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Abstract

We investigate Boolean degree 1 functions for several classical association schemes, including
Johnson graphs, Grassmann graphs, graphs from polar spaces, and bilinear forms graphs, as well as
some other domains such as multislices (Young subgroups of the symmetric group). In some settings,
Boolean degree 1 functions are also known as completely regular strength 0 codes of covering radius
1, Cameron–Liebler line classes, and tight sets.

We classify all Boolean degree 1 functions on the multislice. On the Grassmann scheme Jq(n, k)
we show that all Boolean degree 1 functions are trivial for n ≥ 5, k, n − k ≥ 2 and q ∈ {2, 3, 4, 5},
and that, for general q, the problem can be reduced to classifying all Boolean degree 1 functions
on Jq(n, 2). We also consider polar spaces and the bilinear forms graphs, giving evidence that all
Boolean degree 1 functions are trivial for appropriate choices of the parameters.

MSC2010: 05B25, 05E30, 06E30.

1 Introduction

Analysis of Boolean functions is a classical area of research in combinatorics and computer science, deal-
ing with 0, 1-valued functions on finite domains. Most research in the area has focused on functions on
the hypercube H(n, 2), a product domain which can also be realized as the tensor power Fn2 . Boolean
functions on the hypercube appear naturally in various guises in theoretical computer science, combina-
torics, and random graph theory, and as a consequence have been thoroughly investigated. The recent
monograph of O’Donnell [50] provides a good exposition of the area and its applications.

In the last years researchers have been working on extending the theory to other domains, chiefly
the Johnson graph J(n, k), also known as a slice of the hypercube, which consists of all k-subsets of
[n] := {1, . . . , n}; consult [25, 26, 29, 30, 39, 51] for some of the work in this area. Recently, the Grassmann
graph Jq(n, k), which is the q-analog of the Johnson graph, has come to attention in theoretical computer
science [15, 16, 40, 41], but its research from the point of view of analysis of Boolean functions is at its
infancy.

Let xi be the Boolean function on the hypercube with xi(S) = 1 if Si = 1 and xi(S) = 0 otherwise.
We say that a Boolean function has degree d if we can write f as a multivariate polynomial in x1, . . . , xn
of degree d. The following is folklore (see [50, Exercise 1.19]):

Theorem 1.1 (Folklore). Every Boolean degree 1 function on H(n, 2) is either constant or depends on
a single coordinate.

Meyerowitz [5, Theorem 7] extended this to H(n,m), a result which we reproduce in Section 7.
The aim of this paper is to produce such a classification of Boolean degree 1 function for various other
structures, mostly classical association schemes.

Similar problems have been investigated by various researchers under different names. In the context
of distance-regular graphs (see [4]) and Q-polynomial association schemes, a special class of association
schemes, Boolean degree 1 functions are known as completely regular strength 0 codes of covering radius
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1 (also strength 0 designs) [44]. Motivated by problems on permutation groups and finite geometry,
Boolean degree 1 functions are also known as tight sets [2, 12] and Cameron–Liebler line classes [17].
The history of Cameron–Liebler line classes is particularly complicated, as the problem was introduced
by Cameron and Liebler [7], the term coined by Penttila [52, 53], and the algebraic point of view as
Boolean degree 1 functions only emerged later; see [59], in particular §3.3.1, for a discussion of this.

Due to this variation of terminology, classification results of Boolean degree 1 functions on J(n, k)
were obtained repeatedly in the literature (with small variations due to different definitions) at least
three times, in [49] for completely regular strength 0 codes of covering radius 1, in [25] for Boolean
degree 1 functions, and in [11] for Cameron–Liebler line classes:

Theorem 1.2 (Folklore). Suppose that k, n − k ≥ 2. Every Boolean degree 1 function on J(n, k) is
either constant or depends on a single coordinate.

Depending on the definition used, this is either easy to observe or requires a more elaborate proof.

For the hypercube H(n, 2), which is a product domain, and the Johnson graph J(n, k) classifying
Boolean degree 1 functions is trivial, but there are various other classical association schemes for which
classification is more difficult. The Grassmann scheme Jq(n, k) consists of all k-spaces of Fnq as vertices,
two vertices being adjacent if their meet is a subspace of dimension k− 1. Boolean degree 1 functions on
Jq(4, 2) were intensively investigated, and many non-trivial examples [6, 8, 9, 24, 33, 37] and existence
conditions [34, 47] are known.

We call 1-dimensional subspaces of Fnq points, 2-dimensional subspaces of Fnq lines, and (n − 1)-
dimensional subspaces of Fnq hyperplanes. For a point p we define p+(S) = 1p∈S and p−(S) = 1p/∈S , and
for a hyperplane π we define π+(S) = 1S⊆π and π−(S) = 1S*π. The following was shown by Drudge for

q = 3 [17, Theorem 6.4]; by Gavrilyuk and Mogilnykh for q = 4 [35, Theorem 3]; and by Gavrilyuk and
Matkin [32, 45] for q = 5; the result for q = 2 follows easily from [17, Theorem 6.2]:

Theorem 1.3 (Drudge, Gavrilyuk and Mogilnykh, Gavrilyuk and Matkin). Let q ∈ {2, 3, 4, 5} and
either (a) n ≥ 5 or (b) n = 4 and q = 2. Let f be a Boolean degree 1 function f on Jq(n, 2). Then f or
its complement 1− f is one of the following: 1, p+, π+, p+ ∨ π+.

Here p is a point and π is a hyperplane satisfying the condition p /∈ π; and p+∨π+(S) = 1p∈S or S⊆π.

For Jq(n, k), some restrictions on the parameters of Boolean degree 1 functions are known, see [48, 54].
Our main result for Jq(n, k) is the following, which extends Theorem 1.3:

Theorem 1.4. Let q ∈ {2, 3, 4, 5}, k, n − k ≥ 2, and either (a) n ≥ 5 or (b) n = 4 and q = 2. Let f
be a Boolean degree 1 function f on Jq(n, k). Then f or its complement 1 − f is one of the following:
1, p+, π+, p+ ∨ π+.

Here p is a point, π is a hyperplane, and p /∈ π.

This improves Corollary 5.5 in [54]. In particular, we reduce the problem to the Jq(n, 2) case. As
soon as a version of Theorem 1.3 (with the same classification) is shown for some prime power q > 5 and
n ≥ 5, Theorem 1.4 will generalize to this value of q.

From an algebraic point of view, the Johnson graphs correspond to spherical buildings of type An [58,
Chapter 6]. There are two more non-exceptional families of spherical buildings, Cn and Dn, which in
the finite case contain the polar spaces O+(2n, q), O(2n+ 1, q), O−(2n+ 2, q), Sp(2n, q), U(2n, q), and
U(2n + 1, q). For our purposes we refer to all of these as polar spaces. Polar spaces arise naturally in
the study of finite classical groups, and are also relevant in other contexts, for example for quantum
matroids [57]. Boolean degree 1 functions on points of polar spaces are known as tight sets [2]. Boolean
degree 1 functions on maximals (maximal subspaces) of polar spaces, which are also known as dual polar
graphs, were recently investigated in [10], but the reader is warned that the definition of a Cameron–
Liebler line class in [10] only corresponds to a Boolean degree 1 function for O−(2n+ 2, q), O(2m+ 1, q),
O+(2m, q), Sp(2m, q), U(2n, q), and U(2n+ 1, q) (here m = 2n).

There exist highly complicated Boolean degree 1 functions on polar spaces, and a classification result
seems to be very hard to obtain. Our main result is as follows (see Section 5 for a more refined statement):

Theorem 1.5. Let k, n − k ≥ 2. Let f be a Boolean degree 1 function on the k-spaces of O+(2n, 2).
Then f can be written as a disjoint union of Boolean degree 1 functions induced by J2(2n, 2).

2



Our method is more general and covers all Boolean degree 1 functions on k-spaces of polar spaces
with k, n− k ≥ 2. Our theorem is limited to the O+(2n, 2) case as we lack a classification result similar
to Theorem 1.3 for other polar spaces.

Another important family of association schemes is the sesquilinear forms graphs. These include the
bilinear forms graphs, the alternating forms graphs, the Hermitian forms graphs, and the symmetric
bilinear forms graphs [4, Chapter 9.5]. Here we show that the family of non-trivial examples for Boolean
degree 1 functions on Jq(4, 2), q odd, induces non-trivial examples on Hq(2, 2). Furthermore, we conjec-
ture a classification of Boolean degree 1 functions on Hq(`, k) for sufficiently large k+ `, and verify it for
H2(2, 2).

Finite permutation groups naturally give rise to Boolean degree 1 functions. We discuss these cases
shortly in Section 7, and then apply the classification of Boolean degree 1 functions on the symmetric
group by Ellis, Friedgut and Pilpel [23] in Section 8 to obtain a classification of Boolean degree 1 functions
for the multislice, generalizing Theorem 1.2.

We conclude with some questions for future work in Section 9.

2 Preliminaries

We hope that this paper is interesting for researchers in the areas of association schemes, Boolean
functions, coding theory, finite geometry, and permutation groups. Hence, we introduce most of the
relevant notation in the following. In particular, we want to explain why the notions Boolean degree
1 function, completely regular strength 0 code, Cameron–Liebler line class, and tight set are often the
same.

2.1 Boolean functions

In all our examples we have some form of coordinates: elements of [n] for the Hamming graph H(n, 2),
the Johnson graph J(n, k), and the multislice; points (1-dimensional subspaces) of Fnq for the Grassmann
graph Jq(n, k) and for most graphs related to polar spaces; and transpositions (i j) or similar basic
operations for graphs derived from permutation groups.

We denote the constant one function by 1 = 1+ and the zero function by 0 = 1−. For a coordinate x,
we denote the indicator function of x by x+. Similarly, x− = 1−x+. We use the same notation for other
natural incidences such as incidence with hyperplanes. More generally, write f+ = f and f− = 1− f for
a Boolean function f . For Boolean functions f and g, we use Boolean operators such f ∨ g, f ∧ g and
f → g. In this setting, a Boolean degree 1 function is a 0, 1-valued function on the vertices that can be
written as f = c+

∑
i cixi.

