
Algebraic Combinatorics
Draft

High dimensional Hoffman bound and
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Abstract. The n-th tensor power of a graph with vertex set V is the graph on
the vertex set V n, where two vertices are connected by an edge if they are con-
nected in each coordinate. One powerful method for upper-bounding the largest
independent set in a graph is the Hoffman bound, which gives an upper bound
on the largest independent set of a graph in terms of its eigenvalues. In this
paper we introduce the problem of upper-bounding independent sets in tensor
powers of hypergraphs. We show that many prominent open problems in extremal
combinatorics, such as the Turán problem for graphs and hypergraphs, can be
encoded as special cases of this problem. We generalize the Hoffman bound to
hypergraphs, and give several applications.

1. Introduction

The celebrated Hoffman bound [30] connects spectral graph theory with extremal
combinatorics, by upper-bounding the independence number of a graph in terms of the

minimal eigenvalue of its adjacency matrix.(1) The Hoffman bound, in a generalized
version due to Lovász [33], has seen many applications in extremal set theory and
theoretical computer science.

The Hoffman bound can be used to solve problems in extremal set theory in which
the constraints can be modeled as a graph. As an example, the Hoffman bound can
be used to prove the fundamental Erdős–Ko–Rado theorem on the size of intersecting
families, in which the constraint is that every two sets in the family have nonempty
intersection, as well as many other Erdős–Ko–Rado theorems on various domains [12,
13, 25]. Other problems involve more complex constraints, and so are not amenable
to this method. A simple example is the s-wise intersecting Erdős–Ko–Rado theorem,
due to Frankl [17], which concerns families in which every s sets have nonempty
intersection. In this case the constraints can be modeled as a hypergraph rather than
as a graph.

Schrijver [44] generalized the Hoffman bound to handle certain conditions on triples
of sets, in the context of coding theory. His generalization can handle constraints on
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the possible values of (|A∆B|, |A∆C|, |B∆C|), where A,B,C are sets in the family.
His method has been used in several subsequent works, for example [6, 23, 24].

Recently, the Hoffman bound has been generalized to hypergraphs [4, 26]. Our
new bound is particularly attractive for upper-bounding independent sets in tensor
powers of hypergraphs, a setting which we describe in detail below. We demonstrate
the power of this method by solving a problem of Frankl on triangle-free families and
by giving a spectral proof of Mantel’s theorem. We also formulate a number of known
problems in the language of independent sets in hypergraphs.

1.1. Notations. A multiset is an unordered collection of elements that is allowed to
have repetitions, its size is the number of its elements counting the multiplicity. An
i-multiset is a multiset of size i. Let V be a set. We denote by V [i] the collection of
all i-multisets of elements of V , and elements of V [i] will be denoted by [v1, . . . , vi].
The collection V [0] consists of the empty set.

Definition 1.1. A weighted k-uniform hypergraph is a pair X = (V, µ) where V is
the vertex set and µ is a probability distribution on V [k].

For 0 ! i ! k − 1, define a probability measure µi (or µi(X), if we wish to make
the hypergraph explicit) on V [i] by the following process. First, choose a multiset
[v1, . . . , vk] according to µ, and then choose an i-submultiset of it uniformly at random.
We writeX(i) for the set of elements of V [i] whose µi measure is positive. The elements
of X(i) are called the i-faces of X, and the elements of X(0) ∪ · · · ∪ X(k) are called
the faces of X. Note that if σ2 is a face of X, then σ1 is a face of X for any σ1 ⊆ σ2.
Note that X(0) = {∅}, i.e., the empty set is the one and only 0-face of X. We assume
without loss of generality that X(1) = V , that is, µ1(v) > 0 for all v ∈ V (otherwise,
we can replace V with X(1)).

The collection of multisets
!
X(k), X(k−1), . . . , X(0)

"
can be viewed as an abstract

simplicial complex of dimension k − 1 (e.g., as defined in [4, 26]) which is however
allowed to have loops (multiples of a vertex in a face). Conversely, an abstract sim-
plicial complex can be made into a weighted uniform hypergraph by introducing a
probability measure which is positive on its maximal faces.

