
Monotone Submodular Maximization over a Matroid

via Non-Oblivious Local Search

Yuval Filmus and Justin Ward

November 25, 2012

Abstract

We present an optimal, combinatorial 1−1/e approximation algorithm for monotone submodular op-
timization over a matroid constraint. Compared to the continuous greedy algorithm (Calinescu, Chekuri,
Pál and Vondrák, 2008), our algorithm is extremely simple and requires no rounding. It consists of the
greedy algorithm followed by local search. Both phases are run not on the actual objective function, but
on a related auxiliary potential function, which is also monotone submodular.

In our previous work on maximum coverage (Filmus and Ward, 2011), the potential function gives
more weight to elements covered multiple times. We generalize this approach from coverage functions
to arbitrary monotone submodular functions. When the objective function is a coverage function, both
definitions of the potential function coincide.

Our approach generalizes to the case where the monotone submodular function has restricted cur-
vature. For any curvature c, we adapt our algorithm to produce a (1 − e−c)/c approximation. This
matches results of Vondrák (2008), who has shown that the continuous greedy algorithm produces a
(1 − e−c)/c approximation when the objective function has curvature c, and proved that achieving any
better approximation ratio is impossible in the value oracle model.

1 Introduction

In this paper, we consider the problem of maximizing a monotone submodular function f , subject to a single
matroid constraint. Formally, let U be a set of elements and let f : 2U → R be a function assigning a value
to each subset of U . We say that f is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

for all A,B ⊆ U . If additionally, f(A) ≤ f(B) whenever A ⊆ B, we say that f is monotone submodular.
Submodular functions exhibit (and are, in fact, alternately characterized by) the property of diminishing
returns—if f is submodular then f(A∪{x})−f(A) ≤ f(B∪{x})−f(B) for all B ⊆ A. Hence, they are useful
for modeling various economic and game-theoretic scenarios, as well as various combinatorial problems. In
a general monotone submodular maximization problem, we are given a value oracle for f and a membership
oracle for some distinguished collection I ⊆ 2U of feasible sets, and our goal is to find a member of I that
maximizes the value of f . We assume further that f is normalized so that f(∅) = 0.

We consider the restricted setting in which the collection I forms a matroid. Matroids are intimately
connected to combinatorial optimization: the problem of optimizing a linear function over a hereditary
set system (a set system closed under taking subsets) is solved optimally for all possible functions by the
standard greedy algorithm if and only if the set system is a matroid [27, 8].

In the case of a monotone submodular objective function, the standard greedy algorithm, which takes
at each step the element yielding the largest increase in f while maintaining independence, is (only) a 2-
approximation [17]. Recently, Calinescu et al. [5, 28, 6] have developed a (1 − 1/e)-approximation for this
problem via the continuous greedy algorithm, which is essentially a steepest descent algorithm running in

1

continuous time (in practice, a suitably discretized version is used), producing a fractional solution. The
fractional solution is rounded using pipage rounding [1] or swap rounding [7].

Feige [9] has shown that improving the bound (1 − 1/e) is NP-hard. Nemhauser and Wolsey [24] have
shown that any improvement over (1 − 1/e) requires an exponential number of queries in the value oracle
setting.

Following Vondrák [29], we also consider the case when f has restricted curvature. We say that f has
restricted curvature c with respect to I if for any two non-empty and disjoint independent sets A,B,

f(A ∪B) ≥ f(A) + (1− c)f(B).

When c = 1, this is a restatement of monotonicity. Vondrák [29] has shown that the continuous greedy
algorithm produces a (1 − e−c)/c approximation when f has restricted curvature c. Furthermore, he has
shown that any improvement over (1− e−c)/c requires an exponential number of queries in the value oracle
setting.

Our definition of curvature differs from the usual (non-restricted) definition of curvature in that we only
consider sets A and B that are independent, while the general definition requires that the above inequality
hold for all (not necessarily independent) sets A and B. Therefore, every function with curvature at most c
also has restricted curvature at most c and so our algorithm applies to a wider class of functions than those
with non-restricted curvature at most c.

1.1 Our contribution

We propose a conceptually simple randomized polynomial time local search algorithm for the problem of
monotone submodular maximization over a matroid. Like the continuous greedy algorithm, our algorithm
delivers the optimal (1−1/e)-approximation. However, unlike the continuous greedy algorithm, our algorithm
is entirely combinatorial, in the sense that it deals only with integral solutions to the problem and hence
involves no rounding procedure. As such, we believe that the algorithm may serve as a gateway to further
improved algorithms in contexts where pipage rounding and swap rounding break down, such as submodular
maximization subject to multiple matroid constraints.

Our main result is a (1 − 1/e) approximation algorithm for monotone submodular maximization over a
matroid. For a function with curvature c, the algorithm can be generalized to a (1− e−c)/c approximation
algorithm, assuming the value of c is known in advance. We also obtain a (1 − e−c)/c − ε algorithm which
does not require knowledge of c.

Our algorithmic approach is based on non-oblivious local search, a technique first proposed by Alimonti [2]
and by Khanna, Motwani, Sudan and Vazirani [20]. In classical (or, oblivious) local search, the algorithm
starts at an arbitrary solution, and proceeds by iteratively making small changes that improve the objec-
tive function, until no such improvement can be made. The locality ratio of a local search algorithm is
min f(S)/f(O), where S is a solution that is locally-optimal with respect to the small changes considered by
the algorithm, O is a global optimum, and f is the objective function. The locality ratio provides a natural,
worst-case guarantee on the approximation performance of the local search algorithm.

In many cases, oblivious local search may have a very poor locality ratio, implying that a locally-optimal
solution may be of significantly lower quality than the global optimum. For example, for monotone sub-
modular maximization over a matroid, the locality ratio for an algorithm changing a single element at each
step is 1/2 [17]. Non-oblivious local search attempts to avoid this problem by making use of a secondary
potential function to guide the search. By carefully choosing this auxiliary function, we ensure that poor
local optima with respect to the original objective function are no longer local optima with respect to the
new potential function.

In previous work [14], we designed an optimal non-oblivious local search algorithm for the restricted case
of maximum coverage subject to a matroid constraint. In this problem, we are given a weighted universe of
elements, a collection of sets, and a matroid defined on this collection. The goal is to find a collection of sets
that is independent in the matroid and covers elements of maximum total weight. The non-oblivious potential
function used in [14] gives extra weight to solutions that cover elements multiple times. In the present work,

2

we extend this approach to general monotone submodular functions. This presents two challenges: defining a
non-oblivious potential function without reference to the coverage representation, and analyzing the resulting
algorithm.

In order to define the general potential function, we construct a variant of the potential function from [14]
which doesn’t refer to elements. Instead, the potential function aggregates the information obtained by
applying the objective function to all subsets of the input, weighted according to their size. Intuitively,
the resulting potential function gives extra weight to solutions that contain a large number of good sub-
solutions, or equivalently, remain good solutions on average even when elements are randomly removed. An
appropriate setting of the weights defining our potential function yields a function which coincides with the
previous definition for coverage functions, but still makes sense for arbitrary monotone submodular functions.

The analysis of the algorithm in [14] is relatively straightforward. For each type of element in the universe
of the coverage problem, we must prove a certain inequality among the coefficients defining the potential
function. In the general setting, however, we need to construct a proof using only the inequalities given by
monotonicity and submodularity. The resulting proof is non-obvious and delicate.

This paper extends and simplifies previous work by the same authors. The paper [15], appearing in
FOCS 2012, only discusses the case c = 1. The general case is discussed in [16], which appears in ArXiv.
The present paper simplifies the work appearing in [16]. This simplification comes at the cost of slightly
inferior results. The slightly superior results obtained in [15] and [16] are discussed in §A.2.

An exposition of the ideas of both [14] and [16] can be found in the second author’s thesis [31]. In
particular, the thesis explains how the auxiliary objective function can be determined by solving a linear
program, both in the special case of maximum coverage and in the general case of monotone submodular
functions with restricted curvature.

1.2 Related work

Fisher, Nemhauser and Wolsey [25, 17] analyze greedy and local search algorithms for submodular maxi-
mization subject to various constraints, including single and multiple matroid constraints, and obtain some
of the earliest results in the area, including a 1/(k+ 1)-approximation for monotone submodular maximiza-
tion subject to k matroid constraints. A recent survey by Goundan and Schulz [19] reviews many results
pertaining to the greedy algorithm for submodular maximization.

