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Abstract

A basic combinatorial interpretation of Shannon’s entropy function is via the “20 questions”
game. This cooperative game is played by two players, Alice and Bob: Alice picks a distribution
π over the numbers {1, . . . , n}, and announces it to Bob. She then chooses a number x according
to π, and Bob attempts to identify x using as few Yes/No queries as possible, on average.

An optimal strategy for the “20 questions” game is given by a Huffman code for π: Bob’s
questions reveal the codeword for x bit by bit. This strategy finds x using fewer than H(π) + 1
questions on average. However, the questions asked by Bob could be arbitrary. In this paper,
we investigate the following question: Are there restricted sets of questions that match the
performance of Huffman codes, either exactly or approximately?

Our first main result shows that for every distribution π, Bob has a strategy that uses only
questions of the form “x < c?” and “x = c?”, and uncovers x using at most H(π) + 1 questions
on average, matching the performance of Huffman codes in this sense. We also give a natural set
of O(rn1/r) questions that achieve a performance of at most H(π) + r, and show that Ω(rn1/r)
questions are required to achieve such a guarantee.

Our second main result gives a set Q of 1.25n+o(n) questions such that for every distribution
π, Bob can implement an optimal strategy for π using only questions from Q. We also show
that 1.25n−o(n) questions are needed, for infinitely many n. If we allow a small slack of r over
the optimal strategy, then roughly (rn)Θ(1/r) questions are necessary and sufficient.
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1 Introduction

A basic combinatorial and operational interpretation of Shannon’s entropy function, which is often
taught in introductory courses on information theory, is via the “20 questions” game (see for
example the well-known textbook [CT06]). This game is played between two players, Alice and
Bob: Alice picks a distribution π over a (finite) set of objects X, and announces it to Bob. Alice
then chooses an object x according to π, and Bob attempts to identify the object using as few
Yes/No queries as possible, on average.1

The “20 questions” game is the simplest model of combinatorial search theory [AW87] and of
combinatorial group testing [Dor43]. It also has a natural interpretation in the context of interactive
learning [CAL94]: Bob wishes to learn the secret x, and may interact with the environment (Alice)
by querying features of x.

What questions should Bob ask? An optimal strategy for Bob is to compute a Huffman code for
π, and then follow the corresponding decision tree: his first query, for example, asks whether x lies
in the left subtree of the root. While this strategy minimizes the expected number of queries, the
queries themselves could be arbitrarily complex; already for the first question, Huffman’s algorithm
draws from an exponentially large reservoir of potential queries (see Theorem 7.3 for more details).

Therefore, it is natural to consider variants of this game in which the set of queries used is
restricted; for example, it is plausible that Alice and Bob would prefer to use queries that (i) can
be communicated efficiently (using as few bits as possible), and (ii) can be tested efficiently (i.e.
there is an efficient encoding scheme for elements of X and a fast algorithm that given x ∈ X and
a query q as input, determines whether x satisfies the query q).

We summarize this with the following meta-question, which guides this work:

Main question

Are there “nice” sets of queries Q such that for any distribution,
there is a “high quality” strategy that uses only queries from Q?

Formalizing this question depends on how “nice” and “high quality” are quantified.
Variants of this question, which focus on specific sets of queries, are commonplace in computer

science and related fields. Here are just a few examples:

• Binary decision trees, as used in statistics, machine learning, pattern recognition, data mining,
and complexity theory, identify X as a subset of {0, 1}n, and allow only queries of the form
“xi = 1?”.

• Feature selection and generation in machine learning can naturally be interpreted as the task
of finding queries that reveal a lot of information about the learned concept.

• In the setting of binary search trees, X is a linearly ordered set, and the set of queries Q is
the set of comparison queries, “x < c, x = c, or x > c?”.2

1Another basic interpretation of Shannon’s entropy function is via the transmission problem, in which Alice wishes
to transmit to Bob a message x drawn from a distribution π over X, over a noiseless binary channel, using as few
bits as possible on average. While the entropy captures the complexity of both problems, the two problems differ in
the sense that in the “20 questions” game, Alice is “passive”: she only answers the queries posed by Bob, but she
does not help him by “actively” transmitting him the secret x, as she does in the transmission problem.

2A comparison query has three possible answers: “<”, “=”, and “>”, and so in this setting it is more natural to
consider the variant of the “20 questions” game in which three answers are allowed.
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• In the setting of comparison-based sorting algorithms, X is the set of permutations or linear
orders over an array x1, . . . , xn, and Q contains queries of the form “xi < xj?”.

• Algebraic decision trees, used in computational geometry and studied in complexity theory,
identify X = Fn for some field F, and allow queries of the form “P (~x) = 0?” (or “P (~x) ≥ 0?”
when F is an ordered field) for low-degree polynomials.

• Searching in posets generalizes binary search trees by allowing X to be an arbitrary poset
(usually a rooted tree). The set of queries Q is the set of comparison queries of the form
“x ≺ c?”.

We consider two different benchmarks for sets of queries:

1. An information-theoretical benchmark: A set of queries Q has redundancy r if for every
distribution π there is a strategy using only queries from Q that finds x with at most H(π)+r
queries on average when x is drawn according to π.

2. A combinatorial benchmark: A set of queriesQ is r-optimal (or has prolixity r) if for every
distribution π there is a strategy using queries from Q that finds x with at most Opt(π) + r
queries on average when x is drawn according to π, where Opt(π) is the expected number of
queries asked by an optimal strategy for π (e.g. a Huffman tree).

Given a certain redundancy or prolixity, we will be interested in sets of questions achieving that
performance that (i) are as small as possible, and (ii) allow efficient construction of high quality
strategies which achieve the target performance. In some cases we will have to settle for only one
of these properties.

Information-theoretical benchmark. Let π be a distribution over X. A basic result in infor-
mation theory is that every algorithm that reveals an unknown element x drawn according to π
(in short, x ∼ π) using Yes/No questions must make at least H(π) queries on average. Moreover,
there are algorithms that make at most H(π) + 1 queries on average, such as Huffman coding and
Shannon–Fano coding. However, these algorithms may potentially use arbitrary queries.

Are there restricted sets of queries that match the performance of H(π) + 1 queries on average,
for every distribution π? Consider the setting in which X is linearly ordered (say X = [n], with
its natural ordering: 1 < · · · < n). Gilbert and Moore [GM59], in a result that paved the way to
arithmetic coding, showed that two-way comparison queries (“x < c?”) almost fit the bill: they
achieve a performance of at most H(π) + 2 queries on average. Our first main result shows that
the optimal performance of H(π) + 1 can be achieved by allowing also equality queries (“x = c?”):

Theorem (restatement of Theorem 5.1 and Theorem 5.2). For every distribution π there is a
strategy that uses only comparison and equality queries which finds x drawn from π with at most
H(π) + 1 queries on average. Moreover, this strategy can be computed in time O(n log n).

In a sense, this result gives an affirmative answer to our main question above. The set of
comparison and equality queries (first suggested by Spuler [Spu94a]) arguably qualifies as “nice”:
linearly ordered universes appear in many natural and practical settings (numbers, dates, names,
IDs) in which comparison and equality queries can be implemented efficiently. Moreover, from a
communication complexity perspective, Bob can communicate a comparison/equality query using
just log2 n+ 1 bits (since there are just 2n such queries). This is an exponential improvement over
the Ω(n) bits he would need to communicate had he used Huffman coding.
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We extend this result to the case where X is a set of vectors of length r, ~x = (x1, . . . , xr), by
showing that there is a strategy using entry-wise comparisons (“xi < c?”) and entry-wise equalities
(“xi = c?”) that achieves redundancy r:

Theorem (restatement of Theorem 6.1). Let X be the set of vectors of length r over a linearly
ordered universe. For every distribution π there is a strategy that uses only entry-wise comparison
queries and entry-wise equality queries and finds ~x ∼ π with at most H(π) + r queries. Moreover,
this strategy can be computed in time O(|X| log |X|).

This shows that in settings that involve lists or vectors, entry-wise comparison and equality
queries achieve redundancy that is equal to the length of the vectors. The theorem is proved by
applying the algorithm of the preceding theorem to uncover the vector ~x entry by entry.

As a toy example, imagine that we wish to maintain a data structure that supports an operation
find(~x), where each x is represented by a list (x1, . . . , xr) of r numbers (think of r as small, say
r = 9 and the ~x’s denote Social Security Numbers). Moreover, assume that we have a good prior
estimate on π(x) — the frequency of find(x) operations (derived from past experience, perhaps
even in an online fashion). The above corollary shows how to achieve an amortized cost of H(π)+r
per find(~x) operation, accessing the input only via queries of the form “xi < c?” and “xi = c?”.

As a corollary, we are able to determine almost exactly the minimum size of a set of queries
that achieves redundancy r ≥ 1. In more detail, let uH(n, r) denote the minimum size of a set of
queries Q such that for every distribution π on [n] there is a strategy using only queries from Q
that finds x with at most H(π) + r queries on average, when x is drawn according to π.

Corollary (Theorem 6.1). For every n, r ∈ N,

1

e
rn1/r ≤ uH(n, r) ≤ 2rn1/r.

Obtaining this tight estimate of uH(n, r) = Θ(rn1/r) hinges on adding equality queries; had we
used only entry-wise comparison queries and the Gilbert–Moore algorithm instead, the resulting
upper bound would have been uH(n, r) = O

(
rn2/r

)
, which is quadratically worse than the truth.

Combinatorial benchmark. The analytical properties of the entropy function make H(π) a
standard benchmark for the average number of bits needed to describe an element x drawn from
a known distribution π, and so it is natural to use it as a benchmark for the average number of
queries needed to find x when it is drawn according to π. However, there is a conceptually simpler,
and arguably more natural, benchmark: Opt(π) — the average number of queries that are used by
a best strategy for π (several might exist), such as one generated by Huffman’s algorithm.

Can the optimal performance of Huffman codes be matched exactly? Can it be achieved without
using all possible queries? Our second main result answers this in the affirmative:

Theorem (restatement of Theorem 7.2 and Theorem 7.3). For every n there is a set Q of 1.25n+o(n)

queries such that for every distribution over [n], there is a strategy using only queries from Q which
matches the performance of the optimal (unrestricted) strategy exactly. Furthermore, for infinitely
many n, at least 1.25n−o(n) queries are required to achieve this feat.

Consider a setting (similar to the one analyzed in [AM01, WAF01]) in which Alice (the client)
holds an element x coming from a domain of size n, and Bob (the server) tries to determine it.
Bob (who has collected statistics on Alice) knows the distribution π of x, but Alice does not.
Furthermore, the downlink channel from Bob to Alice is much cheaper than the uplink channel in
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the opposite direction. If Bob’s goal is to minimize the amount of information that Alice sends
him, he can use a Huffman code to have her send the minimum amount of information on average,
namely Opt(π). Naively representing a question as an arbitrary subset of [n], Bob has to send
Opt(π) · n bits on average to Alice. Our theorem allows him to cut that amount by a factor of
log 2/ log 1.25 ≈ 3.1, since it only takes log2 1.25n bits to specify a question from Q.

One drawback of our construction is that it is randomized. Thus, we do not consider it partic-
ularly “efficient” nor “natural”. It is interesting to find an explicit set Q that achieves this bound
(see Section 10.2 for more details). Our best explicit construction is:

Theorem (restatement of Theorem 7.5). For every n there is an explicit set Q of O(2n/2) queries
such that for every distribution over [n], there is a strategy using only queries from Q which matches
the performance of the optimal (unrestricted) strategy exactly. Moreover, we can compute this
strategy in time O(n2).

It is natural to ask in this setting how small can a set of queries be if it is r-optimal ; that is,
if it uses at most Opt(π) + r questions on average when the secret element is drawn according to
π, for small r > 0. Let uOpt(n, r) denote the minimum size of a set of queries Q such that for
every distribution π on [n] there is a strategy using only queries from Q that finds x with at most
Opt(π)+r queries on average when x is drawn from π. We show that for any fixed r > 0, significant
savings can be achieved:

Theorem (restatement of Theorem 8.1). For all r ∈ (0, 1):

(r · n)
1
4r . uOpt(n, r) . (r · n)

16
r .

Instead of the exponential number of questions needed to match Huffman’s algorithm exactly,
for fixed r > 0 an r-optimal set of questions has polynomial size. In this case the upper bound is
achieved by an explicit set of queries Qr. We also present an efficient randomized algorithm for
computing an r-optimal strategy that uses queries from Qr.

Spread-out distributions. Before closing this introduction, let us go back to the information-
theoretical benchmark. We mentioned that the best performance that can be achieved is H(π) + 1.
This is due to distributions in which one element has probability 1 − ε: such distributions have
very small entropy, but require at least one question to disambiguate the probable element form
the rest.

When we rule out such distributions, by requiring all probabilities to be small, the best achiev-
able performance improves to H(π) + 0.086, a classical result of Gallager [Gal78]. Comparison and
equality queries also benefit from such a promise:

Theorem (informal restatement of Theorem 9.1). For every distribution π over [n] in which all
elements have low probability there is a strategy that uses only comparison and equality queries and
finds x drawn from π with at most H(π) + 0.586 queries on average.

There are distributions π, in which all elements have low probability, that require H(π)+0.5011
comparison and equality queries on average to find x drawn from π.

Comparison and equality queries thus no longer match the optimal performance in this setting,
but they do take advantage of it. The algorithm used to construct the strategy mentioned in the
theorem is very different from the one used to achieve H(π)+1, and therefore may be of independent
interest.
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Organization of the paper We provide a more complete summary of the paper in Section 2,
followed by a brief literature review in Section 3. Several basic definitions are listed in Section 4,
and the main body of the paper (Sections 5–9) follows (see Section 2 for more details). The paper
concludes in Section 10 with an extensive list of open questions.

2 Paper outline

In this section we outline our results in more detail, and give some idea about their proofs. We
also indicate the contents of the various technical sections (Sections 5–9).

We start with a few formal definitions:

Definition. Let Xn = {x1, . . . , xn}. We think of Xn as linearly ordered: x1 ≺ x2 ≺ · · · ≺ xn.
Consider the following game: Alice picks an element x ∈ Xn, which we call the secret element

as it is unknown to Bob, and Bob asks Yes/No (binary) questions about x, one after the other,
until x is revealed. Each question is of the form “x ∈ A?” for some subset A ⊆ Xn.

Bob’s strategy can be modeled using a decision tree, which is a rooted binary tree in which each
internal vertex (including the root) is labeled by a question (a subset of Xn), the two outgoing edges
are labeled Yes and No, and each leaf is labeled by an element of Xn. A decision tree corresponds
to a strategy for Bob: he starts by asking the question at the root, and continues recursively to
one of its children according to the answer. When reaching a leaf, the secret element is revealed
to be the leaf’s label. Thus, in order for a tree to be valid, the label of each leaf must be the only
element in Xn which is consistent with the answers to all questions on the way. If a decision tree
uses only questions from Q ⊆ 2Xn , we call it a decision tree using Q.

Alice picks the element x from a distribution π = (π1, . . . , πn), where πi = Prx∼π[x = xi]. Bob
knows π, and he has to identify x among all elements in the support of π. Thus, a decision tree
for π is defined as a decision tree for supp(π). The cost of such a tree is the average number
of questions asked on a random element x ∼ π. We denote the cost of the optimal unrestricted
decision tree for π by Opt(π).

Given a distribution π, its binary entropy is defined by H(π) =
∑n

i=1 πi log2
1
πi

. The binary

entropy function is denoted h(p) = p log2
1
p + (1− p) log2

1
1−p for 0 ≤ p ≤ 1. A classical inequality

due to Shannon [Sha48] states that

H(π) ≤ Opt(π) < H(π) + 1.

We say that a set of questions Q has redundancy r if for every distribution π there exists a
decision tree using Q whose cost is at most H(π) + r. We say that it has prolixity r if for every
distribution π there exists a decision tree using Q whose cost is at most Opt(π) + r.

We will be particularly interested in the following sets of questions:

• Equality queries: questions of the form “x = xi?” for i ∈ {1, . . . , n}.

• Comparison queries: questions of the form “x ≺ xi?” for i ∈ {2, . . . , n}.

• Interval queries: questions of the form “xi � x � xj?” for 1 ≤ i ≤ j ≤ n.

Section organization. Our results on comparison and equality queries are described in Subsec-
tion 2.1, which covers Sections 5,6,9. Our results on sets of questions that match the performance
of Huffman codes exactly are described in Subsection 2.2, which covers Section 7. Our results on
sets of question that achieve small prolixity are described in Subsection 2.3, which covers Section 8.
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2.1 Comparison and equality queries

2.1.1 Achieving redundancy 1

Huffman codes achieve redundancy 1. Are there small sets of questions which also achieve re-
dundancy 1? A natural candidate is the set of comparison queries, which gives rise to a class of
decision trees known as alphabetic trees (for the difference between these and binary search trees,
see Section 3.1.2). However, for some distributions comparison queries cannot achieve redundancy
smaller than 2: the distribution (ε, 1− 2ε, ε) requires two comparison queries to identify the central
element, but has entropy O(ε log(1/ε)), which goes to 0 with ε.

The only way to achieve redundancy 1 on this kind of distribution is to also allow equality
queries. The resulting class of decision trees, first suggested by Spuler [Spu94a, Spu94b], is known
as two-way comparison search trees or binary comparison search trees. To the best of our knowledge,
the redundancy of two-way comparison search trees has not been considered before. We show:

Theorem (restatement of Theorem 5.1). Comparison and equality queries achieve redundancy 1.

Our proof is constructive: given a distribution π, we show how to construct efficiently a decision
tree using comparison and equality queries whose cost is at most H(π) + 1. Our construction is
based on the weight balancing algorithm of Rissanen [Ris73], which uses only comparison queries:

Weight balancing algorithm
Given a probability distribution π, ask a comparison query minimizing |Pr[Yes]− Pr[No]|,

and recurse on the distribution of π conditioned on the answer. Stop when the secret element
is revealed.

Horibe [Hor77] showed that this algorithm achieves redundancy 2. Given the additional power
of asking equality queries, it is natural to ask such queries when some element has large probability.
Indeed, this is exactly what our algorithm does:

Weight balancing algorithm with equality queries
If the most probable element has probability at least 0.3, compare it to the secret element,

and recurse if the answer is negative.
Otherwise, ask a comparison query minimizing |Pr[Yes]−Pr[No]|, and recurse on the answer.

The constant 0.3 here is just one of the possible values for which this algorithm achieves redun-
dancy 1.

Our analysis of the redundancy in the proof of Theorem 5.1 depends on πmax, the probability
of the most probable element in the distribution π. It proceeds by first showing that if πmax ≥ 0.3
then the redundancy is at most 1, and then recursively reducing the case in which πmax < 0.3 to the
case πmax ≥ 0.3 via a careful analysis of how πmax (that now refers to the most probable element in
the recursively defined conditional distribution) varies according to the answers that the algorithm
receives.

2.1.2 Higher redundancy

The weight balancing algorithms assume that the domain of π is linearly ordered. Another natural
setting is when the domain is Y r, where Y is a linearly ordered set of size n1/r. In other words,
each element of X is a vector of length r, and the secret element is a vector ~x = (x(1), . . . , x(r)).

8



A corollary to Theorem 5.1 is that in this setting, the set of all queries of the form “Is x(i) at
most y?” and “Does x(i) equal y?”, for 1 ≤ i ≤ r and y ∈ Y , achieves redundancy at most r.

Indeed, suppose that x is drawn according to a probability distribution π with components
π(1), . . . , π(r). If we determine the components x(1), . . . , x(r) consecutively using the weight balanc-
ing algorithm with equality queries, we obtain a decision tree whose cost is at most

[H(π(1)) + 1] + [H(π(2)|π(1)) + 1] + · · ·+ [H(π(r)|π(1), . . . , π(r−1)) + 1] = H(π) + r.

Since the number of questions is roughly rn1/r, this proves the first part of the following theorem:

Theorem (restatement of Theorem 6.1). There is a set of O(rn1/r) questions that achieve redun-
dancy r.

Moreover, Ω(rn1/r) questions are required to achieve redundancy r.

The other direction is proved by considering distributions almost concentrated on a single
element: a set of questions Q can have redundancy r only if it identifies any single element using
at most r questions, and this shows that 2r

(|Q|
≤r
)
≥ n, implying the lower bound in the theorem.

Section 6.3 slightly improves this lower bound via a connection with witness codes, which are
sets of vectors in {0, 1}m in which each vector is identifiable using at most r coordinates.

2.1.3 Spread-out distributions

Theorem 5.1 shows that comparison and equality queries achieve redundancy 1. Although this is
the best redundancy achievable, the only distributions which require this redundancy are those
which are almost entirely concentrated on a single element. Can we obtain a better bound if this
is not the case? More concretely, what redundancy is achievable when the distribution has high
min-entropy, that is, when all elements have small probability?

To make this question precise, let rp be the maximal redundancy of comparison and equality
queries on distributions in which the maximal probability is at most p (on an arbitrarily large
domain), and let r0 = limp→0 rp. We show:

Theorem (restatement of Theorem 9.1). The quantity r0 is bounded by

0.5011 < r0 < 0.586.

The lower bound is attained by distributions of roughly the form ε, 1/n, ε, 1/n, . . . , ε, 1/n, ε for
n ≈ 3

log2 e
·2k, where k is a large integer. The upper bound is proved by modifying another algorithm

achieving redundancy 2 using only comparison queries: the Gilbert–Moore algorithm [GM59], also
known as Shannon–Fano–Elias encoding, which forms the basis of arithmetic encoding. Before
describing our upper bound, we first explain this algorithm and why it achieves redundancy 2.

Given a distribution π on Xn in which xi has probability πi, the Gilbert–Moore algorithm
proceeds as follows:

Gilbert–Moore algorithm
Partition [0, 1] into segments T1, . . . , Tn of lengths π1, . . . , πn, where Ti+1 is placed to the

right of Ti. Put a point pi at the middle of Ti for all i. Intuitively speaking, we now perform
binary search on [0, 1] to reveal the point pi corresponding to the secret element.

Formally, we maintain an interval I = [a, b], initialized at [0, 1]. At every iteration we ask
whether the secret element resides to the left or to the right of a+b

2 , and update I accordingly,
decreasing its length by a half (exactly). We stop once I contains only one point.

9



A simple argument shows that xi is isolated after at most dlog2
2
πi
e < log2

1
πi

+ 2 steps, and

so the Gilbert–Moore algorithm has redundancy 2. Indeed, after dlog2
2
πi
e steps, the binary search

focuses on an interval containing pi whose length is at most πi/2 and is thus contained entirely
inside Ti.

The choice of πi as the length of Ti isn’t optimal. A better choice is 2−`i , where `i is the length of
the codeword for xi in a Huffman code for π. The same argument as before shows that xi is isolated
after at most `i + 1 steps, and so the modified algorithm has cost at most Opt(π) + 1 < H(π) + 2.
This algorithm appears in Nakatsu [Nak91].

How can we use equality queries to improve on this algorithm? As in the modified weight
balancing algorithm, the idea is to use equality queries to handle elements whose weight is large.
However, the exact mechanism is rather different:

Random placement algorithm with interval queries
Partition [0, 1] into segments T1, . . . , Tn of length 2−`1 , . . . , 2−`n , where `1, . . . , `n are defined

as explained above, and put a point pi at the middle of Ti. Then rotate the entire setup by a
random amount.

Perform “modified binary search” on [0, 1]:

• If the current interval J contains a segment Ti of size |J |/2 in its entirety, ask whether
x = xi, and if the answer is negative, remove Ti from J .

• Otherwise, perform one step of binary search on J , as described in the Gilbert–Moore
algorithm.

In both cases, the size of J exactly halves at each iteration of the modified binary search.
The same argument as before shows that xi is always isolated after at most `i + 1 steps. After
`i − 1 steps, J is an interval of length 2 · 2−`i = 2|Ti| containing pi, and it contains all of Ti with
probability 1/2; in this case, xi is isolated after only `i steps. The resulting algorithm has cost at
most Opt(π) + 1/2 (Theorem 9.3). However, since we rotated the entire setup, interval queries are
needed to implement the binary search.

In order to obtain an algorithm which uses comparison queries rather than interval queries
(in addition to equality queries), we need to constrain the rotation somehow. Reflecting on the
argument above, we see that if all segments have length at most 2−` then it suffices to randomly
“slide” the setup across an interval of free space of length 2 · 2−`. This leads to the following
algorithm, in which ` = min(`1, . . . , `n):

Random placement algorithm with comparison queries
Partition [0, 1] into segments T1, . . . , Tn of length 2−`1 , . . . , 2−`n . Choose a random set of

intervals of total length 4 · 2−`, and halve their lengths while keeping all intervals adjacent to
each other, thus forming a slack of length 2 · 2−` at the right end of [0, 1]. Put a point pi at the
middle of Ii, and shift the entire setup to the right by a random amount chosen from [0, 2 ·2−`].