We caution the reader that in the literature on abstract simplicial complexes, an
i-face is usually defined as a face of size i+ 1.

Definition 1.2. A set I ⊆ V is said to be independent in a k-uniform hypergraph X
if no k-face of X is contained in I. The largest possible value of µ1 (I) , where I ⊆ V is
an independent set in X, is called the independence number of X and denoted α (X).
A subset I ⊆ V is said to be an extremal independent set of X if µ1 (I) = α (X) .

A flag of X is a tuple of faces A0, . . . , Ak such that Ai is an i-face and A0 ⊆ · · · ⊆
Ak. We can couple the distributions µ0, . . . , µk into a distribution µ over flags of X
by sampling a random k-face according to µ and removing elements from it one by
one uniformly at random. It will also be useful to consider distributions µ̃i on V [i],
obtained by sampling an i-face according to µi, and then choosing an order of the
vertices it contains uniformly at random.

We use the notation v ∼ µ1 to denote a random variable v supported on V [1] and
distributed according to µ1. Similarly, (u,v) ∼ µ̃2 denotes a random variable (u,v)
supported on V [2] and distributed according to µ̃2, and so on.

The notation w ∼ µ denotes a random variable w supported on Xk and cor-
responding to our earlier definition (a probability distribution over tuples of faces
A0 ⊆ · · · ⊆ Ak) as follows: Ai = [w1, . . . ,wi].
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Let σ ∈ X(i) be an i-face. Its link in X is the (k − i)-uniform hypergraph Xσ =
(V, µσ), where µσ is the probability distribution that corresponds to the following
process: sample a random flag according to µ subject to µi = σ, and output µk " σ.
Note that the link of the empty set is the whole hypergraph X itself. For an element
v ∈ X, the link of v is Xv = X{v}.

For a set A ∈ X(k−i) we shall say that µσ (A) is the relative measure of A according
to σ.

The skeleton (or underlying graph) of X is the weighted graph S (X) on the vertex
set X(1), whose edges are X(2), and whose weights are given by µ2. The inner product
on the space L2

!
X(1), µ1

"
of functions on the vertices is defined as

〈f, g〉 = Ev∼µ1f(v)g(v) =
#

v∈X(1)

f(v)g(v)µ1(v).

The normalized adjacency operator TX of X is that of the skeleton S(X). In other
words, TX acts on L2

!
X(1), µ1

"
as follows:

(TXf) (v) = Eµ1(Xv)[f ].

If f, g ∈ L2(X(1), µ1) then

〈f, TXg〉 = Ev∼µ1f(v)Eu∼µ1(Xv)g(u)

= Ew∼µf(w1)g(w2 "w1) = E(u,v)∼µ̃2
f(v)g(u).

This shows that TX is self-adjoint, and so has real eigenvalues. The matrix form of
TX is given by the formula

(1) TX(u, v) =

$
µ2([u,u])
µ1(u)

if u = v;
µ2([u,v])
2µ1(u)

if u ∕= v.

Similar reasoning shows that we can sample [u, v] ∼ µ2 by sampling u ∼ µ1 and
v ∼ µ1(Xv).

Note that if V is a finite set (which is the case throughout this paper), then the
largest eigenvalue of TX is 1 and is achieved on the constant function. By λ(X) we
denote the smallest eigenvalue of TX . For all 0 ! i ! k − 2, we write

λi (X) = min
σ∈X(i)

[λ (S (Xσ))] .

In other words, λi (X) is the minimal possible value of an eigenvalue of the normalized
adjacency matrix of a skeleton of the link of an i-face of X. Note that λ0(X) is just
the smallest eigenvalue of the normalized adjacency operator on the skeleton of X.

Definition 1.3. The tensor product X ⊗ X ′ of two k-uniform hypergraphs X =
(V, µ) and X ′ = (V ′, µ′) is a k-uniform hypergraph (V × V ′, µ × µ′), where µ × µ′

stands for the following measure on (V × V ′)[k] ≃ V [k] × V ′[k]: an ordering of an edge
(σ,σ′) ∈ V [k] × V ′[k] implies an ordering on σ and on σ′, we define (µ × µ′)k(σ,σ

′)

as the sum of %µk(σ)%µ′
k(σ

′) over all orderings of (σ,σ′). Recall that %µk is constructed
from µ by choosing an ordering on an edge uniformly at random. For a k-uniform
hypergraph X, we denote by X⊗n = X ⊗ · · ·⊗X& '( )

n

its n-th tensor power.

