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Abstract
Given a learning task where the data is distributed
among several parties, communication is one
of the fundamental resources which the parties
would like to minimize. We present a distributed
boosting algorithm which is resilient to a limited
amount of noise. Our algorithm is similar to clas-
sical boosting algorithms, although it is equipped
with a new component, inspired by Impagliazzo’s
hard-core lemma (Impagliazzo, 1995), adding a
robustness quality to the algorithm. We also com-
plement this result by showing that resilience to
any asymptotically larger noise is not achievable
by a communication-efficient algorithm.

1. Introduction
Most work in learning theory focuses on designing efficient
learning algorithms which generalize well. New considera-
tions arise when the training data is spread among several
parties: speech recorded on different smartphones, medi-
cal data gathered from several clinics, and so on. In such
settings, it is important to minimize not only the computa-
tional complexity, but also the communication complexity.
Apart from practical considerations of limited bandwidth,
minimizing the communication complexity also limits the
amount of data being exposed to prying ears. This motivates
designing distributed learning algorithms, which improve
on the naive idea of sending all training data to a single
party.

In the classical PAC model, distributed learning has been
studied mostly in the realizable setting, where it was shown
that distributed implementations of boosting algorithms
can learn any VC class with communication complexity
which is polynomial in the description length (in bits) of a
single example (Balcan, Blum, Fine, and Mansour, 2012;
Daumé, Phillips, Saha, and Venkatasubramanian, 2012b;
Kane, Livni, Moran, and Yehudayoff, 2019).
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<anon.email@domain.com>.
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In this work we deviate from the realizable setting and allow
a small amount of noise in the input sample. In our setting
there are k players and a center, who are given a domain U
of size |U | = n and a concept class H over U with VC
dimension d ≪ n. For a labelled input sample S distributed
among the players, let OPT := OPT (S) ∈ N denote the
number of examples in S which are misclassified by the
best hypothesis in H. In most parts of the paper, we require
that OPT ∈ polylog n. The goal of the parties is to learn
together a classifier f that has at most OPT errors on S,
while using poly(d, k, log |S|, log n) bits of communication.
Note that log n is the number of bits needed to encode a
single point in U , and thus polylog n means polynomial in
the description length of a single example.1

Main result. Our main result, formally stated in Theorems
2.2 and 2.3 asserts the following: for every VC class, if the
minimal error of an hypothesis satisfies OPT ∈ polylog n,
then a simple robust variant of classical boosting learns
it with poly(d, k, log |S|, log n) communication complex-
ity. Conversely, when OPT /∈ polylog n, there exist one-
dimensional VC classes for which any learning algorithm
has super-polylogarithmic communication complexity.

The novelty of our algorithm lies in a non-standard usage
of boosting that identifies small “hard” sets for which any
hypothesis from the class has large error. This kind of us-
age resembles (and is inspired by) Impagliazzo’s hard-core
lemma (Impagliazzo, 1995), in particular its proof using the
method of multiplicative weights. Our negative result is a
slight extension of the argument appearing in (Kane, Livni,
Moran, and Yehudayoff, 2019).

We note that our positive result can alternatively be obtained
by a reduction to semi-agnostic learning (Bun, Kamath,
Steinke, and Wu, 2019), that is, agreeing on a classifier
with at most c · OPT errors for some constant c. Semi-
agnostic learning is possible using poly(d, k, log |S|, log n)
bits of communication by the works of Balcan, Blum,
Fine, and Mansour (2012); Chen, Balcan, and Chau (2016).
Given a semi-agnostic communication protocol with a
constant approximation factor c and communication com-

1We refer the reader to (Kane, Livni, Moran, and Yehudayoff,
2019; Braverman, Kol, Moran, and Saxena, 2019) for a more thor-
ough discussion regarding the choice of polylogn as a “yardstick”
for communication efficiency.
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A Resilient Distributed Boosting Algorithm

plexity poly(d, k, log |S|, log n), one can proceed as fol-
lows: execute the semi-agnostic protocol to obtain a hy-
pothesis f , and have each player broadcast her examples
that f misclassifies. Then, the players modify f on the
misclassified points and output an optimal hypothesis f ′.
If there exists an hypothesis in the class whose error is
polylog(n) then the communication cost of this step is
poly(d, k, log |S|, log n), and thus the overall communica-
tion complexity is poly(d, k, log |S|, log n).