More recently, Lee, Sviridenko and Vondrák [23] consider the problem of both monotone and non-
monotone submodular maximization subject to multiple matroid constraints, attaining a 1/(k + ε)-approx-
imation for monotone submodular maximization subject to k ≥ 2 constraints using local search. Feldman
et al. [13] show that a local search algorithm attains the same bound for the related class of k-exchange
systems, which includes the intersection of k strongly base orderable matroids, as well as the independent
set problem in (k + 1)-claw free graphs. Further work by Ward [30] shows that a non-oblivious local search
routine attains an improved 2/(k + 3)− ε approximation for this class of problems.

In the case of unconstrained non-monotone maximization, Feige, Mirrokni and Vondrák [10] give a 2/5
approximation via a randomized local search algorithm, and give an upper bound of 1/2 in the value oracle
model. Gharan and Vondrák [18] improved the algorithmic result to 0.41 by enhancing the local search
algorithm with ideas borrowed from simulated annealing. Feldman, Naor and Schwarz [12] later improved
this to 0.42 by using a variant of the continuous greedy algorithm. Buchbinder, Feldman, Naor and Schwartz
have recently obtained an optimal 1/2 approximation algorithm [4].

In the setting of constrained non-monotone submodular maximization, Lee et al. [22] give a 1/(k+2+1/k+
ε) approximation subject to k matroid constraints and a 1/5− ε approximation for k knapsack constraints.
Further work by Lee, Sviridenko and Vondrák [23] improves the approximation ratio in the case of k matroid
constraints to 1/(k + 1 + 1/(k − 1) + ε). Feldman et al. [13] attain this ratio for k-exchange systems. In
the case of non-monotone submodular maximization subject to a single matroid constraint, Feldman, Naor
and Schwarz [11] obtain a 1/e approximation by using a version of the continuous greedy algorithm. They
additionally unify various applications of the continuous greedy and obtain improved approximations for
non-monotone submodular maximization subject to a matroid constraint or O(1) knapsack constraints.

3

1.3 Organization of the paper

Some basic definitions are included in §2. The auxiliary objective function we use is defined in §3, and the
issue of evaluating it is discussed in §4. The main algorithm is described and analyzed in §5, and some simple
extensions are described in §6. Auxiliary objective functions resulting in a better locality ratio are discussed
in §A. The definition of the auxiliary objective function is demystified in §B. A combinatorial version of the
continuous greedy algorithm appears in §C.

2 Definitions

Notation If B is some Boolean condition, then

JBK =

{
1 if B is true,

0 if B is false.

For n a natural number, [n] = {1, . . . , n}. We use Hk to denote the kth Harmonic number,

Hk =

k∑
t=1

1

t
.

It is well-known that Hk = log n+ γ +O(1/n), where log n is the natural logarithm.
For S a set and x an element, S + x = S ∪ {x} and S − x = S \ {x}. We will use S + x even when x ∈ S,

and S − x even when x /∈ S.
Let U a set. A set-function f on U is a function f : 2U → R whose arguments are subsets of U . For

x ∈ U , we use f(x) = f({x}). For A,B ⊆ U , the marginal of B with respect to A is

fA(B) = f(A ∪B)− f(A).

Properties of set-functions A set-function f is normalized if f(∅) = 0. It is monotone if whenever
A ⊆ B then f(A) ≤ f(B). It is submodular if whenever A ⊆ B and C is disjoint from B, fA(C) ≥ fB(C). If
f is monotone, we need not assume that B and C are disjoint. Submodularity is also characterized by the
submodular inequality

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

The set-function f has curvature c if for all A ⊆ U and x /∈ A, fA(x) ≥ (1 − c)f(x). Note that if f has
curvature c and c′ ≥ c, then f also has curvature c′. Every normalized monotone function has curvature 1.
A normalized function with curvature 0 is linear, that is fA(x) = f(x).

If I is a collection of sets, then f has restricted curvature c with respect to I if for all disjoint A,B ∈ I,
fA(B) ≥ (1− c)f(B). This is a weaker notion than curvature.

Matroids A matroid M on a ground set U is a collection of subsets of U satisfying the following two
properties: (1) If A ∈M and B ⊆ A then B ∈M; (2) If A,B ∈M and |A| > |B| then B+x ∈M for some
x ∈ A \B.

The sets in M are called independent sets. Maximal independent sets are known as bases. It turns out
that all bases of the matroid have the same size, called the rank of the matroid.

One simple example is a partition matroid. The universe U is partitioned into r parts U1, . . . ,Ur, and a
set is independent if it contains at most one element from each part.

If A is an independent set, then the slice matroid M/A, defined on U \A, is given by

M/A = {B ⊆ U \A : A ∪B ∈M}.

Our proofs crucially depend on the following elementary result from [3].

Fact (Brualdi’s lemma). Suppose A,B are two bases in a matroid. There is a bijection π : A→ B such that
for all a ∈ A, A− a+ π(a) is a basis. Furthermore, π is the identity on A ∩B.

4

Monotone submodular maximization An instance of monotone submodular maximization is given by
a triple (M,U , f), whereM is a matroid on U , and f is a set-function on U which is normalized, monotone
and submodular.

The optimum of the instance is
f∗ = max

O∈M
f(O).

The maximum is always attained at some basis. A set S ∈M is an α-approximation if f(S) ≥ αf(O). Thus
0 ≤ α ≤ 1. (Some authors use α−1 instead of α.)

Maximum coverage Maximum coverage is the special case of monotone submodular maximization when
f is a coverage function. A coverage function is given by the following data. There is a universe V with
non-negative weight function w : V → R≥0. The weight function is extended to subsets of V linearly. Each
element in U is a subset V, and the function f satisfies f(A) = w (

⋃
A).

3 The auxiliary objective function

Throughout this section as well as §4,5, fix some instance (M,U , f) of monotone submodular maximization,
and let r be the rank of M. In this section we define the auxiliary objective function g, assuming that f
has curvature c, where c ∈ (0, 1]. Our construction depends on c, but c will not figure out in any of the
notations we use to avoid clutter. Careful inspection of our proofs shows that it is enough to assume that f
has restricted curvature c with respect to M.

3.1 Definition

The definition is in stages. Let P be the probability distribution supported on [0, 1] with density cecx/(ec−1).
Let µ be a probability distribution on 2U defined as follows: choose p randomly according to P , and then
take each x ∈ U with probability p independently. For A ⊆ U , let µA be the marginal distribution on 2A.

Finally, define m
(n)
k = µA(B), where B ⊆ A are arbitrary sets of sizes |A| = n and |B| = k.

As it turns out, µ will govern the definition of marginals of g. In order to define g itself, we have to define
a different measure νA for each subset A ⊆ U . This measure is defined by νA(∅) = 0 and for non-empty
B ⊆ A,

νA(B) = E
p∼P

[p|B|−1(1− p)|A|−|B|].

Note that νA is not a probability measure. We define

g(A) =
∑
B⊆A

f(B)νA(B). (1)

Lemma 1. For any A ⊆ U and x ∈ U \A,

gA(x) = E
B∼µA

fB(x). (2)

5

Proof. Substituting (1),

gA(x) = g(A+ x)− g(A)

=
∑
B⊆A

E
p∼P

[
p|B|(1− p)|A|−|B|

]
f(B + x)

+ E
p∼P

[
p|B|−1(1− p)|A|+1−|B| − p|B|−1(1− p)|A|−|B|

]
f(B)

=
∑
B⊆A

E
p∼P

[
p|B|(1− p)|A|−|B|

]
[f(B + x)− f(B)]

=
∑
B⊆A

µA(B)fB(x) = E
B∼µA

fB(x).

Note The definition of g might look mysterious. However, as we show in §B, any function g satisfying
some natural properties can be written in this form for an appropriate distribution P .

3.2 Properties

The following result is immediate.

Lemma 2. For x ∈ U we have g(x) = f(x).

Proof. Since f(∅) = g(∅) = 0, this follows directly from formula (2) with A = ∅.

Next, we show that g shares all basic properties of f .

Lemma 3. The function g is normalized, monotone, submodular and has curvature c.

Proof. It is clear from the definition that g is normalized. Formula (2) immediately implies that g is
monotone. Moreover, suppose that A1 ⊆ A2 and x /∈ A2. The same formula shows that

gA2(x) = E
B∼µA2

fB(x) ≤ E
B∼µA2

fB∩A1(x) = E
B∼µA1

fB(x) = gA1
(x).