1.2. Results. We prove a new upper bound for the independence number of a hy-
pergraph, and its invariance under the tensor power operation.

Theorem 1.4. Let X = (V, µ) be a k-uniform hypergraph. Then

(2) α (X) ! 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
.
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If in addition λi ! 0 for all 0 ! i < k − 2, then for any positive integer n the
following inequality holds for X⊗n:

α(X⊗n) ! 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
.

In particular, if the bound is sharp for X, it remains sharp for its tensor powers, as
α(X⊗n) = α(X).

Furthermore, if λ0 > −1 and I is an independent set attaining the bound, then I is
a dictator (viewed as a subset of V n, membership in I depends on a single coordinate).

We prove the first part of this theorem as Theorem 4.2, and the second part (re-
garding X⊗n) as Theorem 4.6. The proof also yields conditions for equality, which we
use in the applications to identify extremal families. Since the condition for equality
in the first part of the theorem is somewhat verbose, we only state it in full after
proving Theorem 4.2.

When k = 2, we obtain the classical Hoffman bound α(X) ! −λ
1−λ , where λ is the

minimal eigenvalue of a weighted adjacency matrix of X.
We apply Theorem 1.4 to deduce the following result on Frankl’s problem on

triangle-free families, in both a uniform and a p-biased versions.

Theorem 1.5. The uniform version. Let
!
[n]
2k

"
be the space of 2k-subsets of [n],

where 3k ! n ! 4k−1. If F ⊆
!
[n]
2k

"
is a family of subsets which does not contain three

distinct subsets whose symmetric difference is empty, then |F| !
!
n−1
2k−1

"
. This bound

is sharp, as, for example, the family of all subsets containing the element 1 satisfies
the condition and contains

!
n−1
2k−1

"
subsets.

The p-biased version. Let {0, 1}n be the space of {0, 1}-vectors of length n en-
dowed with be the p-biased measure µ, where 1/2 ! p ! 2/3. If F ⊆ {0, 1}n is a
family of vectors which does not contain three distinct vectors whose sum is zero, then
µ(F) ! p. This bound is sharp, as, for example, the set of all vectors having 1 as their
first coordinate satisfies the condition and has measure p.

Our method also provides spectral proofs of Mantel’s theorem on triangle-free
graphs and Frankl-Tokushige theorem on k-wise intersecting families.

Theorem 1.6 (Mantel [35]). If a graph on n vertices contains no triangle, then it

contains at most
*
n2

4

+
edges.

Theorem 1.7 (Frankl–Tokushige [19]). Let k " 2 and p ! 1− 1
k . Assume F ⊂ P([n])

is k-wise intersecting family of subsets of [n], that is, for all F1, . . . , Fk ∈ F
F1 ∩ · · · ∩ Fk ∕= ∅.

Then µp(F) =
,

F∈F p|F |(1 − p)n−|F | ! p, where µp is the p-biased measure on
P([n]).

1.3. Structure of the Paper. In Section 2, we give a brief overview of the method
for graphs: the Hoffman bound, its behavior for tensor product of graphs, and appli-
cations in extremal combinatorics. In Section 3, we introduce the required hypergraph
definitions and notations, and translate a number of known problems to the language
of independent sets of hypergraphs. In Section 4, we prove Theorem 1.4 and compare
the new bound to the known ones. In Sections 5 and 6, we prove Theorems 1.5 and 1.6,
respectively.

1.4. Acknowledgements. We thank the reviewers for several helpful comments
and suggestions.
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2. Hoffman bound for graphs

Let G = (V, µ) be a graph, that is, a 2-uniform hypergraph in the notations of
this paper. By edges of G we mean the support of µ in V [2]. A subset of V is called
independent if it does not contain any edges. Recall that µ1 is the induced measure on
V . The independence number of G is the maximal value of µ1 (A) over all independent
sets A ⊆ V . If µ1 (A) = α (G), we say that A is an extremal independent set of G. We
write λmin (G) for the minimal eigenvalue of the normalized adjacency TG on G, see
Equation 1 for the formula.