Perform modified binary search as in the preceding algorithm.

Essentially the same analysis as before shows that this algorithm, which now uses only compar-
ison and equality queries, has cost at most Opt(π) + 1/2 + 4 · 2−` (Lemma 9.3.1).

10



As the maximal probability πmax tends to zero, the length ` of the minimal codeword tends
to infinity, and thus the cost is bounded by Opt(π) + 1/2 in the limit. A classical result of Gal-
lager [Gal78] states that Opt(π) ≤ H(π) + 0.0861 + πmax, and so we obtain the bound r0 < 0.586.

2.2 Optimal sets of questions of minimal size

We have shown above that comparison and equality queries suffice to obtain redundancy 1, matching
the performance of Huffman’s algorithm in this regard. What if we want to match the performance
of Huffman’s algorithm exactly?

Definition. A set of questions Q over Xn is optimal if for every distribution π there exists a
decision tree using Q whose cost is Opt(π). Stated succinctly, a set of questions is optimal if it has
zero prolixity.

It is not clear at the outset what condition can guarantee that a set of questions is optimal,
since there are infinitely many distributions to handle. Fortunately, it turns out that there exists
a “0-net” for this:

Definition. A distribution is dyadic if every non-zero element has probability 2−` for some integer `.

Observation 1 (restatement of Lemma 7.1.1). A set of questions is optimal for all distributions
over Xn if and only if it is optimal for all dyadic distributions over Xn.

Roughly speaking, this observation follows from the fact that binary decision trees correspond
to dyadic distributions, a property that is exploited in Section 2.1.3 as well.

A further simplification is:

Observation 2 (restatement of Lemma 7.1.3). A set of questions is optimal if and only if it is
a dyadic hitter : for every non-constant dyadic distribution π it contains a question Q splitting π,
that is, π(Q) = π(Q) = 1/2.

This observation follows from the following characterization of optimal decision trees for dyadic
distributions, whose proof is a straightforward application of the chain rule for entropy:

Lemma. Let π be a dyadic distribution. A decision tree T for π has optimal cost Opt(π) if and
only if the following holds for every internal node v with children v1, v2:

π(v1) = π(v2) =
π(v)

2
,

where π(v) is the probability that the decision tree reaches the node v.

Our task is thus reduced to determining the size of a dyadic hitter. To understand what we are
up against, consider distributions that have 2βn− 1 “heavy” elements of probability 1

2βn each, and

(1− 2β)n+ 1 “light” elements of total probability 1
2βn , where β is a positive number such that βn

is a power of 2.
A short argument shows that the only sets splitting such a distribution are those containing

exactly βn heavy elements, and their complements. By considering all possible partitions of Xn

into heavy and light elements, we see that every dyadic hitter must contain at least this many
questions:

#partitions to heavy and light elements

#partitions split by a question of size βn

=
#questions of size βn

#questions of size βn splitting each partition
=

(
n
βn

)(
2βn−1
βn

) ≈ 2(h(β)−2β)n.

11



(To see the first equality, cross-multiply to get two different expressions for the number of pairs
consisting of a partition to heavy and light elements and a question of size βn splitting it.)

Choosing β = 1/5 (which maximizes h(β) − 2β), we find out that roughly 1.25n questions are
necessary just to handle distributions of this form. There is a fine print: the value β = 1/5 is only
achievable when n/5 is a power of 2, and so the bound obtained for other values of n is lower.

Somewhat surprisingly, there is a matching upper bound: there is a set of roughly 1.25n ques-
tions which forms a dyadic hitter! In order to show this, we first show that for every non-constant
dyadic distribution π there is some question size 1 ≤ c ≤ n such that

#questions of size c that split π

#questions of size c
≥ 1.25−n−o(n).

Therefore, by choosing 1.25n+o(n) random questions of size c, it is highly probable that one of them
splits π.

This suggests considering a random set of questions Q formed by taking 1.25n+o(n) questions at
random of size c for each 1 ≤ c ≤ n. Since there are only exponentially many dyadic distributions,
a union bound shows that with high probability, Q splits all dyadic distributions.

How do we identify a value of c and a large set of questions of size c splitting an arbitrary dyadic
distribution π? Roughly speaking, we bucket the elements of µ according to their probabilities.
Suppose that there are m non-empty buckets, of sizes c1, . . . , cm, respectively. Assume for simplicity
that all ci are even; in the actual proof, we essentially reduce to this case by bundling together
elements of lower probability. A question containing exactly half the elements in each bucket thus
splits µ. The number of such questions is

m∏
i=1

(
ci
ci/2

)
≈

m∏
i=1

2ci
√
ci
≈ 2c1+···+cm

nm/2
.

By “throwing out” all elements of small probability (corresponding to the light elements considered
above), we can guarantee thatm ≤ log n, ensuring that the factor n−m/2 is subexponential; however,
this means that not all elements are going to belong to a bucket. If c1+· · ·+cm = 2βn after throwing
out all light elements then we have constructed roughly 22βn questions of size c = βn. Since(

n
c

)
22βn

≈ 2(h(β)−2β)n ≤ 1.25n,

we have fulfilled our promise.
To summarize:

Theorem (restatement of Theorem 7.2 and Theorem 7.3). For every n there is an optimal set of
questions of size 1.25n+o(n).

For infinitely many n, every optimal set of questions contains at least 1.25n−o(n) questions.

While our upper bound works for every n, our lower bound only works for infinitely many n.
For arbitrary n our best lower bound is only 1.232n−o(n). We suspect that the true answer depends
on the fractional part of log2 n; see Section 10.2 for an elaboration.

Our upper bound is non-constructive: it does not give an explicit optimal set of questions of
size 1.25n+o(n), but only proves that one exists. It is an interesting open question to obtain an
explicit such set of this size. However, we are able to construct an explicit optimal set of questions
of size O(

√
2
n
):
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Theorem (restatement of Theorem 7.5). For every n there is an explicit optimal set of questions
Q of size O(2n/2).

Furthermore, given a distribution on Xn, we can construct an optimal decision tree using Q in
time O(n2).

The explicit set of questions is easy to describe: it consists of all subsets and all supersets
of S = {x1, . . . , xbn/2c}. Why does this work? Given the observations above, it suffices to show
that this collection contains a question splitting any non-constant dyadic distribution π on Xn. If
π(S) = 1/2 then this is clear. If π(S) > 1/2, suppose for simplicity that π1 ≥ · · · ≥ πbn/2c. A simple
parity argument shows that π({x1, . . . , xm}) = 1/2 for some m < bn/2c. The case π(S) < 1/2 is
similar.

This set of questions, known as a cone, appears in the work of Lonc and Rival [LR87] on fibres,
which are hitting sets for maximal antichains. The lower bound 1.25n−o(n) on optimal sets of
questions appears, in the context of fibres, in Duffus, Sands and Winkler [DSW90]. The connection
between these results and ours is that every fibre is an optimal set of questions. We explain this
connection in Section 7.2.

2.3 Sets of questions with low prolixity

The hard distributions described in the preceding section show that any strictly optimal set of
questions must have exponential size. The following theorem shows that this exponential barrier
can be overcome by allowing a small prolixity:

Theorem (restatement of Theorem 8.1). For every n and r ∈ (0, 1) there is a set Qr of roughly
(r · n)16/r questions which has prolixity r.

Furthermore, at least roughly (r · n)0.25/r questions are required to achieve prolixity r.

As in the case of prolixity 0, the lower bound relies on a family of hard distributions: Assume
that r is of the form 2−k for some integer k > 0. A hard distribution consists of 2k − 1 “heavy
elements” of total probability 1− δ, and n− (2k − 1) “light elements” of total probability δ, where
δ = r2/2 (or any smaller positive number). A case analysis shows that every 2−k-optimal decision
tree (one whose cost exceeds the optimal Huffman cost by at most 2−k) for this distribution must
partition the heavy elements evenly (into parts of size 2k−1 and 2k−1−1), and put all light elements
in the same part. Ignoring the difference between 2k−1 and 2k−1−1, this shows that any 2−k-optimal
set of questions must contain at least this many questions:(

n
2k−1

)(n−(2k−1−1)
2k−1

) ≥ ( n
2k

)2k−1−1
.

In terms of r = 2−k, this lower bound is (r · n)0.5/r−1, from which we obtain the form above
(approximating an arbitrary r by a negative power of 2).

The upper bound is more involved. The set of questions consists of all interval queries with up
to 2k elements added or removed (in total, about n2

(
n
≤2k

)
22k = n2 · O(n/2k)2k questions); we will

aim at a redundancy of roughly 4 ·2−k. The algorithm has some resemblance to the Gilbert–Moore
line of algorithms described in Section 2.1.3. As in that section, given a distribution π, our starting
point is the distribution 2−`1 , . . . , 2−`n formed from a Huffman code for π, where `i is the length
of the codeword corresponding to xi.

In contrast to Gilbert–Moore-style algorithms, though, instead of maintaining an interval we
will maintain a dyadic subestimate for the probabilities of all elements “in play”. That is, for every
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element consistent with the answers so far we will assign a probability qi = 2−ti , ensuring that∑
i qi ≤ 1.
The algorithm is recursive, getting as input a dyadic subdistribution q1, . . . , qm, which is ini-

tially 2−`1 , . . . , 2−`n ; the recursion stops when m = 1. The algorithm classifies its input elements
according to the magnitude of qi as either heavy (at least 2−k), or light (otherwise), and proceeds
as follows:

Random window algorithm
Case 1: the total mass of heavy elements is at least 1/2. Find a set of heavy elements

whose probability is exactly 1/2, and ask whether the secret element lies in that set. Double
the probability of all conforming elements, and recurse with the set of conforming elements.

Case 2: the total mass of heavy elements and the total mass of light elements
are at most 1/2. Ask whether the secret element is heavy or light. Double the probability of
all conforming elements, and recurse with the set of conforming elements.

Case 3: The total mass σ of light elements is at least 1/2. Identify a light element
xi with a segment Ti of length qi, and place all such segments consecutively on a circle of
circumference σ. Choose a random arc W of length 1/2 (the window). Ask whether the secret
element is a light element whose segment’s midpoint lies in the window. Double the probability
of all conforming elements not intersecting the boundaries of the window, and recurse with the
set of conforming elements.

Achieving an optimal cost requires that at each step the probability of each conforming element
is doubled. However, by Theorem 7.3 this would require exponentially many potential queries
(rather than just our modified interval queries), and so we have to compromise by not doubling
some of the probabilities of conforming elements in some steps (in Case 3, the probabilities of the
two boundary elements are not doubled). Nevertheless, the above randomized algorithm ensures
that the expected number of times each element is being “compromised” is O(2−k).

How many questions does it take to find an element xi whose starting probability is 2−`i? At
any iteration in which qi ≥ 2−k, the probability qi always doubles. When qi < 2−k, Case 3 could
happen, but even then the probability that qi doesn’t double is only 2qi/σ ≤ 4qi. A straightforward
calculation shows that qi doubles after at most 1

1−4qi
questions in expectation when qi < 2−k, and

so the expected number of questions needed to discover xi is at most

k +

`i∑
j=k+1

1

1− 4 · 2−j
< `i + 4 · 2−k +

2

3
(4 · 2−k)2.

Roughly speaking, the resulting prolixity is r ≈ 4 · 2−k, and the number of questions is about
n2 ·O(n/2k)2k ≈ n2 ·O(r · n)4/r.

3 Related work

Our work can be seen as answering two different, but related, questions:

1. How good are certain particular sets of questions (particularly comparison and equality
queries), compared to the information-theoretical benchmark and the combinatorial bench-
mark?
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2. What is the smallest set of questions which matches the performance of Huffman codes, in
terms of the information-theoretical benchmark or the combinatorial benchmark? What if
we allow a small slack?

To the best of our knowledge, existing literature only deals with the first question. Apart
from unrestricted questions, the only set of questions which has been extensively studied from the
perspective of our two benchmarks is comparison queries.

We assume familiarity with the basic definitions appearing in Section 2 or in Section 4.

Section organization. We describe several sets of questions which have been studied in the
literature in Section 3.1. Other relevant topics are discussed in Section 3.2.

3.1 Types of decision trees

We can identify sets of questions with decision trees using them (that is, using only questions
from the set). For example, binary search trees (more accurately, alphabetic trees; see below) are
decision trees using comparison queries.

The cost function that we study and attempt to minimize in this paper is distributional or
average case: it is the average number of questions asked on an element chosen from a given
distribution.

Another cost function studied in the literature, especially in problems whose motivation is
algorithmic, is worst case: the maximum number of questions asked on any element. The most
familiar examples are binary search and sorting.

We go on to list several types of decision trees appearing in the literature, briefly commenting
on each of them.

3.1.1 Unrestricted decision trees

The simplest type of decision trees is unrestricted decision trees. Huffman [Huf52] showed how to
construct optimal decision trees, and van Leeuwen [vL87] showed how to implement his algorithm
in time O(n log n), or O(n) if the probabilities are sorted. Huffman also considered non-binary
decision trees, generalizing his algorithm accordingly.

Gallager [Gal78] showed that decision trees constructed by Huffman’s algorithm are charac-
terized by the sibling property : the nodes of the tree can be arranged in non-decreasing order of
probability of being reached, in such a way that any two adjacent nodes are siblings. This shows,
among else, that in some cases there are optimal decision trees which cannot be generated by Huff-
man’s algorithm. In the parlance of codes, a distinction should be made between Huffman codes
and the more general minimum redundancy codes.

Gallager also discussed the redundancy of Huffman codes in terms of the maximum probability
of an element, showing that if π is a distribution with maximum probability πmax then Opt(π) ≤
H(π) + πmax + 1 − log2 e + log2 log2 e, where 1 − log2 e + log2 log2 e ≈ 0.086. He also showed that
the constant 1− log2 e+ log2 log2 e is optimal.

The question of the redundancy of Huffman codes in terms of πmax has attracted some at-
tention: a line of work, including [Joh80, CGT86], culminated in the work of Montgomery and
Abrahams [MA87], who found the optimal lower bound on H(π) − Opt(π) in terms of πmax, and
in the work of Manstetten [Man92], who found the optimal upper bound.

The redundancy of Huffman codes has also been considered in terms of other parameters, such
as the minimum probability, both minimum and maximum probabilities, or some probability. See
Mohajer et al. [MPK06] for a representative example with many references.
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Gallager also gave an algorithm for dynamically updating Huffman trees, contemporaneously
with Faller [Fal73] and Knuth [Knu85]. Their work was improved by Vitter [Vit87]. Vitter’s data
structure is given an online access to a stream of symbols (σn)n∈N, and it maintains a decision tree
Tn which at time n is a Huffman tree for the empirical distribution µn of σ1, . . . , σn. The update
time is O(Tn(σn)), where Tn(σn) is the depth (or codeword length) of σn in Tn, and the output
codewords satisfy

1

n

n∑
i=1

Ti(σi) ≤ Opt(µn) + 1.

Many variants of Huffman coding have been considered: length-restricted codes [Gil71, EK04],
other cost functionals [Bae07], unequal letter costs [Kar61], and many more. See the excellent
survey of Abrahams [Abr97]. We expand on some of these topics in Section 10.5.

3.1.2 Binary search trees

A binary search tree (BST) stores an ordered list of elements x1 ≺ · · · ≺ xn over a linearly ordered
domain, and supports a search operation, which given an element x can result in any of the following
outcomes:

• x = xi for some i.

• x ≺ x1.

• xi ≺ x ≺ xi+1 for some i < n.

• x � xn.

Each node of the tree contains an element xi, and it tests whether x ≺ xi, x = xi, or x � xi. Given
probabilities p1, . . . , pn for successful searches (x = xi) and q0, . . . , qn for unsuccessful searches
(xi ≺ x ≺ xi+1), an optimal BST is one that minimizes the number of questions it takes to identify
the class of a secret element x.

Binary search trees do not fit the model considered in the paper as stated. However, if the
probability of a successful search is zero (that is, p1 = · · · = pn = 0), then the ternary queries
become binary queries, and the resulting decision tree is a decision tree using comparison queries
on the domain composed of the n+ 1 gaps between and around the elements x1, . . . , xn:

y0 = (−∞, x1), y1 = (x1, x2), . . . , yn−1 = (xn−1, xn), yn = (xn,∞).

The resulting model is also known as alphabetical trees or lexicographical trees, and has been
suggested by Gilbert and Moore [GM59] in the context of variable-length binary encodings. Al-
phabetical trees (of words) are decision trees in which the leaves are ordered alphabetically. In our
terminology, they are decision trees using comparison queries.

Kraft’s inequality states that a decision tree whose leaves have depths `1, . . . , `n exists if and
only if

∑n
i=1 2−`i ≤ 1. Nakatsu [Nak91] gave an analog of Kraft’s inequality for alphabetical trees.

Knuth [Knu71] gave an O(n2) dynamic programming algorithm for finding the optimal BST. Hu
and Tucker [HT71] and Garsia and Wachs [GW77] gave O(n log n) algorithms for finding optimal
alphabetical trees. These algorithms are more complicated than Huffman’s.

Several heuristics for constructing good alphabetical trees are described in the literature. Gilbert
and Moore [GM59] gave one heuristic (described in Section 9) which produces a tree with cost at
most H(π) + 2. Nakatsu [Nak91] gave the stronger bound Opt(π) + 1 for a very similar heuristic.
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Another heuristic, weight balancing (described in Section 5), was suggested by Rissanen [Ris73]
(and even earlier by Walker and Gottlieb [WG72]), who showed that it produces a tree with cost at
most H(π) + 3. Horibe [Hor77] improved the analysis, showing that the cost is at most H(π) + 2.

The question of the redundancy of alphabetical trees has been considered in the literature. While
the bound H(π)+2 cannot be improved upon in general, a better bound can be obtained given some
knowledge of the distribution π. Such improved bounds have been obtained by Nakatsu [Nak91],
Sheinwald [She92], Yeung [Yeu91], De Prisco and De Santis [DPDS93] (who consider, among else,
dyadic distributions), Bose and Doüıeb [BD09] (for general BSTs), and others. The paper of
De Prisco and De Santis contains a mistake, which we correct in Appendix A.

Kleitman and Saks [KS81] considered the following problem: given a probability distribution
π, what order for π results in the largest redundancy of the optimal alphabetic tree? Assuming
π1 ≥ · · · ≥ πn, they showed that the worse order is xn, x1, xn−1, x2, . . ., and gave a formula for the
cost of the optimal alphabetical tree for that order.

Computing the optimal length-restricted alphabetical tree has been studied extensively [HT72,
Gar74, Lar87, Sch98, Bae07]. Dynamic alphabetical trees have been considered by Grinberg, Ra-
jagopalan, Venkatesan and Wei [GRVW95]. See Nagaraj [Nag97] for an extensive survey on these
and other topics.

3.1.3 Binary search trees with comparison queries

As we have seen above, binary search trees involve a three-way comparison: “x < c, x = c, or
x > c?”. While modern programming languages usually support three-way comparisons, in the
past a three-way comparison was implemented as two consecutive two-way comparisons: “x = c?”
followed by “x < c?”. This prompted Sheil [She78] to suggest replacing the first comparison above
by “x = d?”, where d is the current most probable element. The resulting data structure is known
as a binary split tree.

Huang and Wong [HW84b] and Perl [Per84] (see also [HHHW86]) gave O(n5) dynamic pro-
gramming algorithms that find the optimal binary split tree given a distribution on the elements,
and this was improved to O(n4) by Chrobak et al. [CGMY15].

Huang and Wong [HW84a] suggested relaxing the requirement that d (the element participating
in the query “x = d?”) be the current most probable element. The resulting data structure is known
as a generalized binary split tree. They suggested a dynamic programming algorithm for finding the
optimal generalized binary split tree, but Chrobak et al. [CGMY15] showed that their algorithm is
invalid; no other efficient algorithm is known.

Spuler [Spu94a, Spu94b] suggested uncoupling the two comparisons. His two-way comparison
tree is a decision tree which uses comparison and equality queries. Anderson et al. [AKKL02] called
this data structure a binary comparison search tree (BCST).

The notion of successful versus unsuccessful searches, which differentiates binary search trees
and alphabetical trees (see above), also appears in the context of BCSTs. As an example, consider
a domain with a single element c. If only successful searches are allowed, then the trivial BCST
suffices. Otherwise, two nodes are needed to determine whether x < c, x = c, or x > c. The model
considered in this paper only allows successful searches.

Spuler gave an O(n5) dynamic programming algorithm for finding the optimal BCST given a
distribution on the successful searches, and Anderson et al. [AKKL02] improved this to O(n4).
They also list several interesting properties of optimal BCSTs.

Chrobak et al. [CGMY15] generalized the algorithm of Anderson et al. to the case in which
unsuccessful searches are allowed, and gave an O(n log n) algorithm based on weight-balancing
which has redundnacy 3.
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3.1.4 Searching in trees and posets

Ben-Asher, Farchi and Newman [BAFN99] consider the natural generalization of alphabetical trees
to posets. Given a poset X, the the task is to find a secret element x using queries of the form
“x ≺ c?”. When X is a linear order, this is just an alphabetical tree.

Ben-Asher et al. concentrate on the case in which the Hasse diagram of X is a rooted tree, the
root being the maximum element. In this case the queries can also be considered as edge queries:
given an edge e = (s, t), “Is x closer to s or to t?”. If t is the node closer to the root, then this
query is equivalent to the comparison query “x ≺ t?”.

Ben-Asher et al. give several applications of this model, to data transfer, software testing, and
information retrieval. They are interested in minimizing the depth of the decision tree. Their main
result is an Õn4) algorithm which finds a decision tree of minimum depth, improved to O(n3) by
Onak and Parys [OP06]. Lam and Yue [LY01] and Mozes, Onak and Weimann [MOW08] give a
linear time algorithm for the same problem.

Linial and Saks [LS85b, LS85a] consider a different model for searching in posets: searching with
partial information. In their model (adapted to our setting3) we are given a linearly ordered set X
whose order is unknown, but is consistent with a known partial order on X. Given an element x,
the task is to identify x using comparison queries. They are interested in minimizing the maximum
number of queries.

As an example, suppose that A is an n×n matrix in which the rows and columns are increasing.
How many queries are needed, in the worst case, to locate an element? They show that the answer
is 2n− 1, and relate this to the complexity of the merging procedure in merge sort.

Let i be the number of ideals (downward-closed sets) in the given partial order. Linial and Saks
mention that log2 i questions are needed in the worst case, and show that O(log2 i) is achievable.

3.1.5 Sorting

Suppose we are given an array of length n having distinct elements. Sorting the array is the same
as finding the relative order of the elements, which is a permutation π ∈ Sn. We can thus construe
comparison-based sorting as the problem of finding a permutation π ∈ Sn using queries of the form
“π(i) < π(j)?”. We call such queries relative order queries. We are usually interested in the worst
case complexity of sorting algorithms, that is, the maximum number of relative order queries made
by the algorithm.

Every comparison-based sorting algorithm must make at least n log2 n−O(n) comparisons in the
worst case. Merge sort comes very close, making n log2 n+O(n) comparisons. In our terminology,
the minimum depth of a decision tree for Sn using relative order queries is n log2 n±Θ(n).

Fredman [Fre76] considered the problem of sorting with partial information. In this problem,
we are given a set of permutation Γ ⊆ Sn, and the task is to identify a secret permutation π ∈ Γ
using relative order queries. Using the Gilbert–Moore algorithm, Fredman showed that this can be
accomplished using at most log2 |Γ|+ 2n queries in the worst case.

Fredman applied his method to Berlekamp’s X +Y problem, which asks for sorting an array of
the form {xi+yj : 1 ≤ i, j ≤ n}. Harper et al. [HPSS75] had improved on performance of merge sort
(which uses 2n2 log2 n+O(n2) comparisons) by giving an algorithm which uses only n2 log2 n+O(n2)
comparisons. Fredman significantly improved on this by showing that O(n2) comparisons suffice,
albeit the corresponding algorithm cannot be implemented efficiently. Lambert [Lam92] gave an
explicit algorithm using O(n2) comparisons, which also cannot be implemented efficiently.

3In their setting X ⊆ R, and the task is to decide, given x ∈ R, whether x ∈ X.
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When Γ consists of all completions of some partial order, Kahn and Saks [KS84] gave the upper
bound O(log |Γ|) using the technique of poset balancing, but the corresponding algorithm cannot
be implemented efficiently. Kahn and Kim [KK95] gave an algorithm with the same performance
which can be implemented efficiently. Their algorithm relies on computing volumes of polytopes.