Thus g is submodular. Finally, for x /∈ A,

gA(x) = E
B∼µA

fB(x) ≥ (1− c)f(x) = (1− c)g(x).

This shows that g has curvature c.
Curiously, for given |A|, g has somewhat lower curvature. Indeed, a more accurate estimate is

gA(x) ≥ [(1− c) + cm
(|A|)
0]g(x) = (1− c(1−m(|A|)

0))g(x).

Finally, we present bounds on the ratio between g and f .

Lemma 4. For S ⊆ U ,

f(S) ≤ g(S) ≤ cec

ec − 1
H|S|f(S).

Proof. Formula (2) implies that for x /∈ A,

gA(x) = E
B∼µA

fB(x) ≥ fA(x).

This easily implies that g(S) ≥ f(S). For the other direction, formula (1) implies that

g(S) ≤
∑
T⊆S

νS(T)f(S).

6

We proceed to estimate the sum:

∑
T⊆S

νS(T) =

|S|∑
k=1

(
|S|
k

)
E
p∼P

[pk−1(1− p)|S|−k]

=
c

ec − 1

|S|∑
k=1

(
|S|
k

)∫ 1

0

pk−1(1− p)|S|−kecp dp

≤ cec

ec − 1

|S|∑
k=1

(
|S|
k

)∫ 1

0

pk−1(1− p)|S|−k dp

=
cec

ec − 1

|S|∑
k=1

(|S|
k

)
|S|
(|S|−1
k−1

)
=

cec

ec − 1

|S|∑
k=1

1

k
,

using the Beta integral.

Lemma 5. For S ⊆ U and x ∈ U \ S,

c

ec − 1
· f(x)

|S|+ 1
≤ gS(x) ≤ f(x).

Moreover,
c

ec − 1
· 1

|S|+ 1
≤ µS(∅) ≤ cec

ec − 1
· 1

|S|+ 1
.

Proof. Formula (2) shows that
gS(x) = E

T∼µS

fT (x) ≤ f(x).

On the other hand,
gS(x) ≥ µS(∅)f(x).

We can estimate µS(∅) directly from its formula, using the monotonicity of ecp in p:

µS(∅) =
c

ec − 1

∫ 1

0

(1− p)|S|ecp dp

=
cecp

∗

ec − 1

∫ 1

0

(1− p)|S| dp =
cecp

∗

ec − 1
· 1

|S|+ 1
,

for some p∗ ∈ [0, 1].

The factors c/(ec − 1) and cec/(ec − 1) are bounded, as the following simple result shows.

Lemma 6. The function c/(ec − 1) is decreasing, the function cec/(ec − 1) is increasing. Consequently, for
c ∈ [0, 1],

1

e− 1
≤ c

ec − 1
≤ 1,

1 ≤ cec

ec − 1
≤ e

e− 1
.

7

4 Evaluating g

Having defined g, we present two ways to evaluate g (approximately or exactly). In the set coverage case,
which we cover first, g can be evaluated exactly, and (unsurprisingly) for c = 1, we get the same function as
in [14]. In general, we can evaluate g by sampling, as we explain next.

4.1 Set coverage

When f is a coverage function, we can compute g explicitly in terms of the histogram of the input. Let us
recall the setting: there is some ground set V, and every element a ∈ V has a non-negative weight w(a).
Each element x ∈ U is some subset of V.

For a set S ⊆ U , let h(a;S) be the number of times that a appears in sets in S.

Lemma 7. For S ⊆ U we have
g(S) =

∑
a∈

⋃
S

αh(a;S)w(a),

where the sequence αn is given by

αn = E
p∼P

[
1− (1− p)n

p

]
.

Proof. It is immediate from the definition of g(S) that there are some constants α
(m)
k such that

g(S) =
∑
a∈V

α
(|S|)
h(a;S)w(a).

In order to see that α
(m)
k doesn’t depend on m, fix S and let x be a new element corresponding to the empty

set. Since fT (x) = 0 for all T , formula (2) shows that gS(x) = 0, that is, g(S + x) = g(S). This implies that∑
a∈V

α
(|S|+1)
h(a;S) w(a) =

∑
a∈V

α
(|S|)
h(a;S)w(a).

In other words, α
(|S|+1)
k = α

(|S|)
k for all k ≤ |S|. This shows that the sequences α(|S|) extend to a universal

sequence α.
Finally, in order to calculate αn, consider a set S consisting of n copies of the set {a}, where w(a) = 1.

On the one hand, g(S) = αn, and on the other,

g(S) =
∑
T⊆S

f(T)νS(T) =
∑
T⊆S

νS(T).

Evaluate the sum using the formula for νS(T):

αn =
∑
T⊆S

νS(T) =

n∑
k=1

(
n

k

)
E
p∼P

[pk−1(1− p)n−k]

= E
p∼P

[
1− (1− p)n

p

]
.

In order to evaluate the sequence αn, it will be useful to define the difference sequence βn = αn+1 − αn.

Lemma 8. The β sequence is given by

βn = E
p∼P

[(1− p)n] = m
(n)
0 .

8

It is also given by the recurrence

β0 = 1, βn = c−1nβn−1 −
1

ec − 1
.

The α sequence is given by the recurrence

α0 = 0, α1 = 1, αn+1 = (c−1n+ 1)αn − c−1nαn−1 −
1

ec − 1
.

Proof. The formula for β follows from the identity

1− (1− p)n+1

p
− 1− (1− p)n

p
= (1− p)n.

The recurrence for β follows from Lemma 10, proved below in §4.2. The recurrence for α follows by substi-
tuting the definition of β in its recurrence formula.

When c = 1, these are the same recurrences (up to scaling) that appear in [14]. Finally, we deduce from
Lemma 5 some bounds on βn and αn.

Lemma 9. For n ≥ 0,

c

ec − 1
Hn ≤αn ≤

cec

ec − 1
Hn,

c

ec − 1
· 1

n+ 1
≤βn ≤

cec

ec − 1
· 1

n+ 1
.

4.2 Evaluating µ and ν

In order to evaluate µ on subsets of U , it is enough to calculate m
(n)
k for all relevant n and k. The following

lemma gives a recurrence facilitating this computation.

Lemma 10. For n > 0 and 0 ≤ k ≤ n,

cm
(n)
k = (n− k)m

(n−1)
k − km(n−1)

k−1 +

−c/(ec − 1) if k = 0,

0 if 0 < k < n,

cec/(ec − 1) if k = n.

The base case is m
(0)
0 = 1.

Proof. The proof is based on a simple integration by parts:

cm
(n)
k =

c

ec − 1

∫ 1

0

pk(1− p)n−kcecp dp

=
c

ec − 1

[
pk(1− p)n−kecp

]∣∣1
0

− c

ec − 1

∫ 1

0

[
kpk−1(1− p)n−k − (n− k)pk(1− p)n−k−1

]
ecp dp

=
Jk = nKcec − Jk = 0Kc

ec − 1
+ (n− k)m

(n−1)
k − km(n−1)

k−1 .

The measures ν and µ are related by νS(T) = m
(|S|−1)
|T |−1 . However, ν is not a probability measure. In

order to determine the measure of the entire space, consider the function f(S) = JS 6= ∅K. Lemma 7 shows
that the required measure is α|S| (indeed, this is how we evaluated αn in the first place). It is therefore
natural to define the probability measure ν∗S = νS/α|S|. This measure satisfies

g(T) = α|S| E
T∼ν∗S

f(T). (3)

9

4.3 Sampling g

We show how to estimate g(S) by sampling. The main tool is Hoeffding’s bound, which we presently recall.

Fact (Hoeffding’s bound). Let X1, . . . , XN be i.i.d. non-negative random variables bounded by B, and let X̄
be their average. Suppose that E X̄ ≥ ρB. For any ε > 0,

Pr[(1− ε)E X̄ ≤ X̄ ≤ (1 + ε)E X̄] ≥ 1− 2 exp

(
−2(ερ)2

N

)
. (4)

This has the following implication.

Lemma 11. There is some universal constant C1 such that the following holds.
Let S be a set of size n. Choose M, ε > 0. Let g̃(S) be an estimate of g(S) obtained by taking N samples

of αnf(T), where T ∼ ν∗S and
N = C1ε

−2(log n)2 logM.