The Hoffman bound for graphs gives an upper bound on the largest independent
set of G in terms of its minimal eigenvalue.(2)

Theorem 2.1 (Hoffman bound [29,30,33]). Let G be a graph. Then

α (G) ! −λmin (G)

1− λmin (G)
.

Ever since Hoffman’s original work, the Hoffman bound has become a central tool in
the study of intersection problems in combinatorics. For example, Lovász [33] showed
that it can be used to prove the celebrated Erdős–Ko–Rado theorem [15], (aka EKR
theorem), which states that for n " 2k, the maximum size of an intersecting family
of k-element subsets of [n] is

!
n−1
k−1

"
. The theorem follows directly from the Hoffman

bound by considering the Kneser graph, which is the graph on the vertex set
!
[n]
k

"
in

which two sets are connected if they are disjoint. It is crucial for the proof that the
Hoffman bound is tight in this case.

The Hoffman bound can be also used in a more sophisticated manner. For instance,
Wilson [47] considered the t-intersection variant of the EKR theorem, in which the

goal is to find the largest subfamily of
!
[n]
k

"
in which any two sets have at least t

elements in common. In contrast to the EKR theorem, in this case applying the
Hoffman bound on the generalized Kneser graph (in which two sets are connected
if their intersection contains less than t points) does not give a tight upper bound.
Instead, one needs to accurately choose weights for the edges of this graph, some of
them negative, and only then apply the Hoffman bound. In this way, Wilson managed
to determine all values of n, k, t in which the extremal family is the family of all sets
that contain a given set of size t, namely, n " (t+ 1) (k − t+ 1).

This approach became more systematic in the work of Friedgut [21], who applied
Fourier analysis to construct a matrix for the p-biased version of Wilson theorem. This
Fourier-analytic approach was also useful in the proof of a long-standing problem of
Simonovitz and Sós on triangle-intersecting families of graphs [12]. Ellis, Friedgut,
and Pilpel [13], used a similar approach to solve an old problem of Deza and Frankl,
showing that a t-intersecting family of permutations in Sn contains at most (n − t)!
permutations, for large enough n (two permutations t-intersect if they agree on the
image of at least t points). For an exposition of many different applications of the
Hoffman bound to Erdős–Ko–Rado theory, consult the excellent monograph of Godsil
and Meagher [25].

Another important application of this method is to error-correcting codes. This
approach was pioneered by Delsarte [7]. Schrijver [43] showed that Delsarte’s linear
programming bound can be expressed as a mild generalization of the Hoffman bound.

(2)The Hoffman bound is sometimes stated for d-regular graphs in terms of the unnormalized inde-

pendence number and the unnormalized adjacency matrix, in which case it reads α(G) ! −λmin(G)
d−λmin(G)

n,

where n is the number of vertices. This formula can be derived from ours by noticing that normalizing
the adjacency matrix of a d-regular graph corresponds to division by d.
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McEliece, Rodemich, Rumsey, andWelch [36] used this approach to prove the so-called
“linear programming bound”, which is the best bound on the size of binary error-
correcting codes. (Since then, the bound has been recovered using different techniques
by Navon and Samorodnitsky [39].)

The main flaw of the Hoffman bound is the fact that it does not apply to problems
in which the constraint involves more than two sets. For example, it cannot be used

to upper-bound the size of a subfamily of
!
[n]
k

"
in which any three sets t-intersect. It

is therefore of great importance to find high-dimensional analogues of the Hoffman
bound that fit these more general restrictions.

Schrijver [44] came up with a generalization of the Hoffman bound which is able
to handle some constraints on triples of sets. In more detail, his method can handle
constraints on the allowed Hamming distance patterns on triples of sets in the family.
However, his method does not handle arbitrary constraints on triples, and does not
extend beyond triples.