The advantage of our approach is the simplicity of our proto-
col, which is a simple modification of the classical boosting
approach that makes it resilient to mild noise. This is in
contrast with semi-agnostic learning protocol which rely on
non-trivial subroutines (e.g. the distributed implementation
of Bregman projection in the protocol by Chen, Balcan, and
Chau (2016)).

Empirical loss versus population loss. From a technical
perspective, this work focuses on distributed empirical risk
minimization with efficient communication complexity; that
is, the objective is to design an efficient distributed protocol
which minimizes the empirical loss.

While this deviates from the main objective in statistical
learning of minimizing the population loss, we focus on the
empirical loss for the following reasons:

(i) Efficient communication implies generalization: As
discussed in (Kane, Livni, Moran, and Yehudayoff,
2019; Braverman, Kol, Moran, and Saxena, 2019),
Occam’s razor and sample compression arguments
can be naturally used to bound the generalization gap
— i.e. the absolute difference between the empirical
and population losses — of efficient distributed learn-
ing algorithms. In a nutshell, the bound follows by
arguing that the output hypothesis is determined by
the communication transcript of the protocol. Hence,
the communication complexity of the protocol upper-
bounds the description length of the output hypothe-
sis, which translates to a bound on the generalization
gap via Occam’s razor or sample compression. In
particular, this reasoning applies to the algorithm we
present in this work, and hence it generalizes. Thus,
for communication-efficient protocols, the empirical
loss is a good proxy of the population loss.

(ii) Focusing on empirical loss simplifies the exposition:
while it is possible to translate our results to the setting
of population loss, this introduces additional proba-
bilistic machinery and complicates the presentation
without introducing any new ideas. Further, Empirical
risk minimization is a natural and classical problem,
and previous work on distributed PAC learning fo-
cused on it, at least implicitly (Kane, Livni, Moran,

and Yehudayoff, 2019; Vempala, Wang, and Woodruff,
2020; Braverman, Kol, Moran, and Saxena, 2019).

Paper organization. In Section 2 we formally define the
model and give an overview of our results and related work.
Section 3 contains brief preliminaries. We prove the upper
bound in Section 4 and the lower bound in Section 5. The
paper closes with Section 6, which discusses directions for
future research.

2. Model and results
2.1. Model

Following (Balcan, Blum, Fine, and Mansour, 2012), we
consider a distributed setting consisting of k players num-
bered 1, . . . , k, and a center. Each player can communicate
only with the center. An hypothesis class H over a uni-
verse U is given, and a finite domain set U ⊂ U of size
n is given as well. We denote the VC-dimension of H by
d := d(H). The finite domain U is known in advance to
the center and to all players. A pair z := (x, y), where
x ∈ U and y ∈ {±1}, is called an example. A sequence
of examples z1, . . . , zm is called a sample, and denoted by
S. For a classifier f : U → {±1}, let ES(f) denote the
number of examples in S that f misclassifies:

ES(f) :=
∑

(x,y)∈S

1[f(x) ̸= y].

Let OPT be the number of misclassified examples in S
with respect to the best hypothesis in H:

OPT = OPT (S,H) := min
h∈H

ES(h).

In most parts of the paper we require that OPT ∈ polylog n.
In our setting, a sample S is adversarially distributed be-
tween the k players into k subsamples S1, . . . , Sk. Note that
the center gets no input. We use the notation S = ⟨Si⟩ki=1

to clarify that player i has a fraction Si of the sample, and
concatenating all the Si’s yields the entire input sample S.