For a Boolean function f on a domain D, we can identify f with the set {x ∈ D : f(x) = 1}. While we
mostly use logical notation, some reader might prefer set theoretical notation. Examples for equivalent
expressions include g → f and g ⊆ f , f ∨ g and f ∪ g, as well as f ∧ g and f ∩ g.

2.2 Association schemes

Delsarte established the systematic use of association schemes as a tool in combinatorics in his PhD
thesis [13]. There exist several different definitions of association schemes, and we stick to what is
sometimes known as a symmetric association scheme.

Definition 2.1. Let X be a finite set, whose members are known as vertices. A d-class association
scheme is a pair (X,R), where R = {R0, R1, . . . , Rd} is a set of binary symmetric relations with the
following properties:

(a) {R0, . . . Rd} is a partition of X ×X.

(b) R0 is the identity relation.

(c) There are constants p`ij such that for x, y ∈ X with (x, y) ∈ R` there are exactly p`ij elements z with
(x, z) ∈ Ri and (z, y) ∈ Rj .
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We denote |X| by v. The relations Ri can be described by their adjacency matrices Ai ∈ Cv×v defined
by

(Ai)xy =

{
1 if (x, y) ∈ Ri,
0 otherwise.

It is easily verified that the matrices Ai are Hermitian and commute pairwise, hence we can diagonalize
them simultaneously, i.e. they have the same eigenfunctions. From this we obtain pairwise orthogonal,
idempotent Hermitian matrices Ej ∈ Cv×v with the properties (possibly after reordering)

d∑
j=0

Ej = I, E0 = v−1J, (1)

Ai =

d∑
j=0

PjiEj , Ej = v−1
d∑
i=0

QijAi (2)

for some constants Pij and Qij . Here I is the identity matrix, and J is the all-ones matrix. A common
eigenspace Vj of the adjacency matrices corresponds to the row span of Ej ; the idempotent Ej is a
projection onto Vj . We say that a subset E of Ej ’s generates 〈Ej : 0 ≤ j ≤ d〉◦ if all Ej can be written as
a (finite) polynomial in elements of E using normal addition and the entry-wise product ◦. An association
scheme is Q-polynomial if there exists an idempotent matrix Ei that generates 〈Ej〉◦. In this case we
can rename Ei to E1, and uniquely order the idempotents by writing

E0 = v−1J = c0E
◦0
1 , E1 = E◦11 ,

E2 = c0E
◦0
1 + c1E

◦1
1 + c2E

◦2
2 , Ej =

j∑
k=0

ckE
◦k
k .

(In a few exceptional cases, there are two different idempotents which generate 〈Ej〉◦.) In a Q-polynomial
association scheme, a completely regular strength 0 code of covering radius 1 refers to a Boolean function
f which is orthogonal to all Vj with j > 1.

The Hamming graph gives rise to a Q-polynomial association scheme; here (x, y) ∈ Ri if the Hamming
distance between x and y is i (see [4, §9.2]). It is well-known that V0 + V1 in the usual Q-polynomial
ordering corresponds to the span of the indicator functions x+i . Hence, f being a completely regular
strength 0 code of covering radius 1 just means that f is a Boolean function which can be written as
f = c +

∑
i cix

+
i . Indeed, this behavior is rather typical for many of the graphs which we investigate.

Whenever this is the case, then we provide corresponding references that indeed the span of the x+i ’s
corresponds to V0 + V1.

In some other graphs under investigation, e.g. the symmetric group or non-maximal subspaces of
polar spaces, which do not correspond to a relation of a Q-polynomial association scheme, we still have
a similar behavior in the sense that the span of the x+i ’s corresponds to the span of very few Vj ’s, which
furthermore have a canonical description (for example, in the symmetric and general linear groups these
are the isotypic components corresponding to Young diagrams with at most one cell outside the first
row).

It follows from the definition of the matrix Q that the function gx,j defined by gx,j(y) = Qij if
(x, y) ∈ Ri, is orthogonal to all Vk with j 6= k. As the matrix Q is easily calculated with standard
techniques, this provides an easy way of showing the non-existence of certain Boolean degree 1 functions
with the help of an integer linear program. For a Q-polynomial association scheme, this goes as follows:

1. The outputs f(y) of f are the variables. These are 0, 1-valued, so that f is Boolean.

2. One set of constraints is
∑
y f(y)gx,k(y) = 0 for all vertices x and all k > 1. This guarantees that

f is a degree 1 function.

3. Another set of constraints is f 6= h for all known Boolean degree 1 functions h.

We use this technique to show some classification results for some finite cases.
If Boolean degree 1 functions f correspond to vectors in V0 + V1, then we can often give conditions

on the size of f . Let us repeat the following well-known result (see [18, Theorem 3] for a proof).
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Lemma 2.2. Suppose that f is a Boolean function in V0 +V1. If x is a vertex with f(x) = 0, then there
are exactly |f | · (P01 − P11)/v vertices y with f(y) = 1 and (x, y) ∈ R1.

Hence, |f | · (P01 − P11)/v is an integer. For example, for J(n, k) we have P01 = k(n − k), P11 =
(k − 1)(n − k − 1) − 1, and v =

(
n
k

)
. Hence, (P01 − P11)/v = k/

(
n−1
k−1
)
. This is a non-trivial condition:

as an example, for J(10, 4) this implies that the weight (number of 1s) of a Boolean degree 1 function is
divisible by 21.

In the following table, we list this divisibility condition for the association schemes we study in the
following sections (see the corresponding sections for the notation). We refer to [4, §9] and [3] for the
eigenvalues.

Graph P01 − P11 (P01 − P11)/v Conditions

H(n,m) m m−n+1

J(n, k) n k

(n−1
k−1)

Jq(n, 2) qn−1
q−1

q2−1
qn−1−1 n ≥ 4

Jq(n, k) qn−1
q−1

∏k
i=2

qi−1
qn−i+1−1 n ≥ 4, k, n− k ≥ 2

Hq(`, k) qk+1 q1−k(`−1) n ≥ 4, k ≥ ` ≥ 2

Cq(n, n, e) qn−1+e + 1
∏n−1
i=1 (qi−1+e + 1)−1

Qq(n) q2n−1 q−(n−1)
2

Aq(n) q2n−3 q−n(n−1)/2+2n−3

Note that in specific cases more detailed conditions are known, see for example [34] for Jq(4, 2).

Finite geometry and permutation groups The connection between association schemes, finite
geometry and permutation groups is well-explained in [59], in particular §3.3.2.

2.3 Coordinate-induced subgraphs

We say that an induced (coordinatized) subgraph Γ′ of a (coordinatized) graph Γ is a coordinate-induced
subgraph if the indicator functions of coordinates xi of Γ′ are the restrictions of the indicator functions
of coordinates xi of Γ. For example, the Johnson graph J(n, k) is a coordinate-induced subgraph of
H(n, 2), in which we only consider vertices of H(n, 2) with exactly k entries equal to 1.

In contrast, the Johnson graph J(3, 2) can be naturally embedded into the Fano plane J2(3, 2), e.g.
if {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7} is our model of the Fano plane, then the
induced subgraph on {1, 2, 3}, {1, 4, 5}, {3, 5, 7} is J(3, 2). But this embedding is not coordinate-induced
as the degree 1 polynomials on J(3, 2) correspond to the degree 1 polynomials in x1, x3, x5 rather than
all of x1, . . . , x7.

We make the following easy observation.

Lemma 2.3. Let Γ be a (coordinatized) graph and let Γ′ be a coordinate-induced subgraph of Γ. If f is
a degree d function of Γ, then the restriction of f to Γ′ is a degree d function.

Another example for a coordinate-induced subgraph is the natural embedding of J2(4, 2) in J(15, 3).
Clearly, this is a coordinate-induced subgraph, but we already saw that the degree 1 functions on J(15, 3)
are either constant or x±, whereas we have more examples of degree 1 functions on J2(4, 2). Hence, it is
clear that the reverse statement is not true.

3 Johnson graphs

As a warm-up for the Grassmann scheme, we will provide a new proof for Theorem 1.2. Our proof for
the analogous result for the Grassmann scheme will be similar though much longer and involving many
more cases. This is essentially due to the fact that on the Johnson scheme x /∈ S and x ∈ S for a subset
S are the same, whereas on the Grassmann scheme x /∈ S and x ∈ S⊥ for a subspace S are different
(where S⊥ denote the orthogonal complement of S).

Let P (k, `) be the following statement:
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Every Boolean degree 1 function on J(k + `, k) is equal to 0± or to x± for some x ∈ [n].

The proof is by induction. First we show P (2, 2), then we show that P (k, `) implies P (k + 1, `) and
P (k, `+ 1).

Base case. There are 22
4

Boolean functions on J(4, 2). These can be checked exhaustively and then
P (2, 2) follows.

Inductive step. If P (k, `) is true, then P (`, k) is true as J(k + `, k) and J(k + `, `) are isomorphic.
Hence, if we show that P (k, `) implies P (k + 1, `), then we also show that P (k, `) implies P (k, ` + 1).
Therefore it suffices to show that P (k, `) implies P (k + 1, `). Let f be a Boolean degree 1 function on
J(k + `+ 1, k + 1). The idea is to consider restrictions of f into subdomains isomorphic to J(k + `, k).
For every a ∈ [k + `+ 1], let fa be the restriction of f to the sets containing a. Since the domain of fa
is isomorphic to J(k + `, k), we know that fa ∈ {0, 1, x±}, where x 6= a.

The main idea of the proof is to consider the possible values of fa, fb for a 6= b.

Lemma 3.1. Let f : J(k + `+ 1, k + 1)→ {0, 1}, where k, ` ≥ 2, and suppose that P (k, `) holds.
For any a 6= b, one of the following options holds:

1. fa = fb = 1±.

2. fa = fb = x±, where x 6= a, b.

3. fa = 1± and fb = a± (with the same sign), or vice versa.