Moran and Yehudayoff [MY16] extended the results of Fredman to the distributional case. They
showed that given a probability distribution µ on Sn, a secret permutation π ∼ µ can be found
using at most H(µ) + 2n relative order queries on average. In our terminology, they showed that
the redundancy of relative order queries is at most 2n. They actually proved a stronger bound:
the number of queries required to identify π is at most log2

1
µ(π) + 2n. This stronger bound implies

Fredman’s result.
Given a set of permutations Γ ⊆ Sn, endow Sn with the uniform permutation µΓ over Γ. A

decision tree for Γ of depth f(log2 Γ) is the same as a decision tree for µΓ of depth f(H(µΓ)). In
this way we can interpret all non-distributional results stated above as distributional results for
uniform distributions.

3.1.6 Binary decision trees

Binary decision trees, or binary decision diagrams (BDDs), are used in statistics, machine learning,
pattern recognition, data mining, and complexity theory. The setting is a set X ⊆ {0, 1}n and a
function f : X → Y (for an arbitrary set Y ). The task is to construct a decision tree which on
input x ∈ X computes f(x) using only queries of the form “xi = 1?” (binary queries).

In many settings, Y = {0, 1}, and such binary decision trees do not really fit our model. In
other settings, Y = X and f is the identity function. In this case these are decision trees in our
sense which use binary queries.

We will not attempt to summarize the large literature on binary decision trees. We only mention
the result of Hyafil and Rivest [HR76], who showed that it is NP-complete to compute the optimum
cost of a decision tree using binary queries under the uniform distribution.

3.1.7 Algebraic decision trees

Algebraic decision trees are commonplace in computational geometry. Given a set of real numbers
x1, . . . , xn ∈ R and a function f on Rn, a (two-way) linear decision tree (LDT) is a decision tree
for computing f using queries of the form “

∑
i aixi + a < 0?” (linear queries); three-way variants

also exist. Algebraic decision trees (ADTs) of order d are more general: they allow queries of the
form “P (x1, . . . , xn) < 0?” (d’th order queries), where P is an arbitrary polynomial of degree at
most d. Interest has mainly focused on the worst-case cost of algebraic decision trees.

While algebraic decision trees, as just described, do not fit our model, the following variant
does: given a finite set S ⊆ Rn, the task is to find a secret element x ∈ S using linear or d’th order
queries.

Out of the voluminous literature on algebraic decision trees, we only mention the important
paper of Ben-Or [BO83], which gives a lower bound of Ω(n log n) on the depth of algebraic decision
trees of fixed order which solve the element distinctness problem, using the Milnor–Thom theorem
in real algebraic geometry.

A restricted type of linear decision trees occurs in the context of the 3SUM problem. In this
problem, which is related to the X + Y problem discussed above in the context of sorting, we are
given three arrays X,Y, Z of size n, and our goal is to decide whether there exist x ∈ X, y ∈ Y ,
z ∈ Z such that x+ y+ z = 0 (there are many other equivalent formulations). In the more general
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k-sum problem, we are given k arrays X1, . . . , Xk of size n, and our goal is to decide whether there
exist elements xi ∈ Xi such that

∑k
i=1 xi = 0.

A classical algorithm solves 3SUM in time O(n2) by first sorting X and Y , and then, for each
z ∈ Z, checking whether X and −z − Y intersect using the merging procedure of merge sort.
The classical algorithm can be construed as a three-way decision tree using queries of the form
“ai < aj?” and “ai + aj + ak < 0, ai + aj + ak = 0, or ai + aj + ak > 0?”, where a1, . . . , a3n are the
elements of X,Y, Z.

More generally, a (two-way) s-linear decision tree is a decision tree using questions of the form
“
∑

i ciai < 0?”, where at most s of the ci are non-zero; a three-way version is defined analogously.
The classical algorithm uses a three-way 3-linear decision tree.

Erickson [Eri99] proved a lower bound of Ω(n(k+1)/2) on the depth of a k-linear decision tree
solving k-SUM when k is odd, and a lower bound of Ω(nk/2) when k is even. Weaker lower bounds
for s-linear decision trees when s > k were proved by Ailon and Chazelle [AC05].

The 3SUM conjecture (in one formulation) states that 3SUM cannot be solved in time Ω(n2−ε)
for any ε > 0 (in the RAM machine model). Indeed, the stronger lower bound of Ω(n2) had been
conjectured. Similar lower bounds (matching the exponents stated above) exist for k-SUM.

Recently, in a breakthrough result, Grønlund and Pettie [GP14] gave a o(n2) algorithm for
3SUM (see Freund [Fre15] for a simplification). Their algorithm is based on a 4-linear decision tree
for 3SUM whose depth is Õ(n3/2). More generally, for odd k they gave a (2k − 2)-linear decision
tree for k-SUM whose depth is Õ(nk/2).

Meyer auf der Heide [MadH84] gave a linear decision tree for k-SUM whose depth is Õ(n4),
for any constant k. Recently, Cardinal et al. [CIO16] improved this to Õ(n3) using a technique of
Meiser [Mei93], and Ezra and Sharir [ES16] improved the bound to Õ(n2). These authors solve a
variant of the k-SUM problem in which we are given only one list x1, . . . , xn, and the task is to
decide whether k of its elements sum to zero. Their methods also solve a generalization, k-linear
degeneracy testing (k-LDT), which asks whether there exist k indices i1 < · · · < ik such that
a0 + a1xi1 + · · ·+ akxik = 0, for some constants a0, . . . , ak.

3.2 Other topics

We close the literature review by mentioning a few other related topics.

Combinatorial search theory The “20 questions” game is the starting point of combinato-
rial search theory. Well-known examples include counterfeit coin problems [Smi47] (also known
as balance problems). See the survey by Katona [Kat73], the monograph of Ahlswede and We-
gener [AW87], and the recent volume [ACD13] in memory of Ahlswede. Combinatorial search
theory considers many different variants of the “20 questions” game, such as several unknown el-
ements, non-adaptive queries, non-binary queries, and a non-truthful Alice; we expand below on
the latter variant. Both average-case and worst-case complexity measures are of interest.

An important topic in combinatorial search theory is combinatorial group testing, in which we
want to identify a set of at most d defective items out of n items using as few tests as possible. The
original motivation was blood testing [Dor43]. See the monograph by Du and Hwang [DH99]. Com-
binatorial group testing is related to the area of combinatorial designs, see for example Colbourn
et al. [CDS93].

Playing 20 questions with a liar We have described a distributional version of the “20 ques-
tions” game in the introduction. The more usual version has Alice pick an object x from a known
finite set X of size n. Bob is then tasked with discovering the secret object x using as few Yes/No
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questions as possible (in the worst case). If Bob is allowed to ask arbitrary questions, his optimal
strategy reveals x using dlog2 ne questions at most.

In the usual version of the game, Alice is truthful. Rivest et al. [RMK+80] considered the case in
which Alice is allowed to lie k times. They gave a strategy which asks at most log2 n+k log2 log2 n+
O(k log k) questions in the worst case, all of them comparison queries. Moreover, they showed that
log2 n+ k log2 log2 n+O(k log k) questions are necessary, even if arbitrary questions are allowed.

Another line of work, which allows for a constant fraction r of lies, culminated in the work
of Spencer and Winkler [SW92], who determined the threshold r for which Bob can win in the
following three scenarios:

• Batch game: Alice knows Bob’s strategy, and is allowed to lie in an r-fraction of answers.

• Adaptive game: Alice doesn’t know Bob’s strategy (which can depend on Alice’s answers),
and is allowed to lie in an r-fraction of answers.

• Prefix-bounded game: Alice doesn’t know Bob’s strategy, and is allowed to lie at most rm
times in the first m questions, for every m.

Aslam and Dhagat [AD91] and Dhagat et al. [DGW92] analyze these scenarios under various
restricted sets of questions, including:

• Bit queries: “Is the ith bit of the binary representation of x equal to 1?”.

• Comparison queries, which they also call cut queries.

• Tree queries: “Is i2j ≤ x < (i+ 1)2j?”.

Asymmetric communication One practical motivation for the (distributional) “20 questions”
game is a communication scenario in which two entities, a client (Alice) and a server (Bob), com-
municate, and the uplink for the client to the server is much more costly than the downlink from
the server to the client.

Adler and Maggs [AM01] suggest a formalization of this setting. In their model, the client holds
a string x, the server has black-box access to a distribution π on the set of possible strings, and
the server’s goal is to discover x, assuming it is drawn from π. The server is allowed to access π
by determining, for any string t, the probability that a string drawn from π has t as a prefix. An
algorithm is measured using four different parameters:

• The expected number of bits sent by the server.

• The expected number of bits sent by the client.

• The expected number of black box accesses.

• The expected number of rounds of communication.

Adler and Maggs give various algorithms exploring the various trade-offs. Watkinson et al. [WAF01],
in follow-up work, give more algorithms, among them one based on comparison queries and the
Gilbert–Moore algorithm.
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Weight balancing The weight balancing algorithm of Walker and Gottlieb [WG72] and Ris-
sanen [Ris73] (mentioned above in the section on binary search trees) is an instance of the more
general splitting heuristic of Garey and Graham [GG74], also known as generalized binary search
(GBS).

Given an arbitrary set of queries, at any given moment the splitting heuristic chooses the query
which minimizes |Pr[Yes]−Pr[No]|. This is a special case of the well-known ID3 algorithm [Qui86],
used in statistics, machine learning and data mining; the ID3 algorithm also handles k-way queries.

Kosaraju et al. [KPB99] analyzed the performance of the splitting heuristic on general sets of
questions. They showed that a slight modification of the heuristic gives an O(log n) approximation
for the optimal cost using the given set of questions, where n = |X| is the size of the domain.

4 Preliminaries

Notation We use log n for the base 2 logarithm of n and [n] to denote the set {1, . . . , n}.
Throughout the document, we will consider probability distributions over the setXn = {x1, . . . , xn}

of size n. In some cases, we will think of this set as ordered: x1 ≺ · · · ≺ xn.
If π is a probability distribution over Xn, we will denote the probability of xi by πi, and the

probability of a set S ⊆ Xn by π(S).

Information theory The most basic definition in information theory is the entropy of a distri-
bution:

H(π) =

n∑
i=1

πi log
1

πi
.

While entropy is often measured in nats, our entropy is measured in bits. We will also use the
binary entropy function,

h(p) = −p log
1

p
− (1− p) log

1

1− p
.

This is just the entropy of a Bernoulli p random variable.
The conditional entropy of a random variable X given a random variable Y is

H(X|Y ) =
∑
y

Pr[Y = y]H(X|Y = y).

Here H(X|Y = y) is the entropy of the distribution of X conditioned on Y = y.
The conditional entropy satisfies the chain rule

H(X,Y ) = H(Y ) +H(X|Y ).

Here H(Y ) is the entropy of the distribution of Y , and H(X,Y ) is the entropy of the joint distri-
bution of (X,Y ).

When Y is a Bernoulli random variable, the chain rule takes the form

H(X|Y ) = h(Pr[Y = 1]) + Pr[Y = 0]H(X|Y = 0) + Pr[Y = 1]H(X|Y = 1).

We call this the Bernoulli chain rule.
We also use the Kullback–Leibler divergence:

D(π‖σ) =
n∑
i=1

πi log
πi
σi
.
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Decision trees In this paper we consider the task of revealing a secret element x from Xn by
using Yes/No questions. Such a strategy will be called a decision tree or an algorithm.

A decision tree is a binary tree in which the internal nodes are labeled by subsets of Xn (which
we call questions or queries), each internal node has two outgoing edges labeled Yes (belongs to the
question set) and No (doesn’t belong to the question set), and the leaves are labeled by elements
of Xn.

Decision trees can be thought of as annotated prefix codes: the code of an element xi is the
concatenation of the labels of the edges leading to it. The mapping can also be used in the other
direction: each binary prefix code of cardinality n corresponds to a unique decision tree over Xn.

Given a set Q ⊆ 2Xn (a set of allowed questions), a decision tree using Q is one in which all
questions belong to Q.

Generally speaking, a decision tree is valid if given any element xi ∈ Xn, if we follow the decision
tree (in the natural way) then we reach a leaf labeled xi. Since we are interested in decision trees
in the context of distributions, we modify this definition slightly: a decision tree is valid for a
distribution µ if given any element xi ∈ supp(µ), if we follow the decision tree then we reach a leaf
labeled xi.

We will only consider decision trees in which each element appears at most once. The depth of
an element xi in a decision tree T , denoted T (xi), is the number of edges in the unique path from
the root to the unique leaf labeled xi (if any).

Given a distribution µ and a decision tree T valid for µ, the cost (or query complexity) of T on
µ, labeled T (µ), is the average number of questions asked on a random element:

T (µ) =

n∑
i=1

µiT (xi).

Given a set Q of allowed questions and a distribution µ, the optimal cost of µ with respect to
Q, denoted c(Q, µ), is the minimal cost of a valid decision tree for µ using Q.

Dyadic distributions and Huffman’s algorithm Huffman’s algorithm [Huf52] finds the op-
timal cost of an unrestricted decision tree for a given distribution:

Opt(µ) = c(2Xn , µ).

We call a decision tree with this cost a Huffman tree or an optimal decision tree for µ. More
generally, a decision tree is r-optimal for µ if its cost is at most Opt(µ) + r.

It will be useful to consider this definition from a different point of view. Say that a distribution
is dyadic if the probability of each element in the support has the form 2−d for some integer d. We
can associate with each decision tree T a distribution τ on the leaves of T given by τi = 2−T (xi).
This gives a bijection between decision trees and dyadic distributions.

In the language of dyadic distributions, Huffman’s algorithm solves the following optimization
problem:

Opt(µ) = min
τ dyadic

supp(τ)=supp(µ)

n∑
i=1

µi log
1

τi
= min

τ dyadic
supp(τ)=supp(µ)

[H(µ) +D(µ‖τ)] .

In other words, computing Opt(µ) amounts to minimizing D(µ‖τ), and thus to “rounding” µ to a
dyadic distribution. We call τ a Huffman distribution for µ.

The following classical inequality shows that Opt(µ) is very close to the entropy of µ:

H(µ) ≤ Opt(µ) < H(µ) + 1.
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The lower bound follows from the non-negativity of the Kullback–Leibler divergence; it is tight
exactly when µ is dyadic. The upper bound from the Shannon–Fano code, which corresponds to
the dyadic sub-distribution τi = 2−dlog µie.

Redundancy and prolixity We measure the quality of sets of questions by comparing the cost
of decision trees using them to the entropy (the difference is known as redundancy) and to the cost of
optimal decision trees (for the difference we coin the term prolixity). In more detail, the redundancy
of a decision tree T for a distribution µ is T (µ)−H(µ), and its prolixity is T (µ)−Opt(µ).

Given a set of questions Q, the redundancy rH(Q, µ) and prolixity rOpt(Q, µ) of a distribution
µ are the best redundancy and prolixity achievable using questions from Q:

rH(Q, µ) = c(Q, µ)−H(µ),

rOpt(Q, µ) = c(Q, µ)−Opt(µ).

The redundancy of a set of questions Q, denoted rH(Q), is the supremum of rH(Q, µ) over all
distributions µ over Xn. The prolixity rOpt(Q) of Q is defined similarly. These quantities are
closely related, as the inequality H(µ) ≤ Opt(µ) < H(µ) + 1 implies:

rOpt(Q) ≤ rH(Q) ≤ rOpt(Q) + 1.

A set of questions Q is optimal if rOpt(Q) = 0, and r-optimal if rOpt(Q) ≤ r.

The parameters uH(n, r) and uOpt(n, r) Our main object of study in this paper are the pa-
rameters uH(n, r) and uOpt(n, r). The parameter uH(n, r) is the cardinality of the minimal set of
questions Q ⊆ 2Xn such that rH(Q) ≤ r. Similarly, the parameter uOpt(n, r) is the cardinality of
the minimal set of questions Q such that rOpt(Q) ≤ r. These quantities are closely related:

uOpt(n, r) ≤ uH(n, r) ≤ uOpt(n, r − 1).

Common sets of questions Some sets of questions will prove especially useful for us:

• Equality queries: Q= = {{xi} : 1 ≤ i ≤ n}. In other words, Q= consists of the questions
“x = xi?” for i ∈ {1, . . . , n}. (Recall that x is the secret element.)

• Comparison queries: Q≺ = {{x1, . . . , xi} : 1 ≤ i ≤ n− 1}. In other words, Q≺ consists of the
questions “x ≺ xi?” for i ∈ {2, . . . , n}.

• Interval queries: Q� = {{xi, . . . , xj} : 1 ≤ i ≤ j ≤ n}. In other words, Q� consists of the
questions “xi � x � xj?” for 1 ≤ i ≤ j ≤ n.

When we wish to emphasize the domain of the set of questions, we will use an appropriate

superscript: Q(n)
= ,Q(n)

≺ ,Q(n)
� .

A useful lemma The following simple lemma will be used several times in the rest of the paper.

Lemma 4.1. Let p1 ≥ . . . ≥ pn be a non-increasing list of numbers of the form pi = 2−ai (for
integer ai), and let a ≤ a1 be an integer. If

∑n
i=1 pi ≥ 2−a then for some m we have

∑m
i=1 pi = 2−a.

If furthermore
∑n

i=1 pi is a multiple of 2−a then for some ` we have
∑n

i=` pi = 2−a.
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Proof. Let m be the maximal index such that
∑m

i=1 pi ≤ 2−a. If m = n then we are done, so
suppose that m < n. Let S =

∑m
i=1 pi. We would like to show that S = 2−a.

The condition p1 ≤ · · · ≤ pn implies that am+1 ≥ · · · ≥ a1, and so k := 2am+1S =
∑m

i=1 2am+1−ai

is an integer. By assumption k ≤ 2am+1−a whereas k+1 = 2am+1
∑m+1

i=1 pi > 2am+1−a. Since 2am+1−a

is itself an integer (since am+1 ≥ a1 ≥ a), we conclude that k = 2am+1−a, and so S = 2−a.

To prove the furthermore part, notice that by repeated applications of the first part of the lemma
we can partition [n] into intervals whose probabilities are 2−a. The last such interval provides the
required index `.

5 Comparisons and equality tests

Let π be a distribution over Xn = {x1, . . . , xn}. A fundamental result in information theory is
that the entropy of a distribution π captures the average number of queries needed to identify a
random x ∼ π. More specifically, every algorithm asks at least H(π) questions in expectation, and
there are algorithms that ask at most H(π) + 1 questions on average (such as Huffman coding and
Shannon–Fano coding). However, these algorithms may potentially use arbitrary questions.

In this section we are interested in the setting where Xn is linearly ordered: x1 ≺ x2 ≺ · · · ≺ xn.
We wish to use questions that are compatible with the ordering. Perhaps the most natural question
in this setting is a comparison query; namely a question of the form “x ≺ xi?”. Gilbert and
Moore [GM59] showed that there exists an algorithm that uses at most H(π) + 2 comparisons. Is
this tight? Can comparison queries achieve the benchmark of H(π) + 1?

A simple argument shows that their result is tight: let n = 3, and let π be a distribution such
that

π(x1) = ε/2, π(x2) = 1− ε, π(x3) = ε/2,

for some small ε. Note that H(π) = O(ε log
(
1/ε
)
), and therefore any algorithm with redundancy 1

must use the query “x = x2?” as its first question. This is impossible if we only allow comparison
queries (see Lemma 6.2.1 for a more detailed and general argument). In fact, this shows that any
set of questions that achieves redundancy 1 must include all equality queries. So, we need to at least
add all equality queries. Is it enough? Do comparison and equality queries achieve redundancy of
at most 1?

Our main result in this section gives an affirmative answer to this question:

Theorem 5.1. For all n, rH(Q(n)
≺ ∪ Q

(n)
= ) = 1. Moreover, if π has no element whose probability

exceeds 0.9961 then uH(Q≺ ∪Q=, π) ≤ 0.96711.

We prove the theorem by modifying the weight-balancing algorithm of Rissanen [Ris73], which
uses only comparison queries and achieves redundancy 2 (as shown by Horibe [Hor77]).

The original weight-balancing algorithm is perhaps the first algorithm that comes to mind: it
asks the most balanced comparison query (the one that splits the distribution into two parts whose
probability is as equal as possible), and recurses according to the answer.

Our modified algorithm, Algorithm At, first checks whether the probability of the most probable
element xmax exceeds the threshold t. If so, it asks the question “x = xmax?”. Otherwise, it proceeds
as in the weight-balancing algorithm. The choice t = 0.3 results in an algorithm whose redundancy
is at most 1.

While a naive implementation of Algorithm At takes time O(n) to determine the next query,
this can be significantly improved:
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Theorem 5.2. Algorithm At can be simulated on an element x requiring D questions in time
O(n+D log n), using O(n) extra space.

Moreover, the decision tree corresponding to Algorithm At can be constructed in time O(n log n)
using O(n) extra space.

We comment that D can be as large as n − 1, for example if the probabilities in π decrease
exponentially. On a more positive note, if the distribution is supported on m elements, then we
can replace n by m in Theorem 5.2, assuming we are given a list of these elements.

Section organization. We present our proof of the first part of Theorem 5.1 in Section 5.1.
In Section 5.2 we show how to slightly modify the argument of the preceding section in order to
prove the second part of Theorem 5.1. We discuss an efficient implementation of Algorithm At in
Section 5.3, thus sketching the proof of Theorem 5.2.

5.1 Algorithm At and its analysis

In this subsection we prove the first part of Theorem 5.1 by exhibiting Algorithm At, a natural and
simple algorithm that achieves redundancy 1 using only comparison and equality queries.

Notation. Let π be a distribution over Xn. Let xmax denote the most probable element, and let
πmax denote its probability. Let xmid denote a point xi that minimizes |π({x : x ≺ xi})− 1/2| over
i ∈ [n]. We call xmid the middle4 of π. Note that the query “x � xmid?” is the most balanced
query among all queries of the form “x ≺ xi?”, .

Let A ⊆ {x1, . . . , xn}. We use πA to denote π(A); i.e. the probability of A. Specifically, we use
π≺xi , π�xi , π6=xi to denote πA when A is {x : x ≺ xi}, {x : x � xi}, {x : x 6= xi}. We use π|A to
denote the restriction of π to A; i.e., the distribution derived by conditioning π on A. Specifically,
we use π|≺xi , π|�xi , π|6=xi to denote π|A when A is {x : x ≺ xi}, {x : x � xi}, {x : x 6= xi}.

Algorithm At. Given a threshold t ∈ (0, 1), Algorithm At takes as input a distribution π over
Xn and a secret element x, and determines x using only comparison and equality queries, in the
following recursive fashion:

1. If π(xi) = 1 for some element xi, then output xi.

2. If πmax ≥ t then ask whether x = xmax, and either output xmax, or continue with π|6=xmax .

3. If πmax < t, ask whether x ≺ xmid, and continue with either π|≺xmid
or π|�xmid

.

(When recursing on a domain D, we identify D with X|D|.) /

The weight balancing algorithm of Rissanen [Ris73] is the special case t = 1; in this case no
equality queries are needed, and the resulting redundancy is 2, as shown by Horibe [Hor77].

We will show that for a certain range of values of t (for example, t = 0.3), Algorithm At achieves
redundancy at most 1, thus proving Theorem 5.1.

Recall that At(π) is the cost of At on π, and let Rt(π) := At(π)−H(π)−1. It is more convenient
to present the proof in terms of Rt(π) rather than in terms of the redundancy. Our goal, stated in
these terms, is showing that there exists some t for which Rt(π) ≤ 0 for all distributions π.

4Note that one of {xmid, xmid−1} is a median.
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1− h(π�xmid
)

“x ≺ xmid?”

Rt(π|≺xmid
)

π≺xmid

Rt(π|�xmid
)

π�xmid

(a) πmax ∈ (0, t)

1− h(π 6=xmax)

“x 6= xmax?”

xmax

Rt(π|=xmax
) = −1

πmax

Rt(π| 6=xmax
)

1− πmax

(b) πmax ∈ [t, 1)

Figure 1: Recursive definition of Rt

We next observe two simple properties of the algorithm At. The proof of Theorem 5.1 relies
only on these properties.

The first property is a recursive definition of Rt that is convenient to induct on. See Figure 1
for a pictorial illustration.

Lemma 5.1.1. Let π be a distribution over Xn. Then

Rt(π) =


−1 if πmax = 1,

1− h(πmax)− πmax + (1− πmax)Rt(π|6=xmax) if πmax ∈ [t, 1),

1− h(π≺xmid
) + π≺xmid

Rt(π|≺xmid
) + π�xmid

Rt(π|�xmid
) if πmax ∈ (0, t).

