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Abstract

A function f : {0, 1}n → {0, 1} is called an approximate AND-homomorphism if choosing x,y ∈
{0, 1}n randomly, we have that f(x ∧ y) = f(x) ∧ f(y) with probability at least 1− ε, where x ∧ y =
(x1 ∧ y1, . . . , xn ∧ yn). We prove that if f : {0, 1}n → {0, 1} is an approximate AND-homomorphism,
then f is δ-close to either a constant function or an AND function, where δ(ε) → 0 as ε → 0. This
improves on a result of Nehama, who proved a similar statement in which δ depends on n.

Our theorem implies a strong result on judgement aggregation in computational social choice. In the
language of social choice, our result shows that if f is ε-close to satisfying judgement aggregation, then
it is δ(ε)-close to an oligarchy (the name for the AND function in social choice theory). This improves
on Nehama’s result, in which δ decays polynomially with n.

Our result follows from a more general one, in which we characterize approximate solutions to the
eigenvalue equation Tf = λg, where T is the downwards noise operator Tf(x) = Ey[f(x ∧ y)], f is
[0, 1]-valued, and g is {0, 1}-valued. We identify all exact solutions to this equation, and show that any
approximate solution in which Tf and λg are close is close to an exact solution.

1 Introduction

Which functions f : {0, 1}n → {0, 1} satisfy

f(x ∧ y) = f(x) ∧ f(y) w.p. 1− ε,

where x,y are chosen uniformly at random?
If ε = 0, it is not hard to check that f is either constant or an AND of a subset of the coordinates.

Nehama [40] showed that when ε > 0, f must be O((nε)1/3)-close to a constant function or to an AND
(in other words, Pr[f ∕= g] = O((nε)1/3), where g is constant or an AND). The main result in this paper
implies, as a corollary, a similar statement, in which the distance between f, g vanishes with ε, without any
dependence on n.

Theorem 1.1. For each δ > 0 there is ε > 0 such that if f : {0, 1}n → {0, 1} satisfies

Pr
x,y

[f(x ∧ y) = f(x) ∧ f(y)] 󰃍 1− ε,

then f is δ-close to a constant or an AND.
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Our technique is in fact more general, and allows us to study the multi-function version of this problem, in
which we are interested in triples of functions f, g, h : {0, 1}n → {0, 1} that satisfy f(x∧y) = g(x)∧h(y)
with probability at least 1− ε.

If we replace ∧ with ⊕ in the above problem, then the result corresponding to Theorem 1.1 is the
well-known soundness of the Blum–Luby–Rubinfeld linearity test [7], that plays an important role in the
construction of PCPs [2, 1, 24]. By now, many proofs for the soundness of this test are known: self-
correction [7], Fourier analysis [6, 24], induction [12]. Unfortunately, all of these proofs rely on ⊕ being a
group operation (either directly or via Fourier analysis), and hence do not extend to our setting.

Our approach recasts the problem as determining the approximate eigenfunctions of a one-sided noise
operator. Define the operator T acting on functions f : {0, 1}n → {0, 1} in the following way:

(Tf)(x) = E
y
[f(x ∧ y)].

Using this operator, the premise of Theorem 1.1 implies that f is an approximate eigenfunction of this
operator, i.e. Tf ≈ λf , where λ = E[f ] is the average of f . Here, by approximate solution we mean that
the L1 distance between the two functions is small: Ex[|Tf(x)− λf(x)|] 󰃑 ε.

If we replace T with the usual two-sided noise operator Tρ, then a short spectral argument shows that
if f is an approximate eigenfunction than it must be close to an exact eigenfunction of Tρ. Unfortunately,
the spectral argument relies on orthogonality of eigenspaces of Tρ, a property which T doesn’t satisfy (its
eigenspaces are spanned by ANDs, which aren’t orthogonal). Indeed, T has approximate eigenfunctions
beyond ANDs. Here are two examples:

f1(x) =

󰀫
x1 ∨ x2 if |x| 󰃍 n/3

x1 ⊕ x2 if |x| < n/3
f2(x) =

󰀫
1 if |x| 󰃍 n/3

Ber(λ) if |x| < n/3

The second example is probabilistic: f2(x) = 1 with probability λ < 1 independently for each |x| < n/3.
These functions satisfy Tf1 ≈ 1

2f1, Tf2 ≈ λf2. They are not counterexamples to Theorem 1.1 since
E[f1] ≈ 3/4 > 1/2 and E[f2] ≈ 1 > λ.

Note that each one of the functions f1, f2 is essentially composed of two, completely different “sub-
functions”: one defined on high Hamming-weight inputs, and another defined on low Hamming-weight
inputs. This suggests decoupling the two functions, and considering the generalized eigenvalue problem

Tf = λg, where f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1}.

Here f represents the low-weight part, and g represents the high-weight part. We represent the probabilistic
aspect of the low-weight part by allowing f to take on values in the solid interval [0, 1].

The two examples above corresponds to exact solutions of this generalized problem: T(x1 ⊕ x2) =
1
2(x1 ∨ x2) and Tλ = λ · 1. Therefore, as a prerequisite to characterizing approximate eigenfunctions of T,
we must first study exact solutions to the more general two-function version. We show:

Theorem 1.2. If f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} satisfy Tf = λg then either f = g = 0 or
there exist disjoint subsets S1, . . . , Sm ⊆ [n], where m 󰃑 log2(1/λ), such that

f(x) =

m󰁡

i=1

󰁐

j∈Si

xi, g(x) =

m󰁡

i=1

󰁢

j∈Si

xi.

Moreover, if f is monotone then g is an AND and f = g.
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Thus if Tf = λg then g is an “AND-OR” and f is the corresponding “AND-XOR” (or f = g = 0).
When f is monotone, g must be an AND, and so f = g. Using Theorem 1.2, we can then actually solve the
more general problem of characterizing approximate solutions to the equation Tf = λg.

Theorem 1.3. If f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} satisfy Tf ≈ λg then either f ≈ g ≈ 0 or g
is close to an AND-OR and f is close to an AND-XOR.

Moreover, if f is monotone then f, g are both close to a constant or to an AND.

We also show how to deduce Theorem 1.1 from Theorem 1.3. We remark that Theorem 1.3 is stated in
a somewhat informal way: the closeness of the function f to an AND-XOR function has to be stated in a
more subtle way (since otherwise it is false), and we defer this point to the formal statement of the theorems
in Section 2.

1.1 Other variants

Other noise rates

Nehama [40] also considers the more general equation

f(x1 ∧ · · · ∧ xm) ≈ f(x1) ∧ · · · ∧ f(xm),

where each one of x1, . . . ,xm is sampled uniformly and independently from {0, 1}n. We can reduce this
problem, in a similar manner, to an eigenfunction of an appropriate operator T(m), defined by

T(m)f(x) = E
y1,...,ym−1

f(x ∧ y1 ∧ . . . ∧ ym−1).

Our techniques also apply to such operators (and in fact to a slightly richer family of noise operators), and
we prove variants of Theorem 1.2 and Theorem 1.3 in this case as well:

Theorem 1.4. Let m > 2. If f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} satisfy T(m)f = λg then either
f = g = 0 or f = g is an AND.

Furthermore, if T(m)f ≈ λg then either f ≈ g ≈ 0 or f, g are close to an AND.

One-sided error version

Finally, we consider the one-sided error version of the equation Tf = λg. That is, suppose we have a
bounded function f : {0, 1}n → [0, 1], and a Boolean function g, such that with probability 1 − ε over x:
(a) if g(x) = 1, then f(x∧ y) 󰃍 λ with constant probability over y, and (b) if g(x) = 0 then f(x∧ y) 󰃑 ε
with probability 1− ε over y.

We note that this condition is a relaxation of the approximate eigenvalue condition. In this case, we
prove a weaker structural result than in Theorem 1.3, namely that g is close to a monotone junta.

Theorem 1.5. Suppose that f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} satisfy the following condition:
when g = 0, Tf is typically small; and when g = 1, Tf is typically at least λ.1 Then g is close to a
monotone Boolean junta.2

We remark that while the structural result in this case is weaker, it is for a good reason: for any monotone
junta f , choosing g = f yields an approximate, one-sided error solution.

1In contrast, in Theorem 1.3 we ask that Tf be typically close to λ.
2A junta is a function depending on a constant number of coordinates.
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1.2 Social choice interpretations of approximate eigenfunctions

The seminal work of Kornhauser and Sager [32] discusses a situation where three cases A,B,C are con-
sidered in court, and by law, one should rule against C if and only if there is a ruling against both A and
B. When several judges are involved, their opinions should be aggregated using a function f that preserves
this law, that is, satisfies f(x ∧ y) = f(x) ∧ f(y); we say that f is an AND-homomorphism. List and
Pettit [34, 35] showed that the only non-constant aggregation functions that are AND-homomorphisms are
the AND functions, known in the social choice literature as oligarchies.

Let the individual opinions of the judges are x1, . . . , xn on A, y1, . . . , yn on B, and x1 ∧ y1, x2 ∧
y2, . . . , xn ∧ yn on C. The characterization of robust judgement aggregation that we prove in this paper
(Theorem 1.1) states that if typically f(x ∧ y) = f(x) ∧ f(y), then f is close to an oligarchy.

The characterization in terms of approximate eigenfunctions (Theorem 1.3) actually shows more. Sup-
pose that opinions are aggregated according to a monotone function f which satisfies the following two
conditions:

• There is rarely a ruling against C unless there is a ruling against A and a ruling against B.

• Suppose that there is a ruling against A. If there is also a ruling against B, then with probability
roughly q, there is a ruling against C.
(Formally, for typical x such that f(x) = 1, we have Pr[f(x ∧ y) = 1 | f(y) = 1] ≈ q.)

Then f must be close to an oligarchy or to a constant function, and q ≈ 1.
In fact, the second condition can be weakened significantly:

• Suppose that there is a ruling against A. Then with probability roughly λ, there is a ruling against C.

Theorem 1.3 implies that f must be close to an oligarchy or to a constant function, and λ ≈ E[f ].
Similarly, Theorem 1.5 shows that f has to be close to a monotone junta if the second condition above

is replaced with either of the following two conditions:

• Suppose that there is a ruling against A. If there is also a ruling against B, then with probability at
least q, there is a ruling against C.

• Suppose that there is a ruling against A. Then with probability at least λ, there is a ruling against C.

Thus our results do not only strengthen robust judgement aggregation in a quantitative way, but also in
a qualitative way.

1.3 Our techniques

Our main result, Theorem 1.1, easily follows from Theorem 1.3, which is our main technical result. Below
we sketch the proof idea of Theorem 1.3 (the proofs of Theorem 1.4 and Theorem 1.5 follow similar lines).

Suppose f, g are functions as in Theorem 1.3 that satisfy Tf ≈ λg. The first step of the proof is to show
that the function g is close to a junta h, i.e. to a function depending only on constantly many variables. To get
some intuition for that, note that if T was the standard noise operator, then the function Tf has exponentially
decreasing tail and hence it is very concentrated on its low Fourier levels. When the operator T is the one-
sided noise operator, one can actually use similar reasoning to claim that g again has an exponentially
decaying tail (as observed by Lifshitz [33]). Since g is Boolean and g ≈ 1

λTf , this observation would then
allow us to use structure theorems on Boolean functions (more specifically, a result of Bourgain [8] or of
Kindler and Safra [31]) to conclude that g is (close to) a junta.
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Thus, ignoring some (important) technical details, one can think of g as a function of a constant number
of variables, and since the proximity parameter between Tf and g can be taken to be very small (even in
comparison to the number of variables g depends on), one may as well think of it as being 0. In other words,
the problem essentially boils down to studying exact solutions to the equation Tf = g when n is constant,
which is where Theorem 1.2 enters the picture. Using it, we prove the structural result on g; getting the
structural result on f then amounts to averaging f over coordinates that g does not depend on (since those
could be thought of as a “source of randomness” as in the example of f2(x) above), and then inverting the
operator T acting on functions of a constant number of variables.

This ends the informal description of our techniques. We remark that actually composing the two com-
ponents, namely the approximation by junta and the solution to the exact equation, is more subtle and
requires some care. We also remark that in the case of one-sided error (Theorem 1.5), the Fourier-analytic
argument alluded to above, which implies that g is close to a junta, does not seem to be applicable. We thus
present an alternative, more combinatorial argument that captures this case as well.

1.4 Related work

1.4.1 Quantitative social choice theory

Social choice theory studies how to aggregate the opinion of a number of agents. Already in the 18th
century, Condorcet [11] noted that natural aggregation rules often result in paradoxes. A large body of
work has been developed in economics since the middle of the 20th century, in which it was shown that
natural aggregation tasks have no good aggregation functions. The two most famous results in this area are
Arrow’s impossibility theorem [3, 4] and the Gibbard–Satterthwaite (GS) manipulation theorem [21, 46].
The questions of aggregation re-emerged in the context of multi-agent systems in computer science, where
the hope was that either the probability of paradoxical outcome is small, or there is computational difficulty
in arriving at a paradoxical outcome, see e.g. [5] and the survey [18]. A sequence of results showed that this
is not the case by proving strong and general quantitative versions of both Arrow’s Theorem [28, 37, 29, 38]
and the GS Theorem [19, 20, 27, 39], as well as results interpolating the two theorems [17].

The main motivation for the problem discussed in this paper is Judgement Aggregation. This problem
is considered in a fascinating paper in the Yale Law Review by Kornhauser and Sager [32]. In particular,
toward the end of the paper, the authors considered legal cases, where the judgement aggregation function
f should satisfy f(x ∧ y) = f(x) ∧ f(y). They observe that this does not hold when f is the majority vote
on three opinions.

The failure of Majority, which mirrors the failure of Majority in ranking that was observed by Con-
dorcet, led to work by List and Pettit [34, 35], who characterized exactly the functions f that are AND-
homomorphisms, i.e., oligarchies. The question of judgement aggregation has attracted much attention
in philosophy, social epistemology, and artificial intelligence [45]. In the context of multi-agent systems,
when the number of agents is large, it makes sense to ask if it is possible to achieve approximate judgment
aggregation. Our results show that this can only be achieved in the obvious way, i.e., by almost-oligarchies.

We note that the study of judgement aggregation extends well beyond AND-homomorphisms, to other
types of homomorphisms, and indeed such a theory of polymorphisms is well-developed [41, 13, 14, 16, 15,
47]. We leave if for future work to investigate robust versions of these results.
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1.4.2 Property testing

The work of Blum, Luby and Rubinfeld [7] has been extended to more general settings by various authors.
For example, Moore and Russell [36] and Gowers and Hatami [23] considered approximate representa-
tions of finite groups. Other authors had considered infinite groups, see for example the survey of Hyers
and Rassias [26]. Theorem 1.1 generalizes Blum–Luby–Rubinfeld in a different direction, to approximate
polymorphisms, where there is no group structure.

We remark that Theorem 1.1 implies that the soundness of a property testing algorithm of Parnas, Ron
and Samorodnitsky [44], whose goal is to test whether the input function is a dictatorship (they also consider
the more general problem of testing whether the input function is close to an AND function). The authors
proposed the following natural tester, which they were unable to analyze: test that f has expectation 1/2
and satisfies f(x ∧ y) = f(x) ∧ f(y). Instead, they proposed a somewhat less natural tester. Our results
imply that their original tester also works.

It is interesting to explore if there is a relationship between our results and different notions of approxi-
mate polymorphisms that appear in the literature [10, 9], which were used to prove hardness of approxima-
tion results.

Organization. We formally state our results in Section 2. After some preliminaries in Section 3, we prove
the various results in Sections 4–7. We close the paper by stating some open questions in Section 8.

2 Main Results

Let µp denote the p-biased measure on {0, 1}n. Let L2({0, 1}n, µp) be the space of real-valued functions
on {0, 1}n equipped with the inner product 〈f, g〉 = Ex∼µn

p
[f(x)g(x)].

Definition 2.1. For q 󰃑 p, the distribution (y,x) ∼ D(q, p) over {0, 1}n × {0, 1}n is the distribution in
which for each i ∈ [n] independently, we have Pr [yi = 1] = q and Pr [xi = 1] = p, and always yi 󰃑 xi.

One way to generate inputs (y,x) ∼ D(q, p) that will be useful for us is as follows. Sample x ∼ µp and
z ∼ µq/p independently, and output (x∧ z,x). (Here ∧ refers to the coordinatewise AND operation, i.e. for
each i ∈ [n] we have (x ∧ z)i = xi ∧ zi.)

For ρ ∈ (0, 1), define the one-sided operator T↓
p,ρp as follows. For any function f : ({0, 1}n, µρp) →

{0, 1}, the function T↓
p,ρpf : ({0, 1}n, µp) → {0, 1} is given by

T↓
p,ρpf(x) = E(y,v)∼D(ρp,p) [f(y) | v = x].

Equivalently, we have T↓
p,ρpf(x) = Ez∼µρ [f(x ∧ z)].

Next, we shall discuss the spectrum (eigenvectors and eigenvalues) of the operator T↓
p,ρp. We remark

that throughout this section, the parameters p and ρ should be thought of as constants bounded away from
0, 1.

For each S ⊆ [n], the function ANDS : {0, 1}n → {0, 1} defined by ANDS(x) =
󰁙

i∈S xi is an
eigenvector of T↓

p,ρp with eigenvalue ρ|S| (we omit the easy proof). Moreover, these are the only eigenvectors
of T↓

p,ρp that are Boolean valued.3 Our goal in this paper is to find a robust version of this characterization
of the Boolean eigenvectors of T↓

p,ρp.
3To see that, note that any function f can be written as a linear combination of AND functions, and if f is an eigenvector then

all of these ANDs are of the same size, say with coefficients α1, . . . ,αm. Considering the value of f on the minterms of these
ANDs, one concludes that all of the α’s must be 1, and considering the value of f on the all-1 string, one concludes that m = 1.
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We say that a function f is an η-approximate eigenvector with eigenvalue λ, if 󰀂T↓
p,ρpf − λf󰀂1 󰃑

η (here and throughout the paper we will consider the ℓ1 norm with respect to the µp measure). What
structure do Boolean, approximate eigenvectors of T↓

p,ρp must have? A natural conjecture would be that
any such function has to be close to an exact eigenvector, which by Booleanity would have to be an AND-
function over ≈ logρ(λ) variables. However, this conjecture turns out to be false, as the following example
demonstrates.

