on row i. This contradiction shows that row i must consist entirely of large entries,

completing the proof.

The proof of the general inductive step is similar, with a crucial difference towards the

end. Using Lemma 8.18 and Lemma 8.19, we can locate a strong line in A[X,Y ]. However,

the reasoning used in the preceding proof shows that the quality of this strong line potentially

deteriorates by a single element. The argument used in the proof to overcome this difficulty

only works when q < 1/m. For the general case, we will use the following lemma.

Lemma 8.21. Suppose that (X,Y ) is q-good and has a p-strong line. Let m = ∣X ∣ and % =

2q/(1− p). If m ≥ 6, (1− p)m > 1, 2%m > 1 and % ≤ 1/2, then that line is in fact (q + 3%)-strong.

Proof. Without loss of generality, suppose that row i is p-strong for (X,Y ). Lemma 8.16 shows

that A[X,Y ] contains at least (1−q)m large entries. Suppose for the sake of contradiction that

row i is not (q + 3%)-strong. Then A[X,Y ] must contain at least 3%m large entries outside of

row i.

We claim that no column j can contain 2%m or more large entries. Indeed, otherwise that
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line would be (1 − 2%)-strong. Since (1 − p)m > 1, 2%m > 1 and

(1 − p)m ⋅ 2%m = 4qm2,

Lemma 8.19 rules out this case. As a consequence, for each column j, there must be at least %m

large entries outside of row i and column j. Intuitively, this shows that a random generalized

diagonal passing through any large aij has a reasonable chance of passing through another large

entry.

Let Pj consist of the first ⌈%m⌉ large entries outside of row i and column j. For each large

entry aij on row i, the probability that a random generalized diagonal in A[X,Y ] contains both

aij and any specific entry in Pj is 1/(m(m−1)), and the probability that it contains aij as well

as two specific entries in Pj is at most 1/(m(m − 1)(m − 2)). Using the Bonferroni inequality

(see Section 2.2), we get that a random generalized diagonal contains both aij and an entry in

Pj with probability at least

∣Pj ∣
m(m − 1) −

∣Pj ∣(∣Pj ∣ − 1)
2m(m − 1)(m − 2) > %m

m(m − 1) −
(%m + 1)(%m)

2m(m − 1)(m − 2) = %

m − 1
(1 − %m + 1

2(m − 2)).

Since % ≤ 1/2 and m ≥ 6, %m + 1 ≤ m/2 + 1 ≤ m − 2, and so the probability that a random

generalized diagonal contains both aij and an entry in Pj is at least %/(2(m − 1)). Since there

are at least (1 − p)m large entries on row i, we conclude that a random generalized diagonal

contains at least two large entries with probability at least

%

2(m − 1) ⋅ (1 − p)m > %(1 − p)
2

= q.

This contradicts the assumption that (X,Y ) is q-good.

Using the preceding lemma, we can prove the main result of this section. This time we use

Lemma 8.20 as the base case.

Lemma 8.15. If (X,Y ) is q-good, where q < 1/50, then (X,Y ) has a 13q-strong line.

Proof. The proof is by induction on m = ∣X ∣. If m < 1/(4q) then Lemma 8.20 shows that (X,Y )

has a 0-strong line, so we can assume that m ≥ 1/(4q) > 12.

Let X ′ be an arbitrary subset of X of size s = ⌊m/2⌋. Use Lemma 8.18 to complete X ′ to

a restriction (X ′, Y ′) such that either (X ′, Y ′) or (X ∖X ′, Y ∖ Y ′) is q-good. The induction
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hypothesis implies that either (X ′, Y ′) or (X ∖X ′, Y ∖ Y ′) has a 13q-strong line. Similarly,

each Y ′ ⊂ Y of size s can be extended to a restriction (X ′, Y ′) such that either (X ′, Y ′) or

(X ∖X ′, Y ∖ Y ′) has a 13q-strong line.

We claim that all these strong lines are the same. Since s ≥ m − s, each such strong line

contains at least (1 − 13q)s > (1 − 13/50)7 > 2 large entries. Moreover, since s/m ≥ 7/13,

((1 − 13q)s)2 ≥ (1 − 13

50
)

2

( 7

13
)

2

m2 > 4

50
m2 > 4qm2.

Therefore Lemma 8.19 shows that all these strong lines are the same. Without loss of generality,

we can assume that they are all defined by row i. We will show that row i is 13q-strong for

(X,Y ).

We first show that row i can contain at most ⌊13qm+1⌋ small entries. Indeed, suppose that

row i contained at least ⌊13qm + 2⌋ small entries. Then there exists a subset Y ′ ⊂ Y of size s

such that row i contains at least ⌊13qs+1⌋ small entries in columns corresponding to Y ′, and at

least ⌊13q(m− s)+ 1⌋ small entries in columns corresponding to Y ∖Y ′. It is not hard to check

that for each restriction (X ′, Y ′), row i is 13q-strong for neither (X ′, Y ′) nor (X ∖X ′, Y ∖Y ′).

This contradiction shows that row i contains at most ⌊13qm + 1⌋ small entries. Therefore row

i is (13q + 1/m)-strong for (X,Y ).

To complete the proof, we need to improve (13q + 1/m)-strong to 13q-strong, and to that

end we use Lemma 8.21. Let p = 13q + 1/m and % = 2q/(1 − p). We need to check all the

hypotheses of the lemma:

(1 − p)m = (1 − 13q)m − 1 > 37

50
⋅ 13 − 1 > 1,

2%m = 4qm

1 − 13q − 1/m > 4qm ≥ 1,

% = 2q

1 − p < 2/50

1 − 13/50 − 1/13
< 1/2.

All the hypotheses are satisfied, and so the lemma shows that row i is in fact (q + 3%)-strong.

Since

q + 3% = (1 + 6

1 − p)q < (1 + 6

1 − 13/50 − 1/13
)q < 13q,

we are done.
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Putting this together with Corollary 8.14, we can summarize all the work we have done so

far.

Corollary 8.22. The matrix A contains a line (either a row or a column) which contains

(1−O(ε1/7))m large entries, where an entry is large if it is 50ε1/7-close in magnitude to either

2c or 2(1 − c).

Proof. Corollary 8.14 shows that ([n], [n]) is 50ε1/7-good. Therefore Lemma 8.15 shows that

([n], [n]) has a 650ε1/7-strong line.

8.8 Constructing the approximation

To see where we stand, let us focus for a moment on the case c = 1/2. Corollary 8.22 shows

that A contains a line in which almost all entries are close to ±1. In other words, assuming

that the strong line is the first row, A looks quite similar to the canonical example shown in

the introduction, which corresponds to a sum of n/2 disjoint cosets:

n
2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − 1
n ⋯ 1 − 1

n
1
n − 1 ⋯ 1

n − 1

− 1
n ⋯ − 1

n
1
n ⋯ 1

n

− 1
n ⋯ − 1

n
1
n ⋯ 1

n

⋮ ⋮ ⋮ ⋮

− 1
n ⋯ − 1

n
1
n ⋯ 1

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

When c = 1/2, Lemma 8.2 shows that the first row sums to zero, and so roughly half of the

entries are 1, and half are −1. This will be enough to construct a good approximation for F .

For the rest of this section, we make the following simplifying assumption: the strong line

given by Corollary 8.22 is row 1. In other words, 1 −O(ε1/7) of the entries in row 1 are large

(in the sense of Corollary 8.22).

For general c, the situation becomes slightly more complicated, since now the corollary

shows that each large entry in the strong line is close to one of the four values ±2c,±2(1 − c).

To understand what that means, we use the relation between aij and the more immediately
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relevant quantities

τij =
∣F ∩ Ti,j ∣
(n − 1)! . (8.9)

An easy calculation using the definition of aij (which we do below) will show that if aij is

large then τij is close to one of the four values 0,1,2c,2c− 1. Among the two last values, one is

outside of [0,1], and we name the other γ:

γij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2c if c ≤ 1/2,

2c − 1 if c ≥ 1/2.
(8.10)

Lemma 8.23. We have

aij = 2
n − 1

n
τij −

(n − 2)(2c) + 1

n
.

Moreover, each τij is 2/n-close to aij/2 + c. Furthermore, if aij is large (in the sense of Corol-

lary 8.22) then τij is 26ε1/7-close to {0,1, γ}.

Proof. Equation (8.10) at the beginning of Section 8.3 defines aij as

aij = (n − 1)⟨f,1Tij ⟩ −
n − 2

n
(2c − 1)

= (n − 1)⟨21F − 1Sn ,1Tij ⟩ −
n − 2

n
(2c − 1)

= (n − 1)(2
∣F ∩ Tij ∣

n!
− 1

n
) − n − 2

n
(2c − 1)

= 2
n − 1

n
τij −

(n − 2)(2c) + 1

n
.

Since τij ≤ 1, this shows that aij < 2, while c ≤ 1 shows that aij ≥ −(2n − 3)/n > −2. Therefore

∣aij ∣ < 2.

Writing τij as a function of aij ,

τij =
n

n − 1

aij

2
+ 2(n − 2)c + 1

2(n − 1) = aij
2
+ c + aij + 1 − 2c

2(n − 1) .

Since ∣aij ∣ < 2 and 0 ≤ c ≤ 1, ∣aij + 1 − 2c∣ ≤ 3. Therefore the error term has magnitude at most

3/(2(n − 1)) ≤ 2/n, since by assumption (8.1), n ≥ 4. Thus τij is 2/n-close to aij/2 + c.

If aij is large then aij is 50ε1/7-close to {±2c,±2(1− c)}. Therefore τij is (25ε1/7 + 2/n)-close

to {0,2c,2c − 1,1}. Assumption (8.1) states that 1/n1/3 ≤ ε1/7, and so 2/n ≤ 2ε3/7 ≤ ε1/7, since ε

is small enough. Therefore τij is 26ε1/7-close to {0,2c,2c − 1,1}.
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If c ≤ 1/2 then 2c − 1 ≤ 0. Since τij ≥ 0, if τij is 26ε1/7-close to 2c − 1 then it is actually

26ε1/7-close to 0. Similarly, if c ≥ 1/2 then 2c ≥ 1, and since τij ≤ 1 we can omit 2c from the set.

We conclude that τij is 26ε1/7-close to {0, γ,1}.

If F is indeed close to a family which is the union of cosets, then we expect the large entries

in A to be close to {0,1} rather than to γ. Intuitively, this should hold for the following reason.

The value of f at any permutation π depends strongly on the value of the large entry in the

generalized diagonal Dπ. Since for almost all π, f(π) ∈ {1,−1}, any two large entries in the

strong line should either be roughly equal, or roughly at distance two. This rules out large

entries which are close to γ.