The goal is to learn H, which we define as follows:
Definition 2.1. Let H be a concept class over a (possibly
infinite) universe U and let k denote the number of players.
For a function T : N → N we say that H is learnable under
the promise OPT ≤ T (n) if there exists a communication
complexity bound C(d, k, n,m) ∈ poly(d, k, log n, logm)
such that for every finite U ⊆ U of size n = |U |, there
exists a distributed algorithm π = π(U) that satisfies the
following. For every input sample S = ⟨Si⟩ki=1 with m
examples from U , if OPT = OPT (S,H) ≤ T (n) then
the k parties and the center agree on an output hypothesis f
which satisfies ES(f) ≤ OPT with probability at least 2

3
(over the randomness of the protocol π, when randomized),
while transmitting at most C(d, k, n,m) bits.
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A Resilient Distributed Boosting Algorithm

Let us make a few remarks in order to clarify some choices
made in the above definition.

1. Infinite classes. The above definition allows one to
handle natural infinite classes H such as Euclidean
halfspaces. The finite subdomain U ⊆ U models a
particular instance of the learning task defined by H.
For example, if H is the class of halfspaces in Rd, and
we use an encoding of real numbers with B bits, then
U consists of all possible 2d·B points in Rd that can be
encoded. The universal quantification over U serves
to make the definition scalable and independent of the
encoding of the input points.

2. The protocol may depend on U ⊆ U . This possible
dependence reflects the fact that when designing algo-
rithms in practice, one knows how the domain points
are being encoded as inputs.2

2.2. Results

Our positive result is stated in the following theorem.

Theorem 2.2 (Positive Result). Let H be a concept class
with d(H) < ∞ and let T = T (n) ∈ polylog n. Then, H
is learnable under the promise OPT ≤ T (n), and this is
achieved by a simple variant of classical boosting. Further-
more, the algorithm is deterministic and oblivious to T and
OPT .

The protocol we use to prove Theorem 2.2 is a resilient
version of realizable-case boosting. It is resilient in the
sense that it can be applied to any input sample, including
samples that are not realizable by the class H. Moreover,
as long as the input sample is sufficiently close to being
realizable, this variant of boosting enjoys similar guarantees
as in the fully realizable case. This feature of our protocol
is not standard in boosting algorithms in the realizable case,
which are typically vulnerable to noise (Dietterich, 2000;
Long and Servedio, 2010).

Our protocol can be implemented in the no-center model, in
which the players can communicate directly (see (Balcan,
Blum, Fine, and Mansour, 2012) for a more thorough discus-
sion of these two models), by having one of the players play
the part of the center. It also admits a randomized computa-
tionally efficient implementation, assuming an oracle access
to a PAC learning algorithm for H in the centralized setting
(see Section 4 for further discussion). On the other hand, the
protocol is improper. This is unavoidable: a result by Kane,
Livni, Moran, and Yehudayoff (2019) shows that even in
the realizable case (i.e. T (n) = 0), some VC classes cannot
be properly learned by communication-efficient protocols.

2We remark however that the protocol appearing in Section 4
is uniform in U , that is, it can accept U as an additional input.

As mentioned in the introduction, the positive result of The-
orem 2.2 can also be proved by reduction to semi-agnostic
learning. However, our direct approach results in a simpler
protocol.

The following negative result shows that the assumption
OPT ∈ polylog n made by Theorem 2.2 is necessary for
allowing communication-efficient learning, even if the pro-
tocol is allowed to be randomized and improper.

Theorem 2.3 (Negative Result). Let H = {hn : n ∈ N},
where hn(i) = 1 if and only if i = n, be the class of
singletons over N. If T (n) = logω(1)(n) then H is not
learnable under the promise that OPT ≤ T (n), even when
there are only k = 2 players.

When there are two players, our model is equivalent to
the standard two-party communication model (Yao, 1979;
Kushilevitz and Nisan, 1996; Rao and Yehudayoff, 2020),
in which two players, Alice and Bob, communicate through
a direct channel, and this is the setting in which we prove
Theorem 2.3.

Our results are in fact more general than stated. The al-
gorithm used to prove Theorem 2.2 outputs a hypothe-
sis making at most OPT many mistakes using OPT ·
poly(d, k, logm, log n) communication (without having to
know OPT in advance). The lower bound used to prove
Theorem 2.3 shows that for any value T (n) and for any algo-
rithm that learns the class of singletons there exists an input
sample with OPT ≈ T (n) on which the communication
complexity of the protocol is Ω(T (n)).