Proof. If πmax = 1 then At(π) = 0 and H(π) = 0, so Rt(π) = −1.
If πmax ∈ [t, 1) then

Rt(π) = At(π)−H(π)− 1

=
[
1 + (1− πmax)At(π|6=xmax)

]
−
[
h(πmax) + (1− πmax)H(π| 6=xmax)

]
−
[
πmax + (1− πmax)

]
= 1− h(πmax)− πmax + (1− πmax)

[
At(π| 6=xmax)−H(π|6=xmax)− 1

]
= 1− h(πmax)− πmax + (1− πmax)Rt(π 6=xmax).

If πmax ∈ (0, t) then

Rt(π) = At(π)−H(π)− 1

=
[
1 + π≺xmid

At(π|≺xmid
) + π�xmid

At(π|�xmid
)
]

−
[
h(π≺xmid

) + π≺xmid
H(π|≺xmid

) + π�xmid
H(π|�xmid

)
]
−
[
π≺xmid

+ π�xmid

]
= 1− h(π≺xmid

) + π≺xmid

[
At(π|≺xmid

)−H(π|≺xmid
)− 1

]
+ π�xmid

[
At(π|�xmid

)−H(π|�xmid
)− 1

]
= 1− h(π≺xmid

) + π≺xmid
Rt(π|≺xmid

) + π�xmid
Rt(π|�xmid

).
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The second property is that whenever At uses a comparison query (i.e. when πmax < t), then
this question is balanced:

Lemma 5.1.2. Let π be a distribution over Xn. Then π≺xmid
, π�xmid

∈ [1−πmax
2 , 1+πmax

2 ].

Proof. By the definition of xmid, it suffices to show that there exists some j with π≺j ∈ [1−πmax
2 , 1+πmax

2 ].
Indeed, for all j, π≺j+1−π≺j = πj ≤ πmax, and therefore, if j is the maximum element with π≺j <

1
2

(possibly j = 0), then either π≺j or π≺j+1 are in [1−πmax
2 , 1+πmax

2 ].

We next use these properties to bound Rt(π), and conclude the first part of Theorem 5.1. Since
this involves quantifying over all distributions π, it is convenient to introduce a game that simulates
At on a distribution π. The game involves one player, Alice, who we think of as an adversary that
chooses the input distribution π (in fact, she only chooses πmax), and wins a revenue of Rt(π)
(thus, her objective is to maximize the redundancy). This reduces our goal to showing that Alice’s
optimum revenue is nonpositive. The definition of the game is tailored to the properties stated in
Lemma 5.1.1 and Lemma 5.1.2. We first introduce Gt, and then relate it to the redundancy of At
(see Lemma 5.1.6 below).

Game Gt. Let t ≤ 1
3 , and let f, s : (0, 1]→ R be f(x) := 1− h(x)− x and s(x) := 1− h(x). The

game Gt consists of one player called Alice, whose objective is to maximize her revenue. The game
Gt begins at an initial state p ∈ (0, 1], and proceeds as follows.

1. If p ∈ [t, 1], the game ends with revenue f(p).

2. If p ∈ (0, t), then Alice chooses a state5 p′ ∈
[ 2p

1+p ,
2p

1−p
]

and recursively plays Gt with initial

state p′. Let r′ denote her revenue in the game that begins at p′. Alice’s final revenue is

s

(
p

p′

)
+
p

p′
· r′. /

Note that given any initial state p and a strategy for Alice, the game Gt always terminates:
indeed, if p = p0, p1, p2, . . . is the sequence of states chosen by Alice, then as long as pi < t, it holds
that pi+1 ≥ 2pi

1+pi
> 2pi

1+1/3 = 3
2pi (the second inequality is since pi < t ≤ 1

3). So the sequence of

states grows at an exponential rate, which means that for ` = O(log(1/p0)), the state p` exceeds
the threshold t and the game terminates.

For p ∈ (0, 1], let rt(p) denote the supremum of Alice’s revenue in Gt when the initial state is
p, the supremum ranging over all possible strategies for Alice.

Our next step is using the game Gt to prove Theorem 5.1: We will show that t = 0.3 satisfies:

(i) rt(p) ≤ 0 for all p ∈ (0, 1], and

(ii) Rt(π) ≤ rt(πmax) for all π.

Note that (i) and (ii) imply Theorem 5.1. Before establishing (i) and (ii), we state and prove three
simple lemmas regarding Gt that are useful to this end.

The first lemma will be used in the proof of Lemma 5.1.6, which shows that if rt(p) ≤ 0 for all
p ∈ (0, 1], then Rt(π) ≤ rt(πmax). Its proof follows directly from the definition of rt.

5Note that p′ ∈ (0, 1], since p < t ≤ 1
3

implies that
[

2p
1+p

, 2p
1−p

]
⊆ (0, 1].
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Lemma 5.1.3. For all p < t and all p′ ∈
[ 2p

1+p ,
2p

1−p
]
:

rt(p) ≥ s
(
p

p′

)
+
p

p′
· rt(p′).

The next two lemmas will be used in the proof of Lemma 5.1.7, which shows that rt(p) ≤ 0 for
all p ∈ (0, 1] when t = 0.3. The first one gives a tighter estimate on the growth of the sequence of
states:

Lemma 5.1.4. Let p0, p1, . . . , pk be the sequence of states chosen by Alice. For every i ≤ k − 1:

pk−1−i <
t

2i(1− t) + t
.

Proof. We prove the bound by induction on i. The case i = 0 follows from pk−1 being a non-final
state, and therefore pk−1 < t as required. Assume now that i > 0. By the definition of Gt it follows
that pk−1−(i−1) ∈

[ 2pk−1−i
1+pk−1−i

,
2pk−1−i

1−pk−1−i

]
, which implies that pk−1−i ∈

[ pk−1−(i−1)

2+pk−1−(i−1)
,

pk−1−(i−1)

2−pk−1−(i−1)

]
.

Therefore,

pk−1−i ≤
pk−1−(i−1)

2− pk−1−(i−1)

<
t/
(
2i−1(1− t) + t

)
2− t/

(
2i−1(1− t) + t

) (by induction hypothesis on i− 1)

=
t

2i(1− t) + t
.

The second lemma gives a somewhat more explicit form of the revenue of Gt:

Lemma 5.1.5. Let p0, p1, . . . , pk be the sequence of states chosen by Alice. Let r(p0, . . . , pk) denote
the revenue obtained by choosing these states. Then

r(p0, . . . , pk) =
k−1∑
i=0

p0

pi
s

(
pi
pi+1

)
+
p0

pk
f(pk).

Proof. We prove the formula by induction on k. If k = 0 then pk ≥ t and r(pk) = f(pk) = p0
pk
f(pk).

When k ≥ 1:

r(p0, . . . , pk) = s

(
p0

p1

)
+
p0

p1
· r(p1, . . . , pk) (by definition of Gt)

=
p0

p0
s

(
p0

p1

)
+
p0

p1
·
(k−1∑
i=1

p1

pi
s

(
pi
pi+1

)
+
p1

pk
f(pk)

)
(by induction hypothesis)

=

k−1∑
i=0

p0

pi
s

(
pi
pi+1

)
+
p0

pk
f(pk).

Relating At to Gt. Next, we relate the revenue in Gt to the redundancy of At by linking rt and
Rt. We first reduce the first part of Theorem 5.1 to showing that there exists some t ∈ (0, 1] such
that rt(p) ≤ 0 for all p ∈ (0, 1] (Lemma 5.1.6), and then show that t = 0.3 satisfies this condition
(Lemma 5.1.7).
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Lemma 5.1.6. Let t be such that rt(p) ≤ 0 for all p ∈ (0, 1]. For every distribution π,

Rt(π) ≤ rt(πmax).

In particular, such t satisfies Rt(π) ≤ 0 for all π.

Proof. We proceed by induction on the size of supp(π) = {xi : π(xi) 6= 0}. If
∣∣supp(π)

∣∣ = 1 then
πmax = 1, and therefore Rt(π) = −1, rt(πmax) = 0, and indeed Rt(π) ≤ rt(πmax). Assume now
that

∣∣supp(π)
∣∣ = k > 1. Since k > 1, it follows that πmax < 1. There are two cases, according to

whether πmax ∈ (0, t) or πmax ∈ [t, 1).
If πmax ∈ (0, t) then At asks whether x ≺ xmid, and continues accordingly with π|≺xmid

or
π|�xmid

. Let σ := π|≺xmid
and τ := π|�xmid

. By Lemma 5.1.1:

Rt(π) = 1− h(π≺xmid
) + π≺xmid

Rt(σ) + π�xmid
Rt(τ) (since πmax ∈ (0, t))

≤ 1− h(π≺xmid
) + π≺xmid

rt(σmax) + π�xmid
rt(τmax) (by induction hypothesis)

Without loss of generality, assume that xmax ≺ xmid. Therefore σmax = πmax/π≺xmid
, and by

Lemma 5.1.2:

σmax ∈
[

2πmax

1 + πmax
,

2πmax

1− πmax

]
. (1)

Thus,

Rt(π) ≤ 1− h(π≺xmid
) + π≺xmid

rt(σmax) (since rt(τmax) ≤ 0)

= 1− h
(
πmax

σmax

)
+
πmax

σmax
rt(σmax) (σmax = πmax

π≺xmid
)

= s

(
πmax

σmax

)
+
πmax

σmax
rt(σmax) (by definition of s)

≤ rt(πmax). (by (1) and Lemma 5.1.3)

The analysis when πmax ∈ [t, 1) is very similar. In this case At asks whether x = xmax, and
continues with π|6=xmax if x 6= xmax. Let σ := π|≤xmax . By Lemma 5.1.1,

Rt(π) = 1− h(πmax)− πmax + (1− πmax)Rt(σ) (since πmax ∈ (t, 1))

≤ 1− h(πmax)− πmax + (1− πmax)rt(σmax) (by induction hypothesis)

≤ 1− h(πmax)− πmax (since rt(σmax) ≤ 0)

= f(πmax) (by definition of f)

= rt(πmax). (by definition of rt, since πmax ≥ t)

The following lemma shows that t = 0.3 satisfies rt(p) ≤ 0 for all p ∈ (0, 1], completing the
proof of the first part of Theorem 5.1. It uses some technical results, proved below in Lemma 5.1.8.

Lemma 5.1.7. Let t = 0.3. Then rt(p) ≤ 0 for all p ∈ (0, 1].

Proof. Let p ∈ (0, 1]. We consider two cases: (i) p ≥ t, and (ii) p < t. In each case we derive a
constraint on t that suffices for ensuring that rt(p) ≤ 0, and conclude the proof by showing that
t = 0.3 satisfies both constraints.
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Consider the case t ≤ p. Here rt(p) = f(p) = 1 − h(p) − p, and calculation shows that f(p) is
non-positive on [0.23, 1]; therefore, rt(p) ≤ 0 for all p ≥ t, as long as t ≥ 0.23.

Consider the case p < t. Here, we are not aware of an explicit formula for rt(p); instead, we
derive the following upper bound, for all p < t:

rt(p)

p
≤
∞∑
n=0

S

(
t

2n(1− t) + t

)
+ max

(
F (t), F

( 2t

1− t

))
, (2)

where

S(x) =

s

(
1 + x

2

)
x

, F (x) =
f(x)

x
.

With (2) in hand we are done: indeed, calculation shows that the right hand side of (2) is non-
positive in some neighborhood of 0.3 (e.g. it is −0.0312 when t = 0.3, it is −0.0899 when t = 0.294);
thus, as these values of t also satisfy the constraint from (i), this finishes the proof.

It remains to prove (2). Let p = p0, p1, p2, . . . , pk be a sequence of states chosen by Alice. It

suffices to show that r(p0,...,pk)
p0

≤
∑∞

n=0 S
(

t
2n(1−t)+t

)
+ max

(
F (t), F

(
2t

1−t

))
. By Lemma 5.1.5:

r(p0, . . . , pk) =

k−1∑
i=0

p0

pi
s

(
pi
pi+1

)
+
p0

pk
f(pk)

≤
k−1∑
i=0

p0

pi
s

(
1 + pi

2

)
+
p0

pk
f(pk)

= p0

(k−1∑
i=0

S(pi) + F (pk)
)
,

where in the second line we used that pi
pi+1

∈ [1−pi
2 , 1+pi

2 ], and the fact that s(x) = 1 − h(x) is

symmetric around x = 0.5 and increases with |x− 0.5|. Therefore,

r(p0, . . . , pk)

p0
≤

k−1∑
i=0

S(pi) + F (pk)

≤
k−1∑
i=0

S

(
t

2i(1− t) + t

)
+ F (pk)

≤
∞∑
i=0

S

(
t

2i(1− t) + t

)
+ max

(
F (t), F

( 2t

1− t

))
,

where in the second last inequality we used that pk−1−i <
t

2i(1−t)+t (Lemma 5.1.4) and that S(x)

is monotone (Lemma 5.1.8 below), and in the last inequality we used that pk ∈ [t, 2t
1−t) and that

F (x) is convex (Lemma 5.1.8 below).

The following technical lemma completes the proof of Lemma 5.1.7.

Lemma 5.1.8. The function S(x) =
1−h( 1+x

2
)

x is monotone, and the function F (x) = 1−h(x)−x
x is

convex.
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Proof. The function h(1−x
2 ) is equal to its Maclaurin series for x ∈ (−1,+1):

h
(1 + x

2

)
= 1−

∞∑
k=1

log2 e

2k(2k − 1)
· x2k.

Therefore,

S(x) =
∞∑
k=1

log2 e

2k(2k − 1)
· x2k−1,

and

F (x) =
( ∞∑
k=1

log2 e

2k(2k − 1)
· (1− 2x)2k

x

)
− 1.

Now, each of the functions x2k−1 is monotone, and each of the functions (1−2x)2k

x is convex on
(0,∞): its second derivative is

2(1− 2x)2k−2(1 + 4(k − 1)x+ 4(k − 1)(2k − 1)x2)

x3
> 0.

Therefore, S(x) is monotone as a non-negative combination of monotone functions, and F (x) is
convex as a non-negative combination of convex functions.

5.2 Improved analysis when πmax � 1

The proof of the first part of Theorem 5.1 shows that for t = 0.3 the redundancy of Algorithm At
is at most 1. Intuitively, the hardest distributions are those with πmax very close to 1 (these
distributions have entropy close to 0, and so even an optimal algorithm has redundancy close to
1 on these distributions), and it is plausible that At has smaller redundancy on distributions with
πmax that is not too close to 1. However, our proof of Lemma 5.1.7 only shows that the redundancy
is 1− Ω(πmax).

In this subsection, we complete the proof of Theorem 5.1 by discussing how our analysis can
be slightly tweaked in order to show that if πmax ≤ 0.99611 then the limiting redundancy is
α−Ω(πmax), where α = 0.96711. We only restate the lemmas with the required modifications, and
do not provide complete proofs.

Let R
(α)
t (π) = A(π)−H(π)− α. The following lemma is the counterpart of Lemma 5.1.1.

Lemma (Counterpart of Lemma 5.1.1). Let π be a distribution over Xn. Then

R
(α)
t (π) =


−α if πmax = 1,

1− h(πmax)− πmax · α+ (1− πmax)R
(α)
t (π|6=xmax) if πmax ∈ [t, 1),

1− h(π≺xmid
) + π≺xmid

R
(α)
t (π|≺xmid

) + π�xmid
R

(α)
t (π|�xmid

) if πmax ∈ (0, t).

The proof of this lemma is an almost verbatim adaptation of the original proof.
The next step is adapting the game Gt so that an analog of Lemma 5.1.6 holds. Here the change

is that the function f(x) is modified to

f (α)(x) = 2− α− h(x)− x.

Note that when α = 1 it reduces to the original f(x). Let r
(α)
t (p) be the counterpart of rt(p).

The following lemma is the counterpart of Lemma 5.1.6, which relates R
(α)
t and r

(α)
t .
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Lemma (Counterpart of Lemma 5.1.6). Let t be such that rt(p) ≤ 0 for all p ∈ (0, 1], and r
(α)
t (p) ≤

0 for all p ∈ (0, q], with q ≥ 2t
1−t . Then for every π with πmax ∈ (0, q]:

R
(α)
t (π) ≤ r(α)

t (πmax).

In particular, R
(α)
t (π) ≤ 0 for all π with πmax ∈ (0, q].

Proof sketch. The proof is very similar to the proof of Lemma 5.1.6, and uses a similar induction.
However, there is a subtlety here when applying the induction hypothesis: the induction hypothesis
applies only to distributions π for which πmax ∈ (0, q]. In the first case considered by the proof,
πmax ∈ (0, t), and both τmax, σmax ≤ 2t

1−t ≤ q, and the induction hypothesis applies. In the second
case, when πmax ≥ t, it could be that σmax > q, and the induction hypothesis does not apply.

Instead, we use the assumption that rt(p) ≤ 0 for p ∈ (0, 1], and bound R
(α)
t (σ) as follows:

R
(α)
t (σ) = Rt(σ) + 1− α

≤ rt(σmax) + 1− α (By Lemma 5.1.6, since rt(p) ≤ 0 for p ∈ (0, 1])

≤ 1− α. (since rt(σmax) ≤ 0)

Thus
R

(α)
t (π) ≤ 1− h(πmax)− πmaxα+ (1− πmax)(1− α) = f (α)(πmax).

Finally, the following lemma is the counterpart of Lemma 5.1.7, and its proof is very similar to
the original proof.

Lemma (Counterpart of Lemma 5.1.7). Let α = 0.96711, and let t = 0.299395. Then rt(p) ≤ 0

for all p ∈ (0, 1], and r
(α)
t (p) ≤ 0 for all p ≤ 0.9961.

Proof sketch. For the proof, let F (α)(x) = f (α)(x)/x, and note that F (α)(x) = F (x) + (1− α)/x is
convex, being the sum of two convex functions. When p < t, we can estimate as in Lemma 5.1.7:

r
(α)
t (p)

p
≤
∞∑
n=0

S

(
t

2n(1− t) + t

)
+ max

(
F (α)(t), F (α)

( 2t

1− t

))
≈ −6.896× 10−6 < 0.

When p ≥ t, r(α)
t (p) = f (α)(p), and one checks that f (α)(p) ≤ 0 when t ≤ p ≤ 0.9961 directly, using

the convexity of f (α)(p) (which follows from the concavity of h(p)).

Since 0.9961 ≥ 2t
1−t ≈ 0.85, it follows that At(π) ≤ H(π) + 0.96711 whenever πmax ≤ 0.9961,

where t = 0.299395. This completes the proof of the second part of Theorem 5.1.

5.3 Implementing Algorithm At

A naive implementation of Algorithm At requires O(n) work per question. However, using an
appropriate data structure, we can construct the decision tree corresponding to the algorithm in
time O(n log n).

The appropriate data structure, which we coin Sum-Max-Tree, is a dynamic array which sup-
ports the following operations:

init(π1, . . . , πn) Stores weight πi under the key i for 1 ≤ i ≤ n.

get-max(a, b) Returns the key i in the range a ≤ i ≤ b maximizing πi.
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get-sum(a, b) Returns the total weight of elements whose keys are between a and b.

get-mid(a, b) Returns the key m which minimizes∣∣∣∣∣∣
∑

i : a≤i≤m
πi −

∑
i : m<i≤b

πi

∣∣∣∣∣∣ .
remove(i) Removes the element with key i.

Lemma 5.3.1. Sum-Max-Tree can be implemented so that init takes time O(n), and all other
operations take time O(log n). Furthermore, the space used is O(n).

Proof sketch. The operation init constructs a nearly complete binary tree (all leaves are at depth
blog nc or dlog ne) in which the weights πi are stored at the leaves, ordered by their key. Each
internal node stores the following auxiliary information about its subtree: the maximum weight of
an element, and the total weight of all elements.

The operations get-max and get-sum are implemented by finding a set of O(log n) internal
nodes whose subtrees partition the leaves a, . . . , b. Details left to the reader.

The operation get-mid is implemented along the following lines. First compute σ :=
∑

i : a≤i≤b πi;
our task is to find the key m that minimizes |

∑
i : a≤i≤m πi − σ/2|. We will do so by finding the

maximal key M satisfying
∑

i : a≤i≤M πi ≤ σ/2, and then choosing the best of M,M + 1.
Let v be the least common ancestor of the leaves containing the keys a and b. We find M by

descending from v toward the leaves, maintaining the invariant that the current node contains M .
Details left to the reader.

Finally, the operation remove first removes the appropriate leaf, and then updates the auxiliary
information by walking from the leaf to the root: the total weight at each internal node v = (vL, vR)
is simply decreased by πi, and the maximum weight is updated recursively using the formula
max(v) = max(max(vL),max(vR)).

Using this data structure, it is a simple exercise to prove Theorem 5.2.

6 Information theoretical benchmark — Shannon’s entropy

In this section we study the minimum number of questions that achieve redundancy of at most r,
for a fixed r ≥ 1. Note that r = 1 is the optimal redundancy: the distribution π on X2 given by
π1 = 1− ε, π2 = ε has redundancy 1− Õ(ε) (that is, 1−O(ε log(1/ε)) even without restricting the
set of allowed questions.

In the previous section we have shown that the optimal redundancy of r = 1 can be achieved
with just 2n comparison and equality queries (in fact, as we show below, there are only 2n − 3
of these queries). It is natural to ask how small the number of questions can be if we allow for a
larger r. Note that at least log n questions are necessary to achieve any finite redundancy. Indeed,
a smaller set of questions is not capable of specifying all elements even if all questions are being
asked.

The main result of this section is that the minimum number of questions that are sufficient for
achieving redundancy r is roughly r · n1/brc:

Theorem 6.1. For every r ≥ 1 and n ∈ N,

1

e
brcn1/brc ≤ uH(n, r) ≤ 2brcn1/brc.
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In particular, uH(n, r) = Θ
(
brcn1/brc).

The algorithm underlying the upper bound can be implemented efficiently, along the lines of
Theorem 5.2; we leave the details to the reader.

Section organization. The upper bound in Theorem 6.1 is proved in Section 6.1, and the lower
bound in Section 6.2. The lower bound proof uses (implicitly) the concept of witness codes, a
connection we discuss in Section 6.3.

6.1 Upper bound

The upper bound in Theorem 6.1 is based on the following corollary of Theorem 5.1:

Theorem 6.1.1. Let Y be a linearly ordered set, and let Z = Y k (we don’t think of Z as ordered).
For any distribution π on Z there is an algorithm that uses only questions of the form (i)

“~xi ≺ y?” and (ii) “~xi = y?”, where i ∈ [k] and y ∈ Y , whose cost is at most H(π) + k.

Proof. Let Z1Z2 . . . Zk ∼ π. Consider the algorithm which determines Z1, . . . , Zk in order, where
Zi is determined by applying the algorithm from Theorem 5.1 on “Zi|Z1 . . . Zi−1”, which is the
conditional distribution of Zi given the known values of Z1, . . . , Zi−1. The expected number of
queries is at most(

H(Z1) + 1
)

+
(
H(Z2|Z1) + 1

)
+ · · ·+

(
H(Zk|Z1 . . . Zk−1) + 1

)
= H(Z1 . . . Zk) + k,

using the chain rule.

We use this theorem to construct a set of questions of size at most 2brcn1/brc that achieves
redundancy r for any distribution over Xn.

Note that n ≤
(⌈
n1/brc⌉)brc. Therefore every element x ∈ Xn can be represented by a vector

~x ∈
{

1, . . . , dn1/brce
}brc

. Let Q be the set containing all questions of the form (i) “~xi = y?” and
(ii) “~xi ≺ y?”. By Theorem 6.1.1, r(Q) = brc.

The following questions from Q are redundant, and can be removed from Q without increasing
its redundancy: (i) “~xi ≺ 1?” (corresponds to the empty set and therefore provides no information),
(ii) “~xi ≺ 2?” (equivalent to the question “~xi = 1?”), and (iii) “~xi ≺ dn1/brce?” (equivalent to the
question “~xi = dn1/brce?”). The number of remaining questions is

brc ·
(

2
⌈
n1/brc⌉− 3

)
≤ 2brc ·

(
n1/brc

)
.

This proves the upper bound in Theorem 6.1.

6.2 Lower bound

The crux of the proof of the lower bound in Theorem 6.1 is that if Q is a set of questions whose
redundancy is at most r then every x ∈ Xn can be identified by at most brc questions from Q.

We say that the questions q1, . . . , qT identify x if for every y 6= x there is some i ≤ T such
that qi(x) 6= qi(y). Define t(n, r) to be the minimum cardinality of a set Q of questions such that
every x ∈ X has at most r questions in Q that identify it. The quantity t(n, r) can be thought of
as a non-deterministic version of u(n, r): it is the minimal size of a set of questions so that every
element can be “verified” using at most r questions.

The lower bound on u(n, r) follows from Lemma 6.2.1 and Lemma 6.2.2 below.
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Lemma 6.2.1. For all n, r, u(n, r) ≥ t(n, brc).