Then

Pr[(1− ε)g(S) ≤ g̃(S) ≤ (1 + ε)g(S)] ≥ 1− 1

M
.

Proof. Each sample αnf(T) is bounded by αnf(S). On the other hand, Lemma 4 shows that g(S) ≥ f(S).
This shows that we can take ρ = 1/αn in (4). Finally, Lemma 9 shows that αn = O(log n).

5 Main algorithm

We describe the algorithm from the point of view of general monotone submodular functions. In the max-
imum coverage case, we can replace sampling with direct evaluation. Otherwise, we will use the notation
g̃[N](S) to mean the average of N samples of α|S|f(T), where T ∼ ν∗S . The value of N will be a parameter
of the algorithm, which we set later. Another parameter of the algorithm is ε ∈ (0, 1/5].

Recall r is the rank of the matroid. The algorithm has two phases: greedy phase and local search phase.
The greedy phases successively chooses sets S1, . . . , Sr in such a way that S = {S1, . . . , Sr} is a basis. We
choose Sk according to the formula

Sk = argmax
x : {S1,...,Sk−1,x}∈M

g̃[N]({S1, . . . , Sk−1, x}).

In the local search phase, we continually try to improve the set S, until it is impossible to improve it by
more than 1 + 3ε. At each step, we attempt to find i ∈ [r] and x ∈ U such that S − Si + x is a basis and

g̃[N](S − Si + x) > (1 + 3ε)g̃[N](S).

If such i, x are found, then we replace Si with x, and go to the next step. Otherwise, we stop and output S.
We will set N so that Lemma 11 applies, with the same ε and some M which will be so large that with

high probability, the bad event alluded to in the lemma never happens. For the rest of the analysis (until
§5.4), we will make this assumption, and later on we will choose M (and so N) to make the assumption valid
with high probability. We call this the sampling assumption.

5.1 Greedy phase

We evaluate the greedy phase from the perspective of maximizing g. This is needed so that we can bound
the number of local search iterations.

Lemma 12. The set S produced by the greedy phase satisfies

(2 + 3rε)g(S) ≥ max
O∈M

g(O).

10

Proof. Let O be a set at which the maximum is attained. According to Brualdi’s lemma, we can write
O = {O1, . . . , Or} so that {S1, . . . , Sk−1, Ok} is independent for all k ∈ [r]. The sampling assumption
implies that

(1 + 3ε)g({S1, . . . , Sk}) ≥ g({S1, . . . , Sk−1, Ok}).

(We used (1 + ε)/(1− ε) ≤ 1 + 3ε for ε ≤ 1/5.) In particular,

3εg(S) + g{S1,...,Sk−1}(Sk) ≥ g{S1,...,Sk−1}(Ok).

Summing this over all k, we obtain

(1 + 3rε)g(S) ≥
r∑

k=1

g{S1,...,Sk−1}(Ok) ≥
r∑

k=1

gS(Ok) ≥ gS(O) ≥ g(O)− g(S).

5.2 Local optimality

The sampling assumption, along with the bound ε ≤ 1/5, allows us to relate the working of local search to
actual (rather than sampled) values of g.

Lemma 13. If g̃[N](A) > (1 + 3ε)g̃[N](B) then

g(A) > (1 + ε/3)g(B).

If g̃[N](A) ≤ (1 + 3ε)g̃[N](B) then
g(A) ≤ (1 + 7ε)g(B).

Proof. If g̃[N](A) > (1 + 3ε)g̃[N](B) then

(1 + ε)g(A) > (1 + 3ε)(1− ε)g(B).

If g̃[N](A) ≤ (1 + 3ε)g̃[N](B) then

(1− ε)g(A) ≤ (1 + 3ε)(1 + ε)g(B).

The lemma follows from simple arithmetic.

At the end of the algorithm, we reach an approximate local optimum S. Let O be a basis maximizing
f(O) (this is an optimum for f rather than g). According to Brualdi’s lemma, we can write O = {O1, . . . , Or}
so that S − Si +Oi is a base for all i ∈ [r].

Lemma 14. The sets S,O satisfy

7rεg(S) +

r∑
i=1

[g(S)− g(S − Si +Oi)] ≥ 0.

Proof. The termination condition of the algorithm guarantees that for all i ∈ [r],

(1 + 7ε)g(S) ≥ g(S − Si +Oi).

Summing this over all i ∈ [r], the lemma follows.

11

5.3 Locality ratio

In this section, S and O keep their meaning from §5.2. Furthermore, we assume (without loss of generality)
that if Oi ∈ S for some i ∈ [r], then in fact Oi = Si. The goal of this section is to prove the following lemma,
which is the crux of the entire argument. The proof relies on three technical lemmas, proved below.

Lemma 15. The sets S,O satisfy

cec

ec − 1
f(S) ≥ f(O) +

r∑
i=1

[g(S)− g(S − Si +Oi)].

Proof. We have

r∑
i=1

gS−Si
(Si) ≥

r∑
i=1

[g(S)− g(S − Si +Oi)] + E
T∼µS

r∑
i=1

fT−Oi
(Oi)

≥
r∑
i=1

[g(S)− g(S − Si +Oi)] + f(O)− c E
T∼µS

f(T),

where the first inequality follows from Lemma 16, and the second inequality follows from Lemma 17. Since
f(∅) = 0, Lemma 18 implies that

cec

ec − 1
f(S) =

r∑
i=1

gS−Si
(Si) + c E

T∼µS

f(T) ≥ f(O) +

r∑
i=1

[g(S)− g(S − Si +Oi)].

We proceed to prove the technical lemmas.

Lemma 16. For all i ∈ [r],

gS−Si(Si) ≥ g(S)− g(S − Si +Oi) + E
T∼µS

fT−Oi(Oi).

Proof. We consider two cases: Oi /∈ S and Oi = Si. If Oi /∈ S then the submodularity of g implies

gS−Si(Si) ≥ gS−Si+Oi(Si)

= g(S +Oi)− g(S − Si +Oi)

= gS(Oi) + g(S)− g(S − Si +Oi)

= g(S)− g(S − Si +Oi) + E
T∼µS

fT (Oi).

Since Si /∈ S, T −Oi = T for all T ⊆ S.
When Oi = Si, the desired inequality is in fact tight:

gS−Si
(Si) = E

T∼µS−Si

fT (Si) = E
T∼µS

fT−Si
(Si) = E

T∼µS

fT−Oi
(Oi).

The calculation relies on the fact that µS−Si
is the marginal of µS on 2S−Si .

Lemma 17. For any T ⊆ S,
r∑
i=1

fT−Oi
(Oi) ≥ f(O)− cf(T).

Proof. Let X = T ∩O, T ′ = T \X and O′ = O \X. Furthermore, let I(X) ⊆ [r] be the set of indices such
that Oi ∈ X. We separate the sum on the left-hand side into two parts. The first part is∑

i/∈I(X)

fT−Oi
(Oi) =

∑
i/∈I(X)

fT (Oi) ≥ fT (O′).

12

Using T ∪O′ = O ∪ T ′ and O ∩ T ′ = ∅, we get

fT (O′) = f(T ∪O′)− f(T)

= f(O ∪ T ′)− f(T)

≥ f(O) + (1− c)f(T ′)− f(T).

The second part is ∑
i∈I(X)

fT−Oi
(Oi) ≥

∑
i∈I(X)

(1− c)f(Oi) ≥ (1− c)f(X).

Putting both parts together, we deduce

r∑
i=1

fT−Oi
(Oi) ≥ f(O) + (1− c)[f(T ′) + f(X)]− f(T)

≥ f(O) + (1− c)f(T)− f(T)

= f(O)− cf(T).

The following lemma is the only place in which we use the specific definition of µS , in the form of
Lemma 10.

Lemma 18. We have

r∑
i=1

gS−Si
(Si) + c E

T∼µS

f(T) =
cec

ec − 1
f(S)− c

ec − 1
f(∅). (5)

Proof. Recall
gS−Si(Si) = E

U∼µS−Si

[f(U + Si)− f(U)].

Each subset T ⊆ S appears on the right-hand side of this expression: if Si ∈ T then it appears with positive
coefficient µS−Si(T − Si), and if Si /∈ T then it appears with negative coefficient µS−Si(T). Therefore the
coefficient of f(T) in the left-hand side of (5) is

cµS(T) +
∑
Si∈T

µS−Si
(T − Si)−

∑
Si /∈T

µS−Si
(T) = cm

(r)
|T | + |T |m

(r−1)
|T |−1 − (r − |T |)m(r−1)

|T | .