Over the years there has been great interest in the problem of generalizing results
from graphs to hypergraphs (or, equivalently, simplicial complexes), see e.g. [27,28,32,
34,40,41,42]. In particular, two generalizations of the Hoffman bound were given by [4]
and [26]. Such results are known as high-dimensional Hoffman bounds. In contrast to
Schrijver’s generalization, such bounds apply to arbitrary hypergraphs. The goal of
this paper is to give a new high-dimensional Hoffman bound, which we believe is the
right tool for tackling many problems in extremal combinatorics.

2.1. Independent sets in tensor power of graphs. The Hoffman bound is
particularly useful for independent sets in tensor powers of graphs. Given graphs
G = (V, µ), G′ = (V ′, µ′), their tensor product is the graph G⊗G′ whose vertex set is
V ×V ′ endowed with the product measure µ×µ′. In particular, two of vertices in the
product are connected by an edge if they are connected by an edge in each coordinate.
The n-th tensor power of G is the graph G⊗n = G⊗· · ·⊗G. Independent sets in tensor
products of graphs are well studied, see e.g. [2], [3], and [9]. One motivation is their
connection to the theory of hardness of approximation, see [10]. However, our main
focus in this paper will be the connection to extremal set theory. This connection was
first implicitly established by Friedgut [21], and later more explicitly by Dinur and
Friedgut [8].

It is a well-known rule of thumb (backed by various results) that the two Erdős–
Rényi models of random graphs, G (n, p) and G (n,m), should behave similarly when

p = 2m
n(n−1) .

(3) A similar phenomenon holds in extremal set theory: questions about

subfamilies of
!
[n]
k

"
behave similarly to questions about subsets of P([n]) with respect

to the p-biased measure µp for p = k/n, where a set A ⊆ [n] is chosen by indepen-
dently putting each element of [n] inside A with probability p and outside of it with
probability 1− p. We write µp (F) for the probability that a random subset A ∼ µp

belongs to F .
For instance, the EKR theorem, which asks how large can an intersecting family

F ⊆
!
[n]
k

"
be, can be rephrased as follows:

Suppose that F is intersecting. How large can the probability that a
random k-set belongs to F be?

This formulation of the problem immediately suggests the following p-biased analogue:

How large can µp (F) be if F ⊆ P ([n]) is intersecting?

(3)Both models construct random graphs on n vertices. In the model G(n, p), we include each edge
independently with probability p. In the model G(n,m), we choose exactly m edges at random.
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This problem was first studied by Ahlswede and Katona [1], in the 70’s. While both
the EKR problem and its p-biased analogue have already been solved, this connection
is still useful for many of the generalizations of the EKR theorem, where a result in
the k-uniform setting can be deduced from the p-biased setting and vice versa, see
Dinur and Safra [11].

The p-biased version of the EKR theorem is the problem of determining the ex-
tremal independent sets in the graph G⊗n, where G consists of two vertices {0, 1} with
the (undirected) edge {1, 0} having the weight 2p, and with the edge {0, 0} having the
weight 1−2p. This observation was used by Friedgut [20], Dinur and Friedgut [11], and
later by Friedgut and Regev [22], to apply Fourier-analytic methods that are natural
in the context of graph products in order to study variants of the EKR theorem.

In a suitable basis, the matrix of the adjacency operator of a tensor product of
graphs is the Kronecker product of the adjacency operator matrices of the factors.
Hence, the following property holds: λmin(G

⊗n) = λmin(G). This immediately implies
that the Hoffman bound is sharp on G⊗n whenever it is sharp on G. It reduces the
p-biased EKR problem for families F ⊆ P ([n]) to the problem of showing that the
Hoffman bound is sharp in the special case n = 1, which can be verified directly.

A subset A of G⊗n is called a dictatorship if there exists a set B ⊆ G and 1 ! i ! n
such that a vertex x = (x1, . . . , xn) is in A iff xi is in B. The above observation shows
that if the Hoffman bound is sharp for G, then the Hoffman bound is sharp for G⊗n

as well, and the dictatorships corresponding to extremal independent sets of G are
extremal forG⊗n (not necessarily exclusively). Alon, Dinur, Friedgut, and Sudakov [2],
essentially showed the following stronger version of this observation.