Proof. We illustrate our method by showing that it cannot be the case that fa = x− and fb = y−, where
a, b, x, y are all distinct. Since k + 1 ≥ 3 and ` ≥ 2, there exists a set S which contains a, b, x but not y.
We will denote this for brevity S � abxȳ (in the sequel we will sometimes use the notations x+ = x and
x− = x̄ in this context). Then fa(S) = 0 (since x ∈ S) whereas fb(S) = 1 (since y /∈ S). More generally,
a set conforming to such a condition exists as long as we specify at most three elements in the set and
at most two out of the set.

We consider three cases: fa = 1±, fa = b±, and fa = x± for x 6= b. Below we use x, y to denote two
different indices which differ from a, b.

• Case 1: fa = 1+. In this case, we claim that fb ∈ {1+, a+}. We show this by ruling out all other
cases:

– fb ∈ {1−, a−}: Let S � ab. Then fa(S) = 1 but fb(S) = 0.

– fb = x±: Let S � abx∓. Then fa(S) = 1 but fb(S) = 0.

• Case 2: fa = b+. In this case, we claim that fb ∈ {1+, a+}. We show this by ruling out all other
cases:

– fb ∈ {1−, a−}: Let S � ab. Then fa(S) = 1 but fb(S) = 0.

– fb = x±: Let S � abx∓. Then fa(S) = 1 but fb(S) = 0.

• Case 3: fa = x+. In this case, we claim that fb = x+ as well. We show this by ruling out all
other possibilities:

– fb ∈ {1+, a+}: Let S � abx̄. Then fa(S) = 0 but fb(S) = 1.

– fb ∈ {1−, a−, x−}: Let S � abx. Then fa(S) = 1 but fb(S) = 0.

– fb = y±: Let S � abx̄y±. Then fa(S) = 0 but fb(S) = 1.

If fa ∈ {1−, b−, x−} then we consider 1− f (and so 1− fa, 1− fb) to obtain analogous results.
This case analysis shows that the possible values of fa, fb are

(fa, fb) ∈ {(1±, 1±), (1±, a±), (b±, 1±), (b±, a±), (x±, x±)}, (3)

where in all cases the signs agree. It remains to rule out the case (fa, fb) = (b±, a±). To this end,
we pick a third coordinate c 6= a, b, and consider the possible value of fc when fa = b+ and fb = a+.
Considering the pair fa, fc, we see that fc = b+. Considering the pair fb, fc, we see that fc = a+. We
reach a contradiction by considering S � ab̄c, since b+(S) = 0 whereas a+(S) = 1.
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From here the proof is very easy.

Lemma 3.2. Let f : J(k + `+ 1, k + 1)→ {0, 1}, where k, ` ≥ 2, and suppose that P (k, `) holds. Then
f ∈ {1±, x±}.

In other words, P (k, `) implies P (k + 1, `). Similarly, P (k, `) implies P (k, `+ 1).

Proof. We will find the possible values of {fi : i ∈ [k + ` + 1]}. Since the domains of fi cover all of
J(k + `+ 1, k + 1), this will allow us to determine f .

If fa = x± for some a then Lemma 3.1 shows that fb = x± for all b 6= x, and fx = 1±. It is not hard
to check that f = x+.

Otherwise, fa = 1± for all a. Lemma 3.1 shows that all fa are equal to the same constant, and so f
itself is equal to this constant as well.

4 Grassmann graphs

We denote the Grassmann graph by Jq(n, k). It is well-known that completely regular strength 0 codes
of covering radius 1 correspond to Boolean degree 1 functions, as the first eigenspace of the scheme is
spanned by the xi [59, §3.2].

Let f be a Boolean degree 1 function on Jq(n, k). We have the following trivial examples for f :

(a) f = 1±.

(b) f = p± for a point p.

(c) f = π± for a hyperplane π.

(d) f = (p ∨ π)± for a point p and a hyperplane π, where p /∈ π.

We call f trivial if f is one of the above. Let us restate Theorem 1.4 slightly differently:

Theorem 4.1. Let q ∈ {2, 3, 4, 5}. Then all Boolean degree 1 functions on Jq(n, k) are trivial if k, n−k ≥
2 and either (a) n ≥ 5 or (b) n = 4 and q = 2.

The rest of this section is concerned with a proof of this result.
Our proof for the Grassmann scheme has a similar structure as our proof for the Johnson scheme.

One central difference between J(n, k) and Jq(n, 2) is that for J(4, 2) all Boolean degree 1 functions
are trivial, while there do exist non-trivial examples for Jq(4, 2) when q > 2. For the base case we use
Theorem 1.3.

As mentioned in the introduction, there are no non-trivial examples for Boolean degree 1 functions
on Jq(5, 2) known if q > 2, so the following conjecture is (in some sense) the strongest possible.

Conjecture 4.2. A Boolean degree 1 function on Jq(n, 2) is trivial if either (a) n ≥ 5 or (b) n = 4 and
q = 2.

Our proof of Theorem 4.1 implies that if Conjecture 4.2 is true, then also the following holds.

Conjecture 4.3. A Boolean degree 1 function on Jq(n, k) is trivial if k, n− k ≥ 2 and either (a) n ≥ 5
or (b) n = 4 and q = 2.

We believe at least the following to be true.

Conjecture 4.4. Let q be a prime power. Then there exists a constant nq such that a Boolean degree 1
function on Jq(n, k) is trivial for all n ≥ nq if k, n− k ≥ 2.

Lemma 4.5, Lemma 4.6, and Lemma 4.7 are the analog of Lemma 3.1 up to Equation (3).

Lemma 4.5. Let n ≥ 2k ≥ 4 and let f be a trivial Boolean degree 1 function on Jq(n, k). Fix a line `
and a point a ∈ `. Suppose that for all k-spaces K through a the following holds:

(a) f(K) = 1 if ` ⊆ K,

(b) f(K) = 0 otherwise.
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Then one of the following cases occurs:

1. f = p+ for some point p ∈ ` \ {a}.

2. f = p+ ∨ π+ for some point p ∈ ` \ {a} and some hyperplane π 3 a.

Proof. In the following, π is always a hyperplane. If p and π occur in the same argument, then p /∈ π.
We denote Fnq by V . We will reuse the symbols K and K ′ in every paragraph.

Clearly, f /∈ {0, 1}.
Suppose for a contradiction that f = π+. Let K be a k-space that contains `. Then f(K) = 1.

Hence, ` ⊆ π. First we handle the case that k ≥ 3. Let p be a point not in π and let L be a (k−1)-space
in π which contains `. Then K ′ := 〈p, L〉 is a k-space which contains `. Hence, f(K ′) = 1. As f = π+,
this contradicts K ′ * π. Now we handle the case that k = 2. We have dim(π) = n− 1 ≥ 3. Hence, there
exists a point r in π \ `. Then f(〈a, r〉) = 0. As f = π+, this contradicts 〈a, r〉 ⊆ π.

Suppose that f = p−. If k > 2, then any k-space K through 〈`, p〉 satisfies f(K) = 1. This contradicts
f = p−. If k = 2, then, as n ≥ k + 2, there exists a k-space K ′ through a which does not contain p or `.
Hence, f(K ′) = 0. As f = p−, this contradicts p /∈ K.

Suppose that f = π−. All k-spaces K through ` satisfy f(K) = 1, hence ` * π. There exist
k-spaces K on a with f(K) = 0, hence a ∈ π. Let L be a (k − 1)-space through a in π. We have
dim(V/L) = n− k+ 1 ≥ 3, dim(π/L) = n− k, and dim(〈`, L〉/L) = 1. Hence, there exists a point r such
that 〈r, L〉/L /∈ π/L and 〈r, L〉/L 6= 〈`, L〉/L. Hence, K := 〈r, L〉 does not contain `, so f(K) = 0. As
f = π−, but K * π, this is a contradiction.

Suppose that f = p−∧π−. All k-spaces K through ` satisfy f(K) = 1, hence ` * π. If a /∈ π, then we
can proceed as in the case f = p−. If a ∈ π, then let L be a (k− 1)-space through a in π. As n ≥ k+ 2,
dim(V/L) = n− k + 1 ≥ 3. As p /∈ π ⊇ L, dim(〈p, L〉/L) = 1. Furthermore, dim(π/L) = n− k. Hence,
there exists a point r such that 〈r, L〉/L /∈ π/L, and 〈r, L〉/L 6= 〈p, L〉/L, 〈`, L〉/L. Then K := 〈r, L〉 is a
k-space which does not contain `, so f(K) = 0. As f = p− ∧ π−, this contradicts p /∈ K * π.

Suppose that f = p+ ∨ π+ with a ∈ π. Let L be a (k − 1)-space through a in π. As dim(π/L) =
n−k ≥ 2, there exists a point r such that 〈r, L〉/L ∈ π/L and 〈r, L〉/L 6= 〈`, L〉/L. Then K := 〈r, L〉 is a
k-space which does not contain `, so f(K) = 0. As f = p+ ∨ π+, this contradicts K ⊆ π. Hence, a /∈ π.

Hence, f = p+ or f = p+ ∨ π+ with a /∈ π are the only cases left. We have to show that p ∈ ` \ {a}.
As there exist k-spaces K and K ′ through a with f(K) = 1 6= 0 = f(K ′), p 6= a. Suppose that p /∈ `.
Then there exists a k-space K through 〈a, p〉 which does not contain `, so f(K) = 0. As f = p+ or
f = p+ ∨ π+, this contradicts p ∈ K. Hence, p ∈ `.

Lemma 4.6. Let n ≥ 2k ≥ 4 and let f be a trivial Boolean degree 1 function on Jq(n, k). Fix a
hyperplane π and a point a ∈ π. Suppose that for all k-spaces K through a the following holds:

(a) f(K) = 1 if K ⊆ π,

(b) f(K) = 0 otherwise.

Then f = π+.

Proof. In the following, p is always some point, and π̃ is some hyperplane. If p and π̃ occur in the same
argument, then p /∈ π̃. We denote Fnq by V . We will reuse the symbols K and K ′ in every paragraph.