2.3. Related Work

Originally, distributed learning was studied from the point of
view of parallel computation (a partial list includes (Bshouty,
1997; Collins, Schapire, and Singer, 2002; Zinkevich,
Weimer, Smola, and Li, 2010; Long and Servedio, 2011)).
The focus was on reducing the time complexity rather than
the communication complexity. More recent work aims
at minimizing communication (Balcan, Blum, Fine, and
Mansour, 2012; Daumé, Phillips, Saha, and Venkatasubra-
manian, 2012a;b). In (Balcan, Blum, Fine, and Mansour,
2012), privacy aspects of such learning tasks are discussed
as well.

A related natural model of distributed learning was proposed
in (Balcan, Blum, Fine, and Mansour, 2012). In this model,
there are k entities and a center, and each entity i can draw
examples from a distribution Di. The goal is to learn a
good hypothesis with respect to the mixture distribution
D = 1

k

∑k
i=1 Di. The communication topology in this

model is a star: all entities can communicate only with the
center.

In this work, we consider a slightly different model, stud-
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ied by Daumé, Phillips, Saha, and Venkatasubramanian
(2012b;a); Kane, Livni, Moran, and Yehudayoff (2019);
Braverman, Kol, Moran, and Saxena (2019), which we call
the adversarial model. In this model, a sample S is given
and partitioned freely among k players by an adversary.
While this model might seem less natural, it is more general
than the model of Balcan, Blum, Fine, and Mansour (2012),
and our main contribution is a protocol that can be applied
to this general model.

In (Chen, Balcan, and Chau, 2016), a clever analysis of
“Smooth Boosting” (Kale, 2007) is used to give an efficient
semi-agnostic boosting protocol. Kane, Livni, Moran, and
Yehudayoff (2019) characterize which classes can be learned
in the distributed and proper setting, and give some bounds
for different distributed learning tasks. In (Braverman, Kol,
Moran, and Saxena, 2019), tight lower and upper bounds on
the communication complexity of learning halfspaces are
given, using geometric tools.

3. Preliminaries
We use log for the base 2 logarithm. Let U be the domain
set and let S ⊂ U × {±1} be a sample. We follow the
standard definitions of empirical loss and loss:

LS(f) :=
1

|S|
∑

(x,y)∈S

1[f(x) ̸= y],

Lp(f) := Pr
(x,y)∼p

[f(x) ̸= y],

respectively, where p is a probability distribution over U ×
{±1}. We now briefly overview some relevant technical
tools.

Boosting. The seminal work of Freund and Schapire
(1997) used the AdaBoost algorithm to boost a “weak”
learner into a “strong” one. In this work we use a simpli-
fied version of AdaBoost (see (Schapire and Freund, 2013)):
given a distribution p over a sample S, an α-weak hypothe-
sis with respect to p is a hypothesis h which is better than a
random guess by an additive factor of α:

Pr
(x,y)∼p

[h(x) ̸= y] ≤ 1/2− α.

The boosting algorithm requires an oracle access to an α-
weak learner, which is an algorithm that returns α-weak
hypotheses. Given such a weak learner, the boosting algo-
rithm operates as follows: it receives as input a sample S,
and initializes the weight W1(z := (x, y)) of any example
z ∈ S to be 1. In each iteration t ∈ 1, . . . , T , it then uses
the weak learner to obtain an α-weak hypothesis ht with
respect to the distribution pt on S, which is defined by the
weight function Wt, i.e. the probability of each example
z is proportional to Wt(Z). The weights are then updated

according to the performance of the weak hypothesis ht on
each example:

Wt+1(z) = Wt · 2−1[h(x)=y].

After T iterations, the algorithm returns the classifier

f = sign

(
T∑

t=1

ht

)
.

We have the following upper bound3 on the value of T
required for f to satisfy ES(f) = 0.
Theorem 3.1 (Freund and Schapire (1997)). Let T ≥
6 log|S|, and assume that in any iteration t, a hypothesis ht

which is
(
1
2 − 1

15

)
-weak with respect to the current distri-

bution pt is provided to the variant of AdaBoost described
above. Then for any (x, y) ∈ S we have

1

T

T∑
t=1

1[ht(x) ̸= y] ≤ 1/3.