To formalize this argument, we look at a large subset of the strong line given by Corol-

lary 8.22.

Definition 8.7. Let a1j be an entry on row 1. (Recall that we are assuming that row 1 is the

strong line given by Corollary 8.22.) Let r(j) be the probability that a random generalized

diagonal passing through a1j is bad (a generalized diagonal is good if contains exactly one large

entry, and all other entries are small, of magnitude at most 50ε1/7).

The entry a1j is reasonable if all the following conditions hold:

(a) a1j is large.

(b) r(j) ≤ 1/5.

(c) The function g{1},{j} is (1/5, ε1/7)-almost Boolean. (Recall g{1},{j} is the restriction of f1

to T1,j .) ◯

We first show that most entries on row 1 are reasonable.

Lemma 8.24. Row 1 contains (1 −O(ε1/7))m reasonable entries.

Proof. We calculate the probability that a random entry chosen from row 1 is unreasonable.

Corollary 8.22 shows that Property (a) of Definition 8.7 fails with probability O(ε1/7).

Corollary 8.14 shows that a random generalized diagonal is not good with probability at

most 50ε1/7. In other words,

E
j∈[n]

[r(j)] ≤ 50ε1/7.
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Markov’s inequality shows that

Pr
j∈[n]

[r(j) > 1/5] < 250ε1/7.

Therefore Property (b) in Definition 8.7 fails with probability at most 250ε1/7.

Finally, recall that since f is ±1-valued, E[(∣f1∣−1)2] ≤ E[(∣f1∣−f)2] = ε. Markov’s inequality

shows that

Pr
π∈Sn

[(∣f1(π)∣ − 1)2 > ε2/7] < ε5/7.

Since the sets T1,j partition Sn,

E
j∈[n]

Pr
π∈T1,j

[(∣f1(π)∣ − 1)2 > ε2/7] < ε5/7,

Markov’s inequality again shows that

Pr
j∈[n]

[ Pr
π∈T1,j

[(∣f1(π)∣ − 1)2 > ε2/7] > 1/5] < 5ε5/7 = O(ε1/7),

since ε is small enough. This implies that Property (c) in Definition 8.7 fails with probability

O(ε1/7). Using a union bound completes the proof.

Second, we show that for any two reasonable entries, either both of the corresponding τ

values are close to γ, or neither of them are.

Lemma 8.25. Assume that γ is 156ε1/7-far from {0,1}. Suppose a1j , a1k are two reasonable

entries. Either both τ1j , τ1k are 26ε1/7-close to γ, or neither of them are.

Proof. Choose a permutation π ∈ T1j randomly. Property (b) in Definition 8.7 states that

Dπ = {aiπ(i) ∶ i ∈ [n]} is bad with probability at most 1/5. Property (c) in the definition states

that f1(π) is ε1/7-far from ±1 with probability at most 1/5. Since (jk)π is a random permutation

from T1k, we get similar properties for D(jk)π and f1((jk)π). Since 4/5 < 1, there is a choice of

π ∈ T1j such that Dπ,D(jk)π are both good, and f1(π), f1((jk)π) are both ε1/7-close to ±1.

Let i = π−1(k). Lemma 8.4 shows that

(f1(π) − aik) − (f1(π) − aij) = a1j − a1k = 2
n − 1

n
(τ1j − τ1k),
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using Lemma 8.23. Since aik, aij are small, the left-hand side is 102ε1/7-close to {0,±2}, and

therefore τ1j − τ1k is 102ε1/7-close to {0,±n/(n− 1)}. Assumption (8.1) implies that 1/(n− 1) <

2/n < 2/n1/3 ≤ 2ε1/7, and so τ1j − τ1k is 104ε1/7-close to {0,±1}.

Property (a) in Definition 8.7 shows that τ1j , τ1k are large, and so Lemma 8.23 shows that

for some t1j , t1k ∈ {0, γ,1}, τ1j , τ1k are 26ε1/7-close to t1j , t1k (respectively). Therefore t1j − t1k

is 156ε1/7-close to {0,±1}. We complete the proof by showing that this is impossible if t1j = γ

and t1k ≠ γ (the case t1j ≠ γ and t1k = γ is symmetric).

If t1j = γ and t1k ∈ {0,1}, then we get that γ must be 156ε1/7-close to {−1,0,1} ∪ {0,1,2} =

{−1,0,1,2}. Since γ ∈ [0,1], it must be 156ε1/7-close to {0,1}, contrary to our assumption.

If γ is 156ε1/7-close to some {0,1}, then we might as well treat it as that number (either 0

or 1), which is why the assumption made at the beginning of the lemma is reasonable.

At this point we are ready to state the main lemma of this section, which shows that row 1

has (roughly) the correct number of entries τ1j which are close to 1, and the correct number

of entries which are close to 0. The idea is to use the fact that the row sums (roughly) to c.

Lemma 8.25 shows that the number of entries on row 1 which are close to γ is either very small

or very large. We can rule out the latter case using the constraint on the sum, and then the

same constraint allows us to estimate the number of entries which are close to 1 and to 0.

Lemma 8.26. The number of entries τ1j which are 51ε1/7-close to 1 is O(ε1/7)n-close to cn,

and the number of entries τ1j which are 51ε1/7-close to 0 is O(ε1/7)n-close to (1 − c)n.

Proof. We distinguish between two cases, depending on whether γ is 156ε1/7-close to {0,1} or

not. We will use the simple formula

T =
n

∑
j=1

τ1j =
n

∑
j=1

∣F ∩ T1j ∣
(n − 1)! = ∣F ∣

(n − 1)! = cn,

which follows from the fact that the sets T1j partition Sn.

The easier case is when γ is 156ε1/7-close to {0,1}. In that case, Lemma 8.23 shows that

each large entry aij corresponds to τij which is 182ε1/7-close to {0,1}. Let N0 be the number

of large entries a1j such that τ1j is 182ε1/7-close to 0, and let N1 be the number of large entries

a1j such that τ1j is 182ε1/7-close to 1.
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Since 0 ≤ τ1j ≤ 1, we have

(1 − 182ε1/7)N1 ≤ T ≤ 182ε1/7N0 + (n −N0) = n − (1 − 182ε1/7)N0.

Since T = cn, this shows that

N0 ≤ (1 +O(ε1/7))(1 − c)n, N1 ≤ (1 +O(ε1/7))cn.

On the other hand, Corollary 8.22 shows that (1 −O(ε1/7))n of the entries on row 1 are large,

and so

N0 +N1 ≥ (1 −O(ε1/7))n.

Therefore

N1 ≥ (1 −O(ε1/7))n −N0 ≥ (c −O(ε1/7))n,

showing that N1 is O(ε1/7)n-close to cn. Similarly we get that N0 is O(ε1/7)n-close to (1− c)n.

This completes the proof when γ is 156ε1/7-close to {0,1}.

The more complicated case is when γ is 156ε1/7-far from {0,1}. Let

R = {j ∶ a1j is reasonable}.

Lemma 8.24 shows that ∣R∣ = (1−O(ε1/7))n. Lemma 8.25 shows that either all τ1j for j ∈ R are

26ε1/7-close to γ, or none are. We want to rule out the first case.

Suppose that for all j ∈ R, τ1j is 26ε1/7-close to γ. Then

(γ − 26ε1/7)n ≤ T ≤ (γ + 26ε1/7)n + (n − ∣R∣).

Since n − ∣R∣ = O(ε1/7)n, we conclude that T is O(ε1/7)n-close to γn. On the other hand,

T = cn. Therefore γ is O(ε1/7)-close to c. However, ∣γ − c∣ ∈ {c,1 − c}, and so ∣γ − c∣ ≥ η. Since ε

is small enough compared to η7, we reach a contradiction. We conclude that for all j ∈ R, τ1j

is 26ε1/7-close to {0,1}.

Since ∣R∣ = (1 − O(ε1/7))n, we conclude that all but O(ε1/7)n of the entries on row 1 are

26ε1/7-close to {0,1}. Therefore we can repeat the argument for the previous case (replacing

large entries with reasonable entries), reaching similar conclusions. This completes the proof of

the lemma.
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At this point we discharge our simplifying assumption that the strong line promised by

Corollary 8.22 is row 1. Without this assumption, Lemma 8.26 reads as follows.

Lemma 8.26’. Let τ be the n×n matrix whose entries are τij. There is a line L of the matrix

(either a row or a column) such that the following holds.

The number of entries in L which are 51ε1/7-close to 1 is O(ε1/7)n-close to cn, and the

number of entries in L which are 51ε1/7-close to 0 is O(ε1/7)n-close to (1 − c)n.

Using the lemma, we can state a qualified version of the main theorem, summarizing our

work so far. In the statement of the following corollary, we restate the assumptions (8.1).

Corollary 8.27. There exists c0 > 0 such that the following holds.

Let F ⊆ Sn be a family of permutations of size cn!, where n ≥ 4, and let η = min(c,1 − c).

Let f = 21F − 1, and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).

If E[(f − f1)2] = ε, where ε satisfies

1

n7/3
≤ ε ≤ c0η

7,

then there exists a family G ⊆ Sn which is the union of dn disjoint cosets satisfying

∣F∆G∣ = O(ε1/7)n!.

Moreover,

∣c − d∣ = O(ε1/7).

Proof. We choose c0 so that all statements in the proof so far stating that ε is small enough

compared to η7 hold. Under this choice of c0, the assumptions (8.1) are satisfied, and so

Lemma 8.26’ applies. Let L be the line whose existence is given by the lemma, and define

G =⋃{Ti,j ∶ τij ∈ L and τij is 51ε1/7-close to 1}.

The lemma shows that G is a union of dn disjoint cosets, where ∣cn − dn∣ = O(ε1/7)n. Since

τij = ∣F ∩ Ti,j ∣/(n − 1)!,

∣F ∩ G∣ ≥ dn ⋅ (1 − 51ε1/7)(n − 1)! ≥ (c −O(ε1/7))(1 − 51ε1/7)n! = (c −O(ε1/7))n!.
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Therefore

∣F∆G∣ = ∣F ∣ + ∣G∣ − 2∣F ∩ G∣ ≤ (c + d)n! − 2(c −O(ε1/7))n! = O(ε1/7)n!.

Note that apart from the assumptions on n and ε, the corollary differs from theorem also

with respect to the size of G. While this issue is not hard to fix, we defer it for later.

8.9 Culmination of the proof

In this section, we extend Corollary 8.27 to the full theorem. Apart from the issue regarding

the size of G, we have to handle the cases where n < 4, and where ε is too small or too large.