According to Lemma 10, the right-hand side vanishes unless T = ∅ or T = S. Substituting the values
obtained in these two cases, the lemma follows.

5.4 Parameters and analysis

Combining Lemma 14 and Lemma 15, we deduce the approximation ratio of the algorithm.

Lemma 19. Let S denote the output of the algorithm, and let O be a basis maximizing f(O). Then

f(S)

f(O)
≥ 1− e−c

c
−O(r log rε).

Proof. Combining Lemma 14 and Lemma 15, we deduce

c

1− e−c
f(S) ≥ f(O)− 7rεg(O) ≥ (1−O(r log rε))f(O),

where the second inequality follows from Lemma 4.

The final piece of the puzzle is the number of iterations needed for local search to converge.

13

Lemma 20. The number of steps T in the local search phase is bounded by

T ≤ ε−1 + 9r.

Proof. Suppose there are T steps in all, and the versions of S encountered during the algorithm are
S0, . . . , ST , where S0 is the result of the greedy phase. According to Lemma 12,

(2 + 3rε)g(S0) ≥ g(ST).

On the other hand, Lemma 13 implies that for t ∈ [T],

g(St+1) ≥ (1 + ε/3)g(St).

Therefore
2 + 3rε ≥ (1 + ε/3)T ≥ 1 + (T/3)ε.

We can finally put everything together, discharging the sampling assumption.

Theorem 1. There are some universal constants C2, C3 such that the following holds.
Given η ∈ (0, 1], choose ε and N as follows:

ε =
η

C2r log r
, N = C3η

−2r2(log r)4 log(η−1|U|).

Then with probability at least 1 − 1/|U|, the algorithm has an approximation ratio of (1 − e−c)/c − η, and
makes Õ(η−3r4|U|) oracle calls to f .

Proof. Choose C2 ≤ 1/5 so that Lemma 19 gives the bound (1− e−c)/c− η. Each step of the greedy phase
requires at most |U| samplings of g, and each step of the local search phase requires at most r|U| samplings.
Therefore Lemma 20 implies that the total number of samplings G is at most

G = O(ε−1r|U|) = O(η−1r2 log r|U|).

Take M = |U|G in Lemma 11 to choose C3 so that the sampling assumption fails with probability at most
1/|U|.

6 Extensions

The algorithm presented in §5 produces a (1 − e−c)/c − η approximation for any η > 0, and it requires
knowledge of c. In this section we show how to produce a clean (1 − e−c)/c approximation, and how to
dispense with the knowledge of c. Unfortunately, we are unable to combine both improvements for technical
reasons.

It will be useful to define the function

ρ(c) =
1− e−c

c
,

which gives the optimal approximation ratio.

6.1 Clean approximation

In this section, we assume c is known, and our goal is to obtain a ρ(c) approximation algorithm. The idea,
taken from Khuller et al. [21] and Calinescu et al. [5], is to “guess” a “high-weight” set from the optimal
solution, and run the main algorithm on the marginal instance.

14

Fact. Let I = (M,U , f) be an instance of monotone submodular maximization over a matroid with optimal
solution attained at O. Given A ∈M, the derived instance is given by

I/A = (M/A,U \A, fA).

This is another instance of monotone submodular maximization.

Lemma 21. Suppose A ⊆ O and B ⊆ U \A satisfy f(A) ≥ (1− θA)f(O) and fA(B) ≥ (1− θB)fA(O \A).
Then

f(A ∪B) ≥ (1− θAθB)f(O).

Proof. We have

f(A ∪B) = fA(B) + f(A) ≥ (1− θB)fA(O \A) + f(A)

= (1− θB)f(O) + θBf(A)

≥ (1− θB)f(O) + θB(1− θA)f(O) = (1− θAθB)f(O).

Putting things together, we get the improved algorithm. We loop over all elements x ∈ U . For each
element x, we apply the main algorithm with η = (1 − ρ(c))/r to get a set Sx. Finally, we output the set
Sx + x maximizing f(Sx + x).

Theorem 2. With probability at least 1− 1/|U|, the improved algorithm has an approximation ratio of ρ(c),
and makes Õc(r

7|U|2) oracle calls to g.

Proof. Let O be an optimal solution. Since

r∑
i=1

f(Oi) ≥ f(O),

there is some set x = Oi such that f(Oi) ≥ f(O)/r. Take A = {x} and B = Sx in Lemma 21. Substituting
θA = 1− 1/r and θB = 1− ρ(c) + η, we deduce that the resulting approximation ratio is

1−
(

1− 1

r

)(
1− ρ(c) +

1− ρ(c)

r

)
= 1−

(
1− 1

r

)(
1 +

1

r

)
(1− ρ(c))

≥ 1− (1− ρ(c)) = ρ(c).

6.2 Unknown curvature

In this section, we remove the assumption that c is known, but retain a parameter η. The key observation
is that if a function has curvature c then it also has curvature c′ whenever c′ ≥ c. This, combined with the
continuity of ρ, allows us to “guess” an approximate value of c.

Given η, consider the following oblivious algorithm. Define the set C of curvature approximations by

C = {kη : 1 ≤ k ≤ bη−1c} ∪ {1}.

For each c ∈ C, we run the main algorithm with that setting of c to get a set Sc. Finally, we output the set
Sc maximizing f(Sc).

Theorem 3. Suppose f has curvature d. With probability at least 1− 1/|U|, the oblivious algorithm has an
approximation ratio of ρ(d)− 2η, and makes Õ(η−4r4|U|) oracle calls to g.

Proof. From the definition of C it is clear that there is some c ∈ C satisfying d ≤ c ≤ d + η. Since f
has curvature c, the set Sc is a ρ(c) − η approximate optimum. Elementary calculus shows that on [0, 1],
ρ′ ≥ −1/2, and so ρ(d) ≤ ρ(c) + η.

15

References

[1] Alexander A. Ageev and Maxim I. Sviridenko. Pipage rounding: A new method of constructing algo-
rithms with proven performance guarantee. J. of Combinatorial Optimization, 8(3):307–328, September
2004.

[2] Paola Alimonti. New local search approximation techniques for maximum generalized satisfiability
problems. In CIAC: Proc. of the 2nd Italian Conf. on Algorithms and Complexity, pages 40–53, 1994.

[3] Richard A. Brualdi. Comments on bases in dependence structures. Bull. of the Austral. Math. Soc.,
1(02):161–167, 1969.

[4] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In FOCS, 2012.

[5] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint (Extended abstract). In IPCO, pages 182–196, 2007.

[6] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

[7] Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. Proceedings of the 2010 IEEE 51st Annual Symposium on Foun-
dations of Computer Science, pages 575–584, 2010.

[8] Jack Edmonds. Matroids and the greedy algorithm. Math. Programming, 1(1):127–136, 1971.

[9] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634–652, July 1998.

[10] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions. In
FOCS, pages 461–471, 2007.

[11] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for submodular
maximization. In FOCS, pages 570–579, 2011.

[12] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Nonmonotone submodular maximization via
a structural continuous greedy algorithm. In ICALP, pages 342–353, 2011.

[13] Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz, and Justin Ward. Improved approximations for
k-exchange systems. In ESA, pages 784–798, 2011.

[14] Yuval Filmus and Justin Ward. The power of local search: Maximum coverage over a matroid. In
STACS, pages 601–612, 2012.

[15] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization subject
to a matroid constraint. In FOCS, 2012.

[16] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization subject
to a matroid constraint. Preprint, 2012. arXiv:1204.4526.

[17] Marshall L. Fisher, George L. Nemhauser, and Leonard A. Wolsey. An analysis of approximations for
maximizing submodular set functions—II. In Polyhedral Combinatorics, pages 73–87. Springer Berlin
Heidelberg, 1978.

[18] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In SODA,
pages 1098–1116, 2011.

[19] Pranava R. Goundan and Andreas S. Schulz. Revisiting the greedy approach to submodular set function
maximization. (manuscript), 2007.

16

[20] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On syntactic versus computa-
tional views of approximability. SIAM J. Comput., 28(1):164–191, 1999.

[21] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum coverage problem. Inf.
Process. Lett., 70:39–45, April 1999.

[22] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone submodular
maximization under matroid and knapsack constraints. In STOC, pages 323–332, 2009.