An immediate corollary is that if f is the classifier returned
by AdaBoost and T ≥ 6 log|S|, then ES(f) = 0.

Small ϵ-approximations. Let H ⊆ {±1}U be a concept
class of VC-dimension d < ∞, let p be a distribution over
examples in U × {±1}, and let ϵ > 0. The seminal uniform
convergence theorem of Vapnik and Chervonenkis (1971)
implies that a random i.i.d sample S of size |S| = O(d/ϵ2)
which is drawn from p satisfies with a positive probability
that

(∀h ∈ H) : |LS(h)− Lp(h)| ≤ ϵ.

Crucially, note that |S| depends only on d, ϵ. In particular,
for every distribution p there exists such a sample in its
support.

Communication complexity. Our negative result applies
already when there are only two players, in which case our
model is equivalent to the standard two-party communica-
tion model (Yao, 1979; Kushilevitz and Nisan, 1996). One
of the standard problems in the two-party communication
model is set disjointness. In this problem, Alice gets a string
x ∈ {0, 1}n, Bob gets a string y ∈ {0, 1}n, and the goal is
to compute the following function DISJn(x, y):

DISJn(x, y) =

{
0 xi = yi = 1 for some i,
1 otherwise.

The randomized communication complexity of DISJn is
known to be large:
Theorem 3.2 (Razborov (1990); Kalyanasundaram and
Schintger (1992)). The randomized communication com-
plexity of DISJn is Θ(n).

3This formulation of the theorem appears explicitly as Lemma 2
in (Kane, Livni, Moran, and Yehudayoff, 2019).



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

A Resilient Distributed Boosting Algorithm

4. A resilient boosting protocol
In this section we use our boosting variant to prove Theo-
rem 2.2, which follows from the next theorem.
Theorem 4.1. Let H be an hypothesis class with VC di-
mension d < ∞, let k be the number of players, and let
T (n) ∈ polylog(n). The protocol AccuratelyClassify, de-
scribed in Figure 2, is a learning protocol under the promise
OPT ≤ T (n), and has communication complexity of

O
(
OPT · k log|S|(d log n+ log|S|)

)
,

where S is its input sample. Furthermore, if S contains no
contradicting examples (that is, examples (x,+1), (x,−1))
then the classifier f which the protocol outputs is consistent
(i.e. satisfies ES(f) = 0).

AccuratelyClassify relies on the BoostAttempt protocol,
appearing in Figure 1, which is similar to classical boosting.

To prove the theorem, we first argue that if BoostAttempt
does not get stuck (i.e. it reaches Item 3 in Figure 1), then
it simulates boosting and enjoys the guarantees stated in
Theorem 3.1. Then, we take into account what happens
when BoostAttempt does get stuck; in this case we adopt
the perspective inspired by Impagliazzo’s Hardcore lemma
to remove a small subsample of the input which is “hard”
in the sense that every hypothesis in H has large error on it.
Finally, we analyze the total communication cost of the two
protocols.
Lemma 4.2. If protocol BoostAttempt, described in Fig-
ure 1, outputs a classifier f , then ES(f) = 0.

Proof. We show that if BoostAttempt does not stop at step
2(e) of some iteration, then in every iteration t, the provided
hypothesis ht is a

(
1
2 − 1

50

)
-weak hypothesis with respect

to the current distribution pt in the boosting process: recall
from the preliminaries that pt is a distribution on S, which
is defined by the weight function Wt, i.e. the probability of
each example z is proportional to Wt(Z). To establish the
above we use two crucial properties of ht:

• The hypothesis ht satisfies

LDt(ht) ≤ 1/100,

where Dt is the distribution defined in step 2(c), i.e.
it is the mixture of the uniform distributions over the
S′
i’s weighted by W

(i)
t

Wt
.

• S′
i is a 1

100 -approximation of the distribution pit on Si,

defined by pit(z
i
j) =

Wt(z
i
j)

W
(i)
t

, and hence∣∣∣LS′
i
(h)− Lpi

t
(h)
∣∣∣ ≤ 1/100

for all h ∈ H.