If n < 4 or ε is too large then the theorem becomes trivial by choosing the constants in O(⋅)

appropriately. Handling the issue that ε is too small is more delicate.

Looking at the proof, we used the assumption that ε ≥ 1/n7/3 in two points: in the proof of

Lemma 8.8, and twice in the preceding section: in Lemma 8.23 and in Lemma 8.25. In all these

cases, we could have got rid of the assumption by replacing ε with max(ε,1/n7/3). However,

that would have made the proof more cumbersome. Instead, we use a perturbation argument

to ensure that ε is large enough.

Lemma 8.28. Let F ⊆ Sn be a family of permutations, where n ≥ 3, and let κ ≤ 1/16. If

∣F ∣ ≥ n!/2, then there exists a family H ⊆ F satisfying

∣F∆H∣ ≤
√
κn! and κ ≤ E[(h − h1)2] ≤ (

√
E[(f − f1)2] + 2

√
κ)

2
,

where f = 21F − 1, h = 21H − 1, and f1, h1 are the projections of f, h into L(n−1,1).

If ∣F ∣ ≤ n!/2, then there exists a family H ⊇ F satisfying the same properties.

Proof. Without loss of generality, we can assume that ∣F ∣ ≥ n!/2 (otherwise apply the same

argument to the complement of F).

For π ∈ Sn, let (−1)π be the sign of π. Since n ≥ 3, in each coset Ti,j half of the permutations

are even and half are odd. In other words, if we define a function s ∈ R[Sn] by s(π) = (−1)π,

then s is orthogonal to L(n−1,1). Since ∥s∥ = 1,

E[(f − f1)2] ≥ ⟨f, s⟩2 = ( E
π∈Sn

(−1)πf(π))
2

. (8.11)
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We consider two cases: at least half of the permutations in F are even, and at least half

of the permutations in F are odd. Suppose first that half of the permutations in F are even.

There are at least n!/4 ≥ √
κn! of them. Define a family G by removing

√
κn! even permutations

from F , and let g = 21G − 1. We have

⟨g, s⟩ = E
π∈Sn

(−1)πg(π) = E
π∈Sn

(−1)πf(π) − 2
√
κ = ⟨f, s⟩ − 2

√
κ.

Therefore, either ⟨f, s⟩ ≥ √
κ or ⟨g, s⟩ ≤ −√κ. In the first case, (8.11) shows that E[(f−f1)2] ≥ κ,

and so we can take H = F . In the second case, (8.11) shows that E[(g − g1)2] ≥ κ. Moreover,

since g − g1 and f − f1 are projections to L⊥
(n−1,1),

∥g − g1∥ ≤ ∥f − f1∥ + ∥(g − g1) − (f − f1)∥ ≤ ∥f − f1∥ + ∥g − f∥ = ∥f − f1∥ + 2
√
κ.

Therefore E[(g − g1)]2 = ∥g − g1∥2 ≤ (
√
E[(f − f1)2] + 2

√
κ)2, showing that we can take H = G.

When at least half the permutations in F are odd, the reasoning is similar. There are at

least
√
κn! of then, and we define a family G by removing

√
κn! odd permutations from F . This

time we have

⟨g, s⟩ = E
π∈Sn

(−1)πg(π) = E
π∈Sn

(−1)πf(π) + 2
√
κ = ⟨f, s⟩ + 2

√
κ,

and so either ⟨f, s⟩ ≤ −√κ or ⟨g, s⟩ ≥ √
κ. In the first case we can take H = F and in the second

H = G, as before.

Using this perturbation lemma, we can extend Corollary 8.27 to the general case.

Lemma 8.29. Let F ⊆ Sn be a family of permutations of size cn! and let η = min(c,1 − c). Let

f = 21F − 1, and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).

If E[(f − f1)2] = ε then there exists a family G ⊆ Sn which is the union of dn disjoint cosets

satisfying

∣F∆G∣ = O(1

η
(ε1/7 + 1

n1/3
))n!.

Moreover,

∣c − d∣ = O(ε1/7 + 1

n1/3
).
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Proof. If n ≥ 4 and 1/n7/3 ≤ ε ≤ c0η
7, then the lemma follows directly from Corollary 8.27, since

η ≤ 1/2.

If n < 4 then there are two cases: either ε = 0 or not. If ε = 0 then the lemma trivially holds

by taking G = F . Otherwise, since n < 4, there is a finite number of possible families F , and so

ε ≥ ε0 for some constant ε0 > 0. Therefore by choosing the constants in O(⋅) appropriately, the

lemma trivially holds for any family G.

If ε > c0η
7 then ε1/7/η > c1/7

0 , and so choosing the constants in O(⋅) appropriately, the lemma

trivially holds.

Finally, suppose that ε < 1/n7/3. Using Lemma 8.28 with κ = 1/n7/3, we get a family H such

that ∣F∆H∣/n! ≤ 1/n7/6 and the value ε′ = E[(h − h1)2] satisfies

1

n7/3
≤ ε′ ≤ (

√
ε + 2

n7/6
)

2

< ( 1

n7/6
+ 2

n7/6
)

2

= 9

n7/3
.

Furthermore, if c′ = ∣H∣/n! and η′ = min(c′,1−c′) then ∣c−c′∣ ≤ 1/n7/6 implies that ∣η−η′∣ ≤ 1/n7/6.

We now consider two cases: either ε′ > c0η
′7 or not. In the first case, c0η

′7 < ε′ ≤ 9/n7/3 and

so η′ = O(1/n1/3). We conclude that η = O(1/n1/3) or 1/η ⋅ 1/n1/3 = Ω(1), and so by choosing

the constants in O(⋅) appropriately, the theorem trivially holds.

The more interesting case is when ε′ ≤ c0η
′7. In this case we can apply Corollary 8.27 to the

perturbed family H to get a family G which is the union of dn disjoint cosets satisfying

∣H∆G∣ = O(ε′1/7)n! and ∣c′ − d∣ = O(ε′1/7).

Since ε′1/7 = O(1/n1/3), the triangle inequality shows that

∣F∆G∣ = O( 1

n1/3
)n! and ∣c − d∣ = O( 1

n1/3
),

completing the proof.

Finally, we deduce Theorem 8.1 by adding or removing an appropriate number of cosets to

G.

Theorem 8.1. Let F ⊆ Sn be a family of permutations of size cn!, and let η = min(c,1− c). Let

f = 21F − 1, and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).
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If E[(f −f1)2] = ε then there exists a family G ⊆ Sn which is the union of ⌈cn⌋ disjoint cosets

satisfying

∣F∆G∣ = O(1

η
(ε1/7 + 1

n1/3
))n!.

Moreover,

∣cn − ⌈cn⌋∣ = O((ε1/7 + 1

n1/3
)n).

Proof. Let G′ be the family given by Lemma 8.29. Let e = ∣dn − ⌈cn⌋∣. Since ∣⌈cn⌋ − cn∣ ≤ 1/2,

e ≤ ∣dn − cn∣ + 1

2
= O(ε1/7 + 1

n1/3
)n.

We can form a family G consisting of ⌈cn⌋ disjoint cosets by adding or removing e appropriate

cosets to G′. The triangle inequality shows that

∣F∆G∣ = O(1

η
(ε1/7 + 1

n1/3
))n!,

since η ≤ 1/2.

Finally, since ⌈cn⌋ is the integer closest to cn,

∣cn − ⌈cn⌋∣ ≤ ∣cn − dn∣ = O(ε1/7 + 1

n1/3
)n.



Chapter 9

Extremal combinatorics in

theoretical computer science

In this chapter we explain how our work is connected to theoretical computer science, by

presenting several applications of extremal combinatorics to theoretical computer science. While

we do not present any applications of the results proved in this thesis, we give applications of

similar types of results: Erdős–Ko–Rado type theorems and stability results.

We start by presenting Kalai’s proof of a quantitative version of Arrow’s theorem [57], a

result for which the Friedgut–Kalai–Naor theorem was conceived and proved. Arrow’s theorem

is a result in social choice theory, aspects of which nowadays form a respected sub-area of

algorithmic game theory.

Next, we explain how extremal combinatorics is used to prove inapproximability results

for vertex cover and its extension to k-uniform hypergraphs. We focus on a simple (2 − ε)-

inapproximability result for 4-uniform hypergraph vertex cover which employs the Ahlswede–

Khachatrian theorem, which we proved in Chapter 5.

Finally, we explain how the Friedgut–Kalai–Naor theorem is used when analyzing dictator-

ship tests, another device used to prove inapproximability results. While oftentimes dictatorship

tests are analyzed using other means, the analysis of assignment testers in Dinur’s proof of the

PCP theorem [15] does use the Friedgut–Kalai–Naor theorem.

None of the results presented in this expository chapter are original. However, we have tried

218
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to highlight the way in which extremal combinatorics is used in these results.

9.1 Arrow’s theorem

One of the earliest applications of Fourier analysis in computer science is Kalai’s quantitative

version of Arrow’s theorem [57]. The seminal result of Friedgut, Kalai and Naor [42] appeared

naturally in the context of the proof, and it was Kalai’s work that motivated it. To this day,

much of the terminology used in the analysis of Boolean functions comes from voting.

Arrow’s theorem considers an election in which each voter has to rank all candidates (a

similar result for the more usual situation in which each voter chooses only one candidate is

the Gibbard–Satterthwaite theorem).

Definition 9.1. Consider an election with n voters and m candidates, in which each voter

ranks all candidates. A profile is an element of Snm which represents all the votes. A voting

rule is a function ϕ∶Snm → Sm giving the results of the election, which are a ranking of the

candidates. ◯

A reasonable requirement for the voting rule is that if we restrict ourselves to two candi-

dates i, j, then the results of the election only depend on the votes restricted to i, j. Another

reasonable requirement is that if all voters prefer candidate i to j, then the voting rule produce

an order in which i is preferred over j.

Definition 9.2. Let π ∈ Sm be a permutation, and i, j ∈ [m]. We define

π∣i,j = Jπ−1(i) < π−1(j)K.

If π is a voter’s ranking of the candidates, then π∣i,j = 1 if the voter prefers i over j.

A voting rule ϕ satisfies independence of irrelevant alternatives (IIA) if for any two candi-

dates i, j, ϕ(α1, . . . , αn)∣i,j depends only on α1∣i,j , . . . , αn∣i,j .