Proof. It suffices to show that for every set of questions Q with redundancy at most r, every x ∈ X
has at most brc questions in Q that identify it.

Consider the distribution π given by π(x) = 1 − ε and π(y) = ε/(n − 1) for y 6= x. Thus
H(π) = Õ(ε). Consider an algorithm for π with redundancy r that uses only questions from Q.
Let T be the number of questions it uses to find x. The cost of the algorithm is at least (1− ε)T ,
and so (1− ε)T ≤ H(π) + r = Õ(ε) + r, implying T ≤ Õ(ε) + (1 + ε

1−ε)r. For small enough ε > 0,
the right-hand side is smaller than brc+ 1, and so T ≤ brc.

Lemma 6.2.1 says that in order to lower bound u(n, r), it suffices to lower bound t(n, brc), which
is easier to handle. For example, the following straightforward argument shows that t(n,R) ≥
1
2eRn

1/R, for every R,n ∈ N. Assume Q is a set of questions of size u(n,R) so that every x is
identified by at most R questions. This implies an encoding (i.e. a one-to-one mapping) of x ∈ Xn

by the R questions identifying it, and by the bits indicating whether x satisfies each of these
questions. Therefore

n ≤
(
|Q|
≤ R

)
2R ≤

(2e|Q|
R

)R
,

where in the last inequality we used that
(
m
≤k
)
≤
(
em
k

)k
for all m, k. This implies that t(n, brc) ≥

1
2ebrcn

1/brc. The constant 1
2e in front of brcn1/brc can be increased to 1

e , using an algebraic argument:

Lemma 6.2.2. For all n,R ∈ N:

t(n,R) ≥ 1

e
R · n1/R.

Proof. We use the so-called polynomial method. Let Q be a set of questions such that each x ∈ X
can be identified by at most R queries. For each x ∈ X, let ux be the |Q|-dimensional vector
ux =

(
q1(x), . . . , q|Q|(x)

)
, and let U = {ux : x ∈ X} ⊆ {0, 1}|Q|. We will show that every function

F : U → F2 can be represented as a multilinear polynomial of degree at most R in |Q| variables.
Since the dimension over F2 of all such functions is n, whereas the dimension of the space of all
multilinear polynomials of degree at most R is

(|Q|
≤R
)
, the bound follows:

n ≤
(
|Q|
≤ R

)
≤
(e|Q|
R

)R
=⇒ n ≥ 1

e
R · n1/R.

It is enough to show that for any ux ∈ U , the corresponding “delta function” δx : U → F2,
defined as δx(ux) = 1 and δx(v) = 0 for ux 6= v ∈ U , can be represented as a polynomial of degree
at most d. Suppose that qi1 , . . . , qiT are T ≤ R questions that identify x. Consider the polynomial

P (y1, . . . , y|Q|) = (yi1 − qi1(x) + 1) · · · (yir − qir(x) + 1).

Clearly P (ux) = 1. On the other hand, if P (uy) = 1 then qij (y) = qij (x) for all j, showing that
y = x. So P = δx, completing the proof.

6.3 Witness codes and teaching dimension

Our proof of the lower bound in Theorem 6.1 is based on t(n,R), which is the minimum cardinality
of a set of queries such that each element can be identified by at most R questions. This quantity
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is closely related to witness codes [Mes92, CRZ08]. In particular, as we will show, it is in some
sense dual to the maximum size of a w-witness code.

A set C ⊆ {0, 1}m is a w-witness code if for every u ∈ C there exists Y ⊆ [m] of size at most w
such that every v ∈ C, if v 6= u then v|Y 6= u|Y . The set Y is a witness of u. We define f(m,w) as
the maximum size of a set C ⊆ {0, 1}m that is a w-witness code.

It is easy to see that for w ≤ m, f(m,w) ≥
(
m
w

)
: indeed, consider the family of all vectors

u ∈ {0, 1}m of Hamming weight w. This family is of size
(
m
w

)
, and for every vector u it contains,

the set {i : u(i) = 1}) is a witness of u. On the other hand, the proof of Lemma 6.2.2 shows that
f(m,w) ≤

(
m
≤w
)
.

Witness codes were first introduced by Aharoni and Holzman in unpublished work [AH91],
in which they proved the bounds

(
m
w

)
≤ f(m,w) ≤

(
m
≤w
)

and conjectured that f(m,w) =
(
m
w

)
whenever m > 2w. Meshulam [Mes92] proved their conjecture for m ≥ γ0w, where γ0 ≈ 9.0886
satisfies h(γ−1

0 ) = 1/2. Ellis [Ell11] simplified Meshulam’s proof.
Witness codes were introduced again in the context of coding theory [CRZ08, Coh09, MM11,

CM11], motivated by the concept of teaching dimension in learning theory [GK95, SM91, ABCS92,
Kuh99, DSZ10, ZLHZ11, SSYZ14] and by Bondy’s theorem and related results in combinatorics [Bon72,
KLRS96, AH06] (see also Jukna [Juk01, §11]). Cohen et al. [CRZ08] also stated a version of the
Aharoni–Holzman conjecture, unaware of Meshulam’s work.

Duality. The quantities f(m,w) and t(n,w) are dual, in a sense that we now explain. We say
that a binary matrix M is a w-witness matrix if for every row r in M there is a set Y of at most
w columns such that r|Y 6= r′|Y for every row r′ 6= r. It is easy to verify that:

f(m,w) is the maximum number of rows among all w-witness matrices with m columns,

t(n,w) is the minimum number of columns among all w-witness matrices with n rows.

The duality between f(m,w) and t(n,w) is manifested in that swapping the pairs “maximum”/
“minimum” and “columns”/“rows” transforms one definition to the other. In our context, we use
the following lemma that translates between upper bounds on f(m,w) and lower bounds on t(n,w):

Lemma 6.2 (Duality). For all n,m,w ∈ N:

f(m,w) < n ⇐⇒ t(n,w) > m .

Proof. The statement: “There exists no w-witness matrix with n rows and m columns” is equivalent
to both statements.

This lemma was implicitly used in the proof of Lemma 6.2.2, where it is in fact shown that
f(m,w) ≤

(
m
≤w
)
<
(
em
w

)w
, and plugging n =

(
em
w

)w
(i.e. m = 1

ew · n
1/w) yields the bound. The

bound f(m,w) ≤
(
m
≤w
)

was first proved by Aharoni and Holzman [AH91] in unpublished work, and
reproduced by Ellis [Ell11]. It also follows from a stronger result concerning the recursive teaching
dimension [SSYZ14]. All of these proofs are identical to the argument of Lemma 6.2.2.

7 Combinatorial benchmark — Huffman codes

Section 5 shows that the optimal redundancy, namely 1, can be achieved using only O(n) questions.
However, what if we want an instance-optimal algorithm? That is, we are looking for a set of
questions which matches the performance of minimum redundancy codes such as Huffman codes.

Let us repeat the definition of an optimal set of questions that is central in this section.
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Definition 7.1. A set Q of subsets of Xn is an optimal set of questions over Xn if for all distribu-
tions µ on Xn,

c(Q, µ) = Opt(µ).

Using the above definition, uOpt(n, 0) is equal to the minimal size of an optimal set of questions
over Xn. Perhaps surprisingly, the trivial upper bound of 2n−1 on uOpt(n, 0) can be exponentially
improved:

Theorem 7.2. We have
uOpt(n, 0) ≤ 1.25n+o(n).

We prove a similar lower bound, which is almost tight for infinitely many n:

Theorem 7.3. For n of the form n = 5 · 2m,

uOpt(n, 0) ≥ 1.25n/O(
√
n).

For all n,
uOpt(n, 0) ≥ 1.232n/O(

√
n).

Corollary 7.4. We have

lim sup
n→∞

log uOpt(n, 0)

n
= log 1.25.

Unfortunately, the construction in Theorem 7.2 is not explicit. A different construction, which
uses O(

√
2
n
) questions, is not only explicit, but can also be implemented efficiently:

Theorem 7.5. There exists an explicit set of questions Q of size 2dn/2e+1 such that:

1. There is an indexing scheme Q = {Qq : q ∈ {0, 1}dn/2e+1} such that given an index q and an
element xi ∈ Xn, we can decide whether xi ∈ Qq in time O(n).

2. Given a distribution π, we can construct an optimal decision tree for π using Q in time O(n2).

3. Given a distribution π, we can implement an optimal decision tree for π in an online fashion
in time O(n) per question, after O(n log n) preprocessing.

Section organization. Section 7.1 shows that a set of questions is optimal if and only if it is a
dyadic hitter, that is, contains a question splitting every non-constant dyadic distribution into two
equal halves. Section 7.2 discusses a relation to hitting sets for maximal antichains, and proves
Theorem 7.5. Section 7.3 shows that the optimal size of a dyadic hitter is controlled by the minimum
value of another parameter, the maximum relative density. We upper bound the minimum value in
Section 7.4, thus proving Theorem 7.3, and lower bound it in Section 7.5, thus proving Theorem 7.2.

7.1 Reduction to dyadic hitters

The purpose of this subsection is to give a convenient combinatorial characterization of optimal
sets of questions. Before presenting this characterization, we show that in this context it suffices
to look at dyadic distributions.

Lemma 7.1.1. A set Q of questions over Xn is optimal if and only if c(Q, µ) = Opt(µ) for all
dyadic distributions µ.
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Proof. Suppose that Q is optimal for all dyadic distributions, and let π be an arbitrary distribution
over Xn. Let µ be a dyadic distribution such that

Opt(π) =
n∑
i=1

πi log
1

µi
.

By assumption, Q is optimal for µ. Let T be an optimal decision tree for µ using questions from Q
only, and let τ be the corresponding dyadic distribution, given by τi = 2−T (xi) (recall that T (xi) is
the depth of xi). Since τ minimizes T (µ) = H(µ) + D(µ‖τ) over dyadic distributions, necessarily
τ = µ. Thus

T (π) =
n∑
i=1

πi log
1

τi
=

n∑
i=1

πi log
1

µi
= Opt(π),

showing that Q is optimal for µ.

Given a dyadic distribution µ on Xn, we will be particularly interested in the collection of
subsets of Xn that have probability exactly half under µ.

Definition 7.1.2 (Dyadic hitters). Let µ be a non-constant dyadic distribution. A set A ⊆ Xn

splits µ if µ(A) = 1/2. We denote the collection of all sets splitting µ by Spl(µ). We call a set of
the form Spl(µ) a dyadic set.

We call a set of questions Q a dyadic hitter in Xn if it intersects Spl(µ) for all non-constant
dyadic distributions µ. (Lemma 4.1 implies that Spl(µ) is always non-empty.)

A dyadic hitter is precisely the object we are interested in:

Lemma 7.1.3. A set Q of subsets of Xn is an optimal set of questions if and only if it is a dyadic
hitter in Xn.

Proof. Let Q be a dyadic hitter in Xn. We prove by induction on 1 ≤ m ≤ n that for a dyadic
distribution µ on Xn with support size m, c(Q, µ) = H(µ). Since Opt(µ) = H(µ), Lemma 7.1.1
implies that Q is an optimal set of questions.

The base case, m = 1, is trivial. Suppose therefore that µ is a dyadic distribution whose
support has size m > 1. In particular, µ is not constant, and so Q contains some set S ∈ Spl(µ).
Let α = µ|S and β = µ|S , and note that α, β are both dyadic. The induction hypothesis shows
that c(Q, α) = H(α) and c(Q, β) = H(β). A decision tree which first queries S and then uses the
implied algorithms for α and β has cost

1 +
1

2
H(α) +

1

2
H(β) = h(µ(S)) + µ(S)H(µ|S) + µ(S)H(µ|S) = H(µ),

using the Bernoulli chain rule; here µ|S is the restriction of µ to the elements in S.
Conversely, suppose thatQ is not a dyadic hitter, and let µ be a non-constant dyadic distribution

such that Spl(µ) is disjoint from Q. Let T be any decision tree for µ using Q, and let S be its first
question. The cost of T is at least

1 + µ(S)H(µ|S) + µ(S)H(µ|S) > h(µ(S)) + µ(S)H(µ|S) + µ(S)H(µ|S) = H(µ),

since µ(S) 6= 1
2 . Thus c(Q, µ) > Opt(µ), and so Q is not an optimal set of questions.
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7.2 Dyadic sets as antichains

There is a surprising connection between dyadic hitters and hitting sets for maximal antichains.
We start by defining the latter:

Definition 7.2.1. A fibre in Xn is a subset of 2Xn which intersects every maximal antichain in
Xn.

Fibres were defined by Lonc and Rival [LR87], who also gave a simple construction, via cones:

Definition 7.2.2. The cone C(S) of a set S consists of all subsets and all supersets of S.

Any cone C(S) intersects any maximal antichain A, since otherwise A∪{S} is also an antichain.
By choosing S of size bn/2c, we obtain a fibre of size 2bn/2c+ 2dn/2e− 1 = Θ(2n/2). Lonc and Rival
conjectured that this fibre has minimal size, but gave no lower bound. The first lower bound
was given by Duffus, Sands and Winkler [DSW90], who showed that any fibre contains at least
Ω(1.25n) sets, using an argument virtually the same as our lower bound, Theorem 7.3. This has
been improved by  Luczak [ Lu98, DS01] to Ω( 3

√
2
n
), but the conjecture of Lonc and Rival remains

open.
Our goal now is to show that every fibre is a dyadic hitter:

Theorem 7.2.3. every fibre is a dyadic hitter.

This shows that every cone is a dyadic hitter, and allows us to give a simple algorithm for
constructing an optimal decision tree using any cone.

We start with a simple technical lemma which will also be used in Section 7.4:

Definition 7.2.4. Let µ be a dyadic distribution over Xn. The tail of µ is the largest set of
elements T ⊆ Xn such that for some a ≥ 1,

(i) The elements in T have probabilities 2−a−1, 2−a−2, . . . , 2−a−(|T |−1), 2−a−(|T |−1).

(ii) All elements not in T have probability at least 2−a.

Lemma 7.2.5. Suppose that µ is a non-constant dyadic distribution with non-empty tail T . Every
set in Spl(µ) either contains T or is disjoint from T .

Proof. The proof is by induction on |T |. If |T | = 2 then there exist an integer a ≥ 1 and two
elements, without loss of generality x1, x2, of probability 2−a−1, such that all other elements have
probability at least 2−a. Suppose that S ∈ Spl(µ) contains exactly one of x1, x2. Then

2a−1 =
∑
xi∈S

2aµ(xi) =
∑

xi∈S\{x1,x2}

2aµ(xi) +
1

2
.

However, the left-hand side is an integer while the right-hand side is not. We conclude that S must
contain either both of x1, x2 or none of them.

For the induction step, let the elements in the tail T of µ have probabilities 2−a−1, 2−a−2, . . . ,
2−a−(|T |−1), 2−a−(|T |−1). Without loss of generality, suppose that xn−1, xn are the elements whose
probability is 2−a−(|T |−1). The same argument as before shows that every dyadic set in Spl(µ) must
contain either both of xn−1, xn or neither. Form a new dyadic distribution ν on Xn−1 by merging
the elements xn−1, xn into xn−1, and note that Spl(µ) can be obtained from Spl(ν) by replacing
xn−1 with xn−1, xn. The distribution ν has tail T ′ = T \ {xn}, and so by induction, every set in
Spl(ν) either contains T ′ or is disjoint from T ′. This implies that every set in Spl(µ) either contains
T or is disjoint from T .
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The first step in proving Theorem 7.2.3 is a reduction to dyadic distributions having full support:

Lemma 7.2.6. A set of questions is a dyadic hitter in Xn if and only if it intersects Spl(µ) for all
non-constant full-support dyadic distributions µ on Xn.

Proof. A dyadic hitter clearly intersects Spl(µ) for all non-constant full-support dyadic distribu-
tions on Xn. For the other direction, suppose that Q is a set of questions that intersects Spl(µ) for
every non-constant full-support dyadic distribution µ. Let ν be a non-constant dyadic distribution
on Xn which doesn’t have full support. Let xmin be an element in the support of ν with mini-
mal probability, which we denote νmin. Arrange the elements in supp(ν) in some arbitrary order
xi1 , . . . , xim . Consider the distribution µ given by:

• µ(xi) = ν(xi) if xi ∈ supp(µ) and xi 6= xmin.

• µ(xmin) = νmin/2.

• µ(xij ) = νmin/2
j+1 for j < m.

• µ(xim) = νmin/2
m.

In short, we have replaced ν(xmin) = νmin with a tail xmin, xi1 , . . . , xim of the same total probability.
It is not hard to check that µ is a non-constant dyadic distribution having full support on Xn.

We complete the proof by showing that Q intersects Spl(ν). By assumption, Q intersects Spl(µ),
say at a set S. Lemma 7.2.5 shows that S either contains all of {xmin} ∪ supp(ν), or none of these
elements. In both cases, ν(S) = µ(S) = 1/2, and so Q intersects Spl(ν).

We complete the proof of Theorem 7.2.3 by showing that dyadic sets corresponding to full-
support distributions are maximal antichains:

Lemma 7.2.7. Let µ be a non-constant dyadic distribution over Xn with full support, and let
D = Spl(µ). Then D is a maximal antichain which is closed under complementation (i.e. A ∈
D =⇒ X \A ∈ D).

Proof. (i) That D is closed under complementation follows since if A ∈ D then µ(X \ A) =
1− µ(A) = 1/2.

(ii) That D is an antichain follows since if A strictly contains B then µ(A) > µ(B) (because µ
has full support).

(iii) It remains to show that D is maximal. By (i) it suffices to show that every B with
µ(B) > 1/2 contains some A ∈ D. This follows from applying Lemma 4.1 on the probabilities of
the elements in B.

Cones allow us to prove Theorem 7.5:

Proof of Theorem 7.5. Let S = {x1, . . . , xbn/2c}. The set of questions Q is the cone C(S), whose

size is 2bn/2c + 2dn/2e − 1 < 2dn/2e+1.
An efficient indexing scheme for Q divides the index into a bit b, signifying whether the set is a

subset of S or a superset of S, and bn/2c bits (in the first case) or dn/2e bits (in the second case)
for specifying the subset or superset.

To prove the other two parts, we first solve an easier question. Suppose that µ is a non-constant
dyadic distribution whose sorted order is known. We show how to find a set in Spl(µ) ∩Q in time
O(n). If µ(S) = 1/2 then S ∈ Spl(µ). If µ(S) > 1/2, go over the elements in S in non-decreasing
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order. According to Lemma 4.1, some prefix will sum to 1/2 exactly. If µ(S) < 1/2, we do the
same with S, and then complement the result.

Suppose now that π is a non-constant distribution. We can find a Huffman distribution µ for
π and compute the sorted order of π in time O(n log n). The second and third part now follow as
in the proof of Lemma 7.1.3.

7.3 Reduction to maximum relative density

Section 7.1 shows that we are interested in the minimal size of a dyadic hitter. Section 7.4 gives a
lower bound on the size of any dyadic hitter, along the following lines. For appropriate values of n,
we describe a dyadic distribution µ, all of whose splitters have a certain size i or n− i. Moreover,
only a ρ fraction of sets of size i split µ. We then consider all possible permutations of µ. Each set
of size i splits a ρ fraction of these, and so any dyadic hitter must contain at least 1/ρ sets.

This lower bound argument prompts the definition of maximum relative density (MRD), which
corresponds to the parameter ρ above; in the general case we will also need to optimize over i. We
think of the MRD as a property of dyadic sets rather than dyadic distributions; indeed, the concept
of MRD makes sense for any collection of subsets of 2Xn . If a dyadic set has MRD ρ then any
dyadic hitter must contain at least 1/ρ questions, due to the argument outlined above. Conversely,
using the probabilistic method we will show that roughly 1/ρmin(n) questions suffice, where ρmin(n)
is the minimum MRD of a dyadic set on Xn.

Definition 7.3.1 (Maximum relative density). Let D be a collection of subsets of Xn. For i ∈
{0, . . . , n} denote by Di ⊆ D the restriction of D to sets of size i. Define the i’th relative density
of D, denoted ρi(D), as

ρi(D) :=
|Di|(
n
i

) .
We define the maximum relative density (MRD) of D, denoted ρ(D), as

ρ(D) := max
i∈{1,...,n−1}

ρi(D).

We define ρmin(n) to be the minimum of ρ(D) over all dyadic sets. That is, ρmin(n) is the
smallest possible maximum relative density of a set of the form Spl(µ).

The following theorem shows that uOpt(n, 0) is controlled by ρmin(n), up to polynomial factors.

Theorem 7.3.1. Fix an integer n, and denote M := 1
ρmin(n) . Then

M ≤ uOpt(n, 0) ≤ n2 log n ·M.

Proof. Note first that according to Lemma 7.1.3, uOpt(n, 0) is equal to the minimal size of a dyadic
hitter in Xn, and thus it suffices to lower- and upper-bound this size.

Let σ be a uniformly random permutation on Xn. If S is any set of size i then σ−1(S) is a
uniformly random set of size i, and so

ρi(D) = Pr
σ∈Sym(Xn)

[σ−1(S) ∈ D] = Pr
σ∈Sym(Xn)

[S ∈ σ(D)].

(Here Sym(Xn) is the group of permutations of Xn.)
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Fix a dyadic set D on Xn with ρ(D) = ρmin(n). The formula for ρi(D) implies that for any
subset S of Xn (of any size),

Pr
σ∈Sym(Xn)

[S ∈ σ(D)] ≤ ρmin(n).

Let Q be a collection of subsets of Xn with |Q| < M . A union bound shows that

Pr
σ∈Sym(Xn)

[Q∩ σ(D) 6= ∅] ≤ |Q|ρmin(n) < 1.

Thus, there exists a permutation σ such that Q ∩ σ(D) = ∅. Since σ(D) is also a dyadic set, this
shows that Q is not a dyadic hitter. We deduce that any dyadic hitter must contain at least M
questions.

For the upper bound on uOpt(n, 0), construct a set of subsets Q containing, for each i ∈
{1, . . . , n − 1}, Mn log n uniformly chosen sets S ⊆ Xn of size i. We show that with positive
probability, Q is a dyadic hitter.

Fix any dyadic set D, and let i ∈ {1, . . . , n − 1} be such that ρi(D) = ρ(D) ≥ ρmin(n). The
probability that a random set of size i doesn’t belong to D is at most 1 − ρ(D) ≤ 1 − ρmin(n).
Therefore the probability that Q is disjoint from D is at most

(1− ρmin(n))Mn logn ≤ e−ρmin(n)Mn logn = e−n logn < n−n.

As we show below in Claim 7.3.2, there are at most nn non-constant dyadic distributions, and so
a union bound implies that with positive probability, Q is indeed a dyadic hitter.

In order to complete the proof of Theorem 7.3.1, we bound the number of non-constant dyadic
distributions:

Claim 7.3.2. There are at most nn non-constant dyadic distributions on Xn.

Proof. Let µ be a dyadic distribution on a finite domain X. We will show that if the minimal
probability in µ is 2−` then |X| > `. It follows that if µ is a non-constant dyadic distribution over
Xn then the possible values for µi are only {0, 2−1, . . . , 2−(n−1)}, which means that there are at
most nn ways to assign the probabilities µ1, . . . , µn.

It remains to show that if µ is a dyadic distribution on a domain X and the minimal probability
in µ is 2−` then |X| > `. The proof is by induction on `. The base case, ` = 0, is trivial. For the
induction step, assume that the claim holds for `− 1, and suppose that µ is a dyadic distribution
on X having minimal probability 2−`. Since

∑
i 2`µi = 2` is even, the number of elements whose

probability is 2−` must be even. Merge these elements in pairs to obtain a dyadic distribution
whose minimal probability is 2−(`−1). The induction hypothesis shows that the merged domain
must contain more than ` − 1 elements. Since we merged at least one pair of elements, X must
contain more than ` elements.

Krenn and Wagner [KW16] showed that the number of full-support dyadic distributions on
Xn is asymptotic to αγn−1n!, where α ≈ 0.296 and γ ≈ 1.193, implying that the number of
dyadic distributions on Xn is asymptotic to αe1/γγn−1n!. Boyd [Boy75] showed that the number
of monotone full-support dyadic distributions on Xn is asymptotic to βλn, where β ≈ 0.142 and
λ ≈ 1.794, implying that the number of monotone dyadic distributions on Xn is asymptotic to
β(1 + λ)n.

The proof of Theorem 7.3.1 made use of two properties of dyadic sets:
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1. Any permutation of a dyadic set is a dyadic set.

2. There are en
O(1)

dyadic sets.

If F is any collection of subsets of 2Xn satisfying the first property then the proof of Theorem 7.3.1
generalizes to show that the minimal size U of a hitting set for F satisfies

M ≤ U ≤Mn log |F|, where M =
1

minD∈F ρ(D)
.