BoostAttempt: Boosting that may get “stuck”

Setting: There are k players and a center, and H is
a known hypothesis class over a domain U .
Input: A distributed sample S := ⟨Si⟩ki=1, where
Si = (xi

1, y
i
1), . . . , (x

i
|Si|, y

i
|Si|) for i ∈ [k].

Output: Either all players agree on a classifier
f : U → {±1} which makes no errors on S, or
each player i holds a sample S′

i ⊆ Si such that the
concatenated sample S′ = ⟨S′

i⟩ki=1 is not realizable.
The center holds S′.

1. Initialize: Each player i initializes W1(z
i
j) =

1 for all 1 ≤ j ≤ |Si|.

2. For t := 1, . . . , T = ⌈6 log|S|⌉:

(a) For all i ∈ [k], let pit be the distribution
over Si defined by

pit(z
i
j) =

Wt(z
i
j)

W
(i)
t

,

where W
(i)
t =

∑
1≤j≤|Si| Wt(z

i
j).

Each player i sends to the center a 1
100 -

approximation w.r.t. pit of minimal size,
denoted by S′

i = ẑi1, . . . , ẑ
i
|S′

i|
.

(b) Each player i sends W (i)
t to the center.

(c) Let S′ = ⟨S′
i⟩ki=1. Let Dt be the distribu-

tion on S′ defined by

Dt(ẑ
i
j) =

1

|S′
i|
· W

(i)
t

Wt
,

where Wt =
∑k

i=1 W
(i)
t is the total sum

of weights.
(d) If there is ĥ ∈ H such that LDt(ĥ) ≤

1/100 then:

• The center sets ht := ĥ and sends ht

to all players.
(e) Else:

• Output S′.
(f) Each player i updates

Wt+1(z
i
j) = Wt(z

i
j) · 2−1[ht(x

i
j)=yi

j ]

for any zij ∈ Si.

3. Output the classifier

f(x) = sign

(
T∑

t=1

ht(x)

)
.

Figure 1. A boosting protocol that may get “stuck” when the input
sample is not realizable.
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AccuratelyClassify: A learning protocol

Setting: There are k players and a center, and H is
a known hypothesis class over a domain U .
Input: A distributed sample S := ⟨Si⟩ki=1. (Below
we treat each Si as a multiset.)
Output: A classifier f : U → {±1}.

1. Initialize: The center initializes a multiset
D := ∅.

2. While BoostAttempt(⟨Si⟩ki=1) returns a non-
realizable subsample S′ := ⟨S′

i⟩ki=1:

(a) The center updates D := D ∪ S′.
(b) Each player updates Si := Si\S′

i.

3. Let g be the classifier returned by BoostAt-
tempt.

4. For every x ∈ U , let n+(x) be the number of
times that the example (x,+1) occurs in D,
and define n−(x) similarly.

5. Output the classifier f : U → {±1} defined
for any x ∈ U as follows:

f(x) =


+1 n+(x) ≥ 1, n+(x) ≥ n−(x),

−1 n−(x) ≥ 1, n−(x) > n+(x),

g(x) otherwise.

Figure 2. A resilient improper, deterministic learning protocol.

Let pt be the normalization of the weights in iteration t, that

is pt(zij) =
Wt(z

i
j)

Wt
. So:

Lpt(ht) =

k∑
i=1

∑
zi
j∈Si

pt(z
i
j)1[ht(x

i
j) ̸= yij ]

=

k∑
i=1

∑
zi
j∈Si

Wt(z
i
j)

Wt
1[ht(x

i
j) ̸= yij ]

=

k∑
i=1

W
(i)
t

Wt

∑
zi
j∈Si

Wt(z
i
j)

W
(i)
t

1[ht(x
i
j) ̸= yij ]

=

k∑
i=1

W
(i)
t

Wt
Lpi

t
(ht)

≤
k∑

i=1

W
(i)
t

Wt

[
LS′

i
(ht) + 1/100

]
=

k∑
i=1

W
(i)
t

Wt

[∑
ẑi
j∈S′

i
1[ht(x̂

i
j) ̸= ŷij ]

|S′
i|

+ 1/100

]
= LDt(ht) + 1/100

≤ 1/100 + 1/100 = 1/50.