A voting rule ϕ satisfies unanimity if whenever all voters prefer i over j, the results produced

by the rule also prefer i over j. In symbols, if αk∣i,j = 1 for all k ∈ [n] then ϕ(α1, . . . , αn)∣i,j =

1. ◯
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Arrow’s theorem states that the only reasonable voting rule is a dictatorship.

Theorem 9.1 (Arrow [6]). Let m ≥ 3. Every voting rule ϕ which satisfies IIA and unanimity

is of the form ϕ(α1, . . . , αn) = αs for some s ∈ [n].

We will be especially interested in symmetric voting rules, in which all candidates are equal.

Definition 9.3. A voting rule ϕ is symmetric if for all π ∈ Sm, ϕ(πα1, . . . , παn) = πϕ(α1, . . . , αn).

(Multiplication is defined so that, for example, if α is the ranking 1 > 2 > ⋯ >m then πα is the

ranking π(1) > π(2) > ⋯ > π(m).) ◯

If a symmetric rule satisfies IIA, then it is in effect given by a function f ∶{0,1}n → {0,1},

which satisfies the following property: for each i, j ∈ [m],

ϕ(α1, . . . , αn)∣i,j = f(α1∣i,j , . . . , αn∣i,j).

By considering i = 1, j = 2 and then i = 2, j = 1, we deduce that f is anti-symmetric:

f(1 − t1, . . . ,1 − tn) = 1 − f(t1, . . . , tn).

This leads to an alternative formulation of Arrow’s theorem for the symmetric case.

Definition 9.4. A binary voting rule is a function f ∶{0,1}n → {0,1} satisfying

f(1 − t1, . . . ,1 − tn) = 1 − f(t1, . . . , tn).

We call the latter property antisymmetry, and it implies that f is balanced, that is Pr[f = 0] =

Pr[f = 1] = 1/2, where the probability is taken with respect to the uniform distribution on

{0,1}n.

Given vectors α1, . . . , αn ∈ Sm and a binary voting rule f , define a binary relation R
(m)

f on

[m] which represents the outcome of the election by i R
(m)

f j if f(α1∣i,j , . . . , αn∣i,j) = 1. The

relation R
(m)

f is rational if Rf is transitive, that is if i R
(m)

f j and j R
(m)

f k imply i R
(m)

f k. ◯

A rational outcome is simply one that represents an actual ranking of the candidates. In

this language, we can restate Arrow’s theorem for the symmetric case as follows.

Theorem 9.2. Let f be a binary voting rule. If m ≥ 3 and R
(m)

f is always rational then f

depends on one coordinate only.
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Following Kalai, we prove Theorem 9.2 using Fourier analysis, for the case in which there

are three candidates. Many other proofs are known, combinatorial, topological and geometric.

The advantage of this method of proof is that it generalizes to give a stability version of Arrow’s

theorem: if R
(m)

f is almost always rational, then f is close to a function which depends on one

coordinate only.

Let α1, . . . , αn ∈ S3 be the voting profile, and define

xs = αs∣12, ys = αs∣23, zs = αs∣31.

Since each αs is a permutation, (xs, ys, zs) ∉ {(0,0,0), (1,1,1)}. Similarly, the outcome is

rational if

(f(x1, . . . , xn), f(y1, . . . , yn), f(z1, . . . , zn)) ∉ {(0,0,0), (1,1,1)}.

The starting point of Kalai’s proof is the following formula for the probability that the outcome

is rational.

Lemma 9.3. Let f be a binary voting rule. The probability that R
(3)
f is irrational is

1

4
+ 3 ∑

X≠∅

(−1

3
)
∣X ∣

f̂(X)2.

Proof. Let p be the required probability. We start with the formula

p = 1

6n
∑

x,y,z∈{0,1}n
Ψ(x, y, z)(f(x)f(y)f(z) + (1 − f(x))(1 − f(y))(1 − f(z))),

where Ψ is the characteristic function of all voting profiles:

Ψ(x, y, z) =
n

∏
s=1

J(xs, ys, zs) ∉ {(0,0,0), (1,1,1)}K.

Applying Parseval’s identity, we deduce

p = 8n

6n
∑

X,Y,Z⊆[n]

Ψ̂(X,Y,Z)(f̂(X)f̂(Y )f̂(Z) + 1̂ − f (X)1̂ − f (Y )1̂ − f (Z)).

We can compute the Fourier expansion of Ψ explicitly. The Fourier characters are χX,Y,Z for

X,Y,Z ⊆ [n]. For every s ∈ [n],

J(xs, ys, zs) ∉ {(0,0,0), (1,1,1)}K = 3

4
− 1

4
((−1)xs+ys + (−1)xs+zs + (−1)ys+zs)

= 3

4
χ∅,∅,∅ −

1

4
χ{s},{s},∅ −

1

4
χ{s},∅,{s} −

1

4
χ∅,{s},{s}.
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The Fourier expansion of Ψ is obtained by multiplying this expression for all s ∈ [n]. The

Fourier coefficient Ψ̂(X,Y,Z) is non-zero if for each s ∈ [n],

(X ∩ {s}, Y ∩ {s}, Z ∩ {s}) ∈ {(∅,∅,∅), ({s},{s},∅), ({s},∅,{s}), (∅,{s},{s})}.

In other words, each element s ∈ [n] belongs to either 0 or 2 of X,Y,Z. Since each element

belongs to an even number of sets X,Y,Z, we deduce that X∆Y∆Z = ∅. Furthermore, for

each s ∈ [n] such that s ∉X,Y,Z, there is a factor of 3/4, and for each other s, there is a factor

of −1/4. We have exactly ∣X ∪ Y ∪Z ∣ factors of the second type, and so

Ψ̂(X,Y,Z) = (3

4
)
n−∣X∪Y ∪Z∣

(−1

4
)
∣X∪Y ∪Z∣

.

Canceling a factor of (3/4)n,

p = ∑
X,Y,Z⊆[n]
X∆Y∆Z=∅

(−1

3
)
∣X∪Y ∪Z∣

(f̂(X)f̂(Y )f̂(Z) + 1̂ − f (X)1̂ − f (Y )1̂ − f (Z)).

Next, note that 1̂ − f (X) = JX = ∅K− f̂(X) due to the linearity of the Fourier transform. Hence

if none of X,Y,Z are empty, then

f̂(X)f̂(Y )f̂(Z) + 1̂ − f (X)1̂ − f (Y )1̂ − f (Z) = f̂(X)f̂(Y )f̂(Z) − f̂(X)f̂(Y )f̂(Z) = 0.

The only non-zero summands correspond therefore to X = Y , Y = Z and X = Z. When

X = Y ≠ ∅, we get

f̂(X)f̂(Y )f̂(Z) + 1̂ − f (X)1̂ − f (Y )1̂ − f (Z) = f̂(X)2(f̂(∅) + 1 − f̂(∅)) = f̂(X)2.

Therefore the sum simplifies to

p = f̂(∅)3 + (1 − f̂(∅))3 + 3 ∑
X≠∅

(−1

3
)
∣X ∣

f̂(X)2.

Finally, the fact that f is antisymmetric implies that it is balanced and so f̂(∅) = E f = 1/2.

Substituting this into the formula, we deduce

p = 1

4
+ 3 ∑

X≠∅

(−1

3
)
∣X ∣

f̂(X)2.

Theorem 9.2 almost immediately follows, using essentially Hoffman’s bound.
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Proof of Theorem 9.2 when m = 3. If R
(3)
f is always rational then according to Lemma 9.3,

3 ∑
X≠∅

(−1

3
)
∣X ∣

f̂(X)2 = −1

4
.

On the other hand,

3 ∑
X≠∅

(−1

3
)
∣X ∣

f̂(X)2 ≥ − ∑
X≠∅

f̂(X)2, (9.1)

with equality only if the Fourier expansion of f is supported on the first two levels. Since f is

balanced, Parseval’s identity shows that

∑
X≠∅

f̂(X)2 = ∑
X⊆[n]

f̂(X)2 − f̂(∅)2 = 1

2
− 1

4
= 1

4
.

Therefore we must have equality in (9.1), and we deduce that the Fourier expansion of f is

supported on the first two levels. Lemma 3.6 implies that f depends on exactly one coordinate.

By using the Friedgut–Kalai–Naor theorem instead of Lemma 3.6, we obtain a stability

version of Theorem 9.2.

Theorem 9.4. Let f be a binary voting rule. If R
(3)
f is rational with probability 1−ε then there

is a function g depending on one coordinate only such that Pr[f = g] = 1 −O(ε).

Proof. According to Lemma 9.3,

3 ∑
X≠∅

(−1

3
)
∣X ∣

f̂(X)2 = −1

4
+ ε.

Equation (9.1) generalizes to

3 ∑
X≠∅

(−1

3
)
∣X ∣

f̂(X)2 ≥ − ∑
∣X ∣=1

f̂(X)2 − 1

9
∑

∣X ∣>1

f̂(X)2. (9.2)

Let δ = ∑∣X ∣>1 f̂(X)2. As in the proof of Theorem 9.2, equation (9.2) implies that

−1

4
+ ε ≥ −(1

4
− δ) − 1

9
δ = −1

4
+ 8

9
δ.

In other words, δ ≤ (9/8)ε. The theorem now follows directly from Theorem 2.22.
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In order to extend Kalai’s proof to the setting where there are more than three candidates,

we need to handle higher powers of f̂(X), which seems hard. Falik and Friedgut [31] extended

Theorem 9.4 to arbitrary m ≥ 3 as well as to the setting of the Gibbard–Satterthwaite theorem

(in which each voter selects one candidate) by analyzing the voting rule ϕ directly using the

representation theory of Sm. Other results in the same vein (which use Fourier analysis on the

Boolean cube) are [43, 54, 67, 61].

9.2 Inapproximability of k-uniform hypergraph vertex cover

Erdős–Ko–Rado type results have been used to prove inapproximability results for vertex cover

and its extension to hypergraphs [17, 18, 19, 62, 48], as a means of analyzing the so-called biased

long code. As an illustration of this method, we explain in full a (2−ε)-inapproximability result

for 4-uniform hypergraph vertex cover, following [17]. The key combinatorial fact used in this

result is the following corollary of the Ahlswede–Khachtrian theorem.

Lemma 9.5. For every p < 1/2 and ε > 0 there exists t such that µp(F) < ε for every t-

intersecting family.

Proof. For t > 1, let r(t) be the unique integer r such that

r

t + 2r − 1
≤ p < r + 1

t + 2r + 1
.

The integer r exists since (r + 1)/(t + 2r + 1) → 1/2 as r →∞. Theorem 5.3 on page 122 shows

that a t-intersecting family has µp-measure at most

µp(Ft,r(t)) = Pr[Bin(t + 2r(t), p) ≥ t + r(t)] ≤ Pr[Bin(t + 2r(t), p) ≥ t + 2r(t)
2

].