Clearly, f /∈ {0, 1}.
Suppose that f = p+ or f = p+ ∨ π+, where p /∈ π in the latter case. Let K be a k-space through a

and p. Since p ∈ K and f = p+ or f = p+ ∨ π+, we have f(K) = 1, and so K ⊆ π. Hence, p ∈ π, ruling
out the case f = p+ ∨ π+. As dim(π) = n− 1 > k, there exists a k-space K ′ in π through a disjoint to
p. As K ⊆ π, f(K) = 1. As f = p+, this contradicts p /∈ K.

Suppose that f = p−. If p ∈ π, then there exists a k-space K through a and p in π. Hence, f(K) = 1,
which contradicts f = p−. So p /∈ π. Let L be a (k−1)-space through a in π. Then dim(V/L) = n−k+1,
dim(π/L) = n − k, and dim(〈p, L〉/L) = 1. Hence, there exists a point r such that 〈r, L〉/L /∈ π/L and
〈r, L〉/L 6= 〈p, L〉/L. Let K := 〈r, L〉. As K * π, f(K) = 0. As f = p−, this contradicts p /∈ K.

Suppose that f = π̃− for some hyperplane π̃ or f = p− ∧ π̃− for some hyperplane π̃ with p /∈ π̃. If
a ∈ π̃, then a ∈ π ∩ π̃, where dim(π ∩ π̃) ≥ n − 2 ≥ k. Hence, there exists a k-space K through a in
π ∩ π̃. As K ⊆ π, then f(K) = 1. As f = π̃− or f = p− ∧ π̃−, this contradicts K ⊆ π̃. If a /∈ π̃ and
f = π̃−, let L be a (k − 1)-space through a in π. Let r be a point not in π. Then K ′ := 〈r, L〉 is not

8



in π. Hence, f(K ′) = 0. As a /∈ π̃, K ′ * π̃. This contradicts f = π̃−. If a /∈ π̃ and f = p− ∧ π̃−,
then there exists, as dim(π) = n − 1 > k, a (k − 1)-space L through a in π which does not contain p.
As dim(V/L) = n − k + 1, dim(π/L) = n − k, and dim(〈p, L〉/L) = 1, there exists a point r such that
〈r, L〉/L /∈ π/L and 〈r, L〉/L 6= 〈p, L〉/L. Then K ′ := 〈r, L〉 is not in π, so f(K) = 0. As f = p− ∧ π̃−,
this contradicts p /∈ K and K * π.

Suppose that f = π̃+ with π̃ 6= π. Let K be a k-space in π through a with K * π̃. Then f(K) = 1.
As f = π̃+, this contradicts K * π̃.

Suppose that f = p+ ∨ π̃+ for some p /∈ π̃. If π 6= π̃, let L be a (k − 1)-space through a in π ∩ π̃.
As dim(π/L) = n − k ≥ 2 and dim((π ∩ π̃)/L) = n − k − 1, there exists a point r ∈ π \ π̃ such that
〈r, L〉/L 6= 〈p, L〉/L. Hence, K := 〈r, L〉 ⊆ π, so f(K) = 1. As f(K) = p+ ∨ π̃+, this contradicts p /∈ K
and K * π̃.

Hence, f = π+ is the only option left.

Lemma 4.7. Let n ≥ 2k ≥ 4 and let f be a trivial Boolean degree 1 function on Jq(n, k). Fix a
hyperplane π, a point a ∈ π, and a line ` * π through a. Suppose that for all k-spaces K through a the
following holds:

(a) f(K) = 1 if K ⊆ π,

(b) f(K) = 1 if ` ⊆ K,

(c) f(K) = 0 otherwise.

Then f = p+ ∨ π+ for some point p ∈ ` \ {a}.

Proof. In the following, p is always some point, and π̃ is some hyperplane. If p and π̃ occur in the same
argument, then p /∈ π̃. We denote Fnq by V . We will reuse the symbols K and K ′ in every paragraph.

Clearly, f /∈ {0, 1}.
Suppose that f = p−. If k > 2 or p ∈ `, then there exists a k-space K through 〈`, p〉. Hence,

f(K) = 1. As f = p−, this contradicts p ∈ K. Hence, k = 2 and p /∈ `. Clearly, there exists a 2-space K
through a with K * π and K 6= ` (and so p /∈ K). Then f(K) = 0. As f = p−, this contradicts p /∈ K.

Suppose that f = π̃−. All k-spaces K through ` satisfy f(K) = 1, hence ` * π̃. There exist k-spaces
K ′ through a with f(K ′) = 0, hence, as f = π̃−, a ∈ π̃. As dim(π∩ π̃) ≥ n−2 ≥ k, there exists a (k−1)-
space L through a in π ∩ π̃. We have dim(V/L) = n − k + 1 ≥ 3, dim(π/L) = dim(π̃/L) = n − k, and
dim(〈`, L〉/L) = 1. Hence, there exists a point r such that 〈r, L〉/L * π/L, π̃/L and 〈r, L〉/L 6= 〈p, L〉/L.
Hence, K := 〈r, L〉 satisfies f(K) = 0. As f = π̃−, this contradicts K * π̃.

Suppose that f = p− ∧ π̃− for some hyperplane π̃. All k-spaces K through ` satisfy f(K) = 1,
hence ` * π̃. If a /∈ π̃, then we can proceed as in the case f = p−. If a ∈ π̃, then, as dim(π ∩ π̃) ≥
n − 2 ≥ k, then there exists a (k − 1)-space L through a in π ∩ π̃. As dim(V/L) = n − k + 1 ≥ 3,
dim(π/L) = dim(π̃/L) = n− k, and dim(〈`, L〉/L) = dim(〈p, L〉/L) = 1, there exists a point r such that
〈r, L〉/L * π/L, π̃/L and 〈r, L〉/L 6= 〈`, L〉/L, 〈p, L〉/L. Hence, K := 〈r, L〉 does not contain ` and does
not lie in π. Hence, f(K) = 0. As f = p− ∧ π̃−, this contradicts that p /∈ K * π̃.

Suppose that f = p+. If p = a, then we can find a k-space K through a which doesn’t contain ` and
is not in π. Then f(K) = 0, contradicting f = p+. Hence, p 6= a. As dim(π) = n − 1 > k ≥ 2, there
exists a k-space K in π through a not containing p. As K ⊆ π, f(K) = 1. As f = p+, this contradicts
p /∈ K.

Suppose that f = π̃+. As not all k-spaces through ` lie in π̃, there exists a k-space K that contains
` and not in π̃. Then f(K) = 1. As f = π̃+, this contradicts ` * K.

Suppose that f = p+ ∨ π̃+ for some p /∈ `. Let L be a (k − 1)-space through 〈a, p〉 with ` * L. As
dim(V/L) ≥ n − k + 1 ≥ 3, dim(π/L) = n − k and dim(〈p, L〉/L) = 1, there exists a point r such that
〈r, L〉/L * π/L and 〈r, L〉/L 6= 〈p, L〉/L. Then K := 〈r, L〉 does not contain ` and does not lie in π, so
f(K) = 0. As f = p+ ∨ π̃+, this contradicts p ∈ K.

Suppose that f = p+ ∨ π̃+ for p = a. Then a /∈ π̃, so we can proceed as in the case f = p+ and
obtain a contradiction.

Suppose that f = p+ ∨ π̃+ for p ∈ ` \ {a} and π 6= π̃. If a /∈ π̃ then we can proceed as in the case
f = p+ and obtain a contradiction. Hence, a ∈ π̃. Let L be a (k−1)-space in π∩ π̃ which contains a. As
dim(π/L) = n− k ≥ 2, dim((π∩ π̃)/L) = n− k− 1, and dim(〈p, L〉/L) = 1, there exists a point r ∈ π \ π̃
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such that 〈r, L〉/L 6= 〈p, L〉/L. Hence, K := 〈r, L〉 ⊆ π, so f(K) = 1. As f = p+ ∨ π̃+, this contradicts
p /∈ K and K * π̃.

The only option left is that f = p+ ∨ π+ with p ∈ ` \ {a}.

The next results up to Lemma 4.14 complete the analog of Lemma 3.1. We write fa for the restriction
of f to all subspaces containing a, a domain isomorphic to Jq(n− 1, k − 1).

From now on we assume the following until the end of this section:

Assumption 4.8. (a) We have 2 < k < n− 2 (and so n ≥ 6).

(b) All Boolean degree 1 functions on Jq(n− 1, k − 1) are trivial.

We want to remind the reader that restrictions of a Boolean degree 1 function f to a subspace of Fnq
or to a quotient space of Fnq are still Boolean degree 1 functions (as follows easily from the discussion in
Section 2.3).

Corollary 4.9. Let fa = p+ ∨ π+ (if a /∈ π, this is the same as fa = p+). Then the following holds:

(a) If b /∈ 〈a, p〉 and a, b ∈ π, then fb = p̃+ ∨ π+ for some p̃ ∈ 〈a, p〉.

(b) If b /∈ 〈a, p〉 and b /∈ π, then fb = p̃+ (= p̃+ ∨ π+ as b /∈ p̃) for some p̃ ∈ 〈a, p〉.

Proof. To see (a), apply Lemma 4.7 in the quotient of b with 〈a, b〉/b for a, 〈a, p, b〉/b for `, and π/b for
π.

To see (b), apply Lemma 4.5 in the quotient of b with 〈a, b〉/b for a and 〈a, p, b〉/b for `. Hence, either
fb = p̃+ or fb = p̃+∨π̃+. Suppose that fb = p̃+∨π̃+. Then π∩π̃ has dimension at least n−2 > k. Hence,
we find a c ∈ π ∩ π̃ such that c /∈ 〈a, b, p〉. By (a), fc = p̃+ ∨ π+ for some p̃ ∈ 〈a, p〉 and fc = p̄+ ∨ π̃+ for
some p̄ ∈ 〈b, p〉. This contradicts π 6= π̃. Hence, fb = p̃+.

Lemma 4.10. If fa = p+ ∨ π+ with a ∈ π, then f = p̃+ ∨ π+ for some p̃ ∈ 〈a, p〉 \ {a}.