Set p = ρ = 1
2 , and consider the function f defined by f(x) = x1 ∨ x2 for inputs whose hamming

weight is n/2 ±
√
n log n, and by x1 ⊕ x2 for the rest of the inputs. It is easy to see that f is far from any

AND function on the µ1/2 measure, and we argue that 󰀂T↓
1/2,1/4f − 1

2f󰀂 = o(1). By definition, for each

x, T↓
1/2,1/4f(x) is the probability that picking z ∼ µ1/2, we have f(x ∧ z) = 1. Except with probability

o(1), the hamming weight of x, x ∧ z is roughly n/2, n/4 respectively, and we focus only on this event. In
this case if f(x) = 0 then x1 = x2 = 0 and thus clearly f(x ∧ z) = 0, and otherwise (x1, x2) ∕= (0, 0) and
therefore f(x ∧ z) = x1z1 ⊕ x2z2 is a uniform bit, i.e. f(x ∧ z) = 1 with probability 1

2 .

Remark 2.2. It is worth noting that for any constant λ > 0, there are approximate eigenvectors of T↓
1/2,1/4

with eigenvalue λ (not only for λ = 2−k). Indeed, the function f that is constantly 1 on inputs with Hamming
weight n/2 ±

√
n log n, and on each other point x independently, we take f(x) = 1 with probability λ, is

(with probability 1− o(1)) an approximate eigenvector with eigenvalue λ.

2.1 The basic two-function version

Since the previous example is essentially composed of two different functions (one around the middle slice
and the other around the n/4-slice), it makes sense to consider the two-function version of the approximate
eigenvector problem. Namely, let f : ({0, 1}n, µpρ) → {0, 1}, g : ({0, 1}n, µp) → {0, 1}, and λ ∈ (0, 1)

be such that 󰀂T↓
p,ρpf − g󰀂1 󰃑 η. What can we say about f and g? We note that in this case, even the exact

version of the problem, i.e. determining which functions can satisfy T↓
p,ρp = g, is already unclear (and in

fact, as it turns out, understanding solutions to the exact problem is a key step in solving the approximate
problem).

The version of the problem we will consider is actually more general and allows the function f to take
values in [0, 1]. It turns out that the structure of the solutions heavily depends on ρ, and we consider three
different regimes: 0 < ρ < 1

2 , ρ = 1
2 and 1

2 < ρ < 1. We remark that all of the results apply in particular
for the original approximate eigenvector problem, i.e. the case f = g.

The first range, 0 < ρ < 1
2 , is the simplest, and we have the following result.

Theorem 2.3. For any ζ > 0 there is J ∈ N such that for any ε > 0 there is η > 0 such that the following
holds. Let p ∈ [ζ, 1− ζ], ρ ∈ [ζ, 12 − ζ] and λ ∈ [ζ, 1], and let f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1}
satisfy 󰀂T↓

p,ρpf − λg󰀂1 󰃑 η. Then either f, g are ε-close to the zero function, or there is a set T ⊆ [n] of
size at most J such that:

• g is ε-close to ANDT .

• After averaging outside T , f is ε-close to ρ−|T |λ ·ANDT . More precisely, the function f̃ : {0, 1}T →
[0, 1] given by f̃(x) = Ey∼µ

[n]\T
ρp

[f(y, x)] is ε-close to ρ−|T |λ · ANDT .

(This range corresponds to the operators T(m) mentioned in Theorem 1.4.)
In the second range, ρ = 1/2, the structure of f and g may be more complicated (we have already seen

an example in this range where g = ORT and f = XORT for T of size 2).
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Definition 2.4. A function g : {0, 1}n → {0, 1} is called an AND-OR function of width m if there are
disjoint sets A1, . . . , Am such that g(x) =

󰁙
i∈[m]

󰁚
j∈Ai

xj .

Definition 2.5. A function g : {0, 1}n → {0, 1} is called an AND-XOR function of width m if there are
disjoint sets A1, . . . , Am such that g(x) =

󰁙
i∈[m]

󰁏
j∈Ai

xj .

Theorem 2.6. For any ζ > 0 there is m ∈ N such that for any ε > 0 there are η > 0, J ∈ N such that the
following holds for all p ∈ [ζ, 1− ζ] and λ ∈ [ζ, 1]. If f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} satisfy
󰀂T↓

p,p/2f − λg󰀂1 󰃑 η. Then there is a set T ⊆ [n] of size at most J , and a partition T = A1 ∪ · · · ∪Ar for
r 󰃑 m such that either f, g are ε-close to the zero function, or:

• g is ε-close to
󰁙

i∈[r]
󰁚

j∈Ai
xj (i.e. to an AND-OR function of width at most m).

• After averaging outside T , f is ε-close to a multiple of
󰁙

i∈[r]
󰁏

j∈Ai
xj . More precisely, the function

f̃ : {0, 1}T → [0, 1] given by f̃(x) = Ey∼µ
[n]\T
p/2

[f(y, x)] is ε-close to 2rλ ·
󰁙

i∈[r]
󰁏

j∈Ai
xj .

Both Theorem 2.3 and Theorem 2.6 can be shown to be qualitatively tight. For Theorem 2.6, for ex-
ample, any pair of functions f, g where g is an AND-OR function and f is the corresponding AND-XOR
function is an exact solution. To see that some averaging is needed to get a structure for f , note that given a
pair of approximate solutions f, g, one may sub-sample f , i.e. change the value on each x such that f(x) = 1
with probability 1/2, to get a new approximate solution with λ/2, and f has no apparent structure (other
than being a multiple of AND-XOR after averaging).

Quantitatively, the dependence of η on ε in Theorem 2.3 is quasi-polynomial η = exp(−Θζ(log
2(1/ε))).

In contrast, the dependence in Theorem 2.6 is exponentially worse, i.e. η = exp(− exp(Θζ(log
2(1/ε)))).

The source of this difference is that in the case of Theorem 2.3 (and also in Theorem 2.7 and Theorem 2.8)
we are able to prove stronger approximation by junta results than in Theorem 2.6. Namely, we show that
there is J(ζ) (independent of the proximity to junta parameter ε), such that if η is a sufficiently small func-
tion of ε, then g is ε-close to a J-junta. In the case of Theorem 2.6, we are forced to allow the size of the
junta J to also depend on ε. As far as we know, in both cases the dependence of η on ε could be much better,
perhaps even polynomial.

In the third range of parameters, 1
2 < ρ < 1, the solutions to the problem have a richer structure. It can

be shown, for example, that there are ρ ∈ (12 , 1), λ ∈ (0, 1) and a function f : {0, 1}n → [0, 1] such that f
and g(x) = Maj(x1, x2, x3) are an exact solution to T↓

1/2,ρ/2f = λg. In this case we only show a relatively
weak structure, namely that g is close to a monotone junta (see Theorem 2.11). We remark that in order to
get a stronger structure, one would only need to classify all exact solutions to the equation T↓

p,ρpf = λg for
ρ > 1/2.

2.2 Special cases

We next present our result for a few special cases of interest, in which we are able to prove a stronger
structure. The first result is concerned with the case when the approximate eigenvalue is large:

Theorem 2.7. For every ζ, ε > 0 there is η > 0 such that the following holds for any ρ, p ∈ [ζ, 1− ζ] and
λ 󰃍 ρ+ ζ. If f : ({0, 1}n, µρp) → [0, 1] and g : ({0, 1}n, µp) → {0, 1} satisfy 󰀂T↓

p,ρpf − λg󰀂1 󰃑 η, then g
is ε-close to a constant function Γ ∈ {0, 1}, and Ex∼µρp [f(x)] is ε-close to λΓ.

Next, we consider the case in which f is a monotone function. In this case (and actually for a more
relaxed case in which f is “almost monotone”), we show that g must be an AND function and f must be a
multiple of that AND function after averaging. We also get quantitatively stronger relation between ε and η.
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Theorem 2.8. For every ζ > 0, ε > 0 there exists η > 0 such that the following holds for all p, ρ ∈
[ζ, 1 − ζ] and λ ∈ [ζ, 1]. If f : ({0, 1}n, µρp) → [0, 1] is monotone and g : ({0, 1}n, µp) → {0, 1} satisfies
󰀂T↓

p,ρpf − λg󰀂 󰃑 η, then:

• There exists T ⊆ [n] of size at most ⌈log(2/λ)⌉ and a function h that is either constant (in which case
T = ∅) or ANDT , such that 󰀂g − h󰀂1 󰃑 ε.

• f̃ : {0, 1}T → [0, 1] given by f̃(x) = Ey∼µρp [f(x,y)] is ε-close in L∞-norm to ρ−|T |λ · h.

The monotonicity condition in Theorem 2.8 can be relaxed to “almost monotonicity”, in the sense that
flipping any coordinate from 0 to 1 cannot decrease the value of the function too much. To define this
relaxation more precisely we need the notion of negative influences:

Definition 2.9. Let f : ({0, 1}n, µp) → [0, 1] and let i ∈ [n]. The negative influence of a variable i on f ,
denoted by I−i [f ], is defined to be

E
x∼µp

[max(0, f(x1, . . . ,xi−1, 0,xi+1, . . . ,xn)− f(x1, . . . ,xi−1, 1,xi+1, . . . ,xn))].

(Note that whereas Ii[f ] is the average of squared differences, I−i [f ] is an average of differences.)
With this definition, Theorem 2.8 also holds when we relax the condition of monotonicity of f to the

condition that all of its individual negative influences are small, i.e. I−i [f ] 󰃑 η for all i ∈ [n] (the proof of
Theorem 2.8 in Section 5.2 achieves this stronger statement). One benefit of this relaxation is that it is able
to capture the case of “judgement aggregation” as an immediate consequence.

Theorem 2.10. For all ζ, ε > 0 there is η > 0 such that the following holds for all p, ρ ∈ [ζ, 1 −
ζ]. If f : ({0, 1}n, µρp) → {0, 1}, g : ({0, 1}n, µp) → {0, 1} and h : ({0, 1}n, µρ) → {0, 1} satisfy
Prx∼µp,y∼µρ [f(x ∧ y) = g(x) ∧ h(y)] 󰃍 1− η, then one of the following cases must happen.

1. f and at least one of the functions g or h are ε-close to the constant 0 function.

2. There is a set T ⊆ [n] such that f, g, h are all ε-close to ANDT (each with respect to their input
distribution).

2.3 One-sided error

Finally, we consider a more relaxed version of approximate solutions to T↓
p,ρpf = g. We say functions

f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} are one-sided error solutions with λ > 0 and error η if the
following two conditions occur:

1. T↓
p,ρpf is very small on typical inputs x such that g(x) = 0:

E
x∼µp

󰁫
(1− g(x)) · T↓

p,ρpf(x)
󰁬
󰃑 η.

2. T↓
p,ρpf is bounded away from 0 on typical inputs x such that g(x) = 1:

Pr
x∼µp

󰁫
g(x) = 1,T↓

p,ρpf(x) 󰃑 λ
󰁬
󰃑 η.

Theorem 2.11. For any ε, ζ > 0 there are η > 0 and J ∈ N such that the following holds for any
p, ρ ∈ [ζ, 1 − ζ] and λ ∈ [ζ, 1]. If f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1} are one-sided error
solutions with λ and error η, then g is ε-close to a monotone, Boolean J-junta.

We remark that any monotone junta g is a one-sided error approximate solution (by taking f = g), so
Theorem 2.11 is tight with respect to the structure of g.
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Organization. The proof of Theorem 2.6 is given in Section 4. In Section 5 we prove Theorems 2.7, 2.8
and 2.10. In Section 6 we prove Theorem 2.11, and finally in Section 7 we prove Theorem 2.3.

3 Preliminaries

For any p ∈ (0, 1), we consider the space of function f : ({0, 1}n, µp) → R equipped with the inner product
〈f, g〉 = Ex∼µp [f(x)g(x)]. We will use the Fourier–Walsh orthonormal basis

󰀋
χp
S

󰀌
S⊆[n]

, where for each

S ⊆ [n] we define χp
S : {0, 1}

n → R by χp
S(x) =

󰁔
i∈S

󰁫
(xi − p)/

󰁳
p(1− p)

󰁬
. This way, we may write the

Fourier expansion of a function f : {0, 1}n → R by

f(x) =
󰁛

S⊆[n]

󰁥fp(S)χp
S(x), where 󰁥fp(S) = 〈f,χp

S〉.

Since
󰀋
χp
S

󰀌
S⊆[n]

is an orthonormal basis, we have Parseval’s identity 󰀂f󰀂22 =
󰁓

S⊆[n]

󰁥fp(S)2. We will

need a few more notions and results from Fourier analysis, such as the Junta Theorems of [8, 31] and the
Sensitivity Conjecture proved recently by [25], which we present below.

3.1 Influences

For a function f : ({0, 1}n, µp) → R and a coordinate i ∈ [n], we define the p-biased influence of variable i
to be Ipi [f ] = Ex∼µp

󰀅
(f(x)− f(x⊕ ei))

2
󰀆
. When the bias parameter is clear from context, we often write

Ii[f ].
We will also use the notion of negative influences as given in Definition 2.9. We have the following

simple fact, stating that averaging may only decrease negative influences.

Fact 3.1. Let f : ({0, 1}n, µp) → R be a function, and let i ∈ [n]. Consider the function g : ({0, 1}n−1, µp) →
R defined by g(z) = Ex∼µp

󰀅
f(x)

󰀏󰀏 x[n]\{i} = z
󰀆

(i.e. averaging f over the coordinate i). Then I−j [g] 󰃑
I−j [f ] for any j ∈ [n] \ {i}.

Proof. Fix j ∕= i, and assume without loss of generality that j = n − 1 and i = n. We prove that for
each x ∈ {0, 1}n−2, the contribution of the edge between (x, 0) to (x, 1) to the negative influence of g is
upper-bounded by the contribution of the parallelepiped of x in f .

Denote a = f(x, 0, 0), b = f(x, 0, 1), c = f(x, 1, 0), d = f(x, 1, 1), ā = (1 − p)a + pb (= g(x, 0)),
c̄ = (1 − p)c + pd (= g(x, 1)). If c̄ > ā, the point x does not contribute to the negative influence of g and
there is nothing to prove. Otherwise, the contribution is µp(x)(ā− c̄) = µp(x, 0)(a−c)+µp(x, 1)(b−d) 󰃑
µp(x, 0)max(a − c, 0) + µp(x, 1)max(b − d, 0), and the right-hand side is exactly the contribution of the
parallelepiped of x in f .

We also need the following fact that relates negative influences and distance from monotonicity.

Fact 3.2. For all p ∈ (0, 1), n ∈ N and τ > 0, if f : ({0, 1}n, µp) → R is a function such that I−i [f ] 󰃑 τ for
all i ∈ [n], then there is a monotone function h : ({0, 1}n, µp) → R such that 󰀂f − h󰀂1 󰃑 ((1− p)p)−nnτ .

We remark that the above fact is inspired by [22], wherein a similar statement was proved for Boolean
functions for p = 1/2, with a better bound (nτ ). The argument we present is essentially the same and
can also recover the bound nτ for p = 1/2, but since we will only use this statement with constant n and
very small τ , the bound we achieve is sufficient for our purposes. We defer the proof to the end of the
preliminaries.
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3.2 Junta theorems

We will use Bourgain’s Theorem [8]; the sharp version below is proved in [30]. For k ∈ N, the Fourier tail
W󰃍k[f ] is defined to be

󰁓
|S|󰃍k

󰁥fp(S)2.

Theorem 3.3. For any ζ > 0 there is a constant C(ζ) > 0 such that for any k ∈ N, ε > 0 there are τ =
(k/ε)−C·k, J = (k/ε)C·k such that the following holds for all p ∈ [ζ, 1 − ζ]. If f : ({0, 1}n, µp) → {0, 1}
satisfies W󰃍k[f ] 󰃑 ε

C
√
k log1.5(k)

, then f is ε-close to a J-junta h.

Furthermore, h only depends on variables i such that Ii[g] 󰃍 τ .

We also need the following result of Kindler and Safra. We remark that its important feature at is has
(lacking from Bourgain’s result above) is that the size of the junta only depends on the level k and not on
the closeness parameter ε that we wish to get.

Theorem 3.4 ([31]). For any ζ > 0, m ∈ N there exists J(m, ζ) ∈ N, C(m, ζ) > 0 such that the following
holds for all p ∈ [ζ, 1−ζ]. For any ε > 0 there exists δ = C(m, ζ) ·ε such that if f : ({0, 1}n, µp) → {0, 1}
is a function such that W󰃍m[f ] 󰃑 δ, then f is ε-close to a junta of size J(m, ζ).

3.3 Degree and sensitivity

For any f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, the sensitivity of f at x is equal to the number of coordinates
i ∈ [n] such that f(x) ∕= f(x⊕ei). The max-sensitivity of a function f is s(f) = maxx s(f, x). The degree
of a function deg(f) is the maximal size of S such that 󰁥fp(S) ∕= 0 (we remark that this is easily seen to be
independent of p).

We will use the following recent result of Huang [25] (formerly known as the sensitivity conjecture
[42]) in our proof. We remark that quantitatively weaker results there were proven earlier (such as the bound
s(f) 󰃍 Ω(log(deg(f)))) would have been enough for us, but yield to a loss in several parameters.

Theorem 3.5 ([25]). For any f : {0, 1}n → {0, 1} we have that s(f) 󰃍
󰁳

deg(f).

3.4 Proof of Fact 3.2

For each i ∈ [n], define the shifting operator Si on functions g : {0, 1}n → R that operates by (Sif)(x−i, xi) =
max(f(x−i, 0), f(x−i, 1)) if xi = 1 and (Sif)(x−i, xi) = min(f(x−i, 0), f(x−i, 1)) if xi = 0.

Claim 3.6. For any i, j ∈ [n] and g : {0, 1}n → R we have that I−j [Sig] 󰃑 1
p(1−p)I

−
j [g].

Proof. If i = j the claim is clear as I−i [Sig] = 0, so we assume that i ∕= j. Without loss of generality
j = n− 1, i = n. We show that for every x ∈ {0, 1}n−2, the contribution of the parallelepiped of x in Sig
is at most 1

p(1−p) its contribution in g.
Write a = g(x, 0, 0), b = g(x, 0, 1), c = g(x, 1, 0), d = g(x, 1, 1), and note that the value of Sig on

these points, in the same order, is min(a, b),max(a, b),min(c, d),max(c, d). The contribution of x to the
parallelepiped to Sig is

µp(x) [(1− p)max(max(a, b)−max(c, d), 0) + pmax(min(a, b)−min(c, d), 0)] .