Since 1/50 < 1/15, by Theorem 3.1 a total of ⌈6 log|S|⌉
iterations are enough to output a classifier f that satisfies
ES(f) = 0.

Next, we we consider the case in which BoostAttempt does
get stuck. In this case, note that the small sample S′ sent to
the center is not realizable.
Observation 4.3. Let D be a distribution over a sample S.
If for all h ∈ H it holds that LD(h) > 1/100 then S is not
realizable.

The following observation states that BoostAttempt is
called at most OPT times by AccuratelyClassify.
Observation 4.4. Let S be a non-realizable sample, and let
S′ be a non-realizable subsample of S. Then for all h ∈ H,

ES(h) > ES\S′(h).

That is, if we remove any non-realizable subsample from S,
then the number of mistakes of any hypothesis decreases by
at least 1.

We are now ready to prove Theorem 4.1. The main part is
analysing the communication complexity of BoostAttempt.

Theorem 4.1. First we show correctness, and then analyze
the communication complexity.
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Correctness. The loop in AccuratelyClassify is executed
as long as BoostAttempt returns a non-realizable sam-
ple. Due to Observation 4.4, after at most OPT iterations,
BoostAttempt will return a classifier, since the input sam-
ple will then be realizable. This classifier makes zero errors
on the input to BoostAttempt, due to Lemma 4.2. Con-
sequently, the classifier f returned by AccuratelyClassify
makes the least number of errors among all possible classi-
fiers. Furthermore, if S contains no contradicting examples,
then ES(f) = 0.

Communication. We first analyze the communication
complexity of BoostAttempt and show that its upper
bounded by O(k log |S|(d log n + log|S|)). First, it has
⌈6 log|S|⌉ = O(log|S|) iterations. In each iteration, k many
1

100 -approximations are sent to the center in step 2(a), each
taking O(d log n) bits to encode, according to (Vapnik and
Chervonenkis, 1971). Then, the sums of weights of each
player are sent to the center in step 2(b). This requires
O(k log|S|) communication: indeed, the initial weight of
each element is 1, and in each iteration it might be halved.
There are O(log|S|) iterations, so the weight of any element
may decrease up to Ω(1/|S|). So, encoding the sums of
weights in step 2(b) requires O(k log|S|) bits. Steps 2(c-e)
can now be executed by the center, with zero communi-
cation. Now, if the condition in step 2(d) does not hold,
a non-realizable sample S′, which is the concatenation of
the 1

100 -approximations S′
i, is outputted by BoostAttempt.

This step requires k bit of communication, in which the cen-
ter indicates to each of the players that this condition does
not hold. Also notice that this step happens at most once and
hence increases the total communication complexity by at
most k bits. If this condition holds and the protocol contin-
ues, then each player updates its weights with zero communi-
cation. Thus, we get a total of O(k log |S|(d log n+log|S|))
communication used in BoostAttempt.

AccuratelyClassify executes BoostAttempt at most OPT
times due to Observation 4.4, and hence the total com-
munication used by AccuratelyClassify is O(OPT ·
k log|S|(d log n+ log|S|)).

A computationally efficient implementation. We de-
fined BoostAttempt as a communication-efficient determin-
istic protocol. However, as currently formulated, the proto-
col is not computationally efficient, since step 2(a) requires
finding a 1

100 -approximation, which cannot be done effi-
ciently in general. Vapnik and Chervonenkis (1971) proved
that a random sample of size O(d/ϵ2) is an ϵ-approximation
with high probability. This can be used to make our protocol
efficient at the cost of making it randomized. Furthermore,
notice that in step 2(d), a weak hypothesis for the distribu-
tion Dt on S′ is found by the center. This step can also be
implemented efficiently provided that H admits an efficient

agnostic PAC learner in the centralized setting.

5. A complementing negative result
In this section we prove Theorem 2.3.
Theorem (Theorem 2.3 restatement). Let H = {hn : n ∈
N}, where hn(i) = 1 if and only if i = n, be the class
of singletons over N. If T (n) = logω(1) n then H is not
learnable under the promise that OPT ≤ T (n), even when
there are only k = 2 players.