Since p < 1/2, the latter probability tends to 0 as t + 2r(t) → ∞, which is certainly the case

when t→∞. Hence for large enough t, µp(Ft,r(t)) < ε.

9.2.1 k-uniform hypergraph vertex cover

A vertex cover of a graph G is a set of vertices that touches every edge of G. The problem of

minimum vertex cover is, given a graph G, determine the minimum size of a vertex cover of G.
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The decision version of vertex cover is one of the classical NP-complete problems. There is a

simple 2-approximation algorithm for vertex cover, which consists of greedily selecting a maxi-

mal matching in the graph, and taking all vertices appearing in the matching. More complicated

algorithms achieve a better approximation ratio of 2 − o(1), but no known polynomial-time al-

gorithm achieves a (2 − ε)-approximation for any constant ε > 0. It is therefore believed that

the inapproximability threshold of vertex cover is 2, and this is indeed the case assuming the

unique games conjecture.

Vertex cover is related to another classical NP-complete problem, maximum independent

set : the complement of a vertex cover is an independent set (a set of vertices containing no

edges), and vice versa. In terms of approximation, however, independent set is much harder,

being n1−ε-hard to approximate on graphs having n vertices.

We also consider the generalizations of vertex cover and independent set to hypergraphs. A

vertex cover of a hypergraph H is a set of vertices that touches every hyperedge of H, and an

independent set is a set of vertices I such that no hyperedge of H contains only vertices of I.

Under these definitions, it is still true that the complement of a vertex cover is an independent

set and vice versa.

We will be interested in k-uniform hypergraph vertex cover, which is the problem of finding

the minimum size of a vertex cover in a k-uniform hypergraph, a hypergraph in which each

hyperedge contains exactly k vertices. Classical vertex cover is the case k = 2. The greedy

algorithm for k-uniform hypergraph vertex cover (a generalization of the algorithm for vertex

cover) achieves a k-approximation, which is conjectured to be optimal.

Our exposition will be clearer by considering the slightly more general problem in which

vertices have non-negative weights, and the goal is to find a vertex cover of minimal total weight.

Inapproximability results for the corresponding problem of weighted k-uniform hypergraph

vertex cover easily translate to matching results for the unweighted version, by duplicating

vertices according to their weight.
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9.2.2 An inapproximability result

In this section we focus on the inapproximability of 4-uniform hypergraph vertex cover, proving

the following theorem of Holmerin [52]. We will follow the proof technique of Dinur, Guruswami

and Khot [17].

Theorem 9.6. For every ε > 0 it is NP-hard to approximate weighted 4-uniform hypergraph

vertex cover to within a factor 2 − ε.

The general plan is to reduce from label cover (defined below). Given an instance L of label

cover, we create an instance H of weighted 4-uniform hypergraph vertex cover with total weight

1 having the following property: if L is a YES instance then H has an independent set of weight

1/2 − ε/6, while if L is a NO instance then H does not have any independent set of weight ε/6

or more. Since the complement of an independent set is a vertex cover, if L is a YES instance

then H has a vertex cover of weight 1/2+ ε/6, while if L is a NO instance then H has no vertex

cover of weight 1 − ε/6 or less. Since (1 − ε/6)/(1/2 + ε/6) ≥ 2 − ε, an algorithm approximating

weighted 4-uniform hypergraph vertex cover to within a factor 2 − ε can tell YES instances of

label cover from NO instances, which is an NP-hard task.

We will use the following version of label cover, which can be obtained from the PCP

theorem through an application of Raz’s parallel repetition theorem [70]. A much simpler proof

has been obtained recently by Dinur and Steurer [20].

Definition 9.5. An instance of s-label cover is given by the following data:

• A finite set of labels Σ of size s.

• Two disjoint sets of variables X,Y .

• For some x ∈X,y ∈ Y , constraints ϕx→y ∶Σ→ Σ.

For an instance of label cover, an assignment is a function α∶X ∪ Y → Σ. The assignment

α satisfies a constraint ϕx→y if ϕx→y(α(x)) = α(y). ◯

Theorem 9.7 ([20, Theorem 8.2]). There are some absolute constants a > 1 and β ∈ (0,1) such

that for every k ∈ N there is a polytime reduction that takes an instance ψ of 3SAT and outputs

an instance L = (Σ,X,Y,ϕ) of ak-label cover such that:
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YES: If ψ is satisfiable then there exists an assignment which satisfies all constraints in L.

NO: If ψ is not satisfiable then no assignment satisfies more than βk of the constraints in L.

Furthermore, the constraint graph whose vertices are X∪Y and whose edges are (x, y) whenever

ϕx→y exists is bi-regular: all the X vertices have the same degree, and all the Y vertices have

the same degree1.

The idea of the reduction is to encode an assignment of X, using consistency hyperedges

to enforce the existence of a complementing assignment of Y . The reduction will focus on

consistency triples.

Definition 9.6. Let L = (Σ,X,Y,ϕ) be an instance of label cover. A consistency triple (x,x′, y)

consists of two different x,x′ ∈X and y ∈ Y such that both constraints ϕx→y, ϕx′→y exist. For a

subset X ′ ⊆X, an X ′-consistency triple is a consistency triple (x,x′, y) such that x,x′ ∈X ′. ◯

Reduction Let ε > 0 be given, and let k ∈ N and p ∈ (0,1/2) be parameters to be chosen

later. Define s = ak and δ = βk, where a, β are the parameters given by Theorem 9.7. Given

an instance L = (Σ,X,Y,ϕ) of s-label cover, we construct a weighted 4-uniform hypergraph

H = (V,E,w) as follows:

• Vertices: V =X × 2Σ.

• Weights: For x ∈X and F ⊆ Σ, w(x,F ) = µp(F )/∣X ∣.

• Edges: For every consistency triple (x,x′, y) and F1, F2, F
′
1, F

′
2 ⊆ Σ, there is an edge

{(x,F1), (x,F2), (x′, F ′
1), (x′, F ′

2)} whenever

ϕx→y(F1 ∩ F2) ∩ ϕx′→y(F ′
1 ∩ F ′

2) = ∅.

The basic idea is that each independent set of H encodes (in some sense) an assignment to

X. If L is a YES instance then we can use a satisfying assignment to construct an independent

set of large weight. Conversely, we can decode any independent set of non-negligible weight

1This can be guaranteed by starting with the NP-complete problem 3SAT-5 in which each variable appears
exactly 5 times; see Feige [32].
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into an assignment for L satisfying a non-negligible fraction of the constraints. To that end, we

will use Lemma 9.5.

We start by explaining the structure of independent sets in H.

Lemma 9.8. Let A ⊆ V be a subset of the vertices of H. For each x ∈X, define

Ax = {F ⊆ Σ ∶ (x,F ) ∈ A}

and

A(2)
x = {F1 ∩ F2 ∶ (x,F1), (x,F2) ∈ A}.

Then w(A) = Ex∈X µp(Ax), and A is independent if and only if for every consistency triple

(x,x′, y), the families ϕx→y(A(2)
x ), ϕx′→y(A(2)

x′ ) are cross-intersecting (every set in the first fam-

ily intersects every set in the second family).

When L is a YES instance, H has a large independent set in which each Ax is a star.

Lemma 9.9. If L is a YES instance then H has an independent set of weight p.

Proof. Let α be a satisfying assignment for L, and define A = {(x,F ) ∶ α(x) ∈ F}. Using the

terminology of Lemma 9.8, it is easy to see that for all x ∈ X, Ax = A(2)
x = {F ∶ α(x) ∈ F} is

a star. For every consistency triple (x,x′, y), the families ϕx→y(A(2)
x ), ϕx′→y(A(2)

x′ ) are cross-

intersecting since every set in both families contains α(y). Therefore A in an independent set

according to Lemma 9.8. The lemma also implies that w(A) = Ex∈X µp(Ax) = p.

The independent set given by Lemma 9.9 encodes an assignment to X in a very straight-

forward way. This kind of encoding, in which an element σ ∈ Σ is encoded by the family of all

sets F ⊆ Σ containing it, is known as the biased long code (it is biased since a set F is given

weight µp(F )). In the following part of the proof, we list-decode the biased long code. Given

an independent set of non-negligible weight, we identify a non-negligible subset of the vertices,

and for each of them construct a short list of possible assignments. We then use these lists to

construct an assignment for L satisfying a non-negligible fraction of the constraints.

The first step, list-decoding the biased long code, is accomplished using the following lemma,

which makes essential use of Lemma 9.5.
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Lemma 9.10. For every τ > 0 there is a constant t = t(p, τ) such that the following holds.

Suppose that H has an independent set of weight 2τ . There is a subset X ′ ⊆X of size ∣X ′∣ ≥ τ ∣X ∣,

and for each x ∈X ′ a non-empty list α(x) of size ∣α(x)∣ < t, such that whenever (x,x′, y) is an

X ′-consistency triple, ϕx→y(α(x)) ∩ ϕx′→y(α(x′)) ≠ ∅.

Proof. We let t be the constant given by Lemma 9.5 (with τ replacing ε). Let A be an inde-

pendent set of weight 2τ . Lemma 9.8 shows that Ex∈X µp(Ax) = 2τ . Therefore

Pr
x∈X

[µp(Ax) ≥ τ] = 1 − Pr
x∈X

[1 − µp(Ax) ≥ 1 − τ] ≥ 1 − 1 − 2τ

1 − τ = τ

1 − τ ≥ τ,

where the first inequality is Markov’s inequality. We let X ′ = {x ∈X ∶ µp(Ax) ≥ τ}. Lemma 9.5

shows that for every x ∈ X ′, Ax is not t-intersecting. Therefore we can choose for each x ∈ X ′

some α(x) ∈ A(2)
x of size ∣α(x)∣ < t. Since A is an independent set, Lemma 9.8 shows that

whenever (x,x′, y) is an X ′-consistency triple, ϕx→y(α(x)) ∩ ϕx′→y(α(x′)) ≠ ∅. This shows

that if some X ′-consistency triple (x,x′, y) exists, α(x) is non-empty. If α(x) is empty, let

α(x) = {σ} for some arbitrary σ ∈ Σ.

Given the lists produced by Lemma 9.10, we construct an assignment for L by randomly

choosing a value from each of the lists.