Using max(a, b) − max(c, d) 󰃑 max(a − c, b − d) and min(a, b) − min(c, d) 󰃑 max(a − c, b − d), we
conclude that the contribution of the parallelepiped of x to Sig is at most µp(x)max(a− c, b− d, 0).
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On the other hand, the contribution of the parallelepiped of x to g is

µp(x) [(1− p)max(a− c, 0) + pmax(b− d, 0)] 󰃍 p(1− p)µp(x)max(a− c, b− d, 0),

and we are done.

Claim 3.7. For any i ∈ [n] and g : {0, 1}n → R. We have that 󰀂Sig − g󰀂1 󰃑 I−i [g].

Proof. Assume without loss of generality that i = n. We show that for each x ∈ {0, 1}n−1, the contribution
of the points (x, 0), (x, 1) to the left-hand side is at most the contribution of the edge between them on the
right-hand side.

Write a = g(x, 0), b = g(x, 1), and note that the value of Sig on these points, in the same order, is
min(a, b),max(a, b). Consider the contribution of (x, 0) and (x, 1) to the left-hand side; if b 󰃍 a it is 0 and
there is nothing to prove, so assume b < a. Then the contribution is equal to µp(x) |b− a|, which is the
same as the contribution of this edge to I−i [g], and we are done.

We are now ready to prove Fact 3.2.

Proof of Fact 3.2. Let g be a function as in the proof, and define hi = Si ◦ Si−1 ◦ · · · ◦ S1g for each
0 󰃑 i 󰃑 n (where h0 = g). Clearly hn is monotone, and we show that it is close to g. By Claim 3.6 all
negative influences of each hi are at most ((1−p)p)−nτ , and hence by Claim 3.7 we get that 󰀂hi−hi−1󰀂1 󰃑
((1 − p)p)−nτ for each i = 1, . . . , n. By the triangle inequality we get that 󰀂g − hn󰀂1 = 󰀂h0 − hn󰀂1 󰃑
((1− p)p)−nnτ .

4 Proof of Theorem 2.6

In this section, we prove Theorem 2.6. Since we will always consider the downwards noise operator T↓
p,p/2,

we denote it succinctly by T.

4.1 Main Lemma

Lemma 4.1. For any ζ > 0 and n ∈ N there exists η0 > 0 such that the following holds for all p ∈ [ζ, 1−ζ],
λ ∈ [ζ, 1] and η ∈ [0, η0]. If 󰀂T↓

p,p/2f − λg󰀂∞ 󰃑 η then:

• g is an AND-OR function of width r, where r 󰃑 ⌈log(2/ζ)⌉.

• Let φ be the corresponding AND-XOR function. Then 󰀂f − 2rλ · φ󰀂∞ 󰃑 3nη.

This section is devoted for the proof of this lemma, and the proof is divided into several claims. It will
be convenient for us to identify vectors in {0, 1}n with subsets of [n] by identifying a vector with its support,
and consequently think of the inputs of functions as subsets of [n]. The definition of the operator T to these
language is immediate: Tf(B) = EC⊆B [f(C)] = 2−|B| 󰁓

C⊆B

f(C).

Fix ζ, n, and choose η = ζ4−n2−4n−4. Let f, g be functions as in the statement of the lemma.

Claim 4.2. g is monotone.
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Proof. Suppose g is not monotone. Then there is an edge (A,B) of the hypercube where A ⊊ B such that
g(A) = 1, g(B) = 0. We have that Tf(B) 󰃑 λg(B) + η = η, which by definition of T implies that
EC⊆B [f(C)] 󰃑 η. Denote {i} = B \ A, and note that with probability 1/2 we have i ∕∈ C, in which case
C ⊆ A. Thus, the non-negativity of f implies that EC⊆A [f(C)] 󰃑 2EC⊆B [f(C)] 󰃑 2η, i.e. Tf(A) 󰃑 2η.
This is in contradiction to Tf(A) 󰃍 λg(A)− η = λ− η (by the choice of η).

Since g is monotone, one can discuss its minterms, i.e. sets M ⊆ [n] such that g(M) = 1 but for all
A ⊊ M , g(A) = 0. The following lemma asserts that the value of f on any minterm of g is determined (up
to a small error).

Claim 4.3. If M is a minterm of g, then
󰀏󰀏f(M)− λ2|M |󰀏󰀏 󰃑 4|M |η.

Proof. Since g(M) = 1, we have that |Tf(M)− λ| 󰃑 η, and by definition of T we have Tf(M) =
2−|M | 󰁓

A⊆M

f(A), so by the triangle inequality it follows that
󰀏󰀏f(M)− 2|M |λ

󰀏󰀏 󰃑 2|M |η +
󰁓

A⊊M

f(A) , and

to finish the proof, we upper bound the last sum. Note that for every A ⊊ M , choosing B ⊊ M randomly
of size |M |−1, we have that A ⊆ B with probability at least 1/ |M |, hence by the non-negativity of f there
is B of size |M | − 1 such that

󰁓
A⊊M

f(A) 󰃑 |M |
󰁓

A⊆B

f(A), and we fix such B.4 Since B ⊊ M and M

is a minterm of g, we have that g(B) = 0, and therefore Tf(B) 󰃑 η or equivalently
󰁓

A⊆B

f(A) 󰃑 2|B|η.

Plugging that in we get that
󰁓

A⊊M

f(A) 󰃑 |M | 2|M |−1η and the claim follows.

We next wish to argue all minterms of g are of the same size, and towards this end (and also in other
places in the argument) the following proposition will be useful.

Proposition 4.4. Let B,Z ⊆ [n] be disjoint such that g(B) = 1. Then
󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆B

f(A ∪ Z)− 2|B|λ

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑 2|B|3|Z|η.

Proof. For any W ⊆ Z, we have that |Tf(B ∪W )− λg(B ∪W )| 󰃑 η. Since g is monotone and g(B) =
1, we must have g(B ∪ Y ) = 1 and we get that

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆B,Y⊆W

f(A ∪ Y )− 2|B∪W |λ

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑 2|B∪W |η.

Note that for any Y ⊆ Z,
󰁓

W : Y⊆W⊆Z

(−1)|Z\W | = 0 unless Y = Z, in which case the sum is 1, and so we

get that
󰁛

A⊆B

f(A ∪ Z) =
󰁛

A⊆B,Y⊆Z
W : Y⊆W⊆Z

(−1)|Z\W |f(A ∪ Y ) =
󰁛

W⊆Z

(−1)|Z\W |
󰁛

A⊆B,Y⊆W

f(A ∪ Y ).

Therefore the triangle inequality implies that
󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆B

f(A ∪ Z)− λ
󰁛

W⊆Z

(−1)|Z\W |2|B∪W |

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑

󰁛

W⊆Z

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆B,Y⊆W

f(A ∪ Y )− 2|B∪W |λ

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑

󰁛

W⊆Z

2|B∪W |η,

4Alternatively, note that
󰁓

A⊊M f(A) 󰃑
󰁓

|B|=m−1

󰁓
A⊆B f(A), and take B maximizing

󰁓
A⊆B f(A).
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which is equal to 2|B|3|Z|η. To complete the proof, we observe that by the binomial formula
󰁛

W⊆Z

(−1)|Z\W |2|B∪W | = 2|B|
󰁛

W⊆Z

2|W |(−1)|Z|−|W | = 2|B|(2− 1)|Z| = 2|B|.

We now show two consequences of the above proposition. First, we show that all minterms of g have
the same size.

Claim 4.5. Let M,M ′ be two minterms of g. Then |M | = |M ′|.

Proof. Let Z = M ′ \M . By Proposition 4.4 we have
󰁛

A⊆M

f(A ∪ Z) 󰃑 2|M |λ+ 2|M |3|Z|η.

By the non-negativity of f the left-hand side is at least the value of f for A = M ∩M ′, i.e. on A∪Z = M ′;
furthermore, by Claim 4.3 we have f(M ′) 󰃍 λ2|M

′| − 4|M
′|η, so combining we get

λ2|M
′| 󰃑 2|M |λ+ η(2|M |3|Z| + 4|M

′|) 󰃑 2|M |λ+ λ/2,

where the last inequality is by the choice of η. This implies that |M ′| 󰃑 |M |. The second inequality is
proved analogously.

Denote the size of a minterm of g by m, and note that m 󰃑 ⌈log(2/λ)⌉. Indeed, letting M be any
minterm of g, by Claim 4.3 we get that λ2m 󰃑 f(M) + 4mη 󰃑 2.

We next show that the value of f in a point B must be either close to 0 or close to 2mλ.

Claim 4.6. For any B ∈ {0, 1}n, either f(B) 󰃑 4|B|2η or |f(B)− 2mλ| 󰃑 4|B|η.

Proof. If g(B) = 0, the claim is immediate since 2−|B|f(B) 󰃑 Tf(B) 󰃑 λg(B) + η = η, so we assume
that g(B) = 1. We prove the claim by induction on |B|. If |B| = m, then B is a minterm and the claim
follows from Claim 4.3. Assume the claim holds for all |B| 󰃑 i, and let B be of size i+ 1. Since g(B) = 1
we get that there must be a minterm M ⊆ B of g. Let Z = B \M , then by Proposition 4.4,

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆M

f(A ∪ Z)− 2mλ

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑 2m3|Z|η.

For each A ⊊ M , by the induction hypothesis f(A ∪ Z) is either close to 0 (i.e. at most 4|A∪Z|2η) or close
to 2mλ (more precisely, up to ±4|A∪Z|η).

• If there is A󰂏 ⊊ M that falls into the second case, then by non-negativity of f we get

f(B) = f(M ∪ Z) 󰃑
󰁛

A⊆M

f(A ∪ Z)− f(A󰂏 ∪ Z)

󰃑

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆M

f(A ∪ Z)− 2mλ

󰀏󰀏󰀏󰀏󰀏󰀏
+ |f(A󰂏 ∪ Z)− 2mλ|

󰃑 2m3|Z|η + 4|A
󰂏∪Z|η 󰃑 4|B|η,

where in the last inequality we used |A󰂏| 󰃑 m− 1, and the claim is proved for B.
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• Otherwise, by the triangle inequality

|f(M ∪ Z)− 2mλ| 󰃑

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊊M

f(A ∪ Z)

󰀏󰀏󰀏󰀏󰀏󰀏
+

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A⊆M

f(A ∪ Z)− 2mλ

󰀏󰀏󰀏󰀏󰀏󰀏

󰃑
󰁛

A⊊M

4|A∪Z|2 + 2m3|Z|η

󰃑
󰀓
4(m+|Z|−1)2+m + 3m+|Z|

󰀔
η,

which is at most 4(m+|Z|)2η = 4|B|2η. Hence the claim is proved for B (as B = M ∪ Z).

We are now able to restate Proposition 4.4 in a more convenient form. For each pair of disjoint sets
B,Z ⊆ [n] such that g(B) = 1, denote X(B,Z) = {A ∪ Z | A ⊆ B}.

Corollary 4.7. Suppose B,Z ⊆ [n] are disjoint and g(B) = 1. Then there is a unique A󰂏 ⊆ B such that:

• |f(A󰂏 ∪ Z)− 2mλ| 󰃑 4nη.

• For any other A ⊂ B we have that f(A ∪ Z) 󰃑 4n
2
η.

• g(A󰂏 ∪ Z) = 1 and for any A ⊊ A󰂏 we have g(A ∪ Z) = 0.

Proof. For the first item, if for all A ⊆ B it holds that f(A ∪ Z) 󰃑 4n
2
η, then by Proposition 4.4 we have

2mλ 󰃑
󰁓

A⊆B

f(A ∪ Z) + 6nη 󰃑 4n
2+3nη, which contradicts the choice of η. Therefore, by Claim 4.6 there

is A󰂏 ⊆ B such that |f(A󰂏 ∪ y)− 2mλ| 󰃑 4nη.
For the second item, assume towards contradiction there are two such A1, A2. By Proposition 4.4 we

have
2 · (2mλ− 4nη) 󰃑 f(A1 ∪ Z) + f(A2 ∪ Z) 󰃑

󰁛

A⊆B

f(A ∪ Z) 󰃑 2mλ+ 6nη,

and therefore 2mλ 󰃑 6n+1η, which is a contradiction to the choice of η.
For the third item, note that

g(A󰂏 ∪ Z) 󰃍 Tf(A󰂏 ∪ Z)− η 󰃍 2−|A󰂏∪Z|f(A󰂏 ∪ Z)− η 󰃍 2−nλ− (4n + 1)η > 0,

and since g is Boolean-valued it follows that g(A󰂏 ∪ Z) = 1. Also, for any A ⊊ A󰂏 we have

g(A ∪ Z) 󰃑 Tf(A ∪ Z) + η 󰃑 4n
2
η + η < 1,

where in the second inequality we used the definition of T and the second item. Since g is Boolean we get
that g(A ∪ Z) = 0.

To simplify notation, for the rest of the section we often say “the value of f(S) is close to 2mλ” to
express that |f(S)− 2mλ| 󰃑 4nη and “the value of f(S) is close to 0” to express that f(S) 󰃑 4n

2
η.

Consider the m-uniform hypergraph H = ([n], E) whose edges are the minterms of g. In the remainder
of this section we show that H is a complete m-partite hypergraph, which is easily seen to be equivalent to
g being an ANR-OR function of width m. Towards this end, we will define a coloring χ : [n] → [m] and
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show that (a) each edge e ∈ E is rainbow colored (i.e. no two vertices in it are colored in the same color),
and (b) any rainbow colored set A ⊆ [n] is an edge.

Fix a minterm B ⊆ [n], and write B = {b1, . . . , bm}, where b1, . . . , bm ∈ [n]. We define χ(bi) = i. We
now define χ(v) for any v ∈ [n]\B. Fix v ∈ [n]\B, and consider the set X(B, {v}); by Corollary 4.7 there
exists a unique A ⊆ B such that f(A ∪ {v}) is close to 2mλ, and its g-value is 1. Since g(A ∪ {v}) = 1,
we must have |A ∪ {v}| 󰃍 m, and there are two options:

• If |A ∪ {v}| = m+ 1, i.e. A = B, define χ(v) = ⊥.

• Otherwise, there is i ∈ [m] such that A = B \ {bi}, and we define χ(v) = χ(bi) = i.

We first show that each minterm of g is colored using only elements from [m] (as opposed to ⊥).

Claim 4.8. Let M ∈ E be a minterm of g. Then for each v ∈ M we have χ(v) ∕= ⊥.

Proof. Assume towards contradiction that this is not the case, and let v ∈ M be such that χ(v) = ⊥. Then
by definition of χ this means that f(B ∪ {v}) is close to 2mλ, and since B is a minterm of g we also know,
by Claim 4.3, that f(B) is close to 2mλ. This gives us two points in X(M,B \M) whose f -value is close
to 2mλ, in contradiction to Corollary 4.7.

Next, we show that each minterm of g is rainbow colored by χ.

Claim 4.9. Let M ∈ E be a minterm of g. Then M is rainbow colored.

Proof. Write M = {v1, . . . , vm}, and assume towards contradiction the statement is false. Then there are
vi, vj that are assigned the same color by χ, and without loss of generality we may assume χ(v1) = χ(v2) =
m. By definition of χ it follows that f({v1} ∪ (B \ {bm})) and f({v2} ∪ (B \ {bm})) are both close to
2mλ. However, note that these are two distinct points in X(M,B \M), and thus we get a contradiction to
the second item in Corollary 4.7.

Note that the definition of the coloring χ may depend on the minterm B chosen initially to define it.
The following claim shows that this is actually not the case — and more precisely that if we use a different
minterm B′ to define a coloring χ′, then there is a permutation π on [m] such that χ′ = π ◦ χ.

Claim 4.10. Let B′ = {b′1, . . . , b′m} be any minterm of g, and let χ′ be a coloring defined as above using
B′ in place of B. Then there exists π ∈ Sm such that χ = π ◦ χ′.

Proof. Since B is a minterm of g, it follows by Claim 4.9 that it is rainbow colored by both χ and χ′, so we
define π ∈ Sm by π(χ′(bi)) = χ(bi). We define χ̃ = π ◦ χ′ and show that χ = χ̃.

Let v ∕∈ B, and assume without loss of generality χ(v) = m. Then by definition of χ we must have
that {b1, . . . , bm−1, v} is a minterm of g, and hence by Claim 4.9 it must be rainbow colored by χ̃. Since χ̃
agrees with χ on b1, . . . , bm−1, we must have χ̃(v) = m, and we are done.

Lastly, we show that each rainbow colored set of size m is a minterm of g.

Claim 4.11. For any minterm B of g and a coloring χ defined by it, the following holds. If M ⊆ [n] of size
m is rainbow colored by χ, then g(M) = 1. Consequently, M is a minterm of g.
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Proof. We prove the statement for all B,χ,M by induction on |B ∩M |.
Write M = {v1, . . . , vm}, B = {b1, . . . , bm}, and assume without loss of generality that χ(vi) = χ(bi).

The base case is |B ∩M | = m, in which case M = B and the claim is obvious.
Let k 󰃑 m − 1, assume the statement is true whenever |B ∩M | 󰃍 k + 1, and let M be such that

|B ∩M | = k. Without loss of generality we may assume that vi = bi for all 1 󰃑 i 󰃑 k. Since χ(vk+1) =
χ(bk+1) we get that B′ = (B \ {bk+1}) ∪ {vk+1} is a minterm of g. Let χ′ be the coloring defined by B′.
By Claim 4.9 we get that χ′ = π ◦ χ for some π ∈ Sm, and in particular as M is rainbow colored by χ it is
also rainbow colored by χ′. Since |B′ ∩M | = k+1 we may apply the induction hypotehsis on B′ with the
coloring χ′ to conclude that M is a minterm of g, as required.

It follows that the function g is the function
󰁙

i∈[m]

󰁚
j∈Ai

xj where Ai = χ−1(i). To complete the proof
of Lemma 4.1 we must establish the structural result for f , which we do by inverting f .

Claim 4.12. The operator T has an inverse T−1 given by T−1h(B) =
󰁓

A⊆B

(−1)|B\A|2|A|h(A).

Proof. Let h be in the image of T, i.e. h(B) = Th̃(B) = 2−|B| 󰁓
A⊆B

h̃(A) for some h̃. We prove by

induction on B that h̃(B) =
󰁓

A⊆B

(−1)|B\A|2|A|h(A).