Theorem 2.2 ( [2]). Let G be a weighted connected non-bipartite graph. If the Hoffman
bound is sharp for G, i.e., α (G) = −λmin

1−λmin
, then α (G⊗n) = α (G) . Moreover, if A is

an independent set with µG (A) = α (G), then A is a dictatorship.
Furthermore, for each ε > 0 there exists δ = δ(ε, G) > 0 such that if an independent

set A satisfies µG (A) > α (G) − δ, then there exists an independent dictatorship B
such that µG (A∆B) < ε.

Moreover, δ in fact depends only on ε and on minv µG({v}).

(To deduce this theorem from their work requires the FKN theorem for product
spaces, due to Jendrej, Oleszkiewicz, and Wojtaszczyk [31].)

3. Known problems in the language of hypergraphs

There are plenty of reasons why the above theory begs to be generalized to hyper-
graphs (or, equivalently, simplical complexes). In addition to the definitions given in
the introduction, let us give a version of them in the k-partite setting, which is a
special case of k-uniform hypergraphs.

Definition 3.1. A weighted k-partite hypergraph is a tuple X = (V1, . . . , Vk, µ),
where µ is a probability distribution on V1 × · · · × Vk. The probability distribution
µX,Vi

is the probability distribution on Vi, where a vertex is chosen as the projection on
Vi of a random element chosen according to µ. Sets A1 ⊆ V1, . . . , Ak ⊆ Vk are said to

be cross-independent if the probability that a random element of µ belongs to
-k

i=1 Ai

is 0. The tensor power of X is the k-partite hypergraph X⊗n = (V n
1 , . . . , V n

k , µ⊗n) ,
where µ⊗n is the product probability distribution.

Independent sets in tensor powers of hypergraphs arise all over combinatorics, and
many of the fundamental problems in extremal combinatorics can be formulated as
problems about independent sets in tensor powers of hypergraphs. Below we formulate
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several well-known problems, solved and open, in the language of hypergraphs, and
give proof to two of them: Frankl’s Triangle Problem and Mantel’s Theorem.

3.1. Number theory. How large can a subset A ⊆ Fn
q be if it does not contain ele-

ments x1, . . . , xm ∈ A that form a solution to the system of equations
,m

i=1 aijxi = bj ,
for parameters aij , bj ∈ Fq? For instance, the Meshulam–Roth theorem [37], concerns
the problem of determining how large can a subset of Fn

p be if it contains no non-
trivial solutions to the equation x + z = 2y. Similarly, the analogous problem for
k-term arithmetic progressions can be formulated as a non-trivial solution to the
equations

x1 + x3 = 2x2, x2 + x4 = 2x3, . . . , xm−2 + xm = 2xm−1.

Take the m-uniform hypergraph X = (Fq, µ) , where µ is positive on the solutions
to the equations

,m
i=1 aijxi = bj . Since a solution to the system of equations in Fn

q is a

solution iff it is a solution in each coordinate, the hypergraph X⊗n is the hypergraph
whose independent sets correspond to solutions of the same system of equations as
above. This observation was first given by Mossel [38].

3.2. Turán problem for hypergraphs. One of the fundamental problems in ex-
tremal combinatorics is the Turán problem for hypergraphs, which asks how large can

a family F ⊆
!
[n]
k

"
be if it does not contain a copy of some given hypergraph H. The

Turán problem can be restated as a problem about independent sets in tensor powers
of k-partite hypergraphs (in preparation by the third author). Let us state it here in
the case of triangles in graphs.

Example 3.2. Let K2,2,2 be the complete 3-partite hypergraph between sets
A1, A2, A3 of size 2, let Eij be the set of edges between Ai and Aj , and let
X = (V1, V2, V3, µ) be the 3-partite hypergraph, where

V1 = E23, V2 = E31, V3 = E12,

and where µ is the uniform measure on the set of triangles in K2,2,2. The 3-uniform
hypergraph

X⊗n

is the hypergraph whose vertices correspond to the edges in K2n,2n,2n and whose
hyperedges correspond to the triangles in K2n,2n,2n . Therefore, cross-independent
sets correspond to three directed graphs

G1 ⊆ A1 ×A2, G2 ⊆ A2 ×A3, G3 ⊆ A3 ×A1,

where each Ai is {0, 1}n .