Proof. Corollary 4.9 shows that all b /∈ 〈a, p〉 satisfy fb = p̃+b ∨ π+ for some p̃b ∈ 〈a, p〉. First we show
that we can choose p̃b independently of b. Fix b. As n > 3, we find a c /∈ 〈a, b, p〉. Hence, fc = p+1 ∨ π+

for some p1 ∈ 〈a, p〉 and fc = p+2 ∨ π+ for some p2 ∈ 〈b, p̃b〉. Hence, 〈p1〉 = 〈p2〉 = 〈a, p〉 ∩ 〈b, p̃b〉. Here
we used that b /∈ 〈a, p〉 implies 〈a, p〉 6= 〈b, p̃b〉. Hence, we can write fa = fb = fc = p̃+ ∨ π+ if we choose
p̃ ∈ 〈a, p〉 ∩ 〈b, p̃b〉. Hence, p̃ is independent of our choice of b and c. Hence, fb = p̃+ ∨ π+ for all b /∈ 〈p̃〉.

It remains to show that fp̃ = 1. All b 6= p̃ satisfy fb = p̃+ ∨ π+, so f(K) = 1 whenever K contains b.
Since k > 2, all k-spaces through p̃ contain such a b, and so fp̃ = 1 follows.

Hence, f = p̃+ ∨ π+.

Corollary 4.11. Let fa = p+ and suppose that fb 6= p̃+ ∨ π̃+ for any point p̃ and hyperplane π̃ with
b ∈ π̃. If b /∈ 〈a, p〉, then fb = p̃+ for some p̃ ∈ 〈a, p〉.

Proof. Apply Lemma 4.5 in the quotient of b with 〈a, b〉/b for a and 〈a, p, b〉/b for `. Hence, fb = p̃+, as
we are not allowing that fb = p̃+ ∨ π̃+ for some hyperplane π̃.

Lemma 4.12. Suppose that there exists no b with fb = p+ ∨ π+ for some point p and hyperplane π with
b ∈ π. If fa = p+, then f = p̃+ for some p̃ ∈ 〈a, p〉 \ {a}.

Proof. Corollary 4.11 shows that all b /∈ 〈a, p〉 satisfy fb = p̃+b for some p̃b ∈ 〈a, p〉. The remaining steps
to see f = p̃+ are identical to the proof of Lemma 4.10.

Corollary 4.13. Suppose that there exists no b with fb = p+ ∨ π+ for some point p and hyperplane π
with p 6= b and b ∈ π. If fa = π+ for a hyperplane π containing a, then fb = π+ for all points b ∈ π.

Proof. Apply Lemma 4.6 in the quotient of b with 〈a, b〉/b for a and π/b for π.

Lemma 4.14. Suppose that there exists no b with fb = p+ ∨ π+ for some point p and hyperplane π with
p 6= b and b ∈ π. If fa = π+ for a hyperplane π containing a, then f = π+.
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Proof. By Corollary 4.13, it is clear that all b ∈ π satisfy fb = π+. Let c be a point not in π. Since
dim(π) = n − 1 and k ≥ 2, we can find a subspace K through c containing some point b ∈ π. Then
fc(K) = 0, and so fc 6= 1. It follows that fc = 0 (all other cases being ruled out by Lemma 4.10 and
Lemma 4.12, and their complemented versions). Hence, f = π+.

Equivalent statements where all + are replaced by − follow by taking complements. It remains to
show an analog of Lemma 3.2.

Theorem 4.15. Let n− k, k > 2. If all Boolean degree 1 functions on Jq(n− 1, k − 1) are trivial, then
all Boolean degree 1 functions on Jq(n, k) are also trivial.

Proof. This immediately follows from Lemma 4.10, Lemma 4.12, Lemma 4.14, and their complemented
versions.

Proof of Theorem 4.1. Due to Theorem 1.3, all Boolean degree 1 functions on Jq(n, 2) (and so, by duality,
on Jq(n, n− 2)) are trivial for n ≥ 5 and q ∈ {2, 3, 4, 5}. Applying Theorem 4.15 inductively, we deduce
that all Boolean degree 1 functions on Jq(n, k) are trivial whenever k, n− k > 2 and q ∈ {2, 3, 4, 5}.

5 Dual polar graphs and related graphs

Let q be a prime power. A polarity ⊥ of Fmq is a bijective map on all subspaces of Fmq such that a

k-space is mapped to an (m−k)-space which is incidence preserving, that is A ⊆ B → B⊥ ⊆ A⊥ and an
involution, that is ⊥2= 1. We say that a subspace with L ⊆ L⊥ is isotropic. A polar space consists of all
isotropic subspaces except for some cases with q even 1 The finite classical polar spaces are O+(2n, q),
O(2n+ 1, q), O−(2n+ 2, q), Sp(2n, q), U(2n, q), and U(2n+ 1, q). We associate (in the same order) the
parameter e = 0, 1, 2, 1∗, 1/2, 3/2 with them. Here n is the rank of the polar space, that is the maximal
dimension of a isotropic subspace. Note that q is a square of a prime power for U(2n, q) and U(2n+1, q).
To simplify notation, we denote a polar space of rank n with parameter e over Fq by Pq(n, e). The natural
embedding in Fmq is as follows: O+(2n, q), Sp(2n, q) and U(2n, q) in F2n

q , O(2n+1, q) and U(2n+1, q) in
F2n+1
q , and O−(2n+ 2, q) in F2n+2

q . We call the corresponding vector space the ambient space. We call
a subspace of maximal dimension n a maximal. The graphs Cq(n, k, e) are the graphs having as vertices
the isotropic k-spaces of Pq(n, e), two vertices being adjacent when their meet is a subspace of dimension
k − 1. The graph Cq(n, n, e) is known as the dual polar graph of Pq(n, e), while the graph Cq(n, 1, e) is
sometimes called the collinearity graph of a Pq(n, e). We identify Pq(n, e) with its natural embedding
in Fmq for some m ∈ {2n, 2n + 1, 2n + 2}, so when S and T are subspaces of Pq(n, e), then 〈S, T 〉 is a
subspace of Fmq and Pq(n, e) ∩ 〈S, T 〉 is a subgeometry of Pq(n, e).

The eigenspaces of Cq(n, k, e) were described by Eisfeld [19] (see also [56] and [59, §4.2]). From this
it is clear that for Cq(n, n, e), degree 1 functions correspond to completely regular strength 0 codes of
covering radius 1. For some combinations of e and n, these are called Cameron–Liebler sets in polar
spaces of type I in [10]. A similar observation can be made for all Cq(n, k, e) with k > 1. There, the span
of the indicator functions p+i for all points pi span three eigenspaces, for example in Vanhove’s notation
for n ≥ k + 1, these are V k0,0 + V k1,0 + V k1,1.

The graphs Cq(n, 1, e) are strongly regular and it seems to be most reasonable to consider maximals
(rather than points) as our coordinates as (in the usual ordering) the subspace V0+V1 corresponds to the
span of the characteristic vector of the maximals. We want to point out that Boolean degree 1 functions
on Cq(n, 1, e) are commonly known as tight sets [2], and have been intensively investigated. The rest
of this section is concerned only with k > 1. Tight sets have an important role for the Jq(4, 2) case of
the Grassmann graph, as Jq(4, 2) and Cq(3, 1, 0) are isomorphic by the Klein correspondence between F3

and O+(6,F).

5.1 Some properties

In this short section, we list a few useful properties of Boolean degree 1 functions on Cq(n, k, e) for
k > 1. We already saw that a polar space Pq(n, e) has a natural embedding in a vector space Fmq . Let
π be a hyperplane of Fmq . Then Pq(n, e) ∩ π is either degenerate, that is isomorphic to pPq(n− 1, e) for

1See for example [4] or [57] for a formal definition in these cases.
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some isotropic point p, or non-degenerate. The possibilities for the type of a non-degenerate hyperplane
intersection are as follows:

(a) A non-degenerate hyperplane of O+(2n, q) is isomorphic to O(2n− 1, q),

(b) a non-degenerate hyperplane of O(2n+ 1, q) is isomorphic to O+(2n, q) or O−(2(n− 1) + 2, q),

(c) a non-degenerate hyperplane of O−(2n+ 2, q) is isomorphic to O(2n+ 1, q),

(d) a non-degenerate hyperplane of U(2n+ 1, q) is isomorphic to U(2n, q),

(e) a non-degenerate hyperplane of U(2n, q) is isomorphic to U(2n− 1, q).

The polar space Sp(2n, q) has no non-degenerate hyperplane sections, but for q even it is isomorphic to
O(2n+ 1, q).

We observe the following:

(a) Cq(n, k, 0), Cq(n, k, 1
∗), and Cq(n, k, 1/2) are coordinate-induced subgraphs of Jq(2n, q),

(b) Cq(n, k, 1) and Cq(n, k, 3/2) are coordinate induced subgraphs of Jq(2n+ 1, k),

(c) Cq(n, k, 2) is a coordinate-induced subgraph of Jq(2n+ 2, k),

(d) Cq(n, k, 0) is a coordinate-induced subgraph of Cq(n, k, 1), Cq(n, k, 1) of Cq(n, k, 2), and Cq(n, k, 1/2)
of Cq(n, k, 3/2).

5.2 Some results

Some Boolean degree 1 functions of Cq(n, k, e) are induced from the trivial functions on the ambient
graph Jq(m, k). Here is a complete list:

(a) f = 1±.

(b) f = p± for a point p.

(c) f = π± for a hyperplane π of the ambient space. Notice that π can intersect the polar space either
in a proper polar space or in p⊥ for some point p of Pq(n, e).

(d) f = (p ∨ π)±, where p and π are as before.

Notice that Boolean degree 1 polynomials expressed with these functions can be very complicated. For
example, if π = p⊥, then f = π+ ∧ p− is a Boolean degree 1 function.

We conjecture the following:

Conjecture 5.1. Let k ≥ 2. Then there exists nq,k such that every Boolean degree 1 function f on
Cq(n, k, e) with n ≥ nq,k is trivial, that is f can be written as

f± =
∨
i

p+i ∨
∨
i

π+
i ∨

∨
i

(π̃+
i ∧ p̃

−
i ).