The base case |B| = 0 is clear. Assume the statement holds for all B such that |B| 󰃑 k, and let B be of
size k + 1. By definition of h we have that 2|B|h(B) =

󰁓
A⊊B

h̃(A) + h̃(B). Using the induction hypothesis

on each A ⊊ B we get that
󰁛

A⊊B

h̃(A) =
󰁛

A⊊B

󰁛

C⊆A

(−1)|A\C|2|C|h̃(C) =
󰁛

C

2|C|h̃(C)
󰁛

A :
C⊆A⊊B

(−1)|A\C| =
󰁛

C

2|C|h̃(C)(−1)|B\C|+1,

where in the last equality we used the fact that adding the summand corresponding to A = B, the sum
would be 0. Plugging that into the previous equality and rearranging finishes the inductive step.

Define ψ = λ
󰁓

A⊆B

(−1)|B\A|2|A|g(B). By Claim 4.12 we have that λg = Tψ.

Claim 4.13. 󰀂f − ψ󰀂∞ 󰃑 3nη.

Proof. Let h = Tf . Using the formula for h from Claim 4.12 and the definition of ψ we have that for all
B ⊆ [n],

|f(B)− ψ(B)| 󰃑
󰁛

A⊆B

2|A| |h(A)− λg(A)| 󰃑
󰁛

A⊆B

2|A|η = 3|B|η.

Let φ =
󰁙m

i=1

󰀓󰁏
j∈Ai

xj

󰀔
. We show that Tφ = 2−mg. Since T is invertible by Claim 4.12 and

Tψ = λg, we get ψ = 2mλφ, and hence Claim 4.13 implies that f is 3nη-close to 2mλφ in L∞, as required.

Claim 4.14. Let A1, . . . , Am be disjoint, non-empty sets, and let φ =
󰁙m

i=1

󰁏
j∈Ai

xj , g =
󰁙m

i=1

󰁚
j∈Ai

xj .
Then Tφ = 2−mg.

Proof. Fix B ⊆ [n], and let Bi = B ∩Ai for each i.
If g(B) = 0, then Bi = ∅ for some i, without loss of generality i = 1. Thus, for any C ⊆ B we have

that C ∩A1 = ∅, and hence φ(C) = 0, so Tφ(B) = 0.
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If g(B) = 1, then Bi ∕= ∅ for all i. Let C ⊆ B be chosen uniformly at random, and denote Ci = C∩Ai.
Note that the distribution of C1, . . . ,Cm is of independent uniform subsets of B1, . . . , Bm, and as such the
parity of the size of each Ci is a uniform and independent bit. Thus, Tφ(B) = PrC⊆B [φ(C) = 1] =
PrC⊆B [|Ci| ≡ 1 (mod 2) for all i ∈ [m]] = 2−m.

This completes the proof of Lemma 4.1.

4.2 Deducing Theorem 2.6

In this section we use Lemma 4.1 to deduce Theorem 2.6, and we first sketch the argument. Given an
approximate solution f, g, we first observe that the function g is noise insensitive — that is, has a small
Fourier tail — and hence deduce from Theorem 3.3 that it is close to a junta. We then show that for almost
all restrictions β outside the junta variables, we can associate a bounded function f̃β such that f̃β , gβ are a
solution to the equation in L∞, and we may deduce some structure for gβ and f̃β . Using the fact that the
restricted variables barely affect the function g (since it is junta) one can thus deduce the necessary AND-OR
structure from g. To get the structural result for the function f , slightly more work is needed. We show that
eliminating ORs that are too wide from the gβ’s, almost all of them become the same function, and we show
that after averaging over the removed variables, f is close to a multiple of the corresponding AND-XOR
function.

We first give several statements that will be useful for us in the proof. The following lemma from [33]
shows the effect of the operator T↓

p,pρ on the Fourier expansion of a function.

Lemma 4.15. If f =
󰁓

S f̂(S)χ
(ρp)
S then T↓

p,ρpf =
󰁓

S

󰀓
(1−p)ρ
1−ρp

󰀔|S|/2
f̂(S)χ

(p)
S .

Using the previous lemma we may show that if f, g are approximate solutions, then g has an exponen-
tially small tail.

Lemma 4.16. Let f : ({0, 1}n, µρp) → [0, 1], g : ({0, 1}n, µp) → {0, 1} be functions such that 󰀂T↓
p,ρpf −

λg󰀂 󰃑 η. Then for any k ∈ N we have that W󰃍k[g] 󰃑 2λ−2(η + ρk).

Proof. Since f, g are bounded between 0 and 1, Tf − λg is bounded between −1, 1 at each point and
therefore we get that 󰀂Tf − λg󰀂22 󰃑 󰀂Tf − λg󰀂1 󰃑 η. Using Parseval’s inequality (and Lemma 4.15 to get
the Fourier coefficients of Tf on µp), we get that, denoting ρ2 =

(1−p)ρ
1−ρp 󰃑 ρ, we have

󰁛

S

(ρ
|S|/2
2

󰁥fpρ(S)− λ󰁥gp(S))2 󰃑 η.

Therefore, using (a+ b)2 󰃑 2(a2 + b2) we get that

λ2
󰁛

|S|󰃍k

󰁥gp(S)2 󰃑 2η + 2
󰁛

|S|󰃍k

(ρ
|S|/2
2

󰁥fpρ(S))2 󰃑 2η + 2 · ρk2
󰁛

|S|󰃍k

󰁥fpρ(S)2 󰃑 2η + 2 · ρk,

where in the last inequality we used Parseval to bound the sum of Fourier coefficients of f by 1 and ρ2 󰃑
ρ.

Second, the following will be useful for us in the pruning process of the wide ORs.
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Lemma 4.17. Suppose that g1, g2 are AND-OR functions of width at most d that are ε-close with respect to
µp, and let γ = 2p−dε. Let ψ1,ψ2 be the truncations of g1, g2 respectively resulting by removing all ORs
containing more than log1/(1−p)(1/γ) variables.

Then ψ1 = ψ2, and furthermore this function is dγ-close to g1.

Proof. We say an OR of g1 is small if it contains at most log1/(1−p)(1/γ) variables, and let A1 be a small
OR of g1. We claim that there is a small OR of g2, which will be denoted by A2, that contains A1. Assume
towards contradiction that this is not the case. Thus, restricting A1-variables to 0, the restricted function
(g2)A1→0 does not become identically 0 and it is still an AND-OR function of width at most d, and therefore
it gets the value 1 with probability at least pd. Since the probability that all of the variables in A1 get the
value 0 is at least (1− p)log1/(1−p)(1/γ) = γ, we get that Prx [ORA1(x) = 0, g2(x) = 1] 󰃍 γ · pd. However,
note that on any such x we have g1(x) = 0 and g2(x) = 1, and by assumption the probability mass on such
x’s is at most ε, so we get that ε 󰃍 γpd and contradiction.

Therefore, for each small OR of g1 there is a small OR in g2 containing it and vice versa. As the ORs in
each function are disjoint in variables, it follows that each small OR of g1 appears in g2 and vice versa, so
in other words ψ1 = ψ2.

Finally, since g1 and ψ1 may differ only when there is an OR of size at least log1/(1−p)(1/γ) in g1 that
evaluates to 0, and there are at most d such clauses, it follows from the union bound that Prx [g1(x) ∕= ψ1(x)] 󰃑
dγ.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Fix ζ, ε > 0 from Theorem 2.6 (we assume ε > 0 is small enough) and choose
m = ⌈log(2/ζ)⌉. Let C = C(ζ) be from Theorem 3.3, choose η1 = ζ2ε2/(4C log(1/ε)), and pick τ, J
from Theorem 3.3 for ε and k = ⌈log(1/η1)⌉. Later in the proof we will also define η2 and subsequently
take η = min(η1, η2).

Let f, g be functions as in the statement of Theorem 2.6, and set k = ⌈log(1/η1)⌉. From Lemma 4.16
we have that W󰃍k[g] 󰃑 λ−2(η + 2−k) 󰃑 ε/(Ck), and Theorem 3.3 implies that there is T ⊆ [n] of size J
such that g is ε2-close to a T -junta.

Take η4.1 from Lemma 4.1 for ζ and n = J , and set η2 = 6−Jη4.1ε
2. We write points x ∈ {0, 1}n as

(α,β) where α ∈ {0, 1}T and β ∈ {0, 1}[n]\T . For each β ∈ {0, 1}[n]\T , define f̃β : {0, 1}T → [0, 1] and
gβ : {0, 1}T → {0, 1} by

f̃β(α) = E
β′󰃑β

󰀅
f(α,β′)

󰀆
, gβ(α) = g(α,β),

and let B =
󰁱
β ∈ {0, 1}[n]\T

󰀏󰀏󰀏 󰀂f̃β − λgβ󰀂∞ 󰃑 3−Jεη4.1

󰁲
. Since for any α,β we have Tf̃β(α) =

Tf(α,β), it follows that Eβ

󰁫
󰀂Tf̃β − λgβ󰀂1

󰁬
= 󰀂Tf −λg󰀂1 󰃑 η2. Therefore Markov’s inequality implies

that with probability at least 1− ε over β ∼ µp we have 󰀂Tf̃β − λgβ󰀂1 󰃑 6−Jεη4.1, in which case β ∈ B.
In particular, we conclude that Pr

β∼µ
[n]\T
p

[β ∈ B] 󰃍 1− ε.

For each β ∈ B, Lemma 4.1 implies that gβ is an AND-OR function of width r(β) which is at most
m(ζ) = O(log(1/ζ)), and that f̃β is ε-close to 2rλ · AND-XOR in L∞ for the corresponding AND-XOR
function; we will use that only later when we establish the structure for f . Since g is ε2-close to a T -junta,
if we choose β,β′ ∈ B independently (according to µp) then on average gβ and gβ′ are δ-close, where
δ 󰃑 2ε2/Pr[B] 󰃑 2ε2. Thus there is β󰂏 ∈ B such that Eβ∈B [󰀂gβ − gβ󰂏󰀂1] 󰃑 2ε2, so by Markov’s
inequality, defining B′ ⊆ B by B′ = {β ∈ B | 󰀂gβ − gβ󰂏󰀂1 󰃑 ε} we have that Pr

β∼µ
[n]\T
p

[β ∈ B′] 󰃍
1 − 2ε

Pr[B] 󰃍 1 − 4ε. We may already argue that g is close to the AND-OR function gβ󰂏 , however that
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will not be strong enough to establish the structural result for f and hence we prove a stronger statement.
Namely, we show that if we truncate gβ by removing the wide ORs, then almost all of them will produce
the same AND-OR function ψ.

Proving the structural result for g. For each β ∈ B′, let ψβ be the AND-OR function gβ where we
remove from it all ORs whose width exceeds log1/(1−p)(1/(2p

−mε)). From Lemma 4.17 we get that there
is an AND-OR function ψ (namely, ψβ󰂏) such that ψβ = ψ and 󰀂gβ − ψ󰀂1 󰃑 2mp−mε = Oζ(ε) for each
β ∈ B′. Therefore, it follows that

Pr
α,β

[g(α,β) ∕= ψ(α)] 󰃑 Pr
β

󰀅
β ∕∈ B′󰀆+ Pr

α,β

󰀅
g(α,β) ∕= ψ(α)

󰀏󰀏 β ∈ B′󰀆 = Oζ(ε),

i.e. g is close to the AND-OR function ψ. Let T ′ ⊆ T be the set of variables that appear in ψ, and write
α ∈ {0, 1}T as α = (α1,α2), where α1 ∈ {0, 1}T

′
and α2 ∈ {0, 1}T\T ′

.

Proving the structural result for f . We show that averaging outside T ′ makes f close to a multiple of φ,
where φ is the AND-XOR function corresponding to ψ. For each β ∈ B′ we denote by φβ the AND-XOR
function corresponding to gβ .

For each β ∈ B′, define Aβ(α1) = E
α′

2∼µ
T\T ′
pρ

󰁫
f̃β(α1,α

′
2)
󰁬
, and A : {0, 1}T → [0, 1] by A(α1) =

Eβ∼µ
[n]\T
p

[Aβ(α1)]. For each β ∈ B′, Lemma 4.1 implies that f̃β is ε-close to 2r(β)λ · φβ in L∞, hence by

averaging over α2 we conclude that Aβ(α1) is ε-close to 2r(β)λ · E
α2∼µ

T\T ′
pρ

[φβ(α1,α2)] = c(β) · φ(α1),

where c(β) 󰃑 2m.
Set K = Eβ

󰀅
c(β)1β∈B′

󰀆
. Then

󰀂A−Kφ󰀂1 󰃑 2mPr
β

󰀅
β /∈ B′󰀆+ E

β

󰀅
󰀂Aβ − c(β) · φ󰀂11β∈B′

󰀆
󰃑 2mPr

β

󰀅
β /∈ B′󰀆+ 3Jη

󰃑 2mO(ε) + ε = Oζ(ε).

Since A(α1) = Eα2,β′∼µpρ [f(α1,α2,β
′)], this shows that after averaging outside T ′, the function f is

Oζ(ε)-close to Kφ, and we next show that one may replace K by λ2r, where r is the width of φ, and retain
this closeness.

If ψ = 0 then φ = 0 so the value of K does not matter, so we assume henceforth that ψ ∕= 0, in which
case we clearly have 󰀂ψ󰀂1 󰃍 pm. Since T is a contraction, 󰀂TA − K · Tφ󰀂1 󰃑 󰀂A − Kφ󰀂1 = Oζ(ε).
Since by Claim 4.14 we have Tφ = 2−rψ, it follows that 󰀂λg −K · 2−rψ󰀂1 = Oζ(ε). Since g is Oζ(ε)-
close to ψ, this gives |λ−K2−r| 󰀂ψ󰀂1 = Oζ(ε), and so |λ−K2−r| = O(p−mε) = Oζ(ε), implying that
|K − 2rλ| = Oζ(2

rε) = Oζ(ε). Thus, K · φ is Oζ(ε)-close to 2rλ · φ, and by the triangle inequality we
conclude that 󰀂A− 2rλ · φ󰀂1 󰃑 Oζ(ε), finishing the proof.

5 Stronger structural results for special cases

In this section we prove Theorems 2.7, 2.8 and 2.10. The key idea in the proofs of these results is to use an
appropriate natural coupling of downwards random walks.
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5.1 Proof of Theorem 2.7

Throughout this section we fix ζ, p, ρ, ε,λ as in Theorems 2.7. Let f : {0, 1}n → [0, 1] and g : {0, 1}n →
{0, 1} and η > 0 (to be determined) be such that 󰀂T↓

p,ρpf − λg󰀂1 󰃑 η.

Claim 5.1. Suppose that λ > ρ. Then for every τ > 0, there exists η1 > 0 such that if 󰀂T↓
p,ρpf −λg󰀂1 󰃑 η1

then Ii[g] < τ for all i.

Proof. We prove the statement for η1 =
(λ−ρ)ζ(1−ζ)

4 τ .
Assume towards contradiction that there is i such that Ii[g] 󰃍 τ . This means that if we sample x ∼

µ
[n]\{i}
p then Pr[g(x, 0) ∕= g(x, 1)] 󰃍 τ . Denote this event by E, and name the endpoints x(0),x(1) so that

g(x(0)) = 0, g(x(1)) = 1.
Since 󰀂T↓

p,ρpf − λg󰀂 󰃑 η1 and µp(x0), µp(x1) 󰃍 ζ(1− ζ)µp(x), we have

󰁛

x∈E
µp(x) E

z∼µρ

[f(x(0) ∧ z)] 󰃑 1

ζ(1− ζ)

󰁛

x∈E
µp(x(0)) E

z∼µρ

[f(x0 ∧ z)] 󰃑 η1
ζ(1− ζ)

,

󰁛

x∈E
µp(x)

󰀕
λ− E

z∼µρ

[f(x(1) ∧ z)]

󰀖
󰃑 1

ζ(1− ζ)

󰁛

x∈E
µp(x(1))

󰀏󰀏󰀏󰀏 E
z∼µρ

[f(x(1) ∧ z)]− λ

󰀏󰀏󰀏󰀏 󰃑
η1

ζ(1− ζ)
.

In particular, if we choose x ∼ µ
[n]\{i}
p subject to x ∈ E, then

E
x,z

[f(x(0) ∧ z)] 󰃑 η1
ζ(1− ζ)τ

, λ− E
x,z

[f(x(1) ∧ z)] 󰃑 η1
ζ(1− ζ)τ

,

and so

λ− 2η1
ζ(1− ζ)τ

󰃑 E
x,z

[f(x(1) ∧ z)− f(x(0) ∧ z)] 󰃑 Pr
x,z

[x(1) ∧ z ∕= x(0) ∧ z] = ρ,

since x0 ∕= x1 iff zi = 1. We conclude that λ− ρ 󰃑 2η1
ζ(1−ζ)τ = λ−ρ

2 , reaching a contradiction.

Theorem 2.7 now follows by combining Claim 5.1 with Lemma 4.16 and Bourgain’s Theorem 3.3.

Proof of Theorem 2.7. Let C = C(ζ) be from Theorem 3.3, and set η2 = ζ2ε/(4C log(1/ε)), k = 1 +

⌈ log(1/η2)log(1/ρ) ⌉. Choose τ = 1
2(k/ε)

−C·k, pick η1 for τ from Claim 5.1, and finally set η = min(η1, η2).
By Lemma 4.16 we have that W󰃍k[g] 󰃑 2λ−2(η + ρk) 󰃑 ε

C·
√
k log1.5(k)

, and therefore by Theorem 3.3

the function g is ε-close to a junta h, where h may only depend on variables i such that Ii[g] 󰃍 (k/ε)−Ck.
However, by Claim 5.1, as η 󰃑 η1, all individual influences of g are smaller than τ , and hence h must be
constant. Let Γ ∈ {0, 1} be the closest Boolean constant function; then g is 2ε-close to Γ. By the triangle
inequality we have

󰀏󰀏Ex∼µρp [f ]− λEx∼µp [g]
󰀏󰀏 󰃑 η, and so

󰀏󰀏Ex∼µρp [f ]− λΓ
󰀏󰀏 󰃑 η + 2ε 󰃑 3ε.

5.2 Preliminary results about almost monotone functions

Throughout this section and the subsequent one, we fix p = ρ = 1/2 to simplify notations. The proofs carry
over easily, as in the previous section, to any p and ρ that are bounded away from 0 and 1.

The proof of Theorem 2.8 consists of two parts. First, in this section we show that if f, g are approximate
solutions, then g is close to a junta, i.e., it is close to a function depending on constantly many coordinates.
Importantly, we prove that the number of variables in the junta only depends on λ (and doesn’t increase as
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ε, the distance from the junta, gets smaller), which allows us to deduce that for any restriction of the junta
variables, g becomes nearly constant.5 In Section 5.3 we use this to show that g is close to an AND function.