As mentioned above, this example can be generalized to arbitrary hypergraphs. In
Section 6, we shall use this construction to give a spectral proof of Mantel’s theorem
for graphs with 2n vertices. In this context, Mantel’s theorem can be restated as
follows:

Theorem 3.3. Let G1, G2, G3 be cross-independent sets in X⊗n. Suppose additionally
that G1, G2, G3 are all equal to some bipartite graph G ⊆ ({0, 1}× {0, 1})n, and that
G corresponds to a graph in the sense that (a, b) ∈ G if and only if (b, a) ∈ G (in
other words, G is the bipartite cover of some graph). Then the largest value of |G| is
attained when G is the dictatorship of all x ∈ ({0, 1}× {0, 1})n whose first coordinate
is either (0, 1) or (1, 0).
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Indeed, the dictatorship of all x ∈ ({0, 1}× {0, 1})n whose first coordinate is either
(0, 1) or (1, 0) corresponds to a balanced complete bipartite graph, which is extremal
for Mantel’s theorem. Interestingly enough, the dictatorships contain only some of
the complete balanced bipartite graphs, but not all of them.

3.3. Extremal set theory. Many p-biased versions of problems in extremal set
theory can be described as a special case of the problem: “How large can α (X⊗n)
be?”, where X is a weighted hypergraph.

3.3.1. Erdős Matching Conjecture. Our first example is the Erdős Matching Conjec-
ture [14], from 1965. An s-matching is a family of s sets {A1, . . . , As} that are pairwise
disjoint. Erdős asked how large can a family F ⊆

!
[n]
k

"
be if it does not contain an

s-matching. He conjectured that the extremal family is either the family of all sets

that intersect a given set of size s− 1 in at least one element, or the family
!
[ks−1]

k

"
.

The corresponding p-biased version of this problem is as follows:

Given p ! 1
s , how large can µp (F) be if F does not contain an

s-matching?

This is the problem of determining the independence number of the n-th tensor power
of the s-uniform hypergraph whose vertex set is {0, 1} with the weight function
µ([1, 0, . . . , 0]) = sp and µ ([0, . . . , 0]) = 1 − sp (recall that [·] is our notation for
multiset). A nice feature of the p-biased variant of the Erdős Matching Conjecture is
that there is only one suggestion for the extremal family, which is the family of all
sets that intersect a given set of size s− 1 in at least one element.

3.3.2. s-wise Intersecting Families. The second example is the problem of s-wise in-

tersecting families, first studied by Frankl [17]. A family F ⊆
!
[n]
k

"
is s-wise inter-

secting if the intersection of every s sets in F is nonempty. Frankl showed that when
k ! s−1

s n, the extremal s-wise intersecting family is the family of all sets that contain
a given element (otherwise every family is s-wise intersecting). The p-biased version of
the problem was studied by Frankl and Tokushige [19]. They showed that the largest
value of µp (F) for an s-wise intersecting family F is p, as long as p ! s−1

s . This prob-
lem can be expressed as the determining the independence number of the s-uniform
hypergraph X⊗n, where

(1) The hypergraph X = (V, µ) has {0, 1} as its vertex set V .
(2) The induced distribution µ1 on V is the p-biased one.
(3) µ (x) = 0 if x is the all ones vector.

It is easy to construct many hypergraphs X that satisfy these hypotheses. We reprove
this result in Section 7.

3.3.3. Frankl’s Turán Problem. Last but not least, this problem is related to Frankl’s
Turán problem on hypergraphs without extended triangles. A triangle in P ([n]) is a
2k-uniform hypergraph {A,B,C} such that each element of [n] belongs to an even
number of the sets A,B,C. In other words, there exist disjoint k-element sets D,E, F
such that D ∪ E = A, D ∪ F = B, and E ∪ F = C. Frankl [18] asked how large can

a family F ⊆
!
[n]
2k

"
be if it does not contain a triangle. The reason for considering

only even uniformities is that no k-uniform triangle exists for an odd k. The p-biased
version of the problem is as follows:

Given p ! 2
3 , how large can µp (F) be if F ⊆ P ([n]) does not contain

a triangle?