[23] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple matroids via
generalized exchange properties. Math. of Oper. Res., 35(4):795–806, November 2010.

[24] George L. Nemhauser and Leonard A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Math. of Oper. Res., 3(3):177–188, 1978.

[25] George L. Nemhauser, Leonard A. Wolsey, and Marshall L. Fisher. An analysis of approximations for
maximizing submodular set functions—I. Math. Programming, 14(1):265–294, 1978.

[26] Henri Padé. Sur la représentation approchée d’une fonction par des fractions rationnelles. Annales
scientifiques de l’École Normale Supérieure, Ser. 3, 9:3–93 (supplement), 1892.

[27] Richard Rado. Note on independence functions. Proc. of the London Math. Soc., s3-7(1):300–320, 1957.

[28] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC, pages 67–74, 2008.

[29] Jan Vondrák. Submodularity and curvature: the optimal algorithm. In S. Iwata, editor, RIMS
Kokyuroku Bessatsu, volume B23, Kyoto, 2010.

[30] Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set packing and general
k-exchange systems. In STACS, pages 42–53, 2012.

[31] Justin Ward. Oblivious and Non-Oblivious Local Search for Combinatorial Optimization. PhD thesis,
University of Toronto, 2012.

A Tighter algorithms

The locality ratio of our algorithm for a function of curvature c is (1− e−c)/c. Feige’s result [9] shows that
for c = 1, this ratio is optimal, in the sense that for general r, the approximation ratio of any polynomial
time algorithm is at most (1 − e−c)/c + o(1), unless P = NP. For general c, we have Vondrák’s result [29]
showing that (1 − e−c)/c can’t be beaten in the value oracle model without exponentially many value
queries. Conversely, as we show in §6.1 (following earlier work [21, 5]), it is always possible to “boost” the
approximation ratio by a C/r amount for any constant C.

In this section we discuss the best achievable locality ratio that our method is able to produce. In the
case of maximum coverage, we are able to find the best achievable ratio, and moreover this leads to better
algorithms for restricted instances of maximum coverage, where every element appears at most R times. In
the general case, we can improve on (1− e−c)/c, but the locality ratio that we get is not optimal.

A.1 Maximum coverage

In this section we only consider the case c = 1.
As we show in §4.1, when f is a coverage function, we can define g as follows:

g(S) =
∑
a∈V

αh(a;S)w(a),

17

where αn is given by the recurrence

α0 = 0, α1 = 1, αn+1 = (n+ 1)αn − nαn−1 −
1

e− 1
.

The sequence α is the only infinite sequence that gives the optimal approximation ratio 1−1/e. However,
for any given rank, there are other sequences that work. In particular, consider the following sequence:

α
(E)
0 = 0, α

(E)
1 = 1, α

(E)
n+1 = (n+ 1)α(E)

n − nα(E)
n−1 −

1

E − 1
.

Using the sequence α(E) in place of α, we get a new function which we christen g(E). The corresponding

sequence β(E) defined by β
(E)
n = α

(E)
n+1 − α

(E)
n satisfies the recurrence

β
(E)
0 = 1, β(E)

n = nβ
(E)
n−1 −

1

E − 1
.

The following lemma shows what values of E we should consider.

Lemma 22. The sequence α
(E)
0 , . . . , α

(E)
r−1 is non-decreasing if and only if

E ≥
r−2∑
k=0

1

k!
.

The sequence β
(E)
0 , . . . , β

(E)
r is non-increasing if and only if

E ≤
r−1∑
k=0

1

k!
+

1

(r − 1)(r − 1)!
.

Proof. Lemma 2 in [14] gives the explicit formula

β
(E)
i =

1

E − 1
i!

(
E −

i∑
k=0

1

k!

)
.

Since α
(E)
i+1 ≥ α

(E)
i if and only if β

(E)
i ≥ 0, this immediately implies the first item.

The proof of Lemma 3 in [14] gives the formula

β
(E)
i+1 − β

(E)
i =

1

E − 1
i · i!

(
E −

i∑
k=0

1

k!
− 1

i · i!

)
.

This immediately implies the second item.
Both formulas we have quoted can be easily proved by induction.

As a consequence, we get the following theorem, which results from careful analysis of the proof of
Theorem 5 in [14].

Theorem 4. Suppose R ≥ 2 is an integer and E satisfies

R−2∑
k=0

1

k!
≤ E ≤

R−1∑
k=0

1

k!
+

1

(R− 1)(R− 1)!
.

Let f be a coverage function corresponding to a set system in which every element is covered at most R
times. Then Lemma 15 holds for g(E) with E/(E − 1) instead of cec/(ec − 1).

If M is a partition matroid, then the condition on the set system can be weakened to: every element is
covered by sets belonging to at most R different partitions.

18

Proof. Say that an element of V is of type (l, s, g) if it belongs to l+ s of the sets Si, to g+ s of the sets Oi,
and to s of the intersections Si ∩ Oi. By assumption, all elements have type (l, s, g) for 0 ≤ l + s + g ≤ R.
Denote by F (l, s, g) the total weight of elements of type (l, s, g). Using this notation, Lemma 15 reads

E

E − 1

∑
l+s≥1

F (l, s, g) ≥
∑
g+s≥1

F (l, s, g) +
∑

l+s+g≤R

[lβ
(E)
l+s−1 − gβ

(E)
l+s]F (l, s, g).

Comparing coefficients of F (l, s, g) ≥ 0, we need to show that for integers l, s, g ≥ 0 satisfying 1 ≤ l+s+g ≤ R,

lβ
(E)
l+s−1 − gβ

(E)
l+s ≤

1/(E − 1) l + s, g + s ≥ 1,

E/(E − 1) l ≥ 1, g = s = 0,

−1 g ≥ 1, l = s = 0.

(6)

The condition on E implies that β
(E)
0 , . . . , β

(E)
R−2 ≥ 0 and that β

(E)
0 ≥ . . . ≥ β(E)

R is non-increasing.

When l = s = 0, β
(E)
0 = 1 implies −gβ(E)

0 ≤ −1, and so (6) holds. When g = s = 0, the fact that

1 = β
(E)
1 ≥ β(E)

l implies that

lβ
(E)
l−1 = β

(E)
l +

1

E − 1
≤ E

E − 1
,

and again (6) holds. When g = 0 and s ≥ 1, the inequalities β
(E)
l ≥ β

(E)
l+s−1 and β

(E)
l+1 ≥ β

(E)
l (note

l + 1 ≤ l + s ≤ R) imply that

lβ
(E)
l+s−1 ≤ lβ

(E)
l = β

(E)
l+1 +

1

E − 1
− β(E)

l ≤ 1

E − 1
,

verifying (6). Finally, suppose g ≥ 1 and l+s ≥ 1. Since β
(E)
l+s−1 ≥ 0 due to g ≥ 1, and furthermore β

(E)
l+s ≥ 0

when g ≥ 2,

lβ
(E)
l+s−1 − gβ

(E)
l+s ≤ lβ

(E)
l+s−1 − β

(E)
l+s =

1

E − 1
− sβ(E)

l+s−1 ≤
1

E − 1
,

completing the proof of (6).

Since 1− 1/E is an increasing function of E, the best choice for E given R is

E(R) =

R−1∑
k=0

1

k!
+

1

(R− 1)(R− 1)!
= e+

1

(R+ 2)!
+O

(
1

(R+ 3)!

)
.

This is the optimal choice of parameters, as the following theorem implies.

Theorem 5. For every setting of the sequence α, the locality ratio of the corresponding auxiliary local search
algorithm on matroids of rank r is at most 1− 1/E(r).

Proof. Let r be given. Construct the following set system. The universe V consists of elements x(i, A) for
every A ⊂ [r] and i /∈ A, and y(i) for every i ∈ [r]. Their weights are given by

w(x(i, A)) = (r − 1)(r − 1− |A|)!, w(y(i)) = 1.

The sets Si, Oi, where i ∈ [r], are defined as

Si = {x(j, A) : A ⊆ [r]− j and i ∈ A} ∪ {y(j) : j ∈ [r]},
Oi = {x(i, A) : A ⊆ [r]− i}+ y(i).

For T a set of subsets of V, let wk(T) be the total weight of elements appearing in T exactly k times.
Elementary calculations show that for all i, k ∈ [r], wk(S) = wk(S−i+Oi). Therefore in the partition matroid
with r partitions {Si, Oi}, the set S is locally optimal for any choice of α. Further calculations show that
w(S)/w(O) = 1− 1/E(R).