Contrary to the previous section, when λ 󰃑 ρ the function g may have influential variables, and we
do not know how to directly bound their number. Instead, we prove below a replacement for Claim 5.1
that considers influences of sets of variables. We phrase the claim for the more general case in which the
monotonicity condition of f is relaxed to “almost-monotonicity” (as discussed in the paragraph subsequent
to Theorem 2.8). But first, we observe that all negative influences of g must be small.

Claim 5.2. For every ζ, τ > 0 there is η1 > 0 such that the following holds for all λ ∈ [ζ, 1]. If 󰀂T↓
1/2,1/4f−

λg󰀂1 󰃑 η1, then for any i ∈ [n] we have I−i [g] 󰃑 τ .

Proof. We prove the statement for η1 = ζτ/4.
Sample an edge (x,x′) in the ith direction such that xi = 0, let E be the event that it is negatively

influential for g, that is g(x) = 1, g(x′) = 0, and assume that Pr [E] 󰃍 τ . Denote by X(E), X ′(E) the
set of x, x′, respectively, for which E holds. Let (y,y′) be a coupled random walk downwards from x,x′:
y = x ∧ z, y′ = x′ ∧ z for an independently chosen z ∼ µ1/2.

Consider the conditioning zi = 0. Since xi = 0, the distribution of y is unaffected by this conditioning,
and since x,x′ only differ in coordinate i, we have that y′ = y. It follows that

Ex

󰀅
f(y′)

󰀏󰀏 x ∈ X(E)
󰀆
󰃍 Pr

z
[zi = 0]Ex [f(y) | x ∈ X(E)] =

1

2
Ex [f(y) | x ∈ X(E)]. (1)

On the other hand, by the approximate eigenvector condition on x′, we have that
󰁛

x∈X′(E)

µ1/2(x
′) · E(y′,v)∼D(1/4,1/2)

󰀅
f(y′)

󰀏󰀏 v = x′
󰀆
󰃑 η1,

which implies, since µ1/2(X
′(E)) 󰃍 τ , that Ex [f(y

′) | x ∈ X(E)] 󰃑 η1/τ . Similarly, the approximate
eigenvector condition on x implies that Ex [f(y) | x ∈ X(E)] 󰃍 λ−η1/τ . Plugging both inequalities to (1)
yields, after rearranging, that η1 󰃍 λτ/3, in contradiction to the choice of η1.

Claim 5.3. For every ζ > 0, there is m ∈ N, such that for all τ > 0 there is η2 > 0 such that the
following holds for all λ ∈ [ζ, 1]. Let g : ({0, 1}n, µ1/2) → {0, 1}, f : ({0, 1}n, µ1/4) → [0, 1] be such that
󰀂T↓

1/2,1/4f − λg󰀂1 󰃑 η2, and assume that for all i ∈ [n] we have I−i [f ] 󰃑 η2. Then for each M ⊆ [n] of
size m,

IM [g]
def
=

󰁛

S⊇M

󰁥g2(S) 󰃑 τ.

Proof. Let m = ⌈log(2/ζ)⌉2 and choose η1 from Claim 5.2 for ζ and ζτ/12. We prove the statement for
η2 = min(η1,

ζ
22m+7(

√
m+1)

τ).
Assume towards contradiction that there exists M of size m such that IM [g] 󰃍 τ . Consider the function

h(x) = 󰁦g[n]\M→x(M). Then h can have values between −1 and 1, and 󰀂h󰀂22 = IM [g] 󰃍 τ , and therefore
Prx [h(x) ∕= 0] 󰃍 τ . By Theorem 3.5, whenever h(x) ∕= 0 the function g[n]\M→x has a point a with at least√
m sensitive coordinates. It follows that

Pr
x

󰁫
∃a ∈ {0, 1}M , A ⊆ M, |A| 󰃍

√
m, all coordinates in A are sensitive on (x, a) for g

󰁬
󰃍 τ.

5Proving that g is close to a junta, where the size of the junta may depend on ε, is easy; it follows immediately from Lemma 4.16
and Bourgain’s Theorem 3.3.
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Thus, there exist a set A of size
√
m and a ∈ {0, 1}M , such that

Pr
x
[all coordinates in A are sensitive on (x, a) for g] 󰃍 τ

22m
def
= t.

Assume without loss of generality that A = {1, . . . ,
√
m}. We now consider a coupled random walk as

in Claim 5.2. Sample x ∼ µ1/2, let x′(1), . . . ,x′(
√
m) be given by x′(i) = x⊕ ei, and consider a coupled

downwards random walk from x and the x′(i)’s to y = x∧z,y′(1) = x′(1)∧z, . . . ,y′(
√
m) = x′(

√
m)∧

z, where z ∼ µ1/2. Then with probability at least t we have that g(x) ∕= g(x′(1)) = · · · = g(x′(
√
m)),

and conditioned on that there are two cases: (a) g(x) = 1 with probability at least 1
2 , or (b) g(x) = 0 with

probability at least 1
2 .

Case (a). Denote by E the event that g(x) = 1 and all of A’s coordinates are sensitive on x, and let
X(E) denote the set of x’s for which this event holds. The idea is that while by the approximate eigenvalue
condition, random walks down from x should reach a point with f -value bounded away from 0 and random
walks down x′(i)’s should reach points with f -value close to 0, some walk from the latter group is likely to
collide with the former.

Formally, by the approximate eigenvalue condition on x we have that
󰁛

x∈X(E)

µ1/2(x)
󰀏󰀏E(y,v)∼D(1/4,1/2) [f(y) | v = x]− λ

󰀏󰀏 󰃑 η2,

implying (since in this case µ1/2(X) 󰃍 t/2) that Ex,y [f(y) | x ∈ X(E)] 󰃍 λ − η2
t/2 . Similarly, by the

approximate eigenvalue condition on x′(i) we have that Ex,y′(i) [f(y
′(i)) | x ∈ X(E)] 󰃑 η2

t/2 . Therefore
we get that

λ− (
√
m+ 1)

η2
t/2

󰃑 Ex,y,y′(i)’s

󰀥
f(y)−

󰁛

i∈A
f(y′(i))

󰀏󰀏󰀏󰀏󰀏 x ∈ X(E)

󰀦

󰃑 Pr
x,y,y′(i)’s

󰀅
y ∕= y′(i) ∀i ∈ A

󰀏󰀏 x ∈ X(E)
󰀆

= Pr
z
[zi = 1 ∀i ∈ A] = 2−

√
m 󰃑 λ/2,

where in the second transition we used the fact that f is bounded between 0 and 1. Rearranging and plugging
in expression for t yields a contradiction for the choice of η2.

Case (b). Let E0 be the event that g(x) = 0 and all of A’s coordinates are sensitive on x. We would like
to identify a large subevent E ⊆ E0 such that x1 = x2 = 0 and g(1, 1,x3, . . . ,xn) = 1.

Let E′ ⊆ E0 be the event that x1 = 1 or x2 = 1. For any x satisfying the event E′, we have that
(x′(1), x) or (x′(2), x) is a negatively influential edge in direction i = 1 or i = 2. It follows that Pr [E′] 󰃑
I−1 [g]+I−2 [g], and since η2 󰃑 η1 we have by Claim 5.2 that I−1 [g], I−2 [g] 󰃑 τ/12. Therefore Pr [E′] 󰃑 τ/6.

Let E′′ ⊆ E0 \ E′ be the event that g(x′(1, 2)) = 0, where x′(1, 2) = (1, 1,x3, . . . ,xn). For any x
satisfying the event E′′, we have that (x′(1), x′(1, 2)) is a negatively influential edge in direction i = 2.
It follows that Pr [E′′] 󰃑 I−2 [g]. As above, Pr [E′′] 󰃑 τ/12. It follows that the probability of the event
E := E0 \ (E′ ∪ E′′) is at least τ/2− τ/4 = τ/4.

Write inputs x ∈ {0, 1}n as x = (b1, b2,β) for b1, b2 ∈ {0, 1} and β ∈ {0, 1}n−2, and let B =
{β | (0, 0,β) ∈ E}; then µ1/2(B) 󰃍 τ/4. Let z ∼ µn

1/2 and write z = (z(1), z(2)), where z(1) ∈ {0, 1}2
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and z(2) ∈ {0, 1}n−2, and denote y = β∧z(2). Using the approximate eigenvector condition on the points
(0, 0,β) for β ∈ B we get that Eβ,z,y [f(0, 0,y) | β ∈ B] 󰃑 η2

τ/4 , and by the approximate eigenvector condi-
tion on points (1, 0,β) for β ∈ B we get that Eβ,z,y [f((1, 0) ∧ z(1),y) | β ∈ B] 󰃍 λ− η2

τ/4 . Note that when
z(1)1 = 0, the distribution of ((1, 0) ∧ z(1),y) is identical to the distribution of (0, 0,y), and thus the ex-
pected value of f on these points is at most η2

τ/4 . Thus we have Pr [z(1)1 = 1]Eβ,z,y [f(1, 0,y) | β ∈ B] 󰃍
λ− 2 η2

τ/4 , which, since Prz [z(1)1 = 1] = 1
2 , implies that Eβ,z,y [f(1, 0,y) | β ∈ B] 󰃍 2λ− 4 η2

τ/4 . Analo-
gously, we have Eβ,z,y [f(0, 1,y) | β ∈ B] 󰃍 2λ − 4 η2

τ/4 . Since I−1 [f ] 󰃑 λτ/12, the latter inequality also

implies that Eβ,z,y [f(1, 1,y) | β ∈ B] 󰃍 2λ− 4 η2
τ/4 − λτ/12

τ/4 󰃍 λ− 4 η2
τ/4 .

Combining everything, we get that

Eβ∼µ1/2

󰁫
T↓
1/2,1/4f(1, 1,β)

󰀏󰀏󰀏 β ∈ B
󰁬
󰃍 1

4
Eβ,z,y [f(1, 1,y) + f(1, 0,y) + f(0, 1,y) | β ∈ B]

󰃍 5

4
λ− 3

η2
τ/4

󰃍 9

8
λ,

where we used the choice of η2. This is a contradiction, since by the approximate solution condition we
have that

Eβ∼µ1/2

󰁫
T↓
1/2,1/4f(1, 1,β)

󰀏󰀏󰀏 β ∈ B
󰁬
󰃑 Eβ∼µ1/2

[λg(1, 1,β) | β ∈ B] +
η2
τ/4

󰃑 λ+
λ

16
<

9

8
λ,

and we are done.

The second ingredient we need is a version of Bourgain’s Theorem 3.3 where the role of influences of
variables is played by influences of sets of variables. Let C = C(1/2) be the constant from Theorem 3.3
for ζ = 1/2.

Lemma 5.4. For every δ > 0, m, k ∈ N there is τ > 0 such that if g : {0, 1}n → {0, 1} has W󰃍m[g] 󰃍 δ
and IJ [f ] 󰃑 τ for all J ⊆ [n] of size m, then W󰃍k[g] 󰃍 δ

2C
√
k log1.5(k)

.

Proof. We prove the statement for τ = δ1+mC·k

4(2k)mC·k .

Assume towards contradiction that W󰃍k[g] <
δ

2C
√
k log1.5(k)

. By Theorem 3.3, g is δ/2-close to a junta

h depending on T ⊆ [n] whose size is at most J = (2k/δ)C·k. Thus,
󰁓

S:S ∕⊆T

󰁥g(S)2 󰃑 δ/2, and since

W󰃍m[g] 󰃍 δ it follows that

δ/2 󰃑
󰁛

S : |S|󰃍m
S⊆T

󰁥g(S)2 󰃑
󰁛

M⊆T
|M |=m

IM [g] 󰃑 |T |m τ 󰃑 Jmτ,

and we get a contradiction to the choice of τ .

We are now ready to prove the approximation by junta result for g.

Lemma 5.5. For every ζ > 0 there is J ∈ N such that the following holds for all λ ∈ [ζ, 1]. For every
ε > 0 there exists η > 0 such that if f : ({0, 1}n, µ1/4) → [0, 1], g : ({0, 1}n, µ1/2) → {0, 1} satisfy
󰀂T↓

1/2,1/4f − λg󰀂 󰃑 η and maxi I
−
i [f ] 󰃑 η, then g is ε-close to a junta h that depends on J variables.
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Proof. Pick m = m(ζ) from Claim 5.3, and let J , δ be from Theorem 3.4 for m, ζ = 1/2 and ε. Let C =
C(1/2) be from Theorem 3.3, and set η3 = ζ2δ/(16C log(1/δ)), k = ⌈log(1/η3)⌉. Take τ = τ(δ,m, k)
from Lemma 5.4 and η2 = η2(ζ,m, τ) from Claim 5.3. We prove the statement for η = min(η2, η3).

Let f, g be as in the statement of the lemma. By Claim 5.3 we have IM [g] 󰃑 τ for all |M | = m,
and by Lemma 4.16 we have W󰃍k[g] 󰃑 2λ−2(η + 2−k) < δ

2C
√
k log1.5(k)

. Therefore, Lemma 5.4 implies

that we must have W󰃍m[g] < δ (otherwise g would be a counterexample to the lemma), and therefore by
Theorem 3.4 we get that g is ε-close to a J-junta.

5.3 Proof of Theorem 2.8

In this section we prove Theorem 2.8. As discussed in the paragraph below the theorem statement, we will
actually prove the statement under the more relaxed assumption that all individual negative influences of f
are small.

Fix ζ, ε > 0 and let J = J(ζ) be from Lemma 5.5. Set ε′ = 2−6J−4ζε, and pick η′ from Lemma 5.5
for ζ, ε′. Let η1 be from Claim 5.2 for τ = 2−J−2. We prove the statement for η = min(η′, η1, ε

′).

Proving the structure for g. By Lemma 5.5 we get that g is ε′-close to a junta h depending on at most J
variables, say on T ⊆ [n]. First, observe that h must be monotone. Indeed, otherwise there is x ∈ {0, 1}T
and i ∈ T such that xi = 0 and h(x) = 1 > 0 = h(x ⊕ ei). Since g and h are ε′-close, it follows that
the restriction gT→x is 2Jε′-close to being constant 1 and that the restriction gT→x⊕ei is 2Jε′-close to being
constant 0. In particular, we conclude that the negative influence of i is at least 2−J(1− 2 · 2Jε′) 󰃍 2−J−1.
This is a contradiction to Claim 5.2 since η 󰃑 η1.

Therefore, we may discuss the minterms of h. We prove that h has at most one minterm, which implies
that it is either an AND function or a constant function, and either way we establish the structure for g. Let
us write inputs as x = (α,β) for α ∈ {0, 1}T , β ∈ {0, 1}[n]\T .

Proposition 5.6. For any α ∈ {0, 1}T , we have Eβ

󰁫󰀏󰀏󰀏T↓
1/2,1/4f(α,β)− λh(α)

󰀏󰀏󰀏
󰁬
󰃑 22Jε′.

Proof. By the triangle inequality we have

E
β

󰁫󰀏󰀏󰀏T↓
1/2,1/4f(α,β)− λh(α)

󰀏󰀏󰀏
󰁬
󰃑 E

β

󰁫󰀏󰀏󰀏T↓
1/2,1/4f(α,β)− λg(α,β)

󰀏󰀏󰀏
󰁬
+ E

β
[|λg(α,β)− λh(α)|].

The first expectation is at most 2Jη by the approximate solution condition (and the fact we restricted at most
J variables), and the second expectation is at most 2Jε′ by the closeness between g and h.

Assume towards contradiction that α1,α2 are two distinct minterm of h. By definition, we have

E
β

󰁫
T↓
1/2,1/4f(α1,β)

󰁬
= 2−|α1|E

β

󰁫
T↓
1/2,1/4fT→α1(β)

󰁬
+ 2−|α1|

󰁛

α<α1

E
β

󰁫
T↓
1/2,1/4fT→α(β)

󰁬
. (2)

We want to upper bound the rightmost average over α, and for that we may pick α < α1 such that

Eβ

󰁫
T↓
1/2,1/4fT→α(β)

󰁬
is at least half that average. Since h(α) = 0, Proposition 5.6 implies that we have

Eβ

󰁫
T↓
1/2,1/4f(α,β)

󰁬
< 22Jε′. Since h(α1) = 1, Proposition 5.6 implies that Eβ

󰁫
T↓
1/2,1/4f(α1,β)

󰁬
󰃍

λ− 22Jε′. Plugging these two bounds into (2) gives us that

E
β

󰁫
T↓
1/2,1/4fT→α1(β)

󰁬
󰃍 2|α1|λ− 23J+2ε′. (3)
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Similarly, Eβ

󰁫
T↓
1/2,1/4fT→α2(β)

󰁬
󰃍 2|α2|λ− 23J+2ε′.

Proposition 5.7. Let α, γ ∈ {0, 1}T be such that γ 󰃍 α. Then

E
β

󰁫
T↓
1/2,1/4fT→γ(β)

󰁬
󰃍 E

β

󰁫
T↓
1/2,1/4fT→α(β)

󰁬
− J4Jη.

Proof. Let α0 = α → α1 → · · · → αr = γ be an upwards walking path from α to γ, where r 󰃑 J . Clearly
by the triangle inequality, it is enough to show

E
β

󰁫
T↓
1/2,1/4fT→αj+1(β)

󰁬
− E

β

󰁫
T↓
1/2,1/4fT→αj (β)

󰁬
󰃍 −4Jη.

To see that, let i be the index on which the two inputs αj+1,αj differ, and expand out the definition of
T↓
1/2,1/4 on the left-hand side to write it as

E
β,z∼µ1/2

[f(αj+1,β ∧ z)− f(αj ,β ∧ z)] = 4J E
(α,β)∼µ1/4

󰀅
(f(α⊕ ei,β)− f(α,β))1α=αj

󰀆
.

As the last expectation is at least −I−i [f ] 󰃍 −η, the proof is concluded.

Consider γ = α1 ∨ α2, choose z ∼ µT
1/2, and let α = γ ∧ z. Let E1 be the event that α 󰃍 α1, and let

E2 be the event that α < α1 and α 󰃍 α2. Clearly, Pr [E1] = 2−|α1|, and since α1,α2 are incomparable (as
they are distinct minterms) we have Pr [E2] 󰃍 2−J . Therefore, we get that

E
β

󰁫
T↓
1/2,1/4f(γ,β)

󰁬
= E

α

󰀗
E
β

󰁫
T↓
1/2,1/4fT→α(β)

󰁬󰀘
󰃍 2−|α1|E

α

󰀗
E
β

󰁫
T↓
1/2,1/4fT→α(β)

󰁬 󰀏󰀏󰀏󰀏 E1

󰀘

+ 2−JE
α

󰀗
E
β

󰁫
T↓
1/2,1/4fT→α(β)

󰁬 󰀏󰀏󰀏󰀏 E2

󰀘
.