Lemma 9.11. Suppose that for some τ, t there is a subset X ′ ⊆ X of size ∣X ′∣ ≥ τ ∣X ∣, and

for each x ∈ X ′ a non-empty list α(x) of size ∣α(x)∣ < t, such that whenever (x,x′, y) is an

X ′-consistency triple, ϕx→y(α(x)) ∩ ϕx′→y(α(x′)) ≠ ∅.

There is an assignment α for L which satisfies at least a fraction τ/t2 of constraints.

Proof. Let Y ′ ⊆ Y consist of those y ∈ Y for which a constraint ϕx→y exists for some x ∈ X ′.

For every y ∈ Y ′, we arbitrarily choose some canonical such χy ∈ X ′. We define a random

assignment α for L as follows. For x ∈ X ′, let α(x) be a random element of α(x). For y ∈ Y ′,

let α(y) be a random element of ϕχy→y(α(χy)). Define α arbitrarily on the rest of its domain.

We claim that the probability that α satisfies ϕx→y is at least 1/t2 whenever x ∈X ′. Indeed,

if x = χy then given α(y), the probability that ϕx→y(α(x)) = α(y) is at least 1/t. If x ≠ χy then

we are given that S = ϕx→y(α(x))∩ϕχy→y(α(χy)) is non-empty. The probability that α(y) ∈ S
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is at least 1/t, and given that α(y) ∈ S, the probability that ϕx→y(α(x)) = α(y) is at least 1/t.

Overall, α satisfies ϕx→y with probability at least 1/t2.

In expectation, α satisfies 1/t2 of the constraints ϕx→y in which x ∈ X ′. Due to the bi-

regularity of the constraint graph (see Definition 9.5), α satisfies τ/t2 of all constraints in

expectation. Therefore there must exist some assignment satisfying at least τ/t2 of all con-

straints.

We are now ready to prove the main result of this section, Theorem 9.6.

Theorem 9.6. For every ε > 0 it is NP-hard to approximate weighted 4-uniform hypergraph

vertex cover to within a factor 2 − ε.

Proof. Define p = 1/2 − ε/6 and τ = ε/12, let t = t(p, τ) be the constant in Lemma 9.10, and

choose k so that βk < τ/t2. We will show that if there is a (2 − ε)-approximation algorithm

for weighted 4-uniform hypergraph vertex cover then we can use it to distinguish between YES

instances and NO instances of Theorem 9.7, a task which the theorem states is NP-hard.

Given an instance L = (Σ,X,Y,ϕ) of ak-label cover, we can construct the hypergraph H

described in this section in polynomial time (since k is constant, ∣V ∣ = ∣X ∣ ⋅2∣Σ∣ = 2a
k ∣X ∣ is linear

in the size of L). When L is a YES instance, Lemma 9.9 shows that there is an independent set

of weight 1/2− ε/6, and so a vertex cover of weight 1/2+ ε/6 (recall that w(V ) = 1). Conversely,

we claim that if L is a NO instance then it has no vertex cover of weight at most 1−ε/6. Indeed,

otherwise there would be an independent set of weight ε/6 = 2τ . Lemma 9.10 combined with

Lemma 9.11 then implies that there is an assignment for L satisfying a fraction τ/t2 > βk of the

constraints, and so L cannot be a NO instance, contrary to assumption.

Finally, applying a (2−ε)-approximation algorithm to H would be able to tell the two cases

apart since

1 − ε/6
1/2 + ε/6 = 2

1 − ε/6
1 + ε/3 ≥ 2(1 − ε/6)(1 − ε/3) ≥ 2 − ε.

The inapproximability threshold that we obtain is roughly 1/(1 − p). Therefore the best

inapproximability threshold is obtained by choosing the largest possible value of p. Here we are

limited by the fact that Lemma 9.5 only holds for p < 1/2. So in a sense, Lemma 9.5 determines

the inapproximability threshold obtained by this method.
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9.2.3 Other inapproximability results

The proof in the preceding section can be adapted to give a (k/2 − ε)-inapproximability result

for weighted k-uniform hypergraph vertex cover for any even k. Lemma 9.5 has to be replaced

by the following result, which is proved by Dinur, Guruswami, Khot and Regev [18], following

Graham, Grötschel and Lovász [45].

Claim 9.12. For every p < 1 − 1/r, ε > 0 and r ≥ 2 there exists t such that µp(F) < ε for

every r-wise t-intersecting family (a family in which every r sets contain at least t elements in

common).

Dinur, Guruswami, Khot and Regev use this claim along with a different construction to

prove a (k − 1− ε)-inapproximability result for weighted k-uniform hypergraph vertex cover for

any k > 2. The case k = 2 is tackled in Dinur and Safra’s classical paper [19], who prove the

following result.

Theorem 9.13. Suppose that p < 1/2 satisfies (1 − p)2 ≥ p, and let p● be the maximal µp-

measure of a 2-intersecting family. It is NP-hard to approximate vertex cover to within a factor

(1 − p●)/(1 − p).

The value of p● can be deduced from the Ahlswede–Khachtrian theorem, see Corollary 5.2

and Theorem 5.3 in Chapter 10. The best choice of p is p = (3−
√

5)/2, in which case p● = 4p3−3p4

and the resulting approximation ratio is 10
√

5 − 21 ≈ 1.36.

Optimal inapproximability results have been proven by Khot and Regev [62] assuming

the unique games conjecture. Assuming the conjecture, they prove that weighted k-uniform

hypergraph vertex cover is NP-hard to approximate to within a factor k. They essentially use

the following fact, which can be proved using Katona’s circle method: for p ≤ 1 − 1/k, a k-wise

intersecting family has µp-measure at most p.
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9.3 Property testing

Suppose we are given a function f ∶{0,1}n → {0,1}. Is the function f a dictatorship2 of the

form f(x) = xi? To be certain that f is a dictatorship, we would have to examine all values of

f . However, in some circumstances, we are only prepared to examine a small number of values,

and in return we are willing to accept some error. Such a situation arises in inapproximability,

for example, as we describe below.

What kind of error are we willing to tolerate? One possibility is that our test is correct on

most functions f . Another possibility is that our test is randomized, and is correct for each

function f with high probability. We will be interested in the latter option.

Can we achieve this requirement? Suppose that our test examines only a constant number

of values of f , say C of them. Starting with a dictatorship f , construct a new function g by

changing m random coordinates. When running our test on g, the probability that it samples

any of the changed coordinates is only roughly Cm/2n, and so the test only has a chance to

notice the difference between f and g if m = Θ(2n). We therefore revise our requirements for

the test:

YES: If f is a dictatorship, then the test should always accept.

NO: If f is ε-far from every dictatorship (that is, Pr[f ≠ g] ≥ ε for every dictatorship g), then

the test should reject with probability close to 1.

We won’t be able to achieve quite these parameters, but we will come close.

When proving the correctness of the test, in the negative case, we are given that the test

succeeds with moderate probability, and want to conclude that f is close to a dictatorship. To

that end, we can use the Friedgut–Kalai–Naor theorem.

In the rest of this section, we start by explaining a simpler test, which tests for f being

linear. Then we modify this test to test for dictatorships. Next we come up with an even

simpler test, whose analysis requires the Friedgut–Kalai–Naor theorem. Finally, we explain

how variants of this test are used in PCP theory.

2In this section, conforming with common usage in the field, a dictatorship is a function of the form f(x) = xi,
whereas in the rest of the thesis, a dictatorship is a function determined by a single coordinate.
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9.3.1 Linearity testing

We start by showing how to test that a function f ∶{0,1}n → {0,1} is linear, that is of the form

f(x) = ⟪x,w⟫ for some w ∈ {0,1}n; here ⟪x,w⟫ = ∑ni=1 xiwi (mod 2). The analysis will become

simpler if instead of f we consider the related function F (x) = (−1)f(x). If f is linear then F

is a Fourier character. Abusing notation, we call F linear as well.

The basic idea is very simple: if f is linear then f(x ⊕ y) = f(x) ⊕ f(y). In terms of the

function F , F (x⊕ y) = F (x)F (y) and so F (x)F (y)F (x⊕ y) = 1, and this is our test.

Test L: Given F ∶{0,1}n → {±1}, choose random x, y ∈ {0,1}n, and accept if

F (x)F (y)F (x⊕ y) = 1.

The test always succeeds for linear F . We can express its success probability on general F

using the Fourier coefficients of F .

Lemma 9.14. The test L accepts with probability

1

2
+ 1

2
∑

U⊆[n]

F̂(U)3.

Proof. We can express the acceptance probability as

E
x,y

F (x)F (y)F (x⊕ y) + 1

2
= 1

2
+ 1

2
E
x,y
F (x)F (y)F (x⊕ y).

Substituting the Fourier expansion of F , we get

F (x)F (y)F (x⊕ y) = ∑
S,T,U⊆[n]

F̂(S)χS(x)F̂(T )χT (y)F̂(U)χU(x⊕ y)

= ∑
S,T,U⊆[n]

F̂(S)F̂(T )F̂(U)χS(x)χT (y)χU(x)χU(y)

= ∑
S,T,U⊆[n]

F̂(S)F̂(T )F̂(U)χS∆U(x)χT∆U(y).

Since Ex χA(x) = JA = ∅K, if we take expectation with respect to x, y then all terms but those

in which S = T = U disappear, and so

E
x,y
F (x)F (y)F (x⊕ y) = ∑

U⊆[n]

F̂(U)3.

The lemma immediately follows.
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If f is linear then F = χA for some A ⊆ [n], and so F̂(U) = JU = AK, and the test always

succeeds. To understand what happens when f is far from linear, we need to calculate the

distance between F and the set of linear functions. (Here distance is the fraction of different

entries.)

Lemma 9.15. The distance between F and the set of linear functions is

1

2
− 1

2
max
U⊆[n]

F̂(U).

Therefore F is ε-far from being linear (that is, the distance between F and every linear function

is at least ε) if and only if for all U ⊆ [n],

F̂(U) ≤ 1 − 2ε.

Proof. The distance between F and χA is

d(F,χA) = E
x
(F (x) − χA(x)

2
)

2

= 1

4
∑
S⊆[n]

(F̂(S) − χ̂A(S))2

= 1

4
∑
S⊆[n]

F̂(S)2 + 1

4
[(F̂(A) − 1)2 − F̂(A)2]

= 1

2
− 1

2
F̂(A),

using Parseval’s identity twice: in the second equality, and in the last one to conclude that

∑S⊆[n] F̂(S)2 = EF 2 = 1.

As a conclusion, we can analyze test L.

Theorem 9.16. Let F ∶{0,1}n → {0,1}.