Here pi are the points of the polar space, πi are non-degenerate hyperplanes of the ambient space, and π̃i
are degenerate hyperplanes of the ambient space with π̃i = p̃⊥i .

The conjecture simplifies in some cases:

1. For k < n every pair of hyperplanes contains a common k-space, and so the condition simplifies in
this case, and we have to use at most one πi or π̃i.

2. For k = n no non-degenerate hyperplane of O+(2n, q) or U(2n, q) contains a k-space, so no πi
occur.

3. For k = n we have p̃±i = π̃±i , so the last clause in the conjecture is superfluous.
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4. Sp(2n, q) has only degenerate hyperplane sections. If q is even, then we identify Sp(2n, q) with the
isomorphic O(2n+ 1, q) which has non-degenerate hyperplane sections. If q is odd, then again no
πi occur.

We prove Conjecture 5.1 for one particular case:

Theorem 5.2. Let k, n − k ≥ 2 or (n, k) ∈ {(2, 2), (3, 2)}. Then every Boolean degree 1 function f on
C2(n, k, 0) is trivial, that is f or 1− f is one of the following:

(a) f = 1±,

(b) f = π± for a hyperplane π,

(c) f = (
∨
i p

+
i )± for pairwise non-collinear points pi,

(d) f = (π+ ∨
∨
i p

+
i )± for pairwise non-collinear points pi and a hyperplane π, where pi /∈ π,

(e) f = ((π+ ∧ p−1 ) ∨
∨
i>1 p

+
i )± for pairwise non-collinear points pi, π a degenerate hyperplane, and

p1 = π⊥.

Using the mixed integer program solver Gurobi, we obtain the following.

Lemma 5.3. Theorem 5.2 holds for (n, k) = (2, 2), (n, k) = (3, 2) and (n, k) = (4, 2).

Notice that for the case (n, k) = (4, 2) it is helpful to use Lemma 5.5 for additional constraints.

Lemma 5.4. Let (a) n ≥ 5 or (b) n = 4 and q = 2. Let k, n − k ≥ 2. Let f be a Boolean degree 1
function of Cq(n, k, e). Let S be a maximal of Pq(n, e) and p a point of S. Then the following holds:

(a) fS = p+ implies that fT = p+ for all maximals T with p ∈ T ,

(b) fS = p+ ∨ π+
S implies that fT = p+ ∨ π̃+

T for all maximals T with p ∈ T (πX a hyperplane of
X ∈ {S, T}).

Proof. As the maximals in quotient of p are connected with respect to intersecting in a hyperplane, it is
sufficient to show that p+ → fT for dim(S∩T ) = n−1. As S∩T ⊆ S, fS∩T = p+ or fS∩T = p+∨ π̃+ for
some hyperplane π̃ of S∩T . By Theorem 4.1, fT is trivial. The dual versions of Lemma 4.10 and Lemma
4.14 imply that the only trivial Boolean degree 1 function f ′ in Jq(n, k) which contains an (n− 1)-space
R with f ′R = p+, respectively, f ′R = p+ ∨ π̃+, is p+, respectively, p+ ∨ π+, where π̃ ⊆ π.

We can do the following two step process:

(1) By Lemma 5.4, p+ → fS , fS 6= 1, implies that p+ → fp⊥ and fp⊥ 6= 1. Hence, we can replace f by
f ∧ p− and still have a Boolean degree 1 function. As this reduces |f | in every step, we can do this
till no such S occurs anymore.

(2) By Lemma 5.4 (and taking complements), p− → fS , fS 6= 0, imply that p− → fp⊥ and fS 6= 0.
Again, we can replace f by f ∨ p+ till no such S occurs anymore.

If there is no maximal S left such that fS is not constant and p± → fS , then we call f reduced. On
the restriction to Jq(n, k) it is easily seen that all p’s used in the process are disjoint: suppose that
fS = p+ before Step (1) and fS = p̃− after Step (1). But first we had fS = p+, so afterwards we have
fS = 0 6= p̃−. Similarly, fS = p+ ∨ π̃+ before Step (1) implies fS = π̃+ after Step (1). Again, this is
different from fS = p̃−. Hence, a non-constant trivial reduced Boolean degree 1 function is π± for some
hyperplane π.

We repeatetly use the following property:

Lemma 5.5. Let k, n− k ≥ 2. Let f be a reduced Boolean degree 1 function on Cq(n, k, e) and suppose
that fS is trivial for all maximals S.

(a) If all Boolean degee 1 functions g induced by f on Cq(n− 1, k, e) are trivial, then g is reduced.

(b) If all Boolean degee 1 functions g induced by f on Cq(n− 1, k − 1, e) are trivial, then g is reduced.
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Proof. We do know that fS is trivial and reduced, so fS ∈ {0, 1, π+, π−} for some hyperplane of π of
S. For k, n− k ≥ 2, this implies fT ∈ {0, 1, π+, π−} for every hyperplane T of S. Hence, gT is reduced
for all maximals of Cq(n− 1, k, e). Hence, g is reduced by Lemma 5.4. This shows (a). Part (b) follows
similarly.

Lemma 5.6. Let n − 1 > k > 1. Let f be a reduced trivial Boolean degree 1 function on Cq(n, k, e).
Let π be a hyperplane of the ambient space of Pq(n, e), and fix an isotropic point a ∈ π. Suppose that all
k-spaces K through a satisfy

(a) f(K) = 1 if K ⊆ π,

(b) f(K) = 0 otherwise.

Then f = π+.

Proof. As not all k-spaces K through a satisfy f(K) = 1, we have f /∈ {0, 1}. As f is reduced, trivial,
and k < n, the only options left are f = π̃± for some hyperplane π̃ of the ambient space.

Suppose that a /∈ π̃. Then no isotropic k-space through a lies in π̃. Hence, if f = π̃+, f(K) = 0 for
isotropic k-spaces K through a, and if f = π̃−, f(K) = 1 for isotropic k-spaces K through a. As fa is
not constant, this is a contradiction. Hence, a ∈ π̃.

Suppose that f = π̃−. Let S be a maximal through a. As dim(π̃ ∩ π ∩ S) ≥ dim(S)− 2 = n− 2 ≥ k,
there exists an isotropic k-space K through a which lies in π̃ and π. As a ∈ K ⊆ π, f(K) = 1. As
f = π̃−, f(K) = 0 which is a contradiction.

Suppose that f = π̃+ with π 6= π̃. Then there exists a maximal isotropic subspace S of π ∩ Pq(n, e)
(which can have dimension n or n − 1) through a in π which is not contained in π̃ (as π̃ is a proper
subspace pf a⊥). As dim(S) ≥ k − 1, there exists an isotropic k-space K in S through a with K * π̃.
As a ∈ K ⊆ S ⊆ π, f(K) = 1. As f = π̃+, f(K) = 0. This is a contradiction. Hence, π = π̃.

Theorem 5.7. Let k, n− k ≥ 2. If all Boolean degree 1 functions on Cq(n, k, e) and Jq(n+ 1, k+ 1) are
trivial, then all Boolean degree 1 functions on Cq(n+ 1, k + 1, e) are trivial.

Proof. If fa ∈ {0, 1} for all points a of Pq(n + 1, e), then f is constant and we are done. Hence, there
exists a point a such that fa is not constant. Furthermore, we can assume that f is reduced, so fa = π±

for some hyperplane through a.
By considering 1 − f instead of f , we can without loss of generality assume that fa = π+. First let

b be an isotropic point in a⊥ ∩ π. Set ` = 〈a, b〉. As all Boolean degree 1 functions on Cq(n, k, e) are
trivial, fb is trivial, and by Lemma 5.5, reduced. If b ∈ π, then, by Lemma 5.6 and the assumption that
all Boolean degree 1 functions on Cq(n, k, e) are trivial, fb = π+. As for n ≥ 2 all pairs of points (p1, p2)
in π have a common neighbour in π (that is p⊥1 ∩ p⊥2 ∩ π contains an isotropic point), this implies that
fc = π+ for all isotropic c ∈ π.

Now let b be an isotropic point not in π. By Lemma 5.5, fb ∈ {0, 1, π̃+, π̃−}. We want to show that
fb = 0 by ruling out the three other cases. As n ≥ 4, b⊥ ∩ π ∩ π̃ contains an isotropic point c. Set
` = 〈b, c〉. As fc = π+ and b /∈ π, we have f` = 0, so we can rule out that fb = 1. As c⊥ ∩ π̃ is a
hyperplane of π̃ and n−2 ≥ k, we find an isotropic k-space L in π̃ which contains b and c. As f`(L) = 0,
we rule out fb = π̃+. Choosing c ∈ π \ π̃ instead of π ∩ π̃ rules out fb = π̃− with a similar argument.
Hence, fb = 0.

This concludes that f = π+.

Lemma 5.8. Let k, n− k − 1 ≥ 2. Let f be a reduced Boolean degree 1 function on Cq(n+ 1, k, e) such
that for all non-degenerate hyperplanes in τ ⊆ a⊥ the function fτ is trivial. Then fa⊥ ∈ {0, 1, π+, π−},
where π+ is some hyperplane of a⊥.

Proof. We first show the claim for fa⊥\a instead of fa⊥ . Here we assume that fa⊥ is not constant and
distinguish two cases.