Consider the right-hand side. For the first expectation, for any α for which E1 holds, we have by Proposi-
tion 5.7 (using also (3)) that Eβ

󰁫
T↓
1/2,1/4fT→α(β)

󰁬
󰃍 2|α1|λ − 25J+2ε′. Similarly, for the second expec-

tation, for any α for which E2 holds we have Eβ

󰁫
T↓
1/2,1/4fT→α(β)

󰁬
󰃍 2|α2|λ − 25J+2ε′. Plugging these

two bounds we conclude that

E
β

󰁫
T↓
1/2,1/4f(γ,β)

󰁬
󰃍 (1 + 2|α2|−J)λ− 25J+3ε′.

On the other hand, by the approximate solution condition we have that Eβ

󰁫
T↓
1/2,1/4f(γ,β)

󰁬
󰃑 λ+ 2Jη 󰃑

λ+ 2Jε′. Combining the two inequalities and rearranging, we conclude that λ 󰃑 2J−|α2|(25J+3 + 2J)ε′ 󰃑
26J+3ε′, contradicting the definition of ε′.

Therefore, h is either constant or an AND function. In the latter case, if α1 is a minterm for h then
from (3) and f 󰃑 1 we get that 2|α1|λ 󰃑 2, implying that |α1| 󰃑 log(2/λ).
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Proving the structure for f . Assume first that h = ANDT (possible T = ∅, in which case h = 1).
Define f̃(α) = Eβ∼µ1/4

[f(α,β)] and g̃(α) = Eβ∼µ1/2
[g(α,β)]. Then by the triangle inequality and the

approximate solution condition, we get that 󰀂T↓
1/2,1/4f̃ − λg̃󰀂1 󰃑 η.

For any α such that h(α) = 0, we have that g̃(α) 󰃑 2Jε′, and therefore T↓
1/2,1/4f̃(α) 󰃑 2Jε′ + η 󰃑

2J+1ε′. On the other hand, clearly T↓
1/2,1/4f̃(α) 󰃍 4−J f̃(α), so we get that f̃(α) 󰃑 23J+1ε′.

For α = eT (note that h(α) = 1), we have g̃(α) 󰃍 1 − 2Jε′, hence we get that
󰀏󰀏󰀏T↓

1/2,1/4f̃(α)− λ
󰀏󰀏󰀏 󰃑

2J+1ε′. Note that
T↓
1/2,1/4f̃(α) = 2−|T |f̃(α) + 2−|T |

󰁛

α′<α

f̃(α′),

and as for any α′ < α it holds that h(α′) = 0, we have from the previous paragraph that f̃(α′) 󰃑 23J+1ε′,
and in conclusion we get that

󰀏󰀏󰀏T↓
1/2,1/4f̃(α)− 2−|T |f̃(α)

󰀏󰀏󰀏 󰃑 23J+1ε′. Therefore, by the triangle inequality

we get that
󰀏󰀏󰀏2−|T |f̃(α)− λ

󰀏󰀏󰀏 󰃑 23J+2ε′, or in other words, that
󰀏󰀏󰀏f̃(α)− 2|T |λ

󰀏󰀏󰀏 󰃑 24J+2ε′. It follows that

󰀂f̃ − 2|T |λ · ANDT 󰀂∞ 󰃑 24J+2ε′ 󰃑 ε, and we are done.
When h = 0, the same argument shows that 󰀂f̃󰀂∞ 󰃑 ε.

5.4 Proof of Theorem 2.10

In this section we show that Theorem 2.8 implies Theorem 2.10. Let ζ, ε > 0 be as in the theorem statement.
If either g or h are 10ε-close to the constant 0 function, then we immediately get that f is 11ε-close to the
constant 0 function (assuming η 󰃑 ε), and the first item is proved (up to a scaling of ε). We assume
henceforth that g, h are 10ε-far from the constant 0 function, and in particular their averages are at least 10ε.

Set ζ ′ = min(ε, ζ), and take η1 from Theorem 2.8 for ζ ′ and ε2ζ3, and prove the statement for η =
η1ζ

2ε3/6.
We argue that h is ε-close to ANDT for some T ⊆ [n]. Let λh = Ey∼µρ [h(y)] 󰃍 ε. We note

that for any x ∈ {0, 1}n we have that
󰀏󰀏󰀏T↓

p,ρpf(x)− λhg(x)
󰀏󰀏󰀏 󰃑 Pry [f(x ∧ y) ∕= g(x)h(y)], and therefore

󰀂T↓
p,ρpf − λhg󰀂1 󰃑 η 󰃑 η1. To use Theorem 2.8, we next argue that all individual negative influences of f

are at most η1.
Assume towards contradiction that there exists i ∈ [n], without loss of generality i = n, such that

I−i [f ] 󰃍 η1, and sample x ∼ µn−1
p , y ∼ µn−1

ρ , so that (x ∧ y, 0), (x ∧ y, 1) is an edge for f in direction
i; then with probability at least τ we have f(x ∧ y, 0) = 1, f(x ∧ y, 1) = 0. We show that this must
lead to violation of the AND-homomorphism condition. Considering the pairs of inputs (x, 0), (y, 1) and
(x, 1), (y, 0) we conclude that unless the AND-homomorphism condition breaks in one of them, we have
that g(x, 1) = 1, h(y, 1) = 1, but then the AND-homomorphism condition fails for the pair of inputs
(x, 1), (y, 1). Therefore there is one of these three pairs that fails the AND-homomorphism condition with
probability at least η1/3, and in any case we get that it fails with probability at least min(p, 1−p)2η1/3 > η,
and contradiction.

Therefore, we may apply Theorem 2.8 to conclude that there is T1 ⊆ [n] such that g is ε2ζ3-close to
ANDT1 . Analogously, the same argument shows there is T2 ⊆ [n] such that h is ε2ζ3-close to ANDT2 ,
and to finish the proof we argue that T1 = T2. Since g, h have averages at least 10ε and are ε2ζ3-close to
ANDT1 ,ANDT2 respectively, the latter functions have expectation at least 9ε.

Assume towards contradiction that T1 ∕= T2, say there is i ∈ T1 \ T2. Sample x ∼ µp and y ∼ µρ

conditioned on yT2 = 󰂓1, yi = 0, xT1\{i} = 1, xi = 1 (note that by the above, the event we condition y
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on has probability 󰃍 9εζ, as we condition on ANDT2 being 1 and on the value of an additional variable;
similarly the event we condition x on has probability 󰃍 9εζ). With probability at least 1 − η/(9εζ)2 󰃍
1 − ε/3 we get that f(x ∧ y) = g(x) ∧ h(y) as well as f(x ∧ y) = g(x ⊕ ei) ∧ h(y) (noting that
(x ⊕ ei) ∧ y = x ∧ y as yi = 0). Also, with probability at least 1 − 3 ε2ζ3/ζ

(9εζ)2
= 1 − ε/3, we get

that h(y) = ANDT1(y) = 1, g(x) = ANDT2(x) = 1 and g(x ⊕ ei) = ANDT2(x ⊕ ei) = 0 (using
µp(x⊕ ei) 󰃑 µp(x)/ζ). Therefore with probability at least 1− 2ε/3 > 0 we get that

f(x ∧ y) = g(x) ∧ h(y) = 1 ∕= 0 = g(x⊕ ei) ∧ h(y) = f(x ∧ y),

and contradiction. Therefore T1 = T2. It now follows immediately that f is 2ε2ζ3+ η 󰃑 ε-close to ANDT1 ,
and we are done.

6 Structural results for the one-sided error version

In this section we prove Theorem 2.11. To do so, we show that if f, g are approximate solutions with one-
sided error, then g has a small Fourier tail, in which case we can apply Bourgain’s Theorem 3.3 to conclude
that it is junta. Finally, we show that since the negative influences of g are all small (individually), g must
actually be close to a monotone junta.

Most of the effort in the proof is devoted into showing that g has a small Fourier tail. In the approxi-
mate solutions case, there is a quick Fourier-analytic proof of this fact that we have already used, namely
Lemma 4.16. In the one-sided error case, however, we are not aware of any such quick Fourier-analytic
proof. Instead, we us combinatorial/probabilistic arguments similar to the ones we used in Section 5.

6.1 A tail bound for one-sided error solutions

It will be useful for us to consider a more combinatorial notion closely related to the Fourier tail, namely
the notion of noise sensitivity, and prove that if f, g are approximate solutions with one-sided error, then g
is very stable with respect to small enough noise rate.

Let p, ν ∈ (0, 1). The p-biased, (1 − ν)-correlated distribution over (x, y) ∈ {0, 1}n × {0, 1}n is
defined as follows: sample x ∼ µp, and for each i ∈ [n] independently set yi = xi with probability 1 − ν,
and otherwise sample yi to be an independent p-biased bit.

Definition 6.1. Let g : ({0, 1}n, µp) → {0, 1}, and let ν ∈ (0, 1). The noise sensitivity of g at ν is NSν(g) =
Pr(x,y) is (1− ν) correlated [g(x) ∕= g(y)].

The following lemma is the main result of this section.

Lemma 6.2. For every ζ > 0, there is ν0 > 0 such that the following holds for any ρ, p ∈ [ζ, 1 − ζ] and
λ ∈ [ζ, 1]. For any ν ∈ (0, ν0) there is η > 0 such that if f : ({0, 1}n, µρp) → [0, 1], g : ({0, 1}n, µp) →
{0, 1} are one-sided error solutions with λ and error η, then NSν [g] 󰃑 ν3/4.

Remark 6.3. The bound ν3/4 in Lemma 6.2 can be improved to any bound that is o(ν).

To make notations easier, we prove Lemma 6.2 in the case that p = ρ = 1/2; the proof carries over to
the general case with minor adjustments.

We next set up some tools that we need for the proof of Lemma 6.2. For a parameter ν ∈ (0, 1) we define
a distribution Dν over quadruples (y,m, x, z), that will allow us to couple a (1−ν)-correlated pair of inputs
x, z with points y,m that are below them and marginally correspond to the downwards-walk distribution
from each x, z (for two different walk lengths).
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Definition 6.4 (The Distribution Dν). Set θ = ν
2+ν . The distribution Dν over y,m, x, z in {0, 1}n is defined

in the following manner:

• Pick (y,m) ∼ D(1/4, 1/2− ν/4).

• For each i = 1, . . . , n independently do the following:

– If mi = 1, set xi = zi = 1.

– If mi = 0, set xi = 1, zi = 0 or xi = 0, zi = 1, each with probability θ, and otherwise
xi = zi = 0.

When ν is clear from context, we omit the subscript and just use D.
Inspecting the marginal distributions, we see that y ∼ µ1/4, m ∼ µ1/2−ν/4, and x, z ∼ µ1/2, since

Pr[xi = 1] = (1/2 − ν/4) + (1/2 + ν/4) · θ = 1/2. Also, for each i ∈ [n], the probability that xi = zi
is equal to (1/2 − ν/4) + (1/2 + ν/4) · (1 − 2θ) = 1 − ν/2, and these events are independent, thus the
distribution of (x, z) is (1 − ν)-correlated over µ1/2. Finally, notice that yi 󰃑 mi 󰃑 xi, zi, implying that
the marginal distribution of y,x or y, z is D(1/4, 1/2).

Let E be the event that g(x) = 1, g(z) = 0 when (y,m,x, z) ∼ Dν , consider the distribution of x
conditioned on E, given by pa = Pr(y,m,x,z)∼Dν

[x = a | E], and let A =
󰀋
a
󰀏󰀏 pa 󰃍 1/2n+1

󰀌
.

It will be important for us to understand the distribution of y when we sample (y,m,x, z) ∼ Dν

conditioned on E. More precisely, for any a ∈ A, we consider the following two distributions:

1. Da
1 : sample (y,m,x, z) ∼ Dν conditioned on x = a and E, and output y.

2. Da
2 : sample (y,m,x, z) ∼ Dν conditioned on x = a, and output y.

We remark that clearly Da
2 is the distribution of u in (u,v) ∼ D(1/4, 1/2) conditioned on v = a, that is,

uniform over y ∈ {0, 1}supp(a). We wrote it in this form to be suggestive of the following proposition, that
asserts that the distributions Da

1 and Da
2 are somewhat close.

Proposition 6.5. For each ξ > 0 there are ν0, c > 0 such that the following holds. If Pr [E] 󰃍 1
2ν

3/4
0 , then

for each a ∈ A we have Pry∼Da
2
[Da

1(y) 󰃍 cDa
2(y)] 󰃍 1− ξ.

Before proving Proposition 6.5, let us show that it implies Lemma 6.2.

Proof of Lemma 6.2. Set ξ = λ/2, and let ν0, c > 0 be from Proposition 6.5. Fix ν ∈ (0, ν0), and prove the
statement for η = cζν3/2/100.

Assume towards contradiction that NSν [g] 󰃍 ν3/4. Throughout the proof we will take (y,m,x, z) ∼
Dν ; thus, the event E = {(x, z) | g(x) = 1, g(z) = 0} has probability 󰃍 1

2ν
3/4.

We consider the quantity Ey,x,z [1E(x, z) · f(y)], and show a lower bound as well as an upper bound on
it, which combined together lead to a contradiction. For the upper bound we note that

E
y,x,z

[1E(x, z) · f(y)] 󰃑 E
y,z

[(1− g(z))f(y)] = E
z

󰁫
(1− g(z))T↓

1/2,1/4f(z)
󰁬
󰃑 η, (4)

where the last inequality is by the condition that f, g are one-sided error solutions with error η.
The lower bound requires more effort. Recall that the distribution pa is defined by pa = Pr [x = a | E],

and the set A consists of a’s such that pa 󰃍 1
2n+1 . We need the following easy proposition.

Proposition 6.6. µ1/2(A) 󰃍 1
2Pr [E].

29



Proof. Note that for every a, pa 󰃑 Prx[x=a]
Pr[E] = 2−n

Pr[E] . Thus,

1 =
󰁛

a

pa =
󰁛

a∈A
pa +

󰁛

a ∕∈A
pa 󰃑 |A| 2−n 1

Pr [E]
+

1

2
=

µ1/2(A)

Pr [E]
+

1

2
,

and the result follows by rearrangement.

We are now ready for the lower bound. We have

E
y,x,z

[1E(x, z) · f(y)] = Pr
x,z

[E] · Ey,x,z [f(y) | E], (5)

and we bound the conditional expectation. We have

Ey,x,z [f(y) | E] =
󰁛

a,y

paDa
1(y)f(y) 󰃍

1

2n+1

󰁛

a∈A,y

Da
1(y)f(y)

󰃍 c

2n+1

󰁛

a∈A

󰁛

y∈Ya

Da
2(y)f(y), (6)

where Ya is the set of y’s on which Da
1(y) 󰃍 cDa

2(y). By Proposition 6.5, Ya contains all but ξ of the
mass, so since f 󰃑 1 for each a ∈ A we get that

󰁓
y∈Ya

Da
2(y)f(y) 󰃍

󰁓
y
Da

2(y)f(y) − ξ. Also, note that
󰁓
y
Da

2(y)f(y) = T↓
1/2,1/4f(a), so plugging that into (6) we get

(6) 󰃍 c

2

󰀣
2−n

󰁛

a∈A
T↓
1/2,1/4f(a)− µ1/2(A)ξ

󰀤
. (7)

Next, we lower-bound the sum on the right-hand side. Let A′ ⊆ A be the set of a ∈ A such that
T↓
1/2,1/4f(a) > λ. Since the probability over a ∼ µ1/2 that g(a) = 1 and T↓

1/2,1/4f(a) 󰃑 λ is at most η,
we get that µ1/2(A

′) 󰃍 µ1/2(A)− η, and therefore

1

2n

󰁛

a∈A
T↓
1/2,1/4f(a) 󰃍

1

2n

󰁛

a∈A′

T↓
1/2,1/4f(a) > µ1/2(A

′)λ 󰃍 µ1/2(A)λ− η.

Plugging that into (7),

(6) 󰃍 c

2
(µ1/2(A)λ− µ1/2(A)ξ − η) 󰃍 c

2

󰀕
λ

4
Pr [E]− η

󰀖
,

where we used the choice ξ = λ/2 and the fact that µ1/2(A) 󰃍 1
2Pr [E]. By the choice of η, we have

η 󰃑 ν3/4λ
16 󰃑 λ

8Pr [E], hence we get that (6) 󰃍 cλ
16Pr [E]. Plugging all the way back into (5), we get

E
y,x,z

[1E(x, z) · f(y)] 󰃍
cλ

16
Pr [E]2 󰃍 cλν3/2

64
. (8)

Combining inequalities (8) and (4) we get that η 󰃍 cλν3/2

64 , contradicting the choice of η.
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6.2 Proof of Proposition 6.5

In this section we prove Proposition 6.5. We will need the following piece of notation: for a function
g : {0, 1}n → R and a probability measure µ on {0, 1}n, we denote µ(g) = Ex∼µ [g(x)]. We begin with an
auxiliary lemma that will be helpful.

Lemma 6.7. For every γ, ξ > 0 there is ν > 0 such that the following holds. Let g : ({0, 1}n, µν) → {0, 1}
be a function such that µν(g) 󰃍 γ ·ν3/4. Then except with probability ξ, for x ∼ µn

1/2 we have T↓
1/2,νg(x) 󰃍

ν.

Proof. Fix γ, ξ. Without loss of generality, we restrict ourselves to the case ξ 󰃑 min(γ, 1/10) (otherwise
we set ξ to be this minimum and prove a stronger statement). We prove the statement with ν = ξ8.

Set k = 1
2ν , and consider the following distribution over y(1), . . . ,y(k),x: choose y(1), . . . ,y(k) ∼

µn
ν , and set z = y(1) ∨ y(2) ∨ · · · ∨ y(k). Pick x by taking xi = 1 if zi = 1, else take xi = 1 with

probability6

r =
(1− ν)k − 1/2

(1− ν)k
.