19

Example When r = 2, the set system is particularly simple, consisting of six elements a, b, c, d, e, f of unit
weight. The sets are

O1 = {a, b, c} O2 = {d, e, f},
S1 = {c, d, e} S2 = {b, c, d}.

Since w(O) = 6 while w(S) = 4, the locality gap is 2/3. In both S and the hybrids {S1, O2}, {O1, S2} there
are two elements covered once and two elements covered twice.

A.2 General case

The analysis in the general case involves Padé approximants to ex (though see comment below).

Fact. Let a, b ≥ 0 be integers. The (a, b) Padé approximant to ex is Ra,b = Pa,b/Qa,b, where

Pa,b(x) =

a∑
t=0

xt(a+ b− t)!a!

(a+ b)!t!(a− t)!
, Qa,b(x) =

b∑
t=0

(−x)t(a+ b− t)!b!
(a+ b)!t!(b− t)!

.

The error in the approximation is given by

Qa,b(x)ex − Pa,b(x) = (−1)b
xa+b+1

(a+ b)!

∫ 1

0

(1− t)atbext dt. (7)

Proof. See, for example, Padé’s thesis [26, §66].

The crucial identity used in the proof of Lemma 15 is the recurrence of Lemma 10.

Lemma 23. Let c > 0 and E 6= 1. Suppose the coefficients m̆
(n)
k satisfy the following recurrence, for all

n > 0 and k ∈ {0, . . . , n}, and furthermore m̆
(0)
0 = 1:

cm̆
(n)
k = (n− k)m̆

(n−1)
k − km̆(n−1)

k−1 +

−c/(E − 1) if k = 0,

0 if 0 < k < n,

cE/(E − 1) if k = n.

(8)

Then m̆
(n)
k is given by the following formula:

m̆
(n)
k =

c−nn!

E − 1
(−1)k[Qn−k,k(c)E − Pn−k,k(c)]. (9)

Conversely, if we define m̆
(n)
k according to the formula, then the recurrence is satisfied.

Moreover, if m̆ satisfies either of the equivalent conditions then for n ≥ 1 and k ∈ {0, . . . , n− 1},

m̆
(n−1)
k = m̆

(n)
k + m̆

(n)
k+1. (10)

Proof. Suppose c > 0 is rational, and let m̆ satisfy the recurrence. It is easy to prove by induction that there

are rational coefficients A
(n)
k (c), B

(n)
k (c) such that

m̆
(n)
k =

A
(n)
k (c)E −B(n)

k (c)

E − 1
.

When E = ec, the coefficients m
(n)
k satisfy the recurrence, hence

A
(n)
k (c)ec −B(n)

k (c)

ec − 1
= m

(n)
k =

c

ec − 1

∫ 1

0

pk(1− p)n−kecp dp. (11)

20

A glance at formula (7) shows that one solution to (11) is given by

A
(n)
k (c) = c−nn!(−1)kQn−k,k(c), B

(n)
k (c) = c−nn!(−1)kPn−k,k(c). (12)

On the other hand, the uniqueness of the solution (over the rationals) follows from the irrationality of ec

(which itself follows from the transcendentality of e).

For general c, the values A
(n)
k (c), B

(n)
k (c) still exist, though they are not necessarily rational. As functions

of c, they are continuous in (0,∞), hence uniquely determined by their values on rational c. We conclude
that (12) is valid for all c > 0.

Now suppose m̆ is given by the explicit solution, for some c > 0 and E 6= 1. We can easily construct
coefficients M̆ satisfying the recurrence for the same c and E. These are given by the explicit solution. Hence
M̆ = m̆, and we conclude that m̆ satisfies the recurrence.

For the remaining claim, let c > 0 be rational, n ≥ 1 and k ∈ {0, . . . , n− 1}. First, notice that (10) holds
for m, since for X ∼ µ[n],

Pr[X ∩ [n− 1] = [k − 1]] = Pr[X = [k − 1]] + Pr[X = [k − 1] + n]

= Pr[X = [k − 1]] + Pr[X = [k]].

As before, there are rational coefficients G
(n)
k (c), H

(n)
k (c) satisfying

m̆
(n−1)
k − (m̆

(n)
k + m̆

(n)
k+1) =

G
(n)
k (c)E −H(n)

k (c)

E − 1
. (13)

For E = ec, the left-hand side of (13) vanishes. As before, this implies that G
(n)
k (c) = H

(n)
k (c) = 0, and

so the left-hand side of (13) vanishes for arbitrary E and rational c > 0. The general claim follows by
continuity.

Note The paper [16] proves a similar result for the γ sequences, which are related to the m̆ sequences by(
n

k

)
m̆

(n)
k =

c

E − 1

γ
(n+1)
k+1

n+ 1
.

Careful inspection of the proof of Lemma 15 gives the following result.

Theorem 6. Let r > 0 be an integer. Suppose m̆ satisfies recurrence (8) for some E with m̆
(0)
0 = 1, and

furthermore m̆(r) ≥ 0. Then Lemma 15 holds for the corresponding function ğ, with cE/(E − 1) replacing
cec/(ec − 1).

Moreover, when c ∈ (0, 1], the condition m̆(r) ≥ 0 is satisfied if and only if

Pr−L,L(c)

Qr−L,L(c)
≤ E ≤ Pr−U,U (c)

Qr−U,U (c)
, L = 2

⌊
r + 1

4

⌋
, U = 2

⌊
r − 1

4

⌋
+ 1.

Proof. For the first part, note that identity (10) together with m̆(r) ≥ 0 implies that we can define probability
distributions µ̆A on 2A for sets of size |A| ≤ r, with the following property: if B ⊆ A then the restriction
of µ̆A to B follows the same law as µ̆B . This is enough to imply that ğ is submodular as long as all sets
involved have size at most r+ 1, as a simple analysis of Lemma 3 shows. The only other property needed in
the proof of Lemma 15 is recurrence (8).

For the second part, note that m̆(n) satisfies the following recurrence, for k ∈ {0, . . . , n}:

(n− k)m̆
(n)
k+1 = (2k − n+ c)m̆

(n)
k + km̆

(n)
k−1 +

c/(E − 1) if k = 0,

0 if 0 < k < n,

−cE/(E − 1) if k = n.

(14)

21

This follows from (8) by substituting m̆
(n−1)
k−1 = m̆

(n)
k−1 + m̆

(n)
k and m̆

(n−1)
k = m̆

(n)
k + m̆

(n)
k+1.

Suppose c ∈ (0, 1). If E = Rr−t,t(c) then formula (9) shows that m̆
(r)
t = 0. Suppose furthermore that

m̆(r) ≥ 0. Taking n = r and k = t + 1 in (14), we deduce that 2(t + 1) − r + c ≥ 0. Taking k = t − 1, we
deduce that 2(t− 1)− r + c ≤ 0. Therefore

r − c
2
− 1 ≤ t ≤ r − c

2
+ 1.

Since c 6= 1, there are exactly two integers in that range. These must be L and U since

r − c− 2 ≤ r − 2 ≤ 4

⌊
r + 1

4

⌋
, 4

⌊
r − 1

4

⌋
+ 2 ≤ r + 1 ≤ r − c+ 2.

On the other hand, since Qa,b(c) > 0, formula (9) shows that m̆(r) ≥ 0 is equivalent to

E ≥ Rr−2k,2k(c), 2k ∈ {0, . . . , n}, E ≤ Rr−2k−1,2k+1(c), 2k + 1 ∈ {1, . . . , n}. (15)

Since m(r) > 0, the setting E = ec satisfies (15) strictly, hence Rr−k,k(c) < ec for even k and Rr−k,k(c) > ec

for odd k. Therefore the following two settings satisfy (15):

Ee = max
k even

Rr−k,k(c), Eo = min
k odd

Rr−k,k(c).

The corresponding indices ke, ko necessarily satisfy {ke, ko} = {L,U}. This finishes the proof when c 6= 1.
The case c = 1 follows by continuity; when r is odd, there are three values of k that give rise to a value of
E satisfying (15).

An alternative proof of the second part follows the method of Lemma C.1 in [16].

Note Virtually the only property of the Padé approximants that we use is Qa,b(c) > 0. This can be proved
directly by induction on n using recurrence (8), the case k = n requiring special treatment.