The proof uses a mapping suggested in (Kane, Livni, Moran,
and Yehudayoff, 2019) together with Theorem 3.2, the well-
known communication lower bound for set disjointness.

Lemma 5.1 (Kane, Livni, Moran, and Yehudayoff (2019)).
Let x, y ∈ {0, 1}n, and let w(x) denote the hamming weight
of a binary string x. Let H be the class of singletons over
[n] (it contains exactly all hypotheses that assign 1 to a
single i ∈ [n] and −1 to all other elements). Then, there
are mappings Fa, Fb : {0, 1}n → ([n]× {±1})n taking
boolean n-vectors to samples such that the combined sample
S := ⟨Fa(x);Fb(y)⟩ satisfies:

1. If DISJn(x, y) = 1 then ES(f) ≥ w(x) + w(y) for
any classifier f (not necessarily from H).

2. If DISJn(x, y) = 0 then the optimal h ∈ H satisfies
ES(h) = w(x) + w(y)− 2.

The proof follows by letting

Fa(x) =
{
(i, (−1)1−xi) : i ∈ [n]

}
,

Fb(y) =
{
(i, (−1)1−yi) : i ∈ [n]

}
.

Those mappings are used in (Kane, Livni, Moran, and Yehu-
dayoff, 2019) to prove a reduction to set disjointness, in
order to show that agnostic classification requires Ω(n) com-
munication under some conditions. A slight modification of
their proof results in the bound of Theorem 2.3.

Proof of Theorem 2.3. Let n ∈ N and set U = [n]. Given a
randomized improper learning protocol π(U) for H under
the promise that OPT ≤ T (n), we construct the following
protocol π′ for DISJr, where r = ⌊T (n)

2 ⌋.

1. Let x, y ∈ {0, 1}r denote the inputs for DISJr.

2. Publish w(x), w(y).

3. Extend x, y to strings x′, y′ ∈ {0, 1}n by adding n− r
zeroes to each.

4. Construct S := ⟨Fa(x
′);Fb(y

′)⟩ as described in
Lemma 5.1.
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5. Execute π(S) and let f be the hypothesis it outputs.

6. Output 1 if and only if ES(f) ≥ w(x) + w(y).

Note that by construction, OPT is at most 2r ≤ T (n)
(because any singleton hi where i ≤ r has error at most
2r on S). So, OPT ≤ T (n) and therefore Lemma 5.1
implies that this protocol solves set disjointness correctly
with probability at least 2/3. Thus, by Theorem 3.2, its
communication complexity is Ω(r) = Ω(T (n)).

We now wrap up the proof by showing that the communica-
tion complexity of π is not in

poly(log n, log|S| = log n, k = 2) = polylog(n).

Indeed, the communication complexity of π′ is at most
2 log r larger than that of π. Thus, also the communication
complexity of π is Ω(r) = Ω(T (n)), and by assumption
T (n) = logω(1) n.

6. Suggestions for future research
Characterizing agnostic learning. Our main result can
be viewed as an agnostic learning protocol whose commu-
nication complexity depends linearly on OPT . There are
concept classes in which such dependence is necessary, as
shown by Theorem 2.3. It is also easy to see that there
are classes for which this dependence can be avoided, for
example finite classes. Is there a natural characterization of
those classes which are learnable without any promise on
OPT? Are there infinite classes with this property?

The approximation factor in semi-agnostic learning.
Balcan, Blum, Fine, and Mansour (2012) and Chen, Balcan,
and Chau (2016) give efficient semi-agnostic learners that
approximate the error of a best hypothesis from the class
up to a multiplicative factor of c ≥ 4. A simple alteration
of the constants in their proofs improves the approximation
factor to 2 + α for every α > 0 (at the cost of higher com-
munication complexity which deteriorates as α → 0). Can
the multiplicative factor be further improved, say to c for
some c ≤ 2?

Bounded communication complexity and generalization.
It is interesting to further explore the relationship between
the communication complexity and the generalization ca-
pacity of distributed learning protocols.
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