Hence the marginal distribution of x is µ1/2.
Since y(1), . . . ,y(k) are chosen independently,

Pr
y(1),...,y(k),x

[g(y(i)) = 0 ∀i = 1, . . . , k] 󰃑 (1− γ · ν3/4)k 󰃑 e−γ/2ν1/4 󰃑 e−1/2ξ 󰃑 ξ/2,

using ξ 󰃑 1/10. Define

A =

󰀝
a

󰀏󰀏󰀏󰀏 Pr
y(1),...,y(k),x

[g(y(i)) = 0 ∀i = 1, . . . , k | x = a] 󰃑 1

2

󰀞
,

then by an averaging argument we get that µ1/2(A) 󰃍 1 − ξ. We show that every a ∈ A has a high
T↓
1/2,νg(a) value. Indeed, we have that

1

2
󰃑 Pr

y(1),...,y(k),x
[∃i g(y(i)) = 1 | x = a]

󰃑 Ey(1),...,y(k),x [g(y(1)) + · · ·+ g(y(k)) | x = a]

= kEy(1),...,y(k),x [g(y(1)) | x = a],

where we used the fact that y1, . . . , yk are identically distributed. We note that the distribution of y1 is the
same as the distribution of u, when (u,v) ∼ D(ν, 1/2) conditioned on v = a, thus by definition of T↓

1/2,ν ,

the value of the expectation is exactly T↓
1/2,νg(a). Therefore, we get that T↓

1/2,νg(a) 󰃍
1
2k = ν.

We now turn to the proof of Proposition 6.5. Fix ξ > 0, and choose ν > 0 from Lemma 6.7 for γ = 1/8
and ξ/2. We prove Proposition 6.5 with ν0 = ν and c = ν7/4/16.

Fix a, g as in the statement of Proposition 6.5. Consider the following distributions over x, y: Let S be
a random subset of {i | ai = 0} in which each element is picked with probability ν, and choose s ∈ {0, 1}S
uniformly at random. Let I = {i | ai = 1}, and define the function gS,s : {0, 1}I → {0, 1} by gS,s(z) =
1− g(a⊕ z ⊕ s).

6This probability is positive since (1− ν)k 󰃍 1− ν · k = 1/2.
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Proposition 6.8. ES,s

󰀅
µν/2(gS,s)

󰀆
󰃍 1

4ν
3/4.

Proof. By definition,

E
S,s

󰀅
µν/2(gS,s)

󰀆
= E

S,s

󰀥

E
z∼µI

ν/2

[1− g(a⊕ z⊕ s)]

󰀦
.

Note that s is distributed according to µ
[n]\I
ν/2 , and clearly z is distributed according to µI

ν/2 independently,
so the distribution of s⊕ z is µn

ν/2. Thus, the distribution of a⊕ z⊕ s is of a (1− ν)-correlated point with
a, and therefore we get that

E
S,s

󰀅
µν/2(gS,s)

󰀆
= Pr

z∼(1−ν) correlated with a
[g(z) = 0]

= 2n Pr
(x,z)∼(1−ν) correlated

[x = a, g(x) = 1, g(z) = 0]

= 2n Pr
(x,z)∼(1−ν) correlated

[E] · pa 󰃍 1

4
ν3/4.

In the last inequality, we used pa 󰃍 1/2n+1 and Pr [E] 󰃍 1
2ν

3/4.

Thus, with probability at least 1
8ν

3/4 over S, s, we have that µν/2(gS,s) 󰃍 1
8ν

3/4; denote the set of these
tuples by G. For each (S, s), let

hS,s(z) = T↓
1/2,ν/2gS,s(z),

and define their average h(z) = ES,s [hS,s(z)]. By Lemma 6.7, for every (S, s) ∈ G we have that for
z ∼ µI

1/2, hS,s(z) 󰃍 ν except with probability ξ/2, thus for z ∼ µI
1/2, E(S,s)∈G [hS,s(z)] 󰃍 ν/2 except

with probability ξ. Therefore h(z) 󰃍 ν3/4

8 · ν
2 = c except with probability ξ.

Proposition 6.9. For each y ∈ {0, 1}I , Da
1(y) 󰃍 h(a⊕ y)Da

2(y).

Proof. By definition,

h(a⊕ y) = E
S,s

󰀅
E(w,u)∼D(ν/2,1/2) [gS,s(w) | u = a⊕ y]

󰀆

= E
S,s

󰀅
E(w,u)∼D(ν/2,1/2) [1− f(a⊕ w ⊕ s) | u = a⊕ y]

󰀆
. (9)

Consider the distribution over (y′,m′, x′, z′) ∼ Dν conditioned on y′ = y, x′ = a. Note that the
distribution of w in (9) is µJ

ν , where J = {i | ai = 1, yi = 0} ⊆ I , which is the same distribution as
x′ ⊕ m′ = a ⊕ m′, and so the distribution of a ⊕ w is the same as the distribution of m′. Since s is
independently distributed according to µ

[n]\I
ν/2 , the distribution of a⊕w⊕ s is the same as the distribution of

m′ ⊕ s, which is the same distribution as of z′. Thus,

(9) = E(y′,m′,x′,z′)∼Dν

󰀅
1− f(z′)

󰀏󰀏 y′ = y, x′ = a
󰀆
=

Pr(y′,m′,x′,z′)∼Dν
[f(z′) = 0 ∧ y′ = y ∧ x′ = a]

Pr(y′,m′,x′,z′)∼Dν
[y′ = y ∧ x′ = a]

.

The numerator of the last fraction is equal to

Pr
(y′,m′,x′,z′)∼Dν

󰀅
x′ = a, f(z′) = 0

󰀆
· Pr
(y′,m′,x′,z′)∼Dν

󰀅
y′ = y

󰀏󰀏 x′ = a, f(z′) = 0
󰀆

= Pr
(y′,m′,x′,z′)∼Dν

󰀅
x′ = a, f(z′) = 0

󰀆
· Da

1(y).
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As for the denominator, it is equal to

Pr
(y′,m′,x′,z′)∼Dν

󰀅
x′ = a

󰀆
Pr

(y′,m′,x′,z′)∼Dν

󰀅
y′ = y

󰀏󰀏 x′ = a
󰀆
= Pr

(y′,m′,x′,z′)∼Dν

󰀅
x′ = a

󰀆
· Da

2(y).

Plugging these expressions, we see that

(9) =
Da

1(y)

Da
2(y)

Pr(y′,m′,x′,z′)∼Dν
[x′ = a, f(z′) = 0]

Pr(y′,m′,x′,z′)∼Dν
[x′ = a]

󰃑 Da
1(y)

Da
2(y)

.

We now finish the proof of Proposition 6.5. Sampling y ∼ µI
1/2, we see that z = a ⊕ y is distributed

according to µI
1/2, thus with probability at least 1 − ξ we have h(z) 󰃍 c. In this case, we would get by the

previous proposition that Da
1(y) 󰃍 cDa

2(y), as desired.

6.3 Proof of Theorem 2.11

In this section we prove Theorem 2.11. Again, to make notations easier we write the proof in the case that
p = ρ = 1/2, and the proof carries over to the general case with minor adjustments.

We need the following claim that relates the tail of a function and its noise sensitivity.

Claim 6.10. For any g : {0, 1}n → {0, 1} and k ∈ N we have that W󰃍k[g] 󰃑 NS1/k[g].

Proof. It is well known (e.g. [43, Theorem 2.49]; our definition of NSδ corresponds to 4NSδ/2 in the notation
therein) that NSδ[g] = 2

󰁓
S⊆[n]

(1− (1− δ)|S|)󰁥g(S)2, and since for |S| 󰃍 1/δ we have that (1 − δ)|S| 󰃑

e−1, we conclude that NSδ[g] 󰃍 2(1 − e−1)W󰃍1/δ[g] 󰃍 W󰃍1/δ[g]. The claim now follows by choosing
δ = 1/k.

We also need the analog of Claim 5.2 for the one-sided error case.

Claim 6.11. For every ζ, τ > 0 there is η2 > 0 such that the following holds for λ ∈ [ζ, 1]. Suppose
f : ({0, 1}n, µ1/4) → [0, 1], g : ({0, 1}n, µ1/2) → {0, 1} are one-sided error solutions with λ and error η2,
then for any i ∈ [n] we have I−i [g] 󰃑 τ .

Proof. The proof is identical to the proof of Claim 5.2.

We are now ready to prove Theorem 2.11.

Proof of Theorem 2.11. Fix ε, ζ > 0 as in the theorem statement, and choose ν0 from Lemma 6.2 for ζ. Let
C = C(ζ) be from Theorem 3.3, and choose ν = C−5ε9ν0, k = ⌈1/ν⌉. Pick η1 from Lemma 6.2 for ζ and
ν, pick J = J(k, ζ) from Theorem 3.3 and set τ = 2−10Jε. Finally, take η2 from Claim 6.11 for ζ, τ ; we
prove the statement for η = min(η1, η2)

Since η 󰃑 η1 and ν < ν0, Lemma 6.2 implies that NSν [g] 󰃑 ν3/4, and therefore by Claim 6.10 we have

W󰃍k[g] 󰃑 ν3/4 󰃑 ε2
√
ν

C log1.5(1/ν)
󰃑 ε2

C
√
k log1.5(k)

.
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Theorem 3.3 now implies that there is a set T ⊆ [n] of size J such that g is ε2-close in L1 to a T -junta
g′ : {0, 1}n → {0, 1}. Write inputs x ∈ {0, 1}n as x = (α,β), where α ∈ {0, 1}T ,β ∈ {0, 1}[n]\T , and
define g̃ : {0, 1}n → [0, 1] by g̃(α,β′) = Eβ [g(α,β)]. Note that g̃ is the closest function to g in L2 that
depends only on coordinates from T , so 󰀂g − g̃󰀂2 󰃑 󰀂g − g′󰀂2 󰃑

󰁳
󰀂g − g′󰀂1 󰃑 ε (we used the fact that

|g − g′| 󰃑 1). Therefore, 󰀂g − g̃󰀂1 󰃑 ε.
By Claim 6.11, all of the negative influences of g are at most τ , and so by Fact 3.1 all of the negative

influences of g̃ are also at most τ . Therefore, by Fact 3.2 there is a monotone function h : {0, 1}n → R such
that 󰀂g̃−h󰀂1 󰃑 4JJ ·τ 󰃑 ε, hence by the triangle inequality 󰀂g−h󰀂1 󰃑 󰀂g−g̃󰀂1+󰀂g̃−h󰀂1 󰃑 2ε. Finally, for
h′(x) = 1h(x)󰃍1/2 we have that h′ is a monotone, Boolean-valued J-junta and 󰀂g−h′󰀂1 󰃑 2󰀂g−h󰀂1 󰃑 4ε,
and the proof is concluded.

7 Results for large noise rates

The proof of Theorem 2.3 is composed of two parts.
In the first part, Lemma 7.3, we show that if f, g are approximate solutions, then g can be approximated

by a junta in a stronger manner, similarly to Lemma 5.5. The proof of Lemma 7.3 is very similar to the
proof of Lemma 5.5: the only place where monotonicity/almost-monotonicity is used is in Claim 5.3, and
we show it is not needed in the case that ρ 󰃍 1

2 + ζ.
This approximation by junta result allows us to reduce the problem to the case that n is constant, which

we then prove in a similar way to the proof of Lemma 4.1 (though much simpler).

7.1 Strong approximation by junta

We begin with the the following claim asserting that the negative influences of g are all small.

Claim 7.1. For every ζ, τ > 0 there is η1 > 0 such that the following holds for λ ∈ [ζ, 1], p ∈ [ζ, 1 − ζ]

and ρ ∈ [0, 1− ζ]. If 󰀂T↓
p,ρpf − λg󰀂1 󰃑 η1, then for any i ∈ [n] we have I−i [g] 󰃑 τ .

The proof is an easy adaptation of the proof of Claim 5.2 and is omitted. The next claim is an adaptation
of Claim 5.3.

Claim 7.2. For every ζ > 0 there is m ∈ N such that for all τ > 0 there is η2 > 0 such that the
following holds for all λ ∈ [ζ, 1], p ∈ [ζ, 1 − ζ] and ρ ∈ [0, 12 − ζ]. Let g : ({0, 1}n, µp) → {0, 1},
f : ({0, 1}n, µρp) → [0, 1] be such that 󰀂T↓

p,pρf − λg󰀂1 󰃑 η2. Then for each M ⊆ [n] of size m,

IM [g] =
󰁛

S⊇M

󰁥g2(S) 󰃑 τ.

Proof. Let m = ⌈log(2/ζ)⌉2 and choose η1 from Claim 7.1 for τ/12. We prove the statement for η2 =

min(η1,
ζ3(1−ζ)2

22m+3(
√
m+1)

τ).
Assume we have a set M of size m violating this condition. As in the proof of Lemma 5.5, we conclude

that there is A ⊆ M of size
√
m, without loss of generality A = {1, . . . ,

√
m}, such that

Pr
x
[all coordinates in A are sensitive on (x, a) for g] 󰃍 τ

22m
def
= t.

Sample x ∼ µp, let x′(1), . . . ,x′(
√
m) be given by x′(i) = x ⊕ ei, and consider a coupled downwards

random walk from x and the x′(i)’s to y = x ∧ z,y′(1) = x′(1) ∧ z, . . . ,y′(
√
m) = x′(

√
m) ∧ z,
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where z ∼ µρ. Then with probability at least t we have that f(x) ∕= f(x′(1)) = · · · = f(x′(
√
m)), and

conditioned on that there are two cases: (a) g(x) = 1 with probability at least 1
2 , or (b) g(x) = 0 with

probability at least 1
2 .

Case (a). This case is the same as in Lemma 5.5. Denote by E the event that g(x) = 1 and all of
A’s coordinates are sensitive on x, and let X(E) denote the set of x’s for which this event holds. By the
approximate eigenvalue condition on x we have that

󰁛

x∈X(E)

µp(x)
󰀏󰀏E(y,v)∼D(ρp,p) [f(y) | v = x]− λ

󰀏󰀏 󰃑 η2,

implying (since in this case µp(X) 󰃍 t/2) that Ex,y [f(y) | x ∈ X(E)] 󰃍 λ − η2
t/2 . By the approximate

eigenvalue condition on x′(i) we have
󰁛

x∈X(E)

µp(x
′(i))E(y,v)∼D(ρp,p)

󰀅
f(y′(i))

󰀏󰀏 v = x
󰀆
󰃑 η2,

and since µp(x
′(i)) 󰃍 ζ(1− ζ)µp(x), we conclude that Ex,y′(i) [f(y

′(i)) | x ∈ X(E)] 󰃑 η2
ζ(1−ζ)t/2 . There-

fore we get that

λ− (
√
m+ 1)

η2
ζ(1− ζ)t/2

󰃑 Ex,y,y′(i)’s

󰀥
f(y)−

󰁛

i∈A
f(y′(i))

󰀏󰀏󰀏󰀏󰀏 x ∈ X(E)

󰀦

󰃑 Pr
x,y,y′(i)’s

󰀅
y ∕= y′(i) ∀i ∈ A

󰀏󰀏 x ∈ X(E)
󰀆

= Pr
z
[zi = 1 ∀i ∈ A] = 2−

√
m 󰃑 λ/2,

where in the second transition we used the fact that f is bounded between 0 and 1. Rearranging and plugging
in the expression for t yields a contradiction for the choice of η2.

Case (b). Let E0 be the event that g(x) = 0 and all of A’s coordinates are sensitive on x. We would like
to identify a large subevent E ⊆ E0 such that x1 = x2 = 0 and g(1, 1,x3, . . . ,xn) = 1.

Let E′ ⊆ E0 be the event that x1 = 1 or x2 = 1. For any x satisfying the event E′, we have that
(x′(1), x) or (x′(2), x) is a negatively influential edge in direction i = 1 or i = 2. It follows that Pr [E′] 󰃑
I−1 [g]+I−2 [g], and since η2 󰃑 η1 we have by Claim 7.1 that I−1 [g], I−2 [g] 󰃑 τ/12. Therefore Pr [E′] 󰃑 τ/6.

Let E′′ ⊆ E0 \ E′ be the event that g(x′(1, 2)) = 0, where x′(1, 2) = (1, 1,x3, . . . ,xn). For any x
satisfying the event E′′, we have that (x′(1), x′(1, 2)) is a negatively influential edge in direction i = 2.
It follows that Pr [E′′] 󰃑 I−2 [g]. As above, Pr [E′′] 󰃑 τ/12. It follows that the probability of the event
E := E0 \ (E′ ∪ E′′) is at least τ/2− τ/4 = τ/4.

Write inputs x ∈ {0, 1}n as x = (b1, b2,β) for b1, b2 ∈ {0, 1} and β ∈ {0, 1}n−2, and let B =
{β | (0, 0,β) ∈ E}; then µp(B) 󰃍 τ/4. Let z ∼ µn

ρ and write z = (z(1), z(2)), where z(1) ∈ {0, 1}2

and z(2) ∈ {0, 1}n−2, and denote y = β ∧ z(2). Using the approximate eigenvector condition on
points (0, 0,β) for β ∈ B we get that Eβ,z,y [f(0, 0,y) | β ∈ B] 󰃑 η2

τ/4 , and by the approximate eigen-
vector condition on points (1, 0,β) for β ∈ B we get that Eβ,z,y [f((1, 0) ∧ z(1),y) | β ∈ B] 󰃍 λ −

η2
ζ(1−ζ)τ/4 . Note that in case z(1)1 = 0, the distribution of ((1, 0) ∧ z(1),y) is identical to the distri-
bution of (0, 0,y), and thus the expected value of f on these points is at most η2

τ/4 . We conclude that
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Pr [z(1)1 = 1]Eβ,z,y [f(1, 0,y) | β ∈ B] 󰃍 λ−2 η2
ζ(1−ζ)τ/4 , which, since z(1)1 = 1 with probability ρ, im-

plies that Eβ,z,y [f(1, 0,y) | β ∈ B] 󰃍 λ
ρ−2 η2

ρζ(1−ζ)τ/4 . Analogously, we have Eβ,z,y [f(0, 1,y) | β ∈ B] 󰃍
λ
ρ − 2 η2

ρζ(1−ζ)τ/4 .

We show a lower bound and an upper bound on Eβ

󰁫
T↓
p,ρpf(1, 1,β)

󰁬
, which together give a contradic-

tion. By definition and non-negativity of f it is equal to

Eβ

󰀗
E
z
[f((1, 1) ∧ z(1),β ∧ z(2))]

󰀏󰀏󰀏󰀏 β ∈ B

󰀘
󰃍 Pr

z(1)
[z(1) = (1, 0)] · Eβ,y [f(1, 0,y) | β ∈ B]

+ Pr
z(1)

[z(1) = (0, 1)] · Eβ,y [f(0, 1,y) | β ∈ B].