7.4 Upper bounding ρmin(n)

Theorem 7.3 will ultimately follow from the following lemma, by way of Theorem 7.3.1:

Lemma 7.4.1. Fix 0 < β ≤ 1/2. There exists an infinite sequence of positive integers n (namely,
those of the form b 2a

2β c for integer a) such that some dyadic set D in Xn satisfies ρ(D) ≤ O(
√
n)2−(h(β)−2β)n.

Proof. We prove the lemma under the simplifying assumption that 1/β is an integer (our most
important application of the lemma has β := 1/5). Extending the argument for general β is
straightforward and left to the reader.

Let n be an integer of the form 2a

2β , for a positive integer a. Note that for n of this form,

βn = 2a−1 is a power of two. Let t = βn, and construct a dyadic distribution µ on Xn as follows:

1. For i ∈ [2t− 1], µ(xi) = 2−a = 1
2t .

2. For i ∈ [n− 1] \ [2t− 1], µ(xi) = µ(xi−1)/2 = 2−(a+i−2t+1).

3. µ(xn) = µ(xn−1).

The corresponding decision tree is obtained by taking a complete binary tree of depth a and
replacing one of the leaves by a “path” of length n − 2a; see Figure 2. Alternatively, in the
terminology of Definition 7.2.4 we form µ by taking the uniform distribution on X2t and replacing
x2t with a tail on x2t, . . . , xn.

We claim that D := Spl(µ) contains only two types of sets:

1. Subsets of size t of X2t−1.

2. Subsets of size n− t containing t− 1 elements of X2t−1 and all the elements x2t, . . . , xn.

It is immediate that any such set S is in D. On the other hand, Lemma 7.2.5 shows that every set
S ∈ D either contains the tail x2t, . . . , xn or is disjoint from it. If S is disjoint from the tail then it
must be of the first form, and if S contains the tail then it must be of the second form.

Using the estimate
(
n
βn

)
≥ 2h(β)n/O(

√
n) (see for example [You12]), we see that

ρt(D) = ρn−t(D) =

(
2t−1
t

)(
n
t

) ≤ 22t(
n
βn

) ≤ O(
√
n)

22t

2h(β)n
= O(

√
n)2(2β−h(β))n.

For i ∈ {1, . . . , n− 1} \ {t, n− t} we have ρi(D) = 0. Thus indeed

ρ(D) ≤ O(
√
n)2(2β−h(β))n.

Theorem 7.3 can now be easily derived. The first step is determining the optimal value of β:
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Complete
binary tree
on 2βn ver-
tices

Path of length (1− 2β)n

Figure 2: The hard distribution used to prove Lemma 7.4.1, in decision tree form

Claim 7.4.2. We have
max
β∈[0,1]

2h(β)−2β = 1.25,

and the maximum is attained (uniquely) at β = 1/5.

Proof. Let f(β) = h(β)− 2β. Calculation shows that the derivative f ′(β) is equal to

f ′(β) = log

(
1− β
β

)
− 2,

which is decreasing for 0 < β < 1 and vanishes at β = 1/5. Thus f(β) achieves a unique maximum
over β ∈ (0, 1) at β = 1/5, where

2f(1/5) = 2h(1/5)−2·1/5 = 1.25.

Proof of Theorem 7.3:

Proof. Let β := 1/5. Claim 7.4.2 shows that 2−(2β−h(β)) = 1.25. Fix any n of the form n = 2a

2β for a
positive integer a. It follows from Lemma 7.4.1 together with the first inequality in Theorem 7.3.1
that uOpt(n, 0) ≥ 1.25n/O(

√
n).

A general n can be written in the form n = 2a

2β for a positive integer a and 1/4 ≤ β ≤ 1/2.
Lemma 7.4.1 and Theorem 7.3.1 show that for any integer ` ≥ 0,

uOpt(n, 0) ≥ 2[h(β/2`)−2β/2`]n/O(
√
n).

Calculation shows that when β ≤ β0 ≈ 0.27052059413118146, this is maximized at ` = 0, and
otherwise this is maximized at ` = 1. Denote the resulting lower bound by L(β)n/O(

√
n), the

minimum of L(β) is attained at β0, at which point its value is L(β0) ≈ 1.23214280723432.
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7.5 Lower bounding ρmin(n)

We will derive Theorem 7.2 from the following lemma:

Lemma 7.5.1. For every non-constant dyadic distribution µ there exists 0 < β < 1 such that

ρ(Spl(µ)) ≥ 2(2β−h(β))n

O(
√
n)O(logn)

= 2(2β−h(β))n−o(n).

Proof. Assume without loss of generality that the probabilities in µ are non-increasing:

µ1 ≥ µ2 ≥ · · · ≥ µn.

The idea is to find a partition of Xn of the form

Xn =

γ⋃
i=1

(Di ∪ Ei)

which satisfies the following properties:

1. Di consists of elements having the same probability pi.

2. If Di has an even number of elements then Ei = ∅.

3. If Di has an odd number of elements then µ(Ei) = pi.

4. γ = O(log n). (In fact, γ = o(n/ log n) would suffice.)

We will show later how to construct such a partition.
The conditions imply that µ(Di ∪ Ei) is an even integer multiple of pi, say µ(Di ∪ Ei) = 2cipi.

It is not hard to check that ci = d|Di|/2e.
Given such a partition, we show how to lower bound the maximum relative density of Spl(µ).

If Si ⊆ Di is a set of size ci for each i ∈ [γ] then the set S =
⋃
i Si splits µ:

µ(S) =

γ∑
i=1

cipi =
1

2

γ∑
i=1

µ(Di ∪ Ei) =
1

2
.

Defining c =
∑γ

i=1 ci, we see that each such set S contains c elements, and the number of such sets
is

γ∏
i=1

(
|Di|
ci

)
≥

γ∏
i=1

22ci

O(
√
n)

=
22c

O(
√
n)O(logn)

,

using the estimate (
m

dm/2e

)
= Θ

(
22dm/2e
√
m

)
,

which follows from Stirling’s approximation.
In order to obtain an estimate on the maximum relative density of Spl(µ), we use the following

folklore upper bound6 on
(
n
c

)
: (

n

c

)
≤ 2h(c/n)n.

6Here is a quick proof: Let Y be a uniformly random subset of Xn of size c, and let Yi indicate the event xi ∈ Y .
Then log

(
n
c

)
= H(Y ) ≤ nH(Y1) = nh(c/n).

46



We conclude that the maximum relative density of Spl(µ) is at least

ρ(µ) ≥ ρc(µ) ≥
∏γ
i=1

(|Di|
ci

)(
n
c

) ≥ 22c−h(c/n)n

O(
√
n)O(logn)

.

To obtain the expression in the statement of the lemma, take β := c/n.

We now show how to construct the partition of Xn. We first explain the idea behind the
construction, and then provide full details; the reader who is interested only in the construction
itself can skip ahead.

Proof idea Let q1, . . . , qγ be the different probabilities of elements in µ. We would like to put all
elements of probability qi in the set Di, but there are two difficulties:

1. There might be an odd number of elements whose probability is qi.

2. There might be too many distinct probabilities, that is, γ could be too large. (We need
γ = o(n/ log n) for the argument to work.)

The second difficulty is easy to solve: we let D1 = {x1}, and use Lemma 4.1 to find an index
` such that µ(E1) := µ({x`, . . . , xn}) = µ1. A simple argument shows that all remaining elements
have probability at least µ1/n, and so the number of remaining distinct probabilities is O(log n).
(The reader should observe the resemblance between E1 and the tail of the hard distribution
constructed in Lemma 7.4.1.)

Lemma 4.1 also allows us to resolve the first difficulty. The idea is as follows. Suppose that the
current set under construction, Di, has an odd number of elements, each of probability qi. We use
Lemma 4.1 to find a set of elements whose total probability is qi, and put them in Ei.

Detailed proof Let N be the maximal index such that µN > 0. Since µ is non-constant,
µ1 ≤ 1/2, and so Lemma 4.1 proves the existence of an index M such that µ({xM+1, . . . , xN}) = µ1

(we use the furthermore part of the lemma, and M = `− 1). We take

D1 := {x1}, E1 := {xM+1, . . . , xn}.

Thus µ(D1) = µ(E1) = µ1, and so µ({x2, . . . , xM}) = 1 − 2µ1 (possibly M = 1, in which case the
construction is complete).

By construction nµM > µ(E1) = µ1, and so µM < µ1/n. In particular, the number of distinct
probabilities among µ2, . . . , µM is at most log n. This will guarantee that γ ≤ log n+ 1, as will be
evident from the construction.

The construction now proceeds in steps. At step i, we construct the sets Di and Ei, given
the set of available elements {xαi , . . . , xM}, where possibly αi = M + 1; in the latter case, we
have completed the construction. We will maintain the invariant that µ({xαi , . . . , xM}) is an even
multiple of µαi ; initially α2 := 2, and µ({xαi , . . . , xM}) = (1/µ1 − 2)µ1 is indeed an even multiple
of µ2.

Let βi be the maximal index such that µβi = µαi (possibly βi = αi). We define

Di := {xαi , . . . , xβi}.

Suppose first that |Di| is even. In this case we define Ei := ∅, and αi+1 := βi + 1. Note that

µ({xαi+1 , . . . , xM}) = µ({xαi , . . . , xM})− |Di|µαi ,
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and so the invariant is maintained.
Suppose next that |Di| is odd. In this case µ({xβi+1, . . . , xM}) ≥ xαi , since µ({xβi+1, . . . , xM})

is an odd multiple of µαi . Therefore we can use Lemma 4.1 to find an index γi such that
µ({xβi+1, . . . , xγi}) = µαi . We take

Ei := {xβi+1, . . . , xγi}

and αi+1 := γi + 1. Note that

µ({xαi+1 , . . . , xM}) = µ({xαi , . . . , xM})− (|Di|+ 1)µαi ,

and so the invariant is maintained.
The construction eventually terminates, say after step γ. The construction ensures that µα2 >

µα3 > · · · > µαγ . Since there are at most log n distinct probabilities among the elements {xα2 , . . . , xM},
γ ≤ log n+ 1, completing the proof.

Theorem 7.2 follows immediately from the second inequality in Theorem 7.3.1 together with
the following lemma:

Lemma 7.5.2. Fix an integer n and let D be a dyadic set in Xn. Then

ρ(D) ≥ 1.25−n−o(n),

and thus
ρmin(n) ≥ 1.25−n−o(n).

Proof. Fix a dyadic set D in Xn. Lemma 7.5.1 implies that there exists 0 < β < 1 such that
ρ(D) ≥ 2(2β−h(β))n−o(n). Using Claim 7.4.2 we have 22β−h(β) ≥ 4

5 , and so

ρ(D) ≥ (4/5)n · 2−o(n) = 1.25−n−o(n).

8 Combinatorial benchmark with prolixity

In the previous section we studied the minimum size of a set Q of questions with the property that
for every distribution, there is an optimal decision tree using only questions from Q. In this section
we relax this requirement by allowing the cost to be slightly worse than the optimal cost.

More formally, recall that uOpt(n, r) is the minimum size of a set of questions Q such that for
every distribution π there exists a decision tree that uses only questions from Q with cost at most
Opt(π) + r.

In a sense, uOpt(n, r) is an extension of uH(n, r) for r ∈ (0, 1): indeed, uH(n, r) is not defined
for r < 1 since for some distributions π there is no decision tree with cost less than H(π) + 1 (see
Section 5). Moreover, Opt(π), which is the benchmark used by uOpt(n, r), is precisely the optimal
cost, whereas H(π), the benchmark used by uH(n, r) is a convex surrogate of Opt(π).

We focus here on the range r ∈ (0, 1). We prove the following bounds on uOpt(n, r), establishing
that uOpt(n, r) ≈ (r · n)Θ(1/r).

Theorem 8.1. For all r ∈ (0, 1), and for all n > 1/r:

1

n
(r · n)

1
4r ≤ uOpt(n, r) ≤ n2(3r · n)

16
r .

As a corollary, we get that the threshold of exponentiality is 1/n:

48



Corollary 8.2. If r = ω(1/n) then uOpt(n, r) = 2o(n).
Conversely, if r = O(1/n) then uOpt(n, r) = 2Ω(n).

For larger r, the following theorem is a simple corollary of Theorem 6.1 and the bound uOpt(n, r) ≤
uH(n, r) ≤ uOpt(n, r − 1):

Theorem 8.3. For every r ≥ 1 and n ∈ N,

1

e
br + 1cn1/br+1c ≤ uOpt(n, r) ≤ 2brcn1/brc.

Theorem 8.1 is implied by the following lower and upper bounds, which provide better bounds
when r ∈ (0, 1) is a negative power of 2.

Theorem 8.4 (Lower bound). For every r of the form 1/2k, where k ≥ 1 is an integer, and n > 2k:

uOpt(n, r) ≥ (r · n)
1
2r
−1.

Theorem 8.5 (Upper bound). For every r of the form 4/2k, where k ≥ 3 is an integer, and n > 2k:

uOpt(n, r + r2) ≤ n2
(3e

4
r · n

) 4
r .

These results imply Theorem 8.1, due to the monotonicity of uOpt(n, r), as follows.
Let r ∈ (0, 1). For the lower bound, pick the smallest t ≥ r of the form 1/2k. Note that t ≤ 2r,

and thus:

uOpt(n, r) ≥ uOpt(n, t) ≥ (t · n)
1
2t
−1 ≥ (r · n)

1
4r
−1 ≥ 1

n
(r · n)

1
4r .

For the upper bound, pick the largest t of the form 4/2k, k ≥ 3 such that t+ t2 ≤ r. Note that
t ≥ r/4 (since s = r/2 satisfies s+ s2 ≤ 2s ≤ r), and thus

uOpt(n, r) ≤ uOpt(n, t+ t2) ≤ n2
(3e

4
t · n

) 4
t ≤ n2(3r · n)

16
r .

Section organization. We prove the lower bound (Theorem 8.4) in Section 8.1, and the upper
bound (Theorem 8.5) in Section 8.2.

8.1 Lower bound

Pick a sufficiently small δ > 0 (as we will soon see, δ < r2 suffices), and consider a distribution µ
with 2k − 1 “heavy” elements (this many elements exist since n > 1/r), each of probability 1−δ

2k−1
,

and n− (2k−1) “light” elements with total probability of δ. Recall that a decision tree is r-optimal
if its cost is at most Opt(µ) + r. The proof proceeds by showing that if T is an r-optimal tree, then
the first question in T has the following properties:

(i) it separates the heavy elements to two sets of almost equal sizes (2k−1 and 2k−1 − 1), and

(ii) it does not distinguish between the light elements.

The result then follows since there are
(

n
2k−1

)
such distributions σ (the number of ways to choose

the light elements), and each question can serve as a first question to at most
(n−(2k−1−1)

2k−1

)
of them.

To establish these properties, we first prove a more general result (cf. Lemma 7.2.5):
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x y a′ a′′

(a) Original tree

x

y

a′ a′′

(b) Transformed tree

Figure 3: The transformation in Lemma 8.1.1. The cost decreases by µ
(
{x}
)
− µ

(
{a′, a′′}

)
> ε.

Lemma 8.1.1. Let µ be a distribution over a finite set X, and let A ⊆ X be such that for every
x /∈ A, µ

(
{x}
)
> µ(A) + ε. Then every decision tree T which is ε-optimal with respect to µ has a

subtree T ′ whose set of leaves is A.

Proof. By induction on |A|. The case |A| = 1 follows since any leaf is a subtree. Assume |A| > 1.
Let T be a decision tree which is ε-optimal with respect to µ. Let x, y be two siblings of maximal
depth. Note that it suffices to show that x, y ∈ A, since then, merging x, y to a new element z with
µ({z}) = µ({x}) + µ({y}) and applying the induction hypothesis yields that A∪ {z} \ {x, y} is the
set of leaves of a subtree of T with x, y removed. This finishes the proof since x, y are the children
of z.

It remains to show that x, y ∈ A. Let d denote the depth of x and y. Assume toward contra-
diction that x /∈ A. Pick a′, a′′ ∈ A, with depths d′, d′′ (this is possible since |A| > 1). If d′ < d or
d′′ < d then replacing a′ with x or a′′ with x improves the cost of T by more than ε, contradicting
its optimality. Therefore, it must be that d′ = d′′ = d, and we perform the following transformation
(see Figure 3): the parent of x and y becomes a leaf with label x (decreasing the depth of x by 1),
y takes the place of a′ (the depth of y does not change), and a′′ becomes an internal node with two
children labeled by a′, a′′ (increasing the depths of a′, a′′ by 1). Since µ

(
{x}
)
−µ
(
{a′, a′′}

)
> ε, this

transformation improves the cost of T by more than ε, contradicting its ε-optimality.

Corollary 8.1.2. Let µ be a distribution over X, and let A ⊆ X be such that for every x /∈ A,
µ
(
{x}
)
> µ(A). Then every optimal tree T with respect to µ has a subtree T ′ whose set of leaves is

A.

Property (ii) follows from Lemma 8.1.1, which implies that if δ is sufficiently small then all
light elements are clustered together as the leaves of some subtree. Indeed, by Lemma 8.1.1, this
happens if the probability of a single heavy element (which is 1−δ

2k−1
) exceeds the total probability

of all light elements (which is δ) by at least r. A simple calculation shows that setting δ smaller
than r2 suffices.

We summarize this in the following claim:

Claim 8.1.3 (light elements). Every r-optimal tree has a subtree whose set of leaves is the set of
light elements.

The next claim concerns the other property:
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Claim 8.1.4 (heavy elements). In every r-optimal decision tree, the first question partitions the
heavy elements into a set of size 2k−1 and a set of size 2k−1 − 1.

Proof. When k = 2, it suffices to prove that an r-optimal decision tree cannot have a first question
which separates the heavy elements from the light elements. Indeed, the heavy elements in such
a tree reside at depths 2, 3, 3. Exchanging one of the heavy elements at depth 2 with the subtree
consisting of all light elements (which is at depth 1) decreases the cost by 1−δ

2k−1
− δ > r, showing

that the tree wasn’t r-optimal.
Suppose that some r-optimal decision tree T contradicts the statement of the claim, for some

k ≥ 3. The first question in T leads to two subtrees T1, T2, one of which (say T1) contains at least
2k−1 + 1 heavy elements, and the other (say T2) contain at most 2k−1 − 2. One of the subtrees
also contains a subtree T ′ whose leaves are all the light elements. For the sake of the argument, we
replace the subtree T ′ with a new element y.

We claim that T1 contains an internal node v at depth D(v) ≥ k − 1 which has at least two
heavy descendants. To see this, first remove y if it is present in T1, by replacing its parent by its
sibling. The possibly modified tree T ′1 contains at least 2k−1 + 1 leaves, and in particular some leaf
at depth at least k. Its parent v has depth at least k − 1 and at least two heavy descendants, in
both T ′1 and T1.

In contrast, T2 contains at least two leaves (since 2k−1 − 2 ≥ 2), and the two shallowest ones
must have depth at most k − 2. At least one of these is some heavy element x`.

Exchanging v and x` results in a tree T ∗ whose cost c(T ∗) is at most

c(T ∗) ≤ c(T ) + (D(v)−D(x`))(2− 1)
1− δ
2k − 1

≤ c(T ∗)− 1− δ
2k − 1

< c(T )− r,

contradicting the assumption that T is r-optimal. (That 1−δ
2k−1

> r follows from the earlier assump-

tion 1−δ
2k−1

> δ + r.)

By the above claims, there are two types of first questions for µ, depending on which of the two
subtrees of the root contains the light elements:

• Type 1: questions that split the elements into a part with 2k−1 elements, and a part with
n− 2k−1 elements.

• Type 2: questions that split the elements into a part with 2k−1− 1 elements, and a part with
n− (2k−1 − 1) elements.

If we identify a question with its smaller part (i.e. the part of size 2k−1 or the part of size 2k−1−1),
we deduce that any set of questions with redundancy r must contain a family F such that (i) every
set in F has size 2k−1 or 2k−1 − 1, and (ii) for every set of size n− (2k − 1), there exists some set
in F that is disjoint from it. It remains to show that any such family F is large.

Indeed, there are
(

n
2k−1

)
sets of size n − (2k − 1), and since every set in F has size at least

2k−1 − 1, it is disjoint from at most
(n−(2k−1−1)
n−(2k−1)

)
=
(n−(2k−1−1)

2k−1

)
of them. Thus

|F| ≥
(

n
2k−1

)(n−(2k−1−1)
2k−1

) =
n(n− 1) · · · (n− (2k−1 − 1) + 1)

(2k − 1)(2k − 2) · · · (2k−1 + 1)
≥
( n

2k
)2k−1−1

= (r · n)
1
2r
−1.
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8.2 Upper bound

The set of questions. In order to describe the set of queries it is convenient to assign a cyclic
order on Xn: x1 ≺ x2 ≺ · · · ≺ xn ≺ x1 ≺ · · · .The set of questions Q consists of all cyclic intervals,
with up to 2k elements added or removed. Since r = 4 · 2−k, the number of questions is plainly at
most

n2

(
n

2k

)
32k ≤ n2

(3e

4
r · n

) 4
r ,

using the inequality
(
n
d

)
≤
(
en
d

)d
.

High level of the proof. Let π be an arbitrary distribution on Xn, and let r ∈ (0, 1) be of the
form 4 · 2−k, with k ≥ 3. Let µ be a Huffman distribution for π; we remind the reader that µ is
a dyadic distribution corresponding to some optimal decision tree for π. We construct a decision
tree T that uses only queries from Q, with cost

T (π) ≤ Opt(π) + r + r2 =
∑
x∈Xn

π(x) log
1

µ(x)
+ r + r2.

The construction is randomized: we describe a randomized decision tree TR (‘R’ denotes the ran-
domness that determines the tree) which uses queries from Q and has the property that for every
x ∈ Xn, the expected number of queries TR uses to find x satisfies the inequality

E
R

[TR(x)] ≤ log
1

µ(x)
+ r + r2, (3)

where TR(x) is the depth of x. This implies the existence of a deterministic tree with cost Opt(µ)+
r + r2: indeed, when x ∼ µ, the expected cost of TR is

E
x∼π;R

[TR(x)] ≤
∑
x∈Xn

π(x)
( 1

µ(x)
+ r + r2

)
= Opt(π) + r + r2.

Since the randomness of the tree is independent from the randomness of π, it follows that there is
a choice of R such that the cost of the (deterministic) decision tree TR is at most Opt(π) + r+ r2.

It is routine to derandomize the algorithm using the method of conditional expectations.

The randomized decision tree. The randomized decision tree maintains a dyadic sub-distribution
µ(i) that is being updated after each query. A dyadic sub-distribution is a measure on Xn such
that (i) µ(i)(x) is either 0 or a power of 2, and (ii) µ(i)(Xn) =

∑
x∈Xn µ

(i)(x) ≤ 1. A natural

interpretation of µ(i)(x) is as a dyadic sub-estimate of the probability that x is the secret element,
conditioned on the answers to the first i queries. The analysis hinges on the following properties:

1. µ(0) = µ,

2. µ(i)(x) ∈
{

2µ(i−1)(x), µ(i−1)(x), 0
}

for all x ∈ Xn,

3. if x is the secret element then almost always µ(i)(x) is doubled; that is, µ(i)(x) > 0 for all i,
and the expected number of i’s for which µ(i)(x) = µ(i−1)(x) is at most r + r2.
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These properties imply (3), which implies Theorem 8.5.
Next, we describe the randomized decision tree and establish these properties.
The algorithm distinguishes between light and heavy elements. An element x ∈ Xn is light if

µ(i)(x) < 2−k. Otherwise it is heavy. The algorithm is based on the following win-win-win situation:
(i) If the total mass of the heavy elements is at least 1/2 then by Lemma 4.1, there is a set I

of heavy elements whose mass is exactly 1/2. Since the number of heavy elements is at most 2k,
the algorithm can ask whether x ∈ I and recurse by doubling the sub-probabilities of the elements
that are consistent with the answer (and setting the others to zero).

(ii) Otherwise, the mass of the heavy elements is less than 1/2. If the mass of the light elements
is also less than 1/2 (this could happen since µ(i) is a sub-distribution), then we ask whether x
is a heavy element or a light element, and accordingly recurse with either the heavy or the light
elements, with their sub-probabilities doubled (in this case the “true” probabilities conditioned on
the answers become larger than the sub-probabilities).

(iii) The final case is when the mass of the light elements is larger than 1/2. In this case we
query a random cyclic interval of light elements of mass ≈ 1/2, and recurse; there are two light
elements in the recursion whose sub-probability is not doubled (the probabilities of the rest are
doubled).

Elements whose probability is not doubled occur only in case (iii).