Unfortunately, while the optimal choice of m̆(n), calculated by solving an appropriate linear program
(see [31]), seems to satisfy recurrence (8), the choice E = Rr−U,U (c) implied by the theorem is sub-optimal
for some values of r.

B The form of g

The definition of g might seem mysterious. In this section, we show that up to the specific distribution P
used, the definition of g follows from several natural axioms. We then discuss the distribution P .

Theorem 7. Let U be a countable set. Given a set-function f defined on some finite subset of U , define
another set-function g on the same domain by

g(A) =
∑
B⊆A

n̆
(|A|)
|B| f(B),

where the coefficients n̆ do not depend on f .
Suppose that g satisfies the following properties:

1. g is normalized, and if f is normalized then g(x) = f(x).

2. If f is monotone then so is g.

3. If f(B + x) = f(B) for all B ⊆ A then g(A+ x) = g(A).

22

4. If f(B+x+y)+f(B) = f(B+x)+f(B+y) for all B ⊆ A then g(A+x+y)+g(A) = g(A+x)+g(A+y).

Then there exists a probability distribution P on [0, 1] such that

gA(x) = E
p∼P

E
B∼Ber(A,p)

fB(x),

where Ber(A, p) is a random subset of A chosen by independently selecting each element y ∈ A with probability
p.

Proof. It will be profitable to consider the marginal of g instead of g itself:

gA(x) =
∑
B⊆A

n̆
(|A|+1)
|B|+1 f(B + x) + (n̆

(|A|+1)
|B| − n̆(|A|)

|B|)f(B).

Property 3 implies that n̆
(|A|+1)
|B|+1 = n̆

(|A|)
|B| − n̆

(|A|+1)
|B| . Denote the common value of these two quantities by

m̆
(|A|)
|B| , so that

gA(x) =
∑
B⊆A

m̆
(|A|)
|B| fB(x).

Property 2 implies that m̆ ≥ 0.
Taking marginals again, we have

gA(x)− gA+y(x) =
∑
B⊆A

(m̆
(|A|)
|B| − m̆

(|A|+1)
|B|)fB(x)− m̆(|A|+1)

|B|+1 fB+y(x).

Property 4 implies that

m̆
(A)
|B| = m̆

(|A|+1)
|B| + m̆

(|A|+1)
|B|+1 . (16)

Induction shows that for non-empty A, ∑
B⊆A

m̆
(|A|)
|B| = m̆

(0)
0 .

Property 1 implies that m̆
(0)
0 = 1. Hence for each A we can define a probability distribution µ̆A on 2A such

that
gA(x) = E

B∼µ̆A

fB(x).

Identity (16) implies that if A1 ⊆ A2 and B ∼ µ̆A2
then B∩A1 ∼ µ̆A1

. Therefore we can define a probability
distribution µ̆ on 2U with the property that B ∼ µ̆ implies B ∩A ∼ µ̆A.

We can think of the probability distribution µ̆ as a collection of indicator variables, one for each x ∈ U .
Since PrB∼µ̆[B∩A = C] depends only on |A| and |C|, these random variables are exchangeable. De Finetti’s
theorem now shows that there is a probability distribution P such that µ̆ = Ber(U , p), where p ∼ P .

If the probability distribution µ̆ mentioned in the theorem is known, then the distribution P can be
extracted from it. Indeed, let U = N, and suppose K ∼ µ̆. Then

Pr[P < p] = lim
t→∞

Pr[|K ∩ [t]| < pt].

In [15, 16] we calculate the distribution µ̆ explicitly for given c, and notice that

Pr[|K ∩ [t]| = s] ∝ ecs/t,

where the proportionality sign hides an approximation. This implies that the corresponding probability
distribution is given by the density cecp/(ec − 1).

23

Note One crucial property of the distributions µ̆A is the restriction property, which shows that if we restrict
a random variable µ̆A to a subset C ⊆ A, then we get a random variable distributed µ̆C . This property
follows from (16), a property of the coefficients m̆. During the course of the proof, we actually prove a similar
property for the coefficients n̆. Furthermore, m̆ ≥ 0 implies that n̆ ≥ 0, except perhaps for the coefficients

n̆
(t)
0 . Moreover, ∑

B⊆A

n̆
(|A|)
|B| = n̆

(0)
0 .

On the other hand, for our function g it is the case that∑
∅6=B⊆A

n̆
(|A|)
|B| = α|A|,

which is unbounded.
There are two ways to define the quantity n̆

(t)
0 in such a way that we obtain a measure ν̆ on 2U . One way

is to define n̆
(t)
0 = −αt, in which case ν̆ is a signed measure and ν̆({∅}) = −∞. The other way is to define

n̆
(t)
0 =∞, in which case ν̆ is an infinite measure and ν̆({∅}). In both cases, the formula

g(A) =
∑
B⊆A

n̆
(|A|)
|B| f(B) =

∫
A

f(B) dν̆(B)

holds only for normalized f .

C Combinatorial version of the continuous greedy algorithm

In this section we only consider the case c = 1.
Calinescu, Chekuri, Pál and Vondrák [6] developed the continuous greedy algorithm, which is an optimal

1−1/e approximation algorithm for the problem of monotone submodular maximization subject to a matroid
constraint. At first glance, the continuous greedy algorithm is not combinatorial. Indeed, it is composed of
two phases: the continuous greedy phase, and a rounding phase. The running time of the rounding phase has
bad dependence on |U| due to the fact that the output of the continuous greedy phase can be an arbitrary
vector in the base polytope of the matroid. However, a small variation of this algorithm, in which swap
rounding [7] is performed at every step, alleviates this problem.

The continuous greedy algorithm makes use of the continuous relaxation of the given monotone submod-
ular function f . For v ∈ [0, 1]U , let R(v) be a random subset of U which contains each element x ∈ U with
probability v(x). We define

f∗(v) = E
T∼R(v)

f(T).

For a set T , its indicator function 1T is defined by 1T (x) = Jx ∈ T K. Note that f∗(1T) = f(T).
The combinatorial continuous greedy algorithm proceeds as follows. Aiming at an approximation ratio

of 1− 1/e− η, let δ = η/3r; for simplicity, suppose 1/δ is an integer. For each t ∈ [1/δ], we will compute a
base Bt of the matroid. The starting point (which is not a base) is B0 = ∅, and we compute Bt+1 from Bt
as follows:

• For each x ∈ U , estimate
ω(x) = E

T∼R(tδ1Bt)
[fT (x)]

by averaging over N = 10
δ2 (1 + log |U|) samples.

• Using the greedy algorithm, find a base Ct maximizing∑
x∈Ct

ω(x).

24

• If t = 0 then set Bt+1 := Ct and continue to the next iteration.

• Otherwise, let B := Bt and C := Ct. While B 6= C:

– Find b ∈ B and c ∈ C such that both B′ := B − b+ c and C ′ := C − c+ b are bases.

– Estimate τ1 = f∗(tδ1B′ + δ1C) and τ2 = f∗(tδ1B + δ1C′) by averaging over N samples.

– If τ1 > τ2 then replace B with B′, else replace C with C ′.

• Set Bt+1 := B.

The output of the algorithm is the base B1/δ.
The inner loop in the algorithm is a deterministic version of the procedure MergeBases from [7]. The

method of the proof of Lemma 3.5 in [6] extends to show that with high probability,

f∗((t+ 1)δBt+1) ≥ f∗(tδBt + δCt)− ε,

where ε is some small error that we do not explicitly estimate here. The proof of Lemma 3.3 in the same
paper then implies that with high probability, the algorithm gives a 1− 1/e− η − o(1) approximation.

Since the inner loop runs at most r times, the number of times we need to evaluate f is at most

δ−1 ·N · (2|U|+ 2r) = Õ(δ−3|U|) = Õ(η−3r3|U|).

In comparison, Theorem 1 shows that our algorithm requires Õ(η−3r4|U|) evaluations of f .

25

	Introduction
	Our contribution
	Related work
	Organization of the paper

	Definitions
	The auxiliary objective function
	Definition
	Properties

	Evaluating g
	Set coverage
	Evaluating mu and nu
	Sampling g

	Main algorithm
	Greedy phase
	Local optimality
	Locality ratio
	Parameters and analysis

	Extensions
	Clean approximation
	Unknown curvature

	Tighter algorithms
	Maximum coverage
	General case

	The form of g
	Combinatorial version of the continuous greedy algorithm