The first expression is equal to ρ(1 − ρ) · Eβ,y [f(1, 0,y) | β ∈ B] 󰃍 ρ(1 − ρ)(λρ − 2 η2
ρζ(1−ζ)τ/4), and we

have the same lower bound for the second expression. Hence we get Eβ

󰁫
T↓
p,ρpf(1, 1,β)

󰁬
󰃍 2(1 − ρ)λ −

4 (1−ρ)η2
ζ(1−ζ)τ/4 , which by the assumption that ρ 󰃑 1

2 − ζ and choice of η2 is at least (1+ 2ζ)λ− ζ2 󰃍 (1+ ζ)λ.
On the other hand, using the approximate eigenvector condition on points of the form (1, 1,β) for β ∈ B,

we get 󰁛

β∈B
µp(1, 1,β)

󰀏󰀏󰀏T↓
p,ρpf(1, 1,β)− λg(1, 1,β)

󰀏󰀏󰀏 󰃑 η2.

As µp(1, 1,β) 󰃍 ζ2(1− ζ)2µp(β) and µp(B) 󰃍 τ/4, we get that

Eβ

󰁫󰀏󰀏󰀏T↓
p,ρpf(1, 1,β)− λg(1, 1,β)

󰀏󰀏󰀏
󰀏󰀏󰀏 β ∈ B

󰁬
󰃑 η2

ζ2(1− ζ)2τ/4
󰃑 λζ/2,

which by g 󰃑 1 implies Eβ

󰁫
T↓
p,ρpf(1, 1,β)

󰀏󰀏󰀏 β ∈ B
󰁬
󰃑 (1 + ζ/2)λ, and contradiction.

We can now prove the approximation by junta result we will need. The proof is the same as the proof of
Lemma 5.5 except that we use the above replacement instead of Claim 5.3, and is omitted.

Lemma 7.3. For every ζ > 0 there is J ∈ N such that for all ε > 0 there is η > 0 such that the
following holds for all λ ∈ [ζ, 1], p ∈ [ζ, 1 − ζ] and ρ ∈ [0, 1/2 − ζ]. If f : ({0, 1}n, µρp) → [0, 1],
g : ({0, 1}n, µp) → {0, 1} satisfy 󰀂T↓

p,ρpf − λg󰀂1 󰃑 η, then g is ε-close to a J-junta.

7.2 The case n is constant

This section is devoted for the proof of the following lemma.

Lemma 7.4. For any ζ > 0 and n ∈ N there exists η0 > 0 such that the following holds for all λ ∈ [ζ, 1],
p ∈ [ζ, 1− ζ], ρ ∈ [ζ, 1/2− ζ] and 0 < η 󰃑 η0. If 󰀂T↓

p,ρpf − λg󰀂∞ 󰃑 η then:

• Either g is constant or g is an AND function of width r where r 󰃑 ⌈log(2/ζ)⌉.

• 󰀂f − 2rλ · g󰀂∞ 󰃑 ζ−3n2
η.

The proof is similar to the proof in Section 4.1, but somewhat simpler. As there, it will be more con-
venient for us to identify {0, 1}n with subsets of [n] in this section, and think of the functions f, g as being
functions over subsets of [n]. Throughout this section we denote T = T↓

p,ρp.
Fix ζ, n, and choose η = ζ3n

2+3n+4. Let f, g be functions as in the statement of the lemma.
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Claim 7.5. g is monotone.

Proof. Repeat the proof of Claim 4.2 verbatim, using the fact that Pr [i ∕∈ C] = 1− ρ 󰃍 1
2 .

If g ≡ 0, we are done proving the structure for g (and we prove the structure of f below), and otherwise
g has a minterm. The following claim shows that the value of f on a minterm must be very close to a specific
value (similarly to Claim 4.3).

Claim 7.6. If M is a minterm of g, then
󰀏󰀏f(M)− λρ−|M |󰀏󰀏 󰃑 ρ−3|M |η.

Proof. Since g(M) = 1, we get |Tf(M)− λ| 󰃑 η, and since Tf(M) =
󰁓

A⊆M

ρ|A|(1 − ρ)|M\A|f(A), the

triangle inequality implies that
󰀏󰀏f(M)− ρ−|M |λ

󰀏󰀏 󰃑 ρ−|M |η + ρ−|M | 󰁓
A⊊M

ρ|A|(1− ρ)|M\A|f(A); to finish

the proof we upper-bound the last sum by |M | η. Note that for every A ⊊ M , choosing B ⊊ M randomly
of size |M |−1, we have that A ⊆ B with probability at least 1/ |M |, hence by the non-negativity of f there
is B of size |M |− 1 such that

󰁛

A⊊M

ρ|A|(1− ρ)|M\A|f(A) 󰃑 |M |
󰁛

A⊆B

ρ|A|(1− ρ)|M\A|f(A) 󰃑 |M |Tf(B),

and we fix such B. Since B ⊊ M and M is a minterm of g, we have that g(B) = 0, implying that
Tf(B) 󰃑 η and therefore

󰁓
A⊊M

ρ|A|(1− ρ)|M\A|f(A) 󰃑 |M | η.

Claim 7.7. If g(M) = 0, then f(M) 󰃑 ρ−|M |η.

Proof. We have ρ|M |f(M) 󰃑 Tf(M) 󰃑 λg(M) + η = η, and the result follows by rearranging.

Next we show that the value of f above a minterm of minimal size must also be close to the same value.

Claim 7.8. Let M be a minterm of g of minimal, and let M ′ ⊇ M . Then
󰀏󰀏f(M ′)− λρ−|M |󰀏󰀏 󰃑 ρ−3|M ′|2η.

Proof. The proof is by induction on |M ′ \M |. The base case M ′ = M is proved in Claim 7.6. Let k 󰃍 0,
assume the statement holds when |M ′ \M | 󰃑 k, and prove for |M ′ \M | = k + 1.

Let T1 = {A ⊊ M ′ | A ⊇ M}, T2 = {A ⊆ M ′ | A ∕⊇ M} and write

Tf(M ′) = ρ|M
′|f(M ′) +

󰁛

A∈T1

ρ|A|(1− ρ)|M
′\A|f(A) +

󰁛

A∈T2

ρ|A|(1− ρ)|M
′\A|f(A). (10)

Our goal is to extract an approximation for f(M ′), and for that we approximate the left-hand side as well as
the two sums on the right-hand side. For the left-hand side, since g is monotone we have g(M ′) = 1 and so
|Tf(M ′)− λ| 󰃑 η.

For the first sum, for any A ∈ T1 the induction hypothesis implies that
󰀏󰀏f(A)− λρ−|M |󰀏󰀏 󰃑 ρ−3|A|2η 󰃑

ρ−3(|M ′|−1)2η, and therefore
󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

A∈T1

ρ|A|(1− ρ)|M
′\A|f(A)− λρ−|M | · Pr

A∼µρ

[A ∈ T1]

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑 ρ−3(|M ′|−1)2η.

We also note that PrA∼µρ [A ∈ T1] = ρ|M |(1− ρ|M
′\M |).
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For the second sum, by non-negativity of f , plugging the approximations we have so far we get from (10)
that 󰁛

A∈T2

ρ|A|(1− ρ)|M
′\A|f(A) 󰃑 ρ|M

′\M |λ+ (1 + ρ−3(|M ′|−1)2)η.

We claim that this implies that for every A ∈ T2 we have g(A) = 0. Indeed, otherwise there is A󰂏 ∈ T2 that
is a minterm of g, and by Claim 7.6 its contribution to the left-hand side is at least

ρ|A
󰂏|(1− ρ)|M

′\A󰂏|(λρ−|A󰂏| − ρ−3|A󰂏|η) 󰃍 (1− ρ)|M
′\M |λ− ρ−2|M ′|η

󰃍 (ρ|M
′\M | + ζn)λ− ρ−2|M ′|η.

In the first inequality we used |A󰂏| 󰃍 |M | (since M is minterm of minimal size), and in the second inequality
we used ρ 󰃑 1

2 − ζ. Combining the two inequalities we get that ζnλ 󰃑 ρ−3|M ′|2η 󰃑 ζ−3n2
η, which is a

contradiction to the choice of η.
We conclude that g(A) = 0 for all A ∈ T2, and by Claim 7.7 we conclude that f(A) 󰃑 ρ−|A|η 󰃑

ρ−|M ′|η. Plugging all approximations we have in (10), by the triangle inequality we get that
󰀏󰀏󰀏ρ|M

′|f(M ′) + (1− ρ|M
′\M |)λ− λ

󰀏󰀏󰀏 󰃑 (1 + ρ−|M ′| + ρ−3(|M ′|−1)2)η 󰃑 ρ−3|M ′|2+|M ′|η.

Simplifying and dividing by ρ|M
′| finishes the proof.

Structure of g. We are now ready to prove that g is an AND function, and we do it by the way of contra-
diction. Suppose g has at least two minterms, let M1 be a minterm of g of minimum size, and let M2 ∕= M1

be another minterm. Consider M = M1 ∪M2, and let A ⊆ M be sampled so that each i ∈ M is included
independently with probability ρ. Let E1 be the event that A ⊇ M1 and let E2 be the event that A = M2.
We have that

Tf(M) 󰃍 Pr
A
[A ∈ E1] · EA [f(A) | E1] + Pr

A
[A ∈ E2] · f(M2),

and we lower-bound the right-hand side. The probability that A is in E1 is ρ|M1|, and by Claim 7.8, for every
A satisfying E1 we have f(A) 󰃍 λρ−|M1|λ− ρ−3n2

η. The probability that A is in E2 is at least ρn, and by
Claim 7.6, f(M2) 󰃍 λρ−|M2| − ρ−3nη. Therefore we get that Tf(M) 󰃍 (1 + ρn)λ− ρ−3n2−3nη > λ+ η,
by the choice of η. This is a contradiction to Tf(M) 󰃑 λg(M) + η = λ+ η.

It follows that there is T ⊆ [n] such that g = ANDT (or g ≡ 0, a case that arose during the proof).

Structure of f . If g ≡ 0, it follows by Claim 7.7 that f is close to the 0 function. Otherwise, on any M
such that g(M) = 1, i.e. above the minterm T , we have by Claim 7.8 that

󰀏󰀏f(M)− ρ−|T |λ
󰀏󰀏 󰃑 ρ−3n2

η, and
on any M such that g(M) = 0 we have by Claim 7.7 that f(M) 󰃑 ρ−nη, so 󰀂f − ρ−|T |λ · ANDT 󰀂∞ 󰃑
ρ−3n2

η.

Remark 7.9. A stronger bound on the distance of f from ρ−|T |λANDT may be proved using inversion, as
in Section 4.1.

7.3 Proof of Theorem 2.3

Fix ζ, ε > 0 and let J = J(ζ) be from Lemma 7.3. Take η0 from Lemma 7.4 for ζ and n = J . Set
ε′ = ζJ+3ε, and pick η1 from Lemma 7.3 for ζ, ε′. We prove the statement for η = min(ζ3n

2+nε2η0, η1).
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By Lemma 7.3 we get that g is ε′-close to a junta h depending on at most J variables, say on T ⊆ [n].
We write points x ∈ {0, 1}n as (α,β), where α ∈ {0, 1}T and β ∈ {0, 1}[n]\T , and for each β ∈ {0, 1}[n]\T ,
define f̃β : {0, 1}T → [0, 1] and gβ : {0, 1}T → {0, 1} by

f̃β(α) = E
z∼µ

[n]\T
ρ

[f(α,β ∧ z)], gβ(α) = g(α,β).

Let B =
󰁱
β ∈ {0, 1}[n]\T

󰀏󰀏󰀏 󰀂f̃β − λgβ󰀂∞ 󰃑 ζ3n
2
εη0

󰁲
. Since for any α,β we have Tf̃β(α) = Tf(α,β),

it follows that Eβ

󰁫
󰀂Tf̃β − λgβ󰀂1

󰁬
= 󰀂Tf − λg󰀂1 󰃑 η. Therefore Markov’s inequality implies that with

probability at least 1− η

ζ3n
2+nεη0

󰃍 1− ε over β ∼ µp we have 󰀂Tf̃β −λgβ󰀂1 󰃑 ζ3n
2+nεη0, in which case

β ∈ B. In particular, we conclude that Pr
β∼µ

[n]\T
p

[β ∈ B] 󰃍 1− ε.
For each β ∈ B, Lemma 7.4 implies that gβ is either the zero function or an AND function, i.e. there is

T ′(β) which is either a subset of T or ⊥ such that gβ = ANDT ′(β) (where AND⊥ = 0). Since g is ε′-close to
a T -junta, if we choose β,β′ ∈ B independently (according to µp) then on average gβ and gβ′ are δ-close,
where δ 󰃑 2ε′/Pr[B] 󰃑 4ε′. Thus there is β󰂏 ∈ B such that Eβ∈B [󰀂gβ − gβ󰂏󰀂1] 󰃑 4ε′, and we denote
T 󰂏 = T ′(β󰂏). By Markov’s inequality, defining B′ ⊆ B by B′ =

󰀋
β ∈ B

󰀏󰀏 󰀂gβ − gβ󰂏󰀂1 󰃑 ζ−J−1
󰀌

, we
have that Pr

β∼µ
[n]\T
p

[β ∈ B′] 󰃍 1− 4ε′

ζ−J−1 󰃍 1− ε. Note that if β ∈ B′, then the functions ANDT ′(β) and

ANDT 󰂏 agree on α ∼ µT
p with probability 󰃍 1− ζ−J−1 > 1−minα∈{0,1}T µp(α), hence they must be the

same function. In other words, we get that for every β ∈ B′ we have gβ = ANDT 󰂏 , and so g is ε-close to
ANDT 󰂏 .

To prove the structure for f , note that for each β ∈ B′, Lemma 7.4 implies that f̃β is ε-close to 2|T
󰂏|λ ·

ANDT 󰂏 in L∞, and averaging it over variables from T\T 󰂏 can only decrease this distance. Thus, considering
f̃ : {0, 1}T

󰂏

→ [0, 1] defined by

f̃(α) = E
y∼µ

[n]\T󰂏
ρp

[f(α,y)] = E
β∼µ

[n]\T
p

α′∼µ
T\T󰂏

ρp

󰀅
fβ(α,α

′)
󰀆
,

we have that 󰀂f̃ − 2|T
󰂏|λ · ANDT 󰂏󰀂∞ 󰃑 µp(B

′) · ε+ (1− µp(B
′)) 󰃑 2ε, and we are done. .

8 Open questions

Our work raises many open questions. Perhaps the most obvious is the quantitative aspect of our results:

Open Question 1. What is the optimal dependence between ε and δ in Theorem 1.1?

We can ask a similar question about the various results listed in Section 2.
Nehama [40] showed that if we allow ε to depend on n, then we can choose ε = Θ(δ3/n). Theo-

rem 1.1 eliminates the dependence on n in return for an exponential dependence on δ. We conjecture that
Theorem 1.5 holds for ε = δΘ(1).

Nehama situates Theorem 1.1 in the larger context of approximate judgement aggregation, or equiva-
lently, approximate polymorphisms. He considers not only functions satisfying

f(x1 ∧ · · · ∧ xm) ≈ f(x1) ∧ · · · ∧ f(xm),

but also functions satisfying

f(x1 ⊕ · · ·⊕ xm) ≈ f(x1)⊕ · · ·⊕ f(xm),
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showing (using linearity testing) that the latter must be close to XORs. More generally, we can replace ∧,⊕
with an arbitrary Boolean function (or even a function on a larger domain):

Open Question 2. Fix φ : {0, 1}m → {0, 1}. Suppose f : {0, 1}n → {0, 1} satisfies

f(φ(x1, . . . ,xm)) ≈ φ(f(x1), . . . , f(xm))

for random x1, . . . ,xm ∈ {0, 1}n, where φ(x1, . . . , xm) signifies elementwise application.
What can we say about f?

Dokow and Holzman [13] showed (essentially) that when φ is a non-trivial function which is not an
AND or an XOR, then the only exact solutions are dictatorships. We conjecture that when φ is such that the
only exact solutions are dictatorships, then approximate solutions are approximate dictatorships.

Finally, let us mention the following tantalizing question:

Open Question 3. What can be said about functions f : {0, 1}n → {0, 1} satisfying

Pr[f(x ∧ y) = f(x) ∧ f(y)] 󰃍 3

4
+ ε?

We remark that the 3
4 bound on the right hand side is natural in light of semi-random functions f : {0, 1}n →

{0, 1}, chosen by taking f(x) to be a uniform bit when |x| ≈ 1
2n, and f(x) = 0 otherwise.
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rendues à la pluralité des voix. De l’Imprimerie Royale, 1785.

[12] Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar. Direct sum testing. SIAM
J. Comput., 46(4):1336–1369, 2017.

[13] Elad Dokow and Ron Holzman. Aggregation of binary evaluations for truth-functional agendas. Soc.
Choice Welf., 32:221–241, 2009.

[14] Elad Dokow and Ron Holzman. Aggregation of binary evaluations. J. Econ. Theory, 145:495–511,
2010.

[15] Elad Dokow and Ron Holzman. Aggregation of binary evaluations with abstentions. J. Econ. Theory,
145(2):544–561, 2010.

[16] Elad Dokow and Ron Holzman. Aggregation of non-binary evaluations. Adv. Appl. Math., 45:487–504,
2010.

[17] Dvir Falik and Ehud Friedgut. Between arrow and gibbard-satterthwaite; a representation theoretic
approach. Israel Journal of Mathematics, 201(1):247–297, Jan 2014.

[18] Piotr Faliszewski and Ariel D. Procaccia. Ai’s war on manipulation: Are we winning? AI Magazine,
31(4):53–64, Sep. 2010.

[19] E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often. In Proceedings of the 49th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 243–249, 2009.

[20] Ehud Friedgut, Gil Kalai, Nathan Keller, and Noam Nisan. A quantitative version of the gibbard–
satterthwaite theorem for three alternatives. SIAM Journal on Computing, 40(3):934–952, 2011.

[21] A. Gibbard. Manipulation of voting schemes: a general result. Econometrica, 41(4):587–601, 1973.

[22] Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. Testing monotonicity. In 39th
Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto,
California, USA, pages 426–435, 1998.

[23] William Timothy Gowers and Omid Hatami. Inverse and stability theorems for approximate represen-
tations of finite groups. Sbornik: Mathematics, 208(12):1784–1817, dec 2017.
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