The randomized decision tree: formal description. The algorithm gets as input a subset
y1, . . . , ym of Xn whose order is induced by that of Xn, and a dyadic sub-distribution q1, . . . , qm.
Initially, the input is x1, . . . , xn, and qi = µi.

We say that an element is heavy is qi ≥ 2−k; otherwise it is light. There are at most 2k heavy
elements. The questions asked by the algorithm are cyclic intervals in y1, . . . , ym, with some heavy
elements added or removed. Since each cyclic interval in y1, . . . , ym corresponds to a (not necessarily
unique) cyclic interval in Xn (possibly including elements outside of y1, . . . , ym), these questions
belong to Q.

Algorithm TR.

1. If m = 1, return y1. Otherwise, continue to Step 2.

2. If the total mass of heavy elements is at least 1/2 then find (using Lemma 4.1) a subset I
whose mass is exactly 1/2, and ask whether x ∈ I. Recurse with either {2qi : yi ∈ I} or
{2qi : yi /∈ I}, according to the answer. Otherwise, continue to Step 3.

3. Let S be the set of all light elements, and let σ be their total mass. If σ ≤ 1/2 then ask
whether x ∈ S, and recurse with either {2qi : yi ∈ S} or {2qi : yi /∈ S}, according to the
answer. Otherwise, continue to Step 4.

4. Arrange all light elements according to their cyclic order on a circle of circumference σ, by
assigning each light element xi an arc Ai of length qi of the circle. Pick an arc of length
1/2 uniformly at random (e.g. by picking uniformly a point on the circle and taking an arc
of length 1/2 directed clockwise from it), which we call the window. Let K ⊆ S consist of
all light elements whose midpoints are contained in the window, and let B consist of the
light elements whose arcs are cut by the boundary of the window (so |B| ≤ 2); we call these
elements boundary elements. Ask whether x ∈ K; note that K is a cyclic interval in y1, . . . , ym
with some heavy elements removed.
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If x ∈ K, recurse with {2qi : yi ∈ K \ B} ∪ {qi : yi ∈ K ∩ B}. The sum of these dyadic
probabilities is at most 1 since the window contains at least qi/2 of the arc Ai for each
yi ∈ K ∩B.

If x /∈ K, recurse with {2qi : yi ∈ K \ B} ∪ {qi : yi ∈ K ∩ B}. As in the preceding case, the
total mass of light elements in the recursion is at most 2(σ − 1/2) (since the complement of
the window contains at least qi/2 of the arc Ai for each yi ∈ K ∩ B), and the total mass of
heavy elements is 2(1− σ), for a total of at most (2σ − 1) + (2− 2σ) = 1. /

Analysis. We now finish the proof by establishing the three properties of the randomized decision
tree that are stated above. The first two properties follow immediately from the description of the
algorithm, and it thus remains to establish the third property. Fix some x ∈ Xn, and let d ∈ N
be such that µ(x) = 2−d. We need to show that the expected number of questions that are asked
when the secret element is x is at most d+ r + r2.

Let q = q(i) denote the sub-probability of x after the i’th question; note that q ∈ {2−j : j ≤ d}.

Lemma 8.2.1. If q ≥ 2−k then q doubles (that is, q(i+1) = 2q(i)). Otherwise, the expected number
of questions until q doubles is at most 1

1−4q .

Proof. From the description of the algorithm, it is clear that the only case in which the sub-
probability of x is not doubled is when x is one of the two boundary elements in Step 4. This only
happens when x is a light element (i.e. q < 2−k). The probability that x is one of the boundary
elements is at most 2q/σ ≤ 4q, where σ ≥ 1/2 is the total mass of light elements: indeed, the
probability that a given endpoint of the window lies inside the arc corresponding to q is q/σ, since
each endpoint is distributed uniformly on the circle of circumference σ.

It follows that the distribution of the number of questions that pass until q doubles is dominated
by the geometric distribution with failure probability 4q, and so the expected number of questions
until q doubles is at most 1

1−4q .

The desired bound on the expected number of questions needed to find x follows from Lemma 8.2.1:
as long as q, the sub-probability associated with x, is smaller than 2−k, it takes an expected number
of 1

1−4q questions until it doubles. Once q ≥ 2−k, it doubles after every question. Thus, by linearity
of expectation, the expected total number of questions is at most:

k +

d∑
j=k+1

1

1− 4 · 2−j
< k +

d∑
j=k+1

[1 + 4 · 2−j + 2(4 · 2−j)2]

= d+

d∑
j=k+1

[4 · 2−j + 2(4 · 2−j)2]

< d+ 4 · 2−k +
2

3
(4 · 2−k)2

< log
1

µ(x)
+ r + r2.
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9 High min-entropy

We have shown that using comparison and equality queries, we can achieve redundancy 1 on every
distribution: rH(Q≺ ∪ Q=) = 1. The worst case is distributions concentrated almost entirely on
one element. One can ask what redundancy can be achieved when the maximal probability of the
given distribution π, denoted as πmax, is very low, and analyze its asymptotic behavior as πmax goes
to zero. This regime can be described as high min-entropy (the min-entropy, a quantity important
in pseudorandomness theory, is given by H∞(π) = log 1

πmax
).

This natural question has been studied extensively in the case of Huffman codes, in a body
of work [Gal78, Joh80, CGT86, Man92] culminating in the work of Manstetten [Man92], who
determined the worst-case redundancy in terms of πmax. We extend this analysis for decision trees
using Q≺ and for decision trees using Q≺ ∪ Q=. Using similar proof techniques, we show that
rOpt(Q≺) = 1 and bound uOpt(n, 1/2) and uOpt(n, 1).

Formally, assume that Q = (Q(1),Q(2), . . . ) is a sequence of sets of questions, where Q(n)

contains questions for the set Xn. Given 0 < p ≤ 1, define

rHp (Q) = sup
n∈N;

π distribution over Xn
s.t. πmax≤p

rH(Q(n), π).

Let rH0 (Q) = limp→0 r
H
p (Q); we call this quantity the asymptotic redundancy of Q. We similarly

define rOpt
p (Q) and rOpt

0 (Q), the asymptotic prolixity of Q.
The question of determining the asymptotic redundancy has been considered regarding Huffman

codes by Gallager [Gal78], who showed that the value is

rH0 (2X) = 1− log e+ log log e ≈ 0.086,

where 2X = (2X1 , 2X2 , . . .). In more detail, he showed that rHp (2X) ≤ p + (1 − log e + log log e),

and mentioned that this bound is achievable. We provide a proof of the lower bound on rH0 (2X) in
Section 9.4.

Regarding comparison and equality queries, we prove the following theorem:

Theorem 9.1. The asymptotic prolixity of Q≺ ∪Q= is

rOpt
0 (Q≺ ∪Q=) = 1/2.

The asymptotic redundancy of Q≺ ∪Q= satisfies

0.5011 ≈ 3− log 3− log e+ log log e ≤ rH0 (Q≺ ∪Q=) ≤ 3/2− log e+ log log e ≈ 0.586.

Regarding only comparison queries, we prove the following theorem:

Theorem 9.2. The asymptotic redundancy of Q≺ is

rH0 (Q≺) = 2− log e+ log log e ≈ 1.086.

The asymptotic prolixity of Q≺ is
rOpt

0 (Q≺) = 1.
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For comparison, it is known that rH(Q(n)
≺ ) = 2 for all n ≥ 3: the upper bound follows from

Gilbert and Moore [GM59], and the lower bound from distributions concentrated almost entirely

on one element in the middle. Additionally, rOpt(Q(n)
≺ ) = 1 for n ≥ 3: the lower bound is due to the

same distribution, and the upper bound is by Nakatsu [Nak91]. As a consequence, uOpt(n, 1) ≤ n−1
for all n ≥ 1. We reproduce the techniques of Gilbert–Moore and Nakatsu in Section 9.1.

Our proof method also allows us to analyze interval queries:

Theorem 9.3. For all n ≥ 1,

rOpt(Q(n)
� ) ≤ 1/2.

As a consequence, uOpt(n, 1/2) ≤
(
n+1

2

)
.

Our upper bounds are based on an extension of the Gilbert–Moore algorithm [GM59], also
known as Shannon–Fano–Elias encoding, and a precursor of arithmetic coding. Our lower bounds
follow by computing the cost of distributions of the form ε, α, ε, α, . . . , ε, α, ε, which we call padded
uniform distributions.

Section organization. We describe the Gilbert–Moore method and discuss our extensions in
Section 9.1. A simple application of this technique appears in Section 9.2, in which we prove
Theorem 9.3. A more sophisticated application appears in Section 9.3, in which we prove the
upper bound parts of Theorem 9.1. We prove all lower bounds and Theorem 9.2 in Section 9.4.

9.1 Gilbert–Moore and its extensions

The algorithms in this section are based on the Gilbert–Moore method [GM59] (also known as
Shannon–Fano–Elias encoding). This encoding scheme, which corresponds to an algorithm using
only comparison queries (i.e. the set Q≺), proceeds as follows.

Let π be a distribution over Xn. We associate with each element xi ∈ Xn a point pi ∈
[0, 1]. The algorithm performs a binary search over [0, 1], maintaining an interval that contains
the “live” elements (those consistent with the answers to the preceding questions). The initial
interval is [0, 1], and its length decreases by half in each iteration. At each step, the algorithm
asks a comparison query which separates the elements in the left half of the interval from those in
its right half. The algorithm stops whenever the interval contains only a single element. Setting
pi = π1 + · · ·+ πi−1 + πi/2 guarantees that element xi will be identified whenever the interval is of
length at most πi/2; this takes at most dlog(2/πi)e questions, for a total average of

n∑
i=1

πi

⌈
log

2

πi

⌉
<

n∑
i=1

πi

(
log

2

πi
+ 1

)
= H(π) + 2.

The bound can be improved to Opt(π) + 1 (this implies the preceding bound since Opt(π) <
H(π) + 1), as was noticed by Nakatsu [Nak91]. Let τ be a Huffman distribution for π (recall that
this is a dyadic distribution which corresponds to some optimal unrestricted decision tree for π).
Setting pi = τ1 + · · · + τi−1 + τi/2 guarantees that it takes dlog(2/τi)e = log(2/τi) questions to
identify xi, for a total average of

n∑
i=1

πi

(
log

2

τi

)
= Opt(π) + 1.

This proves that rOpt(Q≺) ≤ 1.
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Enabling also equality queries (i.e. the set Q=), and introducing randomness, we can reduce
the cost further. Each element xi is assigned an interval Ti ⊆ [0, 1] which is disjoint from the
other intervals and placed between Ti−1 and Ti+1, and a point pi which is the midpoint of Ti.
While Gilbert–Moore maintains an interval in its binary search, the new algorithm maintains an
interval-with-holes I. The algorithm behaves similarly to Gilbert–Moore, with the following change:
whenever I contains an interval Ti of size |I|/2 in its entirety, the algorithm asks whether x = xi
(recall that x is the secret element). If the question is answered positively then the algorithm stops,
and otherwise Ti is removed from I, creating a hole.

Placing the intervals T1, . . . , Tn along [0, 1] randomly allows getting non-trivial bounds on the
expected number of questions required to identify each element. Such random placements enables
us to prove Theorem 9.3 as well as the following Lemma 9.4:

Lemma 9.4. Suppose that π is a distribution in which the maximum element has probability less
than 1/(2`− 1). Then there is an algorithm using Q≺ ∪Q= with cost at most Opt(π) + 1/2 + 22−`.

Lemma 9.4 almost immediately implies the upper bound parts of Theorem 9.1.

9.2 Upper bound for interval queries

In this subsection we flesh out the ideas in the preceding subsection, proving Theorem 9.3: given
a distribution π, we construct a randomized algorithm using Q� whose expected cost is at most
Opt(π) + 1/2.

Let π be a distribution over Xn, and let τ be a Huffman distribution for π.

Algorithm CP. Associate with each element xi an interval of length τi on the unit circumference
circle, whose points we identify with [0, 1): choose a uniformly random starting point, and place
the intervals T1, . . . , Tn consecutively. Denote the midpoint of Ti by pi.

The algorithm maintains an interval-with-holes—an interval in [0, 1) from which some of the
intervals Ti have potentially been removed—which contains the midpoints pi corresponding to the
live elements, which are those consistent with the answers to previous questions. We denote the
interval-with-holes after the `’th question by I`, and maintain the invariant that the length of I`
(excluding the holes) is exactly 2−`.

Initialize I0 = [0, 1), and execute the following steps for ` = 1, 2, . . . until I` contains a single
element:

1. If I`−1 completely contains some interval Ti of size 2−` then ask whether x = xi (if there exist
two such elements, choose one arbitrarily; both questions are equivalent). If so, terminate.
Otherwise, remove Ti from I`−1 to obtain I`, and continue to the next iteration.

2. If I`−1 contains no interval of size 2−` in its entirety, partition I`−1 into two intervals-with-
holes of length 2−` (this could cut one of the intervals Ti into two halves), and ask which
one contains the midpoint corresponding to x. Set I` accordingly, and continue to the next
iteration. /

Each question in the algorithm can be implemented using an interval query, since in Step 1 it
is an equality query (which is also an interval query), and in Step 2 it is patently an interval query.

The analysis of the algorithm relies on crucial properties of I`:

Lemma 9.2.1. For all ` ≥ 0, the interval I` satisfies the following two properties:
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1. The two endpoints of I` are of the form a/2` for some integer a.

2. The length of each hole is 2−r for r ≤ `.

Proof. The proof is by induction. Both properties clearly hold for I0. Supposing that they hold for
I`−1, we will prove that they also hold for I`, depending on which of the two steps in the algorithm
was executed.

In Step 1, we form I` by removing an interval of length 2−` from I`−1. This shows that the
second property is maintained. If the hole doesn’t touch the endpoints, the first property is clearly
maintained. If the hole touches the left endpoint a/2`−1 (the other case is similar) then the new
left endpoint is

a

2`−1
+ 2−` +

∑
j

2−rj ,

where the 2−rj are the lengths of all holes which are skipped (if any). Since rj ≤ `− 1 for all j by
the induction hypothesis, the new left endpoint is of the form a′/2`.

In Step 2, we form I` by splitting I`−1 at a midpoint (there could be two midpoints, on two sides
of a hole). This is the same as cutting out intervals of total length 2−` (possibly splitting one of
them into two parts), and an analysis as in Step 1 shows that both properties are maintained.

The performance of the algorithm is captured by the following lemma:

Lemma 9.2.2. For all xi ∈ Xn, Algorithm CP uses at most log 1
τi

+ 1/2 questions, in expectation,
to identify xi as the secret element.

Proving the lemma completes the proof of Theorem 9.3, since the expected number of queries
of Algorithm CP is at most

n∑
i=1

πi

(
log

1

τi
+

1

2

)
= Opt(π) +

1

2
.

It is routine to derandomize the algorithm using the method of conditional expectations.

Proof of Lemma 9.2.2. Consider an element xi ∈ Xn as the secret element, and let τi = 2−m. Since
Ti is placed at a random position in the unit circle, its midpoint pi is a random point on the unit
circle. We let pi = (b + θ)/21−m, where b is an integer and θ ∈ [0, 1) is distributed uniformly on
[0, 1). Denote by E the event that 1/4 ≤ θ ≤ 3/4, which happens with probability 1/2. Since
(1/4)/21−m = |Ti|/2, in that case Ti ⊆ [b/21−m, (b+ 1)/21−m].

If the algorithm reaches iteration ` = m + 1, then the interval Im+1 is an interval of length
2−m−1 containing the midpoint of Ti. Since half of Ti already has length 2−m−1, we see that Im+1

must contain only Ti. In other words, the algorithm always terminates after asking at most m+ 1
questions.

We now show that if the event E happens then the algorithm finds xi after asking at most m
questions. Indeed, suppose that xi has not been found after m− 1 questions. Since Im−1 contains
the midpoints of all live elements, it contains pi = (b+ θ)/21−m. On the other hand, the endpoints
of Im−1 are of the form a/21−m, and so Im−1 contains all of [b/21−m, (b + 1)/21−m] ⊇ Ti. Thus
Step 1 is executed at iteration ` = m, revealing xi.

We conclude that xi is found after at most (1/2)m + (1/2)(m + 1) = m + 1/2 = log 1
τi

+ 1/2
questions, in expectation.
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We can slightly modify the algorithm in order to handle non-dyadic distributions τ . We change
the condition of Case 1 from containing all of an interval Ti of length 2−` to containing a part of
length at least 2−` of an interval Ti, including its midpoint pi. Also, instead of removing Ti from
I`−1 we remove a sub-interval of Ti of length 2−` that contains the midpoint pi.

A very similar analysis then shows that element xi is found after log 1
τi

+ 1 − α questions in

expectation, where α ∈ [1/2, 1) is the unique number in [1/2, 1) satisfying τi = α/21−m.

9.3 Upper bound for comparison and equality queries

The main idea in the previous subsection was to place the intervals at a uniformly random position,
and this implied that the expected number of queries required to find xi is log 1

τi
+ 1/2. As can

be verified by examining the proof of Lemma 9.2.2, it is sufficient that pi mod 2τi be distributed
uniformly in [0, 2τi). The following algorithm exploits this idea to reduce the set of questions from
Q� to Q≺ ∪Q=.

Let π be a distribution over Xn, and let τ be a Huffman distribution for π with maximal
probability τmax = 2−`.

Algorithm IP. Partition Xn into 2`−2 sets of measure 2−(`−2) (Lemma 4.1 shows that this is
always possible). Choose a random such set, and halve all of its probabilities. Let q1, . . . , qn be the
resulting sub-distribution; note that these probabilities sum to 1− 2−(`−1).

Associate with each element xi an interval of length qi on the unit interval [0, 1] by choosing a
random starting point in [0, 2−(`−1)) and placing the intervals T1, . . . , Tn consecutively.

Continue as in Algorithm CP, replacing the placement of the intervals T1, . . . , Tn with the one
described here. /

The analog of Lemma 9.2.2 is:

Lemma 9.3.1. For all xi ∈ Xn, Algorithm IP uses at most log 1
τi

+ 1/2 + 4τmax questions, in
expectation, to identify xi as the secret element.

Proof. Let pi = (b + θ)/21−m, as in the proof of Lemma 9.2.2. That proof only relied on the fact
that θ is distributed uniformly on [0, 1). Since m ≥ ` and the starting point of T1 was uniform
in [0, 2−(`−1)), this still holds, and so the proof of Lemma 9.2.2 implies that given q1, . . . , qn, the
expected number of questions to identify xi is at most

log
1

qi
+

1

2
.

On the other hand, qi = τi with probability 1− 2−(`−2) = 1− 4τmax, and qi = τi/2 with probability
4τmax. The lemma immediately follows.

In order to deduce Lemma 9.4, we need to relate the maximal probability in an arbitrary
distribution π to the maximal probability in a Huffman distribution τ for π:

Claim 9.3.2 ([CS92, Lemma 1]). Let π be any distribution, and let τ be a corresponding Huffman
distribution. If the maximal probability in τ is 2−` then the maximal probability in π is at least
1/(2`+1 − 1).

In order to make the paper self-contained, we prove this simple claim.
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Proof. Consider the decision tree corresponding to τ , and let xi be a leaf at depth ` of maximum
measure under π; such a leaf exists by assumption.

If y is an internal node at depth ` then we claim that π(y) ≤ 2π(xi) (here π(y) is the weight of
leaves in the subtree rooted at y). Indeed, otherwise y has a child z satisfying π(z) > π(xi); since
z is at depth `+ 1 while xi is at depth `, exchanging xi and z would decrease the cost of the tree,
leading to a contradiction.

Since xi is a leaf at minimum depth, there are exactly 2` − 1 other nodes at level `. Each
such node y satisfies π(y) ≤ 2π(xi) (we have shown this for internal nodes, and it holds for leaves
by the choice of xi). In total, we find that the sum of π(y) over all nodes at level ` is at most
π(xi) + (2` − 1) · 2π(xi) = (2`+1 − 1)π(xi). Since this sum equals 1, we deduce that π(xi) ≥
1/(2`+1 − 1).

Lemma 9.4 immediately follows:

Proof of Lemma 9.4. Let τ be a Huffman distribution corresponding to π. Claim 9.3.2 shows that
all probabilities in τ are at most 2−`. Lemma 9.3.1 shows that Algorithm IP uses this many
questions in expectation:

n∑
i=1

πi

(
log

1

τi
+

1

2
+ 22−`

)
= Opt(π) +

1

2
+ 22−`.

The upper bound rOpt
0 (Q≺∪Q=) ≤ 1/2 in Theorem 9.1 immediately follows. The upper bound

on rH0 (Q≺ ∪Q=) follows from a classical result of Gallager:

Theorem 9.3.3 ([Gal78, Theorem 2]). If the distribution π on Xn has maximum probability πmax

then rOpt(2Xn , π) ≤ πmax + 1− log e+ log log e.

We prove the corresponding lower bound rOpt
0 (2X) ≥ 1− log e+ log log e in Section 9.4.

9.4 Lower bounds

In this subsection we lower bound the values of rH0 and rOpt
0 on the sets Q≺ and Q≺ ∪Q=:

Lemma 9.5. The asymptotic redundancy and prolixity of Q≺ and Q≺ ∪Q= are lower bounded by

rH0 (Q≺ ∪Q=) ≥ 3− log 3− log e+ log log e ≈ 0.5011,

rOpt
0 (Q≺ ∪Q=) ≥ 1/2,

rH0 (Q≺) ≥ 2− log e+ log log e ≈ 1.08607,

rOpt
0 (Q≺) ≥ 1.

This allows us to complete the proofs of all theorems stated in the introduction: the first two
inequalities complete the proof of Theorem 9.1 (the upper bound on rH0 (Q≺ ∪ Q=) was proved in

Section 9.3, and the one on rOpt
0 (Q≺∪Q=) follows from Lemma 9.4), and the latter two inequalities

complete the proof of Theorem 9.2 (the upper bound on rOpt
0 (Q≺) is the same as the upper bound

on rOpt(Q≺) presented in Section 9.1 and due to Nakatsu [Nak91], and the one on rH0 (Q≺) follows
via Theorem 9.3.3).

To simplify notation, in this subsection we consider distributions in which some elements have
zero probability. In contrast to the definition in Section 4, we ask that any decision tree for such
distributions be correct on all elements. The same lower bounds can be achieved on full support
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distributions by replacing all zero probability elements with small probability elements; details left
to the reader.

The distributions we are interested in are padded uniform distributions:

• Un = (1/n, . . . , 1/n); for example, U2 = (1/2, 1/2).

• U0
n = (0, 1/n, . . . , 1/n); for example, U0

2 = (0, 1/2, 1/2).

• Pn = (1/n, 0, 1/n, . . . , 0, 1/n); for example, P2 = (1/2, 0, 1/2).

• P0
n = (0, 1/n, 0, 1/n, . . . , 0, 1/n); for example, P0

2 = (0, 1/2, 0, 1/2).

• P00
n = (0, 1/n, 0, 1/n, . . . , 0, 1/n, 0); for example, P00

2 = (0, 1/2, 0, 1/2, 0).

We calculate the cost of these distributions under Q≺ and under Q≺ ∪Q=, and compare these
to the optimal costs. In all cases, we will show that the best strategy is to split the distributions
as equally as possible, at least for large enough n.

It will be useful to work with a scaled cost,

C(Q,Un) = n · c(Q,Un),

defined analogously for the other distributions.
The following observation will be crucial:

Lemma 9.4.1. Suppose n = α2k, where α ∈ [1/2, 1]. Then `n− 2` is maximized over the integers
at ` = k.

Proof. Let ∆` = `n− 2`. Note that

∆`+1 −∆` = (`+ 1)n− `n− 2`+1 + 2` = n− 2`.

Thus ∆`+1 ≥ ∆` iff n ≥ 2`. In particular, since n ≥ 2k−1 we conclude that ∆k ≥ ∆k−1 ≥ · · · , and
since n ≤ 2k we conclude that ∆k ≥ ∆k+1 ≥ · · · .

Corollary 9.4.2. Let B > 0, and suppose that n = Bα2k, where α ∈ [1/2, 1]. Then `n − B2` is
maximized over the integers at ` = k.

Proof. Apply the lemma to m = n/B, noticing that `n−B2` = B(`m− 2`).

We start by analyzing the cost of these distributions under unrestricted decision trees:

Lemma 9.4.3. Suppose n = α2k, where α ∈ [1/2, 1]. Then

c(2Xn ,Un) = k + 1− 1

α
,

c(2Xn ,U0
n) = k + 1− 1− 2−k

α
.