1. If F is linear then L always accepts.

2. If F is ε-far from being linear then L accepts with probability at most 1 − ε.

Proof. The first part follows directly from Lemma 9.14. For the second part, Lemma 9.15 shows

that F̂(U) ≤ 1 − 2ε, and so according to Lemma 9.14, L succeeds with probability

1

2
+ 1

2
∑

U⊆[n]

F̂(U)3 ≤ 1

2
+ 1 − 2ε

2
∑

U⊆[n]

F̂(U)2 = 1

2
+ 1 − 2ε

2
= 1 − ε,

using Parseval’s identity.
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We can amplify the success probability by repeating the test and taking a majority vote.

In this way, for every ε, δ we can devise a test with a constant number of queries that always

accepts linear F , and accepts functions ε-far from being linear with probability at most δ.

9.3.2 Dictatorship testing

The test L developed in the preceding section behaves in the same way for every linear function.

In this section we modify it so that it highlights linear functions of the form F = χ{i}. The idea

is that such functions are resilient to changing all other coordinates. Instead of testing F at

points x, y, x ⊕ y, we will test it at points x, y, z where z is obtained from x ⊕ y by randomly

modifying some of its coordinates.

Test D(p): Given F ∶{0,1}n → {±1}, choose random x, y ∈ {0,1}n. Let z ∈ {0,1}n

be defined by zi = xi ⊕ yi with probability 1 − p and zi = xi ⊕ yi ⊕ 1 with probability p

(independently for each i). Accept if F (x)F (y)F (z) = 1.

This time, the test succeeds for dictatorships only with probability 1 − p. Again, we can

express its success probability in terms of the Fourier coefficients of F .

Lemma 9.17. The test D(p) accepts with probability

1

2
+ 1

2
∑

U⊆[n]

(1 − 2p)∣U ∣F̂(U)3.

Proof. We can express the acceptance probability as

E
x,y,z

F (x)F (y)F (z) + 1

2
= 1

2
+ 1

2
E
x,y,z

F (x)F (y)F (z).

Let z = x⊕ y⊕w, where wi = 1 with probability p. Substituting the Fourier expansion of F , we
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get

F (x)F (y)F (z) = F (x)F (y)F (x⊕ y ⊕w)

= ∑
S,T,U⊆[n]

F̂(S)χS(x)F̂(T )χT (y)F̂(U)χU(x⊕ y ⊕w)

= ∑
S,T,U⊆[n]

F̂(S)F̂(T )F̂(U)χS(x)χT (y)χU(x)χU(y)χU(w)

= ∑
S,T,U⊆[n]

F̂(S)F̂(T )F̂(U)χS∆U(x)χT∆U(y)χU(w).

Since Ex χA(x) = JA = ∅K, we deduce that

E
x,y,z

F (x)F (y)F (z) = ∑
U⊆[n]

F̂(U)3 E
w
χU(w).

It remains to calculate Ew χU(w):

E
w
χU(w) =∏

i∉U

1∏
i∈U

E
wi
(−1)wi =∏

i∈U

[p(−1) + (1 − p)(1)] = (1 − 2p)∣U ∣.

The lemma immediately follows.

There is one problem with this test: it succeeds not only for dictatorships, but also for the

function F = 1. To handle this situation, we assume that the function F is odd, an assumption

which is justified in certain circumstances.

Definition 9.7. A function F ∶{0,1}n → {0,1} is odd if

F (x) = −F (1 − x),

where 1 − x is the vector defined by (1 − x)i = 1 − xi. ◯

Dictatorships, for example, are odd. The Fourier expansion of odd functions is supported

on odd-sized Fourier coefficients.

Lemma 9.18. If F ∶{0,1}n → {0,1} is odd then F̂(A) = 0 whenever ∣A∣ is even.

Proof. We have

F̂(A) = ⟨F,χA⟩ = E
x
F (x)χA(x) = E

x
(F (x) − F (1 − x)

2
)χA(x)

= 1

2
E
x
F (x)χA(x) −

1

2
E
x
F (x)χA(1 − x) = 0,

since χA(1 − x) = χA(x) due to ∣A∣ being even.



Chapter 9. Extremal combinatorics in theoretical computer science 237

We can modify the proof of Lemma 9.15 to obtain a similar result for dictatorships.

Lemma 9.19. The distance between F and the set of dictatorships is

1

2
− 1

2
max
i∈[n]

F̂({i}).

Therefore F is ε-far from being a dictatorship if and only if for all i ∈ [n],

F̂({i}) ≤ 1 − 2ε.

Putting everything together, we can analyze the test D(p) for odd functions.

Theorem 9.20. Let F ∶{0,1}n → {0,1} be an odd function.

1. If F is a dictatorship then D(p) accepts with probability 1 − p.

2. If F is ε-far from being a dictatorship then D(p) accepts with probability at most 1 − p −

(1 − 2p)ε, assuming ε ≤ 2p(1 − p).

Proof. If F is a dictatorship, say F = χ{i}, then Lemma 9.17 shows that D(p) succeeds with

probability

1

2
+ 1

2
∑

U⊆[n]

(1 − 2p)∣U ∣F̂(U)3 = 1

2
+ 1

2
(1 − 2p) = 1 − p,

since the only non-zero Fourier coefficient of F is F̂({i}) = 1.

For the second part, Lemma 9.18 shows that F̂(U) ≠ 0 only when ∣U ∣ is odd. Lemma 9.19

shows that F̂({i}) ≤ 1−2ε for all i ∈ [n]. The success probability of D(p), given by Lemma 9.17,

is

q = 1

2
+ 1

2
∑

U⊆[n]

(1 − 2p)∣U ∣F̂(U)3.

If ∣U ∣ = 1 then (1− 2p)∣U ∣F̂(U) ≤ (1− 2p)(1− 2ε), and otherwise ∣U ∣ ≥ 3 and so (1− 2p)∣U ∣F̂(U) ≤

(1 − 2p)3. When ε ≤ 2p(1 − p), (1 − 2p)2 ≤ 1 − 2ε, and so

q ≤ 1

2
+ 1

2
∑

U⊆[n]

(1 − 2p)(1 − 2ε)F̂(U)2 = 1

2
+ 1

2
(1 − 2p)(1 − 2ε) = 1 − p − (1 − 2p)ε,

using Parseval’s identity.

As in the case of test L, for any ε, δ we can repeat the test enough times to boost the

probabilities to 1 − δ in the positive case and δ in the negative case.
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9.3.3 Dictatorship testing using two queries

Test D(p) uses three queries. Can we get any meaningful test with only two? The idea is to

get rid entirely of the linearity apparatus, and concentrate on the noise stability of F .

Test D2(p): Given F ∶{0,1}n → {±1}, choose random x ∈ {0,1}n. Let z ∈ {0,1}n be

defined by zi = xi with probability 1 − p and zi = xi ⊕ 1 with probability p. Accept if

F (x)F (z) = 1.

Once again, the test succeeds for dictatorships only with probability 1− p. It also works for

anti-dictatorships, which are functions of the form F (x) = −(−1)xi . We can express its success

probability in terms of the Fourier coefficients of F .

Lemma 9.21. The test D2(p) accepts with probability

1

2
+ 1

2
∑

U⊆[n]

(1 − 2p)∣U ∣F̂(U)2.

Proof. We can express the acceptance probability as

E
x,z

F (x)F (z) + 1

2
= 1

2
+ 1

2
E
x,z
F (x)F (z).

Let z = x⊕w, where wi = 1 with probability p. Substituting the Fourier expansion of F , we get

F (x)F (z) = F (x)F (x⊕w)

= ∑
S,U⊆[n]

F̂(S)χS(x)F̂(U)χU(x⊕w)

= ∑
S,U⊆[n]

F̂(S)F̂(U)χS∆U(x)χU(w).

Since Ex χA(x) = JA = ∅K, we deduce that

E
x,z
F (x)F (z) = ∑

U⊆[n]

F̂(U)2 E
w
χU(w).

In the proof of Lemma 9.17, we calculated Ew χU(w) = (1 − 2p)∣U ∣, implying the statement of

the lemma.
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When analyzing D(p) in the case that F is ε-far from dictatorships, we used the inequality

F̂({i}) ≤ 1 − 2ε to estimate F̂({i})3 ≤ (1 − 2ε)F̂({i})2, and then applied Parseval’s inequality.

The matching expression for D2(p) is F̂({i})2, and so this approach fails. Instead, we use the

Friedgut–Kalai–Naor theorem.

Theorem 9.22. Let F ∶{0,1}n → {0,1} be an odd function.

1. If F is a dictatorship or an anti-dictatorship then D2(p) accepts with probability 1 − p.

2. If F is ε-far from being a dictatorship or an anti-dictatorship then D2(p) accepts with

probability at most 1 − p −Ω(p(1 − 2p)ε), assuming p, ε < 1/2.

Proof. If F is a dictatorship or an anti-dictatorship, then it is easy to check that D2(p) accepts

with probability 1 − p. For the other direction, suppose that D2(p) accepts with probability q.

According to Lemma 9.21,

q = 1

2
+ 1

2
∑

U⊆[n]

(1 − 2p)∣U ∣F̂(U)2.

Let γ = ∑∣U ∣>1 F̂(U)2. Lemma 9.18 shows that F̂(U) = 0 for even ∣U ∣, and so Parseval’s identity

implies

q ≤ 1

2
+ 1

2
(1 − 2p)(1 − γ) + 1

2
(1 − 2p)3γ = 1 − p − 2p(1 − p)(1 − 2p)γ.

We conclude that γ = (1 − p − q)/(2p(1 − p)(1 − 2p)). The Friedgut–Kalai–Naor theorem shows

that F is Cγ-close to some function G depending on at most one coordinate, for some universal

constant C. If G is constant then since F is odd, Cγ ≥ 1/2. Otherwise, by assumption Cγ ≥ ε.

Assuming ε ≤ 1/2, in both cases Cγ ≥ ε, implying 1 − p − q ≥ 2p(1 − p)(1 − 2p)ε/C.

9.3.4 Applications to inapproximability

In what sense is a test using two queries better than a test using three? The difference can

be essential in applications to inapproximability. In order to prove that a certain problem P

is inapproximable within some ratio R, we reduce from some version of the PCP theorem,

say Theorem 9.7. Given an instance I of label cover, we construct some instance f(I) of P ,

with the following property: if I is a YES instance, then f(I) has value V , while if I is a NO

instance, then f(I) has value V R. When P is a problem like MAX-3SAT, we can think of f(I)
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as a test for I being a YES instance. Each clause of f(I) is some predicate that depends on

three variables, which could be (for example) three values of a Boolean function F related to

the original instance I. Therefore a test querying three locations corresponds to MAX-3SAT

or to the more general MAX-3CSP (where instead of clauses we can use arbitrary Boolean

functions on three variables), and a test querying two locations corresponds to MAX-2SAT or

MAX-2CSP.