Case 1: Suppose that fτ = 1 for some non-degenerate hyperplane τ ⊆ a⊥. Let τ̃ be another non-
degenerate hyperplane of a⊥. Clearly, (τ ∩ τ̃)+ → fτ̃ and, by Lemma 5.5, fτ̃ ∈ {0, 1, π̃+, π̃−} for some
hyperplane π̃ of τ̃ . We claim that fτ̃ = (τ ∩ τ̃)+. As n − 3 ≥ k, π ∩ π̃ contains an isotropic k-space,
so fτ̃ 6= 0, π̃−. It remains to rule out fτ̃ = 1. If fτ̃ = 1, then let τ be a non-degenerate hyperplane of
a⊥ which does not contain τ ∩ τ̃ . As τ ∩ τ 6= τ̃ ∩ τ , following the same arguments as for fτ̃ , we obtain
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that fτ = 1. As we can permute the roles of τ , τ̃ and τ , it follows that fτ = 1 for all non-degenerate
hyperplanes of a⊥. Hence, fa⊥\a = 1 which contradicts our assumption that fa⊥\a 6= 1. Hence, fτ = τ+

for all τ 6= τ .
Case 2: No non-degenerate hyperplane τ of a⊥ satisfies fτ = 1. Then we can assume that for a

non-degenerate hyperplane τ of a⊥ we find a hyperplane π of τ with fτ = π+. Set π′ = 〈a, π〉+. We
claim that fa⊥\a = π′+ follows. Clearly, fτ̃ = π+ for all non-degenerate hyperplanes τ̃ through π (here
we use n − 3 ≥ k to rule out that fτ̃ = π̃− for some hyperplane π̃ of τ̃). As all isotropic k-spaces
K ⊆ a⊥ \ a, which are not in π′, lie in one such τ̃ , it follows that fa⊥\a(K) = 0. This rules out fτ = π−

for all non-degenerate hyperplanes τ (and some hyperplane π of τ). As n− 2 ≥ k, τ ∩π contains at least
one isotropic k-space, so fτ 6= 0. Hence, fτ = π′+.

We have seen that fa⊥\a is trivial. By Corollary 4.13, f reduced, k, n − k ≥ 2 and looking at all
maximals through a, we conclude that fa⊥ is trivial.

Theorem 5.9. Let k, n − k ≥ 2. If all Boolean degree 1 functions on Cq(n, k, e) and Jq(n + 1, k) are
trivial, then all Boolean degree 1 functions on Cq(n+ 1, k, e) are trivial.

Proof. We can assume that f is reduced and not constant.
First suppose that fa⊥ = 1 for some isotropic point a. Our claim is that this implies f = (a⊥)+.

Clearly, (a⊥)+ → fb⊥ for all isotropic points b. By Lemma 5.8, fb⊥ is trivial, so fb⊥ ∈ {(a⊥)+, π−, 1} for
some hyperplane π of b⊥. As n − 2 ≥ k, π ∩ a⊥ contains a k-space for all hyperplanes π, so fb⊥ = π−

does not occur. Now suppose that fb⊥ = 1. We will show that this implies f = 1 which contradicts
the assumption that f is not constant. To see this, consider an isotropic point c such that c⊥ does not
contain a⊥ ∩ b⊥. Then (a⊥)+ → fc⊥ and (b⊥)+ → fc⊥ . We chose c such that (a⊥ ∩ c⊥)+ 6= (b⊥ ∩ c⊥)+,
so, as fc⊥ is trivial, this implies fc⊥ = 1. By permuting the roles of a, b, and c, we obtain that fc⊥ = 1
for all isotropic points c. Hence, f = 1 which contradicts f non-constant. Therefore f = (a⊥)+.

Now suppose that fa⊥ 6= 1 for all isotropic points a. As f is non-constant and reduced, we can
assume without loss of generality that fa⊥ = π+ for a hyperplane π of a⊥. Let b be an isotropic not
in a⊥ with π * b⊥. As before, fb⊥ ∈ {0, 1, π̃+, π̃−} for some hyperplane π̃ of b⊥. Our goal is to show
that fb⊥ = π̃+ and then f = 〈π, π̃〉+. By Lemma 5.8, we have fb⊥ ∈ {0, π̃+, π̃−}. As n− k ≥ 2, b⊥ ∩ π
(respectively, π̃ ∩ π) contains at least one isotropic k-space, so fb⊥ = π̃+ (with dim(π ∩ π̃) = n − 1).
Now let c be an isotropic point with π ∩ π̃ * c⊥. By the same reason as for b, fc⊥ = π+. Let m + 1
be the dimension of the ambient vector space. We claim that π = 〈π ∩ π, π̃ ∩ π〉. As π * π ∩ π̃ and
dim(π ∩ π) = dim(π̃ ∩ π) = m− 1 and

dim(π ∩ π̃ ∩ π) ≤ m− 2,

we indeed conclude dim(〈π ∩ π, π̃ ∩ π〉) ≥ 2(m− 1)− (m− 2) = m = dim(π). Again, by permuting the
roles of a, b, and c we obtain that f = 〈π, π̃〉+ which shows that f is trivial.

Proof of Theorem 5.2. We prove the assertion by induction on n. By Lemma 5.3, we can assume that
n ≥ 5. Theorem 5.7 and Theorem 5.9 then complete the proof.

6 Sesquilinear forms graphs

We denote the bilinear forms graphs of `× k bilinear forms over Fq by Hq(`, k) (we assume ` ≤ k), the
alternating forms graphs of n × n alternating forms over Fq by Aq(n), the Hermitian forms graphs of
n×n Hermitian forms over Fq, q a square of a prime power, by Qq(n), and the symmetric bilinear forms
graphs of n× n symmetric bilinear forms over Fq by Sq(n). Hua observed [38] (see also [4, §9.5E]) that
bilinear forms graphs, alternating forms graphs, Hermitian forms graphs, and symmetric bilinear forms
graphs are induced subgraphs of either Grassmann graphs or certain dual polar graphs. In particular:

(a) Let L be an `-space of Fk+`q . Let Y denote all subspaces of Jq(n, k) disjoint from L. Then Hq(`, k)
is the induced subgraph of Jq(`+ k, k) on Y .

(b) Let x be a maximal of Pq(n, 1/2). Let Y denote all maximals of Pq(n, 1/2) disjoint from x. Then
Qq(n) is the induced subgraph of Cq(n, n, 1/2) on Y .
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(c) Let x be a maximal of Pq(n, 1∗). Let Y denote all maximals of Pq(n, 1∗) disjoint from x. Then Sq(n)
is the induced subgraph of Cq(n, n, 1

∗) on Y .

(d) Let x be a maximal of Pq(n, 0). Let Y denote all maximals of Pq(n, 0) disjoint from x. Then Aq(n)
is the induced subgraph of the distance-2-graph of Cq(n, n, 0) on Y .

All these graphs are coordinate-induced subgraphs.
The eigenspaces of the bilinear forms graphs were described by Delsarte [14], and, using the identifi-

cation of Hq(`, k) with a subgraph of Jq(`+ k, k) (see [4, §9.5A]), it is easy to see that Boolean degree 1
functions of Hq(`, k) correspond to completely regular strength 0 codes of covering radius 1 of Hq(`, k).
See the appendix of [55] for an explicit discussion of the eigenspaces of Qq(n). For Sq(n) and Aq(n) the
same holds, but we are not aware of any reference that is more explicit than [4, §9.5].

As already the Boolean degree 1 functions on Cq(n, k, e) seems to have a very complicated description
(see Conjecture 5.1), and we were only able to solve one particular case (see Theorem 5.2), we leave the
investigation of Boolean degree 1 functions on the alternating, Hermitian, and symmetric bilinear forms
graphs for future work. In the rest of the section we investigate Hq(`, k).

Let us start with a list of examples that are induced from p± and π± on Jq(k+ `, k). Recall that we
identify Hq(`, k) with all k-spaces of Jq(k + `, k) disjoint from a fixed `-space L.

(a) f = p± for a point p /∈ L,

(b) f = π± for a hyperplane π with L * π.

Our conjecture is the following:

Conjecture 6.1. Let q be a prime power. Let f be a Boolean degree 1 function on Hq(`, k), where k+ `
is sufficiently large (depending on q). Then there exists an (`+ 1)-space g ⊇ L, an (`− 1)-space G ⊆ L,
points pi ∈ g, and hyperplanes πi with πi ∩ L = G, and pj /∈ πi for all pi and πj such that

f± =
∨
p+i ∨

∨
π+
i .

It is clear that p+i + p+j is a Boolean function if and only if 〈pi, pj〉 ∩L is a point. Similarly, it is clear

that π+
i + π+

j is a Boolean function if and only if πi ∩ L = πj ∩ L. Hence, Conjecture 6.1 covers exactly
the examples which are induced by examples from Jq(n, k). For Jq(4, 2) we do know many non-trivial
examples for Boolean degree 1 functions, so the condition k+` > 4 is necessary. By computer we verified
the conjecture for H2(2, 2) and H2(2, 3).

We start by describing the example by Bruen and Drudge [6] for Jq(4, 2), q odd. Consider the polar
space O−(4, q) in its natural embedding in F4

q. Let P denote the isotropic points of O−(4, q). A tangent
is a line of F4

q which contains exactly one point of P, a secant a line which contains exactly two points
of P, a passant a line which contain no point of P. It is well-known that every line in F4

q is a passant, a
tangent, or a secant. For each point p ∈ P, let Lp denote a special set of (q+ 1)/2 of all q+ 1 tangents of
through p. We refer the reader to [6, §3] for details on how Lp is chosen. Let S denote all secants of P.

Example 6.2 (Bruen and Drudge). Let fBD be a Boolean function on Jq(4, 2), q odd, defined by
fBD(K) = 1 if and only if K ∈ S ∪

⋃
Lp. Then fBD is a Boolean degree 1 function with |fBD| =

(q2 + 1)(q2 + q + 1)/2.

Choose our embedding of Hq(2, 2) in Jq(4, 2) such that L is an external line of O−(4, q). Let fBD′

denote the restriction of fBD to H(`, k).

Lemma 6.3. We have |fBD′ | = (q2 + 1)q2/2.

Proof. An external line L meets exactly (q2 + 1)(q + 1)/2 lines K with f(K) = 1 (e.g. see [6, Theorem
1.1 (vii) and Theorem 3.1]). Hence, the claim follows from |fBD| = (q2 + 1)(q2 + q + 1)/2.