Moreover, the bound on U0
n holds for any distribution obtained from Un by adding any (positive)

number of zeroes, and in particular for Pn,P
0
n,P

00
n .
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Proof. In terms of the scaled cost, our goal is to prove

C(2X ,Un) = (k + 1)n− 2k,

C(2X ,U0
n) = (k + 1)n− 2k + 1.

The proof is by induction on n. For the base case, n = 1, we are claiming that C(2X , (1)) = 0 and
C(2X , (0, 1)) = 1; both claims are easy to verify.

Suppose now that n > 1. Any non-trivial algorithm for Un splits Un into Un1 ,Un2 for some
n1 + n2 = n, where n1, n2 ≥ 1. Lemma 9.4.1 (choosing ` = k − 1) shows that the scaled cost of
such an algorithm is

n+ C(2X ,Un1) + C(2X ,Un2) ≥ n+ [kn1 − 2k−1] + [kn2 − 2k−1] = (k + 1)n− 2k.

To show that (k+1)n−2k can be achieved, we consider two cases. If n = 2m then 2k−2 ≤ m ≤ 2k−1,
and so splitting Un into Um,Um results in a scaled cost of

n+ 2(km− 2k−1) = (k + 1)n− 2k.

If n = 2m + 1 then 2k−2 ≤ m + 1/2 ≤ 2k−1, and so 2k−2 ≤ m ≤ m + 1 ≤ 2k−1. Splitting Un into
Um,Um+1 thus results in a scaled cost of

n+ [km− 2k−1] + [k(m+ 1)− 2k−1] = (k + 1)n− 2k.

This completes the proof in the case of Un.
The proof of the inductive step for U0

n is very similar, and left to the reader; the crucial obser-
vation is that any non-trivial algorithm splits U0

n into Un1 ,U
0
n2

for some positive n1, n2 satisfying
n1 + n2 = n.

Finally, the claim about distributions obtained from U0
n by adding zeroes follows from Huffman’s

algorithm.

We continue by analyzing the cost under decision trees using Q≺:

Lemma 9.4.4. Suppose n = α2k, where α ∈ [1/2, 1]. Then

c(Q≺,Pn) = k + 2− 1 + 2−k

α
,

c(Q≺,P0
n) = k + 2− 1

α
,

c(Q≺,P00
n ) = k + 2− 1− 2−k

α
.

Proof. The proof of this lemma is very similar to the proof of Lemma 9.4.3. In terms of the scaled
cost, we are aiming at proving the following:

C(Q≺,Pn) = (k + 2)n− 2k − 1,

C(Q≺,P0
n) = (k + 2)n− 2k,

C(Q≺,P00
n ) = (k + 2)n− 2k + 1.

When n = 1, we verify that c(Q≺, (1)) = 0, c(Q≺, (0, 1)) = 1, and c(Q≺, (0, 1, 0)) = 2.
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For the induction step, note that the distributions split as follows:

Pn −→ Pn1 ,P
0
n2
,

P0
n −→ Pn1 ,P

00
n2
| P0

n1
,P0

n2
,

P00
n −→ P0

n1
,P00

n2
,

where in all cases, n1 + n2 = n. The rest of the proof is very similar to that of Lemma 9.4.3, and
we leave it to the reader.

Finally, we analyze the cost under decision trees using Q≺ ∪Q= (a similar calculation appears
in Spuler [Spu94b]):

Lemma 9.4.5. Suppose n = 3α2k, where α ∈ [1/2, 1] and k ≥ 0. Then

c(Q≺ ∪Q=,Pn) = k + 3− 1

α
,

and the same formula holds for P0
n and P00

n .
When n = 1:

c(Q≺ ∪Q=,P1) = 0,

c(Q≺ ∪Q=,P
0
1) = c(Q≺ ∪Q=,P

00
1 ) = 1.

Proof. In terms of the scaled cost, our goal is to prove that for n > 1,

C(Q≺ ∪Q=,Pn) = (k + 3)n− 3 · 2k,

and the same holds for P0
n and P00

n .
The base case requires us to verify that C(Q≺ ∪ Q=, (1)) = 0 while C(Q≺ ∪ Q=, (0; 1)) =

C(Q≺ ∪Q=, (0; 1; 0)) = 1.
We also need to verify the cases n = 2 and n = 3 manually. We verify that the scaled cost of

the distributions P2,P
0
2,P

00
2 is 3, and that of P3,P

0
3,P

00
3 is 6.

The induction step is very similar to the analysis in Lemma 9.4.4, replacing Lemma 9.4.1 by
Corollary 9.4.2 (with B = 3); note that equality queries correspond to the choice n1 = 1, since the
surrounding zero probability elements (if there is more than one) can be merged without affecting
the cost.

There is one slight difficulty: the analysis uses the formulas for the scaled costs of Pm,P
0
m,P

00
m ,

but these are invalid when m = 1. These formulas are used for both the lower bound and the upper
bound. The case m = 1 only appears in the upper bound when n ≤ 3. In the lower bound, the
formulas are used only via Corollary 9.4.2 applied to ` = k− 1. In view of this, it suffices to verify
that when n ≥ 4 (and so k ≥ 1), the inequality C(Q≺ ∪Q=,P1) = 0 ≥ (k+ 2)− 3 · 2k−1 holds.

We conclude with the proof of Lemma 9.5:

Proof of Lemma 9.5. We start by proving the results on Q≺. Let n = α2k, where α ∈ [1/2, 1].
Lemma 9.4.4 shows that

c(Q≺,P0
n)−H(P0

n) =
[
k + 2− 1

α

]
−
[
k + logα

]
= 2− 1

α
− logα.

The choice of α ∈ [1/2, 1] that maximizes this quantity is α = 1/ log e, and this shows that
rH0 (Q≺) ≥ 2− log e+ log log e; note that while 2k/ log e is never an integer, for large k the quantity
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αk defined by αk2
k = bα2kc is very close to α, and so in the limit k → ∞ we obtain the stated

bound.
Lemma 9.4.4 and Lemma 9.4.3 together show that

c(Q≺,P00
n )− c(2X ,P00

n ) =
[
k + 2− 1− 2−k

α

]
−
[
k + 1− 1− 2−k

α

]
= 1.

This shows that rOpt
0 (Q≺) ≥ 1.

We continue with the lower bound on rH0 (Q≺ ∪ Q=). Let n = 3α2k, where α ∈ [1/2, 1] and
k ≥ 0. Lemma 9.4.5 shows that

c(Q≺ ∪Q=,Pn)−H(Pn) =
[
k + 3− 1

α

]
−
[
k + log 3 + logα

]
= 3− log 3− 1

α
− logα.

The choice of α ∈ [1/2, 1] that maximizes this quantity is α = 1/ log e, and this shows that
rH0 (Q≺) ≥ 3− log 3− log e+ log log e.

Finally, we prove the lower bound on rOpt
0 (Q≺ ∪ Q=). Let n = 2k = 3α2k−1, where α := 2/3.

Lemma 9.4.5 and Lemma 9.4.3 together show that

c(Q≺ ∪Q=,Pn)− c(2X ,Pn) =
[
k +

1

2

]
−
[
k + 2−k

]
=

1

2
− 2−k.

This shows that rOpt
0 (Q≺ ∪Q=) ≥ 1/2.

10 Open questions

Our work naturally leads to many open questions. We list quite a few of them.

10.1 Questions on Q≺ ∪Q=

Let us start by listing our main results on this set of questions:

• Theorem 5.1 shows that rH(Q≺ ∪Q=) ≤ 1.

• Theorem 9.1 shows that rOpt
0 (Q≺ ∪Q=) = 1/2 (see Section 9 for the relevant definitions).

• Theorem 9.1 also gives the bounds 0.5011 < rH0 (Q≺ ∪Q=) < 0.5861.

This prompts the following questions:

Open Question 1. What is uH(n, 1)?

Notes Theorem 5.1 implies that uH(n, 1) ≤ 2n− 3, and on the other hand it is easy to see that
uH(n, 1) ≥ n, since all equality queries are necessary. Can we replace Q≺ with a smaller set of
questions? Concretely, what happens if we only use comparison queries of the form x ≺ x2i?

Open Question 2. How fast can we compute rH(Q≺ ∪Q=, π)?
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Notes The optimal Huffman tree (that is, rH(2Xn , π)) can be computed in time O(n log n),
as shown by van Leeuwen [vL87]. The optimal alphabetic tree (that is, rH(Q≺, π)) can also be
computed in time O(n log n), as shown by Hu and Tucker [HT71] and by Garsia and Wachs [GW77].

In contrast, the fastest known algorithm to compute the best binary comparison search tree
(that is, rH(Q≺ ∪ Q=, π)), due to Anderson et al. [AKKL02] (who improved the algorithm of
Spuler [Spu94a]), runs in time O(n4). In contrast to the algorithms in the preceding cases, this
algorithm uses a simple dynamic programming approach. Can one compute rH(Q≺ ∪ Q=, π) in
time O(n log n)?

Open Question 3. What is rH0 (At)?

Notes As in Section 9, we can define rHp (At) is the supremum of the redundancy of At on
distributions π with πmax ≤ p (where πmax is the maximal probability of an element in π), and
rH0 (At) as the limit at p = 0.

In this language, Theorem 5.1 shows that rH0.9961(At) ≤ 0.96711. On the other hand, Theorem 9.1
implies that rH0 (At) > 0.5011.

Open Question 4. What is the redundancy of Q≺ ∪ Q= if we limit the number of questions that
the algorithm can ask in the worst case?

Notes While Algorithm At asks a small expected number of questions (at most 1 more than the
optimum), there could be elements on which the algorithm asks n− 1 questions; this is the case for
the distribution 1/2, 1/4, . . . , 1/2n−1, 1/2n−1, for example.

For unrestricted decision trees, it is known that restricting the maximal number of questions
per element to roughly log n suffices to obtain small redundancy: Gilbert [Gil71] showed that
bounding the number of questions per element by log n + log log n + K + 1 achieves redundancy
1 + 2−K , and Evans and Kirkpatrick [EK04] showed that bounding it by dlog ne + 1 achieves
redundancy 2. Computing the optimal length-restricted binary search tree has also been studied
extensively [HT72, Gar74, Lar87, Sch98, Bae07].

Can we achieve constant redundancy using Q≺∪Q= under the restriction that at most O(log n)
questions are asked on every element?

Open Question 5. What is rH0 (Q≺ ∪Q=)?

Notes As stated above, Theorem 9.1 gives non-matching lower and upper bounds.

Open Question 6. Is there a dynamic version of Algorithm At?

Notes Vitter [Vit87], improving on earlier work of Faller [Fal73], Gallager [Gal78], and Knuth [Knu85],
gave an algorithm for maintaining a dynamic Huffman tree. His algorithm runs in real time (up-
dating the tree takes O(1) operations per output bit), and its average cost is at most Opt(µ) + 1,
where µ is the empirical distribution.

Grinberg, Rajagopalan, Venkatesan and Wei [GRVW95] considered the same question for al-
phabetic trees (binary search trees without keys in internal nodes). Their algorithm, based on splay
trees (but using the improved technique of “semisplaying”), achieves an average cost of at most
roughly 2c(Q≺, µ) + 2.

Can we match Vitter’s result in the context of Algorithm At? A dynamic version of Algorithm At
would maintain a decision tree using Q≺ ∪ Q= with redundancy 1 with respect to the current
empirical distribution, and will have average cost of at most H(µ) + O(1), or at the very least, at
most O(H(µ)).
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10.2 Questions on uOpt(n, 0)

Our main results on uOpt(n, 0) include:

1. For all n, uOpt(n, 0) ≤ 1.25n+o(n) (Theorem 7.2).

2. For all n, uOpt(n, 0) ≥ 1.232n−o(n) (Theorem 7.3).

3. For all n of the form n = 1.25 · 2m, uOpt(n, 0) ≥ 1.25n−o(n) (Theorem 7.3).

4. For all n there is an explicit set of O(2n/2) questions which supports efficient construction of
optimal decision trees (Theorem 7.5).

Our work leaves several questions unanswered:

Open Question 7. What is the value of uOpt(n, 0) for n not of the form n = 1.25 · 2m?

Notes While our work determines uOpt(n, 0) for n = 1.25 · 2m up to subexponential factors, for
general n our bounds only imply

1.232n−o(n) ≤ uOpt(n, 0) ≤ 1.25n+o(n).

Theorem 7.3.1 reduces the problem to that of computing the quantity ρmin(n), which determines
uOpt(n, 0) up to polynomial factors.

The hard distribution used to derive the lower bound for n = 1.25 ·2m consists of 0.4n−1 leaves
at depth m− 1, and 0.6n+ 1 “small” elements. We can obtain a similar lower bound for values of
n close to 1.25 · 2m, but for other values of n it seems that a different construction is needed.

We conjecture that rate of growth of uOpt(n, 0) depends only on the fractional value of log n.
In more detail, we conjecture that there exists a function G : [1, 2]→ R such that for α ∈ [1, 2] and
n = α2m,

uOpt(n, 0) = G(α)n±o(n).

The proof of Theorem 7.3 shows that

G(α) ≥ max(2h( 1
2α

)− 1
α , 2h( 1

4α
)− 1

2α ),

and in particular G(1.25) = 1.25. Theorem 7.2 shows that G(α) ≤ 1.25. Also, G(1) = G(2), and
presumably, G is continuous.

Moreover, we conjecture that for every α there is a sequence of hard distributions which specify
how many elements are at level m− 1,m, . . . (as a fraction of n), and how many are “small”. This
conjecture reduces the problem of computing G to an optimization problem which we do not know
how to solve, even numerically.

Open Question 8. Is there an explicit optimal set of questions of size 1.25n+o(n)?

Notes Theorem 7.2 shows that for every n there exists an optimal set of questions (one matching
Opt(µ) for every distribution µ) of size 1.25n+o(n). However, the construction is probabilistic.

Theorem 7.5 gives an explicit set of questions of size O(
√

2
n
) which allows the efficient con-

struction of optimal decision trees. This explicit set of questions is a hitting set not only for all
dyadic sets (defined in Section 7.1), but even for all maximal antichains.
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It would be very interesting to find an explicit optimal set of questions of size 1.25n+o(n), or
even of any size (

√
2− ε)n. It would be even better if one can efficiently construct optimal decision

trees using this set of questions.
The proof of Theorem 7.2 shows that it suffices to construct a hitting set for combinatorial

cubes of the form
γ∏
i=1

(
Di

d|Di|/2e

)
,

where γ ≤ log n + 1, the sets D1, . . . , Dγ ⊆ Xn are disjoint (but don’t necessarily partition Xn),
and

(
D
c

)
consists of all subsets of D of size c.

Open Question 9. Can Huffman’s algorithm achieve the bound 1.25n+o(n) for dyadic distributions?

Proof. Huffman’s algorithm is non-deterministic, in the sense that at any given step there might
be more than one possible move. This is because at each step we merge two elements of minimum
probability, and there might be many elements having the minimum probability.

Gallager [Gal78] showed that each Huffman tree satisfies the sibling property : the nodes in the
tree can be arranged in non-decreasing order of probability (the probability of an internal node
being the sum of the probabilities of all leaves in its subtree) such that two adjacent nodes are
siblings. Conversely, any such tree can be produced by Huffman’s algorithm.

It is easy to see that even considering this non-determinism, Huffman’s algorithm potentially
uses 2n−o(n) questions; just pick a generic distribution with a balanced first question, and consider
all of its permutations. However, it could be the case that if we only consider dyadic distributions,
then we can make intelligent non-deterministic choices that restrict the number of questions needed
to implement the resulting decision tree.

Open Question 10. How many questions are needed if the support has size m� n?

Notes Some of our results are sensitive to the size m of the support. For example, Algorithm At
of Section 5.1 can be implemented in time O(m logm) rather than just O(n log n).

How large should a set of questions be if we only require it to be optimal for distributions with
bounded support, as a function of both the domain size n and the support size m?

10.3 Questions on uH(n, r) and uOpt(n, r)

Here is a summary of our results on uH(n, r) and uOpt(n, r) (for r > 0):

• Distributions almost concentrated on a single element show that uH(n, 1) ≥ n.

• Theorem 5.1 shows that uH(n, 1) ≤ 2n− 3.

• Theorem 6.1 states that for every r ≥ 1 and n ∈ N,

1

e
brcn1/brc ≤ uH(n, r) ≤ 2brcn1/brc.

• Theorem 8.1 states that for all r ∈ (0, 1) and n > 1/r:

1

n
(r · n)

1
4r ≤ uOpt(n, r) ≤ n2(3r · n)

16
r .

67



• Theorem 8.3 states that for every r ≥ 1 and n ∈ N,

1

e
br + 1cn1/br+1c ≤ uOpt(n, r) ≤ 2brcn1/brc.

• Theorem 9.2 states that uOpt(n, 1) ≤ n− 1.

• Theorem 9.3 states that uOpt(n, 1/2) ≤
(
n+1

2

)
.

Open Question 11. What are the exact asymptotics of uH(n, r)?

Notes Theorem 6.1 shows that for integer r,

1

e
rn1/r ≤ uH(n, r) ≤ 2rn1/r.

When r = 1 we have the improved lower bound uH(n, 1) ≥ n, showing that the constant 1/e can
be improved in this case.

Does the following limit exist? What is its value?

L = lim
integer r→∞

uH(n, r)

rn1/r
.

Open Question 12. Does uH(n, r) depend only on brc?

Notes Our only general bound, Theorem 6.1, has this property.

Open Question 13. What are the asymptotics of uOpt(n, r)?

Notes We consider the cases r ∈ (0, 1) and r ≥ 1 separately.

Small r. When r ∈ (0, 1), Theorem 8.1 shows that for n > 1/r,

(rn)1/4r−O(1) ≤ uOpt(n, r) ≤ Cr(rn)16/r+O(1),

where Cr depends only on r.
Does there exist a constant K such that for r ∈ (0, 1),

uOpt(n, r) ≈ (rn)K/r,

the approximation possibly hiding factors of the form Crn
O(1)?

Large r. When r ≥ 1 is an integer, Theorem 8.3 shows that

1

e
(r + 1)n1/(r+1) ≤ uOpt(n, r) ≤ 2rn1/r.

What is the correct exponent of n? Is it 1/(r+1), 1/r, or something in between? For non-integer
r, does it depend only on brc?

Open Question 14. What are uOpt(n, 1) and uOpt(n, 1/2)?
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Notes The Gilbert–Moore algorithm shows that uOpt(n, 1) ≤ n − 1, using Q≺ as the set of
questions. Theorem 9.3 shows that uOpt(n, 1/2) ≤

(
n+1

2

)
, using Q� as the set of questions.

Are these bounds optimal? If not, are there exponents α, β such that uOpt(n, 1) = Θ(nα) and
uOpt(n, 1/2) = Θ(nβ)?

10.4 Other questions

The following question is prompted by the results of Section 9 on distributions with high min-
entropy:

Open Question 15. What is the smallest set of questions satisfying rH0 (Q) = 1− log e+log log e ≈
0.086?

Notes Gallager [Gal78] showed that if µ has maximal probability µmax then the redundancy of a
Huffman code for µ is at most µmax + 1− log e+ log log e, and furthermore, there are distributions
with arbitrarily small µmax which require redundancy 1− log e+log log e. In other words, rH0 (2X) =
1− log e+ log log e.

Comparison and equality queries match Huffman codes in terms of redundancy on unrestricted
distributions. When the maximal probability is taken into account, this is no longer the case:
Theorem 9.1 shows that the asymptotic redundancy, as the maximal probability tends to zero, is
at least 3− log 3− log e+ log log e ≈ 0.5011.

How many questions are needed to achieve the optimal asymptotic redundancy 0.086? How
many are needed to get below 0.5?

The next question is prompted by Lemma 7.2.7:

Open Question 16. What is the smallest hitting set for maximal antichains which are closed
under complementation?

Notes Section 7 shows that uOpt(n, 0) is the size of the smallest hitting set for dyadic sets (defined
in Section 7.1). One of our main results there is a lower bound of roughly 1.25n on the size of a
hitting set for dyadic sets, which holds for infinitely many n.

Lemma 7.2.7 shows that every dyadic set is a maximal antichain which is closed under comple-
mentation. Hitting sets for maximal antichains have been considered by Lonc and Rival [LR87],
who called them fibres. They conjectured that the smallest hitting set has size O(2n/2), but the
best lower bound is only Ω(2n/3), due to  Luczak [ Lu98, DS01];  Luczak improved on Duffus, Sands
and Winkler [DSW90], who gave a lower bound of Ω(1.25n) using the techniques of Section 7.

It is natural to ask what is the size of a hitting set for all maximal antichains closed under
complementation. Is there a hitting set of size (2−ε)n/2? Can we prove a lower bound of (1.25+ε)n?

Maximal antichains which are closed under complementation are closely related to maximal
qualitatively independent families of sets. A family F ⊆ 2Xn is qualitively independent if for every
two sets A,B ∈ F , all of A∩B,A∩B,A∩B,A∩B are non-empty. It is not hard to check that if F
is a maximal qualitatively independent family then {A,A : A ∈ F} is a maximal antichain which
is closed under complementation. Conversely, given a maximal antichain F which is closed under
complementation, if we take one set out of each pair A,A then we get a maximal qualitatively
independent family.

As a consequence of the foregoing, if Q is a hitting set for maximal qualitatively independent
families then Q is a hitting set for maximal antichains closed under complementation. Conversely,
if Q is a hitting set for maximal antichains closed under complementation, then {A,A : A ∈ Q}
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is a hitting set for maximal qualitatively independent families. Denoting the minimal size of a
hitting set for all maximal antichains closed under complementation by N1, and the minimal size
of a hitting set for all qualitatively independent families by N2, we conclude that N1 ≤ N2 ≤ 2N1.

10.5 Suggestions for future research

Many variants of Huffman codes appear in the literature; see for example the survey by Abra-
hams [Abr97]. This prompts several venues for future exploration, only some of which we mention
here.

Open Question 17. Generalize the results in the paper to D-way questions.

Notes What happens if we allow questions to have D answers rather than just two answers?
This is a classical topic in information theory, and most results generalize to this case; it is even
mentioned in Huffman’s original paper.

The set of questions Q≺ naturally generalize to this case: instead of comparing against a single
element, partition Xn into D intervals; this includes Q= as a special case. What redundancy can
be achieved by this set of questions?

Open Question 18. Generalize the results in the paper to the length-restricted case.

Notes What happens if we demand that every element be found after at most B questions, for
some bound B? We have already mentioned this case above, in relation to uH(n, 1), but it makes
sense for all other questions studied in this paper as well.

Open Question 19. Generalize the results in the paper to other cost functionals.

Notes The quantity of study in this paper is the average number of questions per element.
However, there is a lot of literature on other cost functions, see Baer [Bae07] for example; the
length-restricted case also fits to this framework.

Open Question 20. Generalize the results in the paper to the case of unequal costs.

Notes Suppose that instead of measuring the number of questions we measure the total cost of
answers, where a Yes answer has a different cost from a No answer; this is the case for Morse
code, for example, in which the two symbols have different duration. This is known as Karp’s
problem [Kar61].
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A Correct version of On binary search trees

De Prisco and De Santis, in their paper On binary search trees [DPDS93], claim that rH(Q≺, π) ≤
1 + pmax, where pmax is the maximum probability of an element in π. However, this is wrong even
for the simple distribution 0, 1/3, 0, 1/3, 0, 1/3, 0 (using the convention of Section 9.4 regarding zero
probability elements), as a simple calculation reveals. Nevertheless, their ideas can be used to prove
the following result:

Lemma A.1. For any distribution π over Xn,

rH(Q≺, π) < 1− π1 + πn
2

+
1

2

n−1∑
i=1

|πi+1 − πi|.

Proof. Let Y = x0.5 ≺ x1 ≺ x1.5 ≺ x2 ≺ · · · ≺ xn−0.5 ≺ xn ≺ xn+0.5, and extend π to a distribution
σ by giving all new elements zero probability. The Gilbert–Moore algorithm [GM59] (described in
Section 9.1) produces a decision tree using Q≺ whose cost is less than H(σ) + 2 = H(π) + 2.

The decision tree contains n+ 1 redundant leaves, corresponding to the newly added elements.
We get rid of them one by one:

xi+0.5 v

v

Getting rid of xi+0.5 in this way bumps up at least one of xi, xi+1 by one level; when i = 0 or
i = n, only one of these options is available. In total, we bump up leaves whose total probability
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is at least

π1 +πn+

n−1∑
i=1

min(πi, πi+1) = π1 +πn+

n−1∑
i=1

πi + πi+1 − |πi − πi+1|
2

= 1+
π1 + πn

2
− 1

2

n−1∑
i=1

|πi−πi+1|.

The cost of the pruned tree is thus as stated. Replacing each question ≺ xi+0.5 by the equivalent
question ≺ xi+1, we get a legal decision tree for the original distribution π using Q≺.
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