In the usual context in which dictatorship testing is used, YES instances are dictatorships,

but NO instances, rather than being ε-far from being a dictatorship, satisfy other quasirandom-

ness properties (see for example H̊astad [75]). However, in the context of assignment testers,

used for example in Dinur’s proof of the PCP theorem [15], NO instances are ε-far from a certain

collection of functions, and a test similar to the three-query dictatorship test is used. Because

of the specific nature of the test, the analysis requires the Friedgut–Kalai–Naor theorem.

Moreover, in the context of inapproximability, we can enforce the restriction that F is odd

using an appropriate encoding: F is defined explicitly only for inputs x for which x1 = 0, say,

and F (x) = −F (1−x) for inputs on which F is not explicitly defined. (A similar device is used

when encoding a symmetric matrix using its upper triangular part only.)



Chapter 10

Open problems

10.1 The Ahlswede–Khachatrian theorem

In Chapter 5 we proved the Ahlswede–Khachatrian theorem, using the technique of shifting.

Theorem 5.3. Let F be a t-intersecting family on n points for t ≥ 2. If r/(t + 2r − 1) < p <

(r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r), with equality if and only if F is

equivalent to Un(Ft,r).

If p = (r + 1)/(t + 2r + 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1), with equality if

and only if F is equivalent to either Un(Ft,r) or Un(Ft,r+1).

(Recall that for a family of sets F on m points, Un(F) = {A ⊆ [n] ∶ A ∩ [m] ∈ F}.)

In Chapter 3 we proved the special case r = 0 of this theorem using Friedgut’s method.

The benefit of this method is that it automatically yields stability. However, the same method

doesn’t work for r ≥ 1, since the analog of Lemma 3.13 on page 39 is false. That is, there is no

polynomial of degree at most t − 1 which has the correct eigenvalues.

For example, consider the simplest case t = 2, r = 1. The Ahlswede–Khachatrian theorem

shows that for p in the range 1/3 ≤ p ≤ 2/5, the maximal µp-measure of a 2-intersecting family

is mAK(p) = 4p3 −3p4. On the other hand, for Friedgut’s method to give an upper bound of m,

we need to find a linear polynomial P such that P (0) = 1 and (−p/(1 − p))sP (s) ≥ −m/(1 −m)

for all s ≥ 1 (cf. Lemma 3.13).
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Figure 10.1: Optimal bound mAK versus bound given by Friedgut’s method mF .

Letting P (s) = as + 1, finding the best polynomial P for given p reduces to the following

(infinite) linear program:

min
m

1 −m
s.t.

(− p

1 − p)
s

(as + 1) ≥ − m

1 −m for all s ≥ 1

The solution to this program (in the range 1/3 ≤ p ≤ 3/(5 + 3
√

10) ≈ 0.42) is m = mF (p) =

3p4/(1−4p+6p2) rather than mAK(p) (the tight constraints are for s = 1 and s = 4). Figure 10.1

plots the optimal bound mAK against the bound mF achieved by Friedgut’s method.

The reason that Friedgut’s method fails for p > 1/(t + 1) is that there exists some non-

Boolean function f which satisfies all the admissible constraints f ′B0f = f ′B1f = 0 given by

Lemma 3.11 but has measure mF (p) >mAK(p). An important open question is modifying the

method to prove the general case r ≥ 1.

k-wise t-intersecting families. A related open question concerns generalizing the Ahlswede–

Khachatrian theorem to k-wise t-intersecting families, which are families in which every k sets

intersect in at least t elements (the usual case corresponds to k = 2). It has been conjectured
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that the Ahlswede–Khachatrian theorem generalizes as follows.

Definition 10.1. The (k, t, r) Frankl family Fk,t,r is the k-wise t-intersecting family defined

by

Fk,t,r = {S ⊆ [t + kr] ∶ ∣S∣ ≥ t + (k − 1)r}. ◯

Conjecture 10.1. If F is k-wise t-intersecting then for p < 1/2,

µp(F) ≤ sup
r≥0

µp(Fk,t,r).

Furthermore, the supremum is attained for at most two values of r, and equality is possible only

if F is equivalent to the corresponding families.

A proof of this conjecture would yield a more direct proof of Claim 9.12 on page 231, in

the same way that the easier Lemma 9.5 follows from the Ahlswede–Khachatrian theorem (see

page 224).

Cross-intersecting families. A related question regards cross-t-intersecting families in the

regime p ≤ 1/(t + 1). In Chapter 3, we were only able to prove that µp(F)µp(G) ≤ p2t for

cross-t-intersecting families F ,G when p ≤ 1− 2−1/t. For t ≥ 2, 1− 2−1/t is smaller than 1/(t+ 1).

Can we close this gap?

10.2 Graphical intersection problems

Generalization to p > 1/2. In Chapter 4 we proved that if F is an odd-cycle-intersecting

family of graphs then µp(F) ≤ p3 for all p ≤ 1/2. As we commented in Section 4.6, our proof

breaks for p > 1/2. However, we expect the theorem to hold up to p = 3/4. When p > 3/4, the

µp-measure of the family of all graphs containing more than 3
4
(n

2
) + 4n edges tends to 1, and

the intersection of any two such graphs contains more than n2/4 edges, and so some triangle

(by Mantel’s theorem). When p = 3/4, the µp-measure of the family tends to some minuscule

constant which is much smaller than p3.
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Cycle-intersecting families. Another problem left open by our approach is that of cycle-

intersecting families. We expect cycle-intersecting families to have measure at most p3 for

p ≤ 1/2. For p > 1/2, the µp-measure of all graphs containing at least 1
2
(n

2
) + n/2 edges tends to

1, and the intersection of any two such graphs contains at least n edges, and so a cycle. This

problem appears much harder than the one we solved in Chapter 4. The reason is that our

proof relies heavily on random bipartite graphs, which are very dense. In contrast, cycle-free

graphs (in other words, forests) are very sparse, and that makes controlling the eigenvalues of

cycle-admissible matrices much harder, as we explain below.

In Chapter 4 we construct an operator A whose eigenvalues λG(A) are given by linear

combinations of functions of the form qk(G) = PrH[∣G∩H ∣ = k], where H is a random bipartite

graph. For concreteness, let us consider k = 1. On the one hand q1(−) = 1/2, where − is the

graph with a single edge, and on the other hand q1(G) ≤ 1 for all G. The reason that q1(−) = 1/2

is that the expected density of H is 1/2.

Consider what happens when instead H is a random forest. A random forest has density at

most 2/n, and so q1(−) ≤ 2/n. On the other hand, q1(Kn) = 1. This large dynamic range makes

it difficult to ensure that λ−(A) = −p3/(1− p3) while at the same time λG(A) ≥ −p3/(1− p3) for

all dense graphs G (consider what coefficient q1(G) should get in the expression for λG(A)).

H-intersecting families for general H. In general, for every given graph H, one can ask

what is the maximal size of an H-intersecting family. It is tempting to conjecture that the

maximal family always has µ-measure 2−H , but that is false even for P3, the path of length 3,

as shown by Christofides [8].

Lemma 10.2. There is a P3-intersecting family of µ-measure 17/128.

Proof. Consider the following graph G with 7 edges:
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The graph can be decomposed into three disjoint copies of P2 and an extra edge (the top edge in

the diagram). Define a family F of subgraphs of G which consists of the following 17 graphs: G

(1 graph), G minus an edge (7 graphs), G minus the extra edge and any other edge (6 graphs),

G minus any of the three copies of P2 (3 graphs). The intersection of any two graphs in F

always contains at least one copy of P2 and at least one additional edge, which together form

a copy of P3. Since G has 7 edges, the µ-measure of F is 17/27 = 17/128.

We do not know what is the largest µ-measure of a P3-intersecting family, nor do we have any

conjecture. We conjecture, however, that the maximal Kk-intersecting families are Kk-stars.

Cross-intersecting families. As in the case of cross-t-intersecting families, we were not able

to prove the cross-intersecting version of our result on odd-circuit-intersecting families. The

problem is that the inequality ∣λG∣ ≤ p3/(1−p3) is violated for forests of three edges. We expect

the cross-intersecting version of the theorem to hold for all p ≤ 1/2 and perhaps even for all

p ≤ 3/4.

10.3 Stability theorems for Boolean functions on Sn

Sharper results. In Chapter 7 and Chapter 8, we proved two stability theorems of the

following form: if F is a family of size c(n − 1)! (where c ≤ n/2) whose characteristic function

f is close to its projection f1 to L(n−1,1), then F is close to a family G which is the union of

⌈c⌋ cosets (the cosets can be assumed to be disjoint in the case of Chapter 8). Succinctly put,

Theorem 7.1 states that

E[(f − f1)2] = ε c
n
Ô⇒ ∣F∆G∣

n!
= O((ε1/2 + 1

n
)c) c

n
,

and Theorem 8.1 states that

E[(f − f1)2] = εÔ⇒ ∣F∆G∣
n!

= O(n
c
(ε1/7 + 1

n1/3
)).

In order to get an approximation error which is o(c(n − 1)!), we need c = o(n) in the first

theorem, and c = ω(n5/6) in the second theorem. The theorems thus complement each other.

Together with David Ellis and Ehud Friedgut, we conjecture a sharper result.
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Conjecture 10.3. Let F ⊆ Sn be a family of permutations of size c(n − 1)!. Let f = 1F (so

E[f] = c/n) and let f1 = f̂((n)) + f̂((n − 1,1)) be the projection of f to L(n−1,1).

If E[(f − f1)2] = ε∥f∥2, then there exists a family G ⊆ Sn which is the union of ⌈c⌋ cosets

satisfying

∣F∆G∣ = O(ε∣F ∣).

Generalizations. Together with David Ellis and Ehud Friedgut, we proved a generalization of

Theorem 7.1 to families close to L(n−t,1t) [25]. As in the case of Theorem 7.1, this generalization

is only meaningful when c = o(n), where the family in question has size c(n− t)!. We conjecture

that Conjecture 10.3 extends to this case.
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[30] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets.

Quart. J. Math. Oxford (2), 12:313–320, 1961.

[31] Dvir Falik and Ehud Friedgut. Between Arrow and Gibbard-Satterthwaite: a

representation-theoretic approach. Submitted.

[32] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634–652, July

1998.



Bibliography 250

[33] Yuval Filmus. Triangle-intersecting families on eight vertices. ArXiv e-prints, February

2011.
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