Theorem 6.4. There exists no Boolean degree 1 function f on Hq(2, 2) as in Conjecture 6.1 such that
f = fBD′ .
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Proof. Suppose that π± → fBD′ for some hyperplane π with L * π.
If π ∩ O−(4, q) is isomorphic to O(3, q), then π contains secants and external lines. As fBD(K) = 1

for secants K, and fBD(K) = 0 for external lines K, this is a contradiction.
If π ∩ O−(4, q) is isomorphic to p⊥ for some point p of O−(4, q), then fBD(K) = 1 for (q + 1)/2

tangents through p and fBD(K) = 0 for the other (q + 1)/2 tangents through p. If p /∈ L, then again
this is a contradiction, so p ∈ L. But we chose L to be an external line, so p /∈ L.

Hence, π± 9 fBD′ for all hyperplanes π. Hence, f±BD′ =
∨
p+i for pi on a plane g which contains L.

If pi 6∈ P, then pi lies on secants and passants not in L. As fBD(K) = 1 if K a secant and fBD(K) = 0
if K a passant, this is a contradiction.

Hence, pi ∈ P. Then fBD(K) = 1 for all lines K through pi except for (q+1)/2 tangents in the plane
p⊥i for which we have fBD(K) = 0. Hence, L ⊆ p⊥i . But L⊥ contains at most two points of P. Therefore,
as |p+| = q2, either |fBD′ | ≤ 2 · q2 or |fBD′ | ≥ q4 − 2 · q2. By Lemma 6.3, |fBD′ | = (q2 + 1)q2/2. As for
q ≥ 3, 2q2 < (q2 + 1)q2/2 < q4 − 2q2, this is a contradiction.

Remark The published journal version of this document states Conjecture 6.1 incorrectly. Namely, it
requires g to be a line and not, as here, an (` + 1)-space. As a consequence, the proof of Theorem 6.4
needed a small adjustment.

7 Graphs from groups

Finite Abelian groups Let G =
∏n
i=1 Zmi

be a finite Abelian group. We think of functions on G as
n-variate functions whose ith input is xi ∈ Zmi

. We say that a function on G has degree 1 if it has the
form f(x1, . . . , xn) =

∑n
i=1 φi(xi), where φi : Zmi

→ R are arbitrary functions. When all mi are equal
to some m, then this agrees with the definition of degree 1 functions on the Hamming scheme H(n,m).

Theorem 7.1 (Folklore). If f is a Boolean degree 1 function on a finite Abelian group G =
∏n
i=1 Zmi

then f(x1, . . . , xn) = φi(xi) for some i ∈ [n] and φi : Zmi → {0, 1}.

Proof. Suppose that f =
∑n
i=1 φi(xi). The claim clearly follows if we show that at most one φi can

be non-constant. Suppose, for the sake of contradiction, that both φi and φj are non-constant, say
φi(yi) < φi(zi) and φj(yj) < φj(zj). Restrict f to a Boolean function g on Zmi

×Zmj
by fixing the other

coordinates arbitrarily. We reach a contradiction by considering the following chain of inequalities:

g(yi, yj) < g(zi, yj) < g(zi, zj).

The same argument is clearly valid for all product domains.

Symmetric group We can think of the symmetric group Sn as the collection of all n×n permutation
matrices. The degree of a function on Sn is then the smallest degree of a polynomial in the entries which
represents the function. Ellis, Friedgut and Pilpel [23] have determined all Boolean degree 1 functions
on Sn:

Theorem 7.2 (Ellis, Friedgut and Pilpel). If f is a Boolean degree 1 function on Sn then either f(π) =
1π(i)∈J for some i ∈ [n] and J ⊆ [n], or f(π) = 1π−1(j)∈I for some j ∈ [n] and I ⊆ [n].

Ellis, Friedgut and Pilpel also claim to characterize Boolean degree d functions on the symmetric
group, but there is a mistake in their argument [27].

General linear group We can think of the general linear group GLq(n) as the collection of all
qn−1
q−1 ×

qn−1
q−1 matrices with entries in Fq which represent linear operators, and define degree accordingly.

The following is a (possibly incomplete) list of Boolean degree 1 functions on GL2(n), stated as conditions
on the input matrix M ∈ GL2(n):

• Mx ∈ Y .

• zM ∈W .

• Mx /∈ Y and wM−1 /∈ Y ⊥, where w 6⊥ x.
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• zM /∈W and M−1y /∈W⊥, where z 6⊥ y.

Such a list can be used to derive our characterization of Boolean degree 1 functions on the Grassmann
scheme in the case q = 2, since the latter can be realized as the set of left cosets of a parabolic subgroup
of GL2(n).

8 Multislice graphs

The multislices decompose Znm (or, H(n,m)) in the same way that the slices decompose Zn2 (or, H(n, 2)).
Let k1, . . . , km be positive integers summing to n. The multislice M(k1, . . . , km) consists of all points of
Znm in which the number of coordinates colored i is equal to ki. We can think of the elements as vectors
in Ωnm (where Ωm consists of all complex mth roots of unity) with given histogram, and then the degree
of a function is the minimal d such that the function is a linear combination of monomials which involve
at most d different coordinates. Alternatively, we can think of Ωm as an abstract set consisting of m
“colors”.

An alternative encoding uses a two-dimensional 0, 1 array xij (where 1 ≤ i ≤ n and 1 ≤ j ≤ m)
in which the rows sum to 1 and the columns sum to ki. (If we do not put any restriction on the
columns, we get all of Znm, which in this context we call the multicube H(n,m).) When m = n and
k1 = · · · = kn = 1, the multislice becomes the symmetric group, and the array becomes a permutation
matrix. More generally, a multislice is just a permutation module of the symmetric group. We define
the degree of a function as the minimal degree of a polynomial representing the function. It is not hard
to check that the two definitions are equivalent.

We show an analog of Lemma 1.2.

Lemma 8.1. Let k1, . . . , km ≥ 1, and let D = {i : ki = 1}. A Boolean degree 1 function on
M(k1, . . . , km) either depends on the color of some coordinate, or on which coordinate gets color c for
some c ∈ D.

Proof. Let f be a 0, 1-valued degree 1 function on M(k1, . . . , km). We lift f to a Boolean function F on
Sn as follows. Let χ : [n] → [m] map the first k1 values the color 1, the following k2 values the color 2,
and so on. We define F (π) = f(χ(π(1)), . . . , χ(π(n))). We claim that degF = 1. Indeed, denoting the
input to f by xij (using the two-dimensional array input convention) and the input to F by Xij , we see
that xij is a sum of kj values of the form XiJ . Theorem 7.2 thus implies that one of the following cases
holds:

1. There exists i ∈ [n] and J ⊆ [n] such that F (π) is the indicator of “π(i) ∈ J”.

2. There exists j ∈ [n] and I ⊆ [n] such that F (π) is the indicator of “π−1(j) ∈ I”.

Let us say that two permutations σ, τ are equivalent if χ(σ(i)) = χ(τ(i)) for all i. The definition of F
guarantees that F (σ) = F (τ) if σ, τ are equivalent. Therefore the condition indicated by F must be
invariant under equivalence. Let us now consider the two cases above.

Case 1: F (π) is the indicator of “π(i) ∈ J”. In this case f depends only on xi.
Case 2: F (π) is the indicator of “π−1(j) ∈ I”. If χ(j′) = χ(j) then this condition must be equivalent

to π−1(j′) ∈ I. If j′ 6= j and I /∈ {∅, [n]} then we can find a permutation π such that π−1(j) ∈ I and
π−1(j′) /∈ I, and so we reach a contradiction. This shows that either χ(j) ∈ D, in which case f depends
on which coordinate gets color χ(j), or I ∈ {∅, [n]}, in which case f is constant.

9 Future work

In order to complete the classification of Boolean degree 1 functions on Grassmann graphs, it is sufficient
to classify Boolean degree 1 functions on Jq(n, k) for k very small, ideally k = 2. Hence, proving
Theorem 1.3 for n ≥ 5 without relying on the classification of Boolean degree 1 function on Jq(4, 2)
would be ideal. Perhaps results such as the one given in [34, 47] could help here.

For polar spaces, it would be very interesting to investigate other small cases by computer as was done
for Jq(4, 2), so that the validity of Conjecture 5.1 can be further validated. In particular, for k, n−k ≥ 2
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and q ∈ {2, 3, 4, 5}, this would be enough to extend the classification result given in Theorem 5.2 due to
Theorem 5.9.

Similar questions as for the Grassmann graph and polar spaces arise for the sesquilinear forms graphs.

Often Boolean degree 1 functions correspond to the largest families of intersecting objects, connecting
them to Erdős–Ko–Rado (EKR) theorems (see [36]). Indeed, all our trivial examples are built from
these intersecting families, which are the is indicator functions x+i . In the group case, EKR theorems are
known for all 2-transitive groups, and the largest examples are indeed Boolean degree 1 functions [46],
so classifying all Boolean degree 1 functions on 2-transitive groups would be very interesting.

One of the classical results in analysis of Boolean functions on the hypercube, the Friedgut–Kalai–
Naor theorem [31], states that a Boolean function on the hypercube which almost has degree 1 (in
the sense that it is close in L2 norm to a degree 1 function, which is not necessarily Boolean) is close
to a Boolean degree 1 function. This has implications to EKR theory, since an almost largest family
of intersecting objects is often close to degree 1. Similar results have been proven on the Hamming
graphs [1], Johnson graphs [25], and symmetric groups [20, 21], but not on any of the other domains
considered here. Generalizations to larger degree have also been considered on the hypercube [42, 43],
Johnson graphs [39], and symmetric groups [22].

In a different direction, it would be interesting to extend the classification results to Boolean degree d
functions. For a domain D, let γd(D) be the largest number of coordinates that a Boolean degree d
function on D can depend on. Classical results in analysis of Boolean functions on the hypercube show
that Ω(2d) ≤ γd(H(n, 2)) ≤ d2d−1. In ongoing work [28], we have shown that for k, n − k ≥ exp(d) it
holds that γd(J(n, k)) = γd(H(n, 2)), and we suspect that a similar result holds for the multislice. More
generally, we conjecture that in the domains considered in the paper, Boolean degree d functions can be
formed by combining a bounded number of Boolean degree 1 functions.

Acknowledgements We thank Alexander L. Gavrilyuk and Maarten De Boeck for their various re-
marks on earlier drafts of this document.
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