The reason for the condition p ! 2
3 is the fact that the family

.
A : |A| > 2

3n
/

is
triangle-free, and its p-biased measure tends to 1 as n tends to infinity.
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The p-biased version of Frankl’s Turán problem is the problem of determining the
independence number of the 3-uniform hypergraph X⊗n, where X = (V, µ) is with
V = {0, 1} and

µ ([1, 1, 0]) =
3

2
p, µ ([0, 0, 0]) = 1− 3

2
p.

In Section 5 we prove the following theorem:

Theorem 3.4. If a family of 2k-subsets of [n] contains no three distinct subsets
whose symmetric difference is empty, where n " 3k, then the family contains at
most 2k

min(n,4k−1)

!
n
2k

"
subsets.

Furthermore, when n ! 4k − 1 and p " 1/2 the bounds are tight for “dictator-
ships” (all subsets or vectors containing a specific point), and otherwise the bounds
are asymptotically tight, in the p-biased case for the family of all vectors having odd
parity, and in the 2k-uniform case for the family of all subsets whose intersection with
[⌊n/2⌋] is odd.

Similarly we prove that if a subset of {0, 1}n contains no three distinct vectors
summing to zero, then for all p ! 2/3, its µp-measure is at most max(p, 1/2).

4. High-dimensional Hoffman bound

Suppose we are given a problem in extremal set theory where constraints on more
than two elements are involved. A possible strategy for solving it is to first incorporate
families F that satisfy the constraint as independent sets in some hypergraph or
simplical complex, and then to find and apply a high-dimensional generalization of
the Hoffman bound in order to bound the size of F . Two such generalizations of the
Hoffman bound were obtained by the second author in [26], and by Bachoc, Gundert,
and Passuello in [4]. However, none of them seem to give sharp results in our problems
of interest. Instead, we develop a different generalization of the Hoffman bound in the
spirit of [26].

Let X = (V, µ) be a k-uniform hypergraph on the vertex set V . Recall (see Sub-
section 1.1) that for 0 ! i ! k − 2 we denote by λi (X) the minimal possible value
of an eigenvalue of the normalized adjacency matrix of the skeleton of the link of an
i-face of X. That is,

λi (X) = min
σ∈X(i)

[λ (S (Xσ))] .

Note that the hypergraph itself is the link of the only 0-face, the empty set, and
hence λ0(X) is just the smallest eigenvalue the normalized adjacency operator on the
skeleton of X.

Example 4.1. Let X = ({0, 1} , µ) be a graph (in other words, a 2-uniform hyper-
graph) on two vertices {0, 1} with the probability measure µ defined on the edges
as

µ ({0, 0}) = p1, µ ({0, 1}) = p2, µ ({1, 1}) = p3.

Then the induced distribution µ1 on the vertices is as follows:

µ1(0) = p1 +
1

2
p2, µ1(1) =

1

2
p2 + p3.

The normalized adjacency operator TX on the skeleton of X has the matrix form

TX =

0

1
p1

p1+
1
2p2

1
2p2

p1+
1
2p2

1
2p2

1
2p2+p3

p3
1
2p2+p3

2

3
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and while its largest eigenvalue is equal to 1, the smallest one is equal to

λ0(X) = 1− 2p2
1− (p1 − p3)2

.

Theorem 4.2 (Restatement of first part of Theorem 1.4). Let X = (V, µ) be a k-
uniform hypergraph. Then

(3) α (X) ! 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
.

Proof. The proof goes by induction on the uniformity of the hypergraph. The base
case, k = 2, is the graph case, and the bound (3) reads as the classical Hoffman
bound. Assume that the bound holds for (k− 1)-uniform hypergraphs. Let TX be the
normalized adjacency operator of the skeleton of X, and let v1 = 1, v2, . . . , vm be an
orthonormal basis of its eigenvectors with eigenvalues 1 " l2 " · · · " lm = λ0 (recall
that TX is self-adjoint). Let I be an independent set of measure α(X), and let f = 1I
be its indicator function. We may write

f =

m#

i=1

〈f, vi〉 vi.

On the one hand,

〈TXf, f〉 = Pr
[x,y]∼µ2

[x,y ∈ I] ,

or in other words, it is equal to the probability of an ordered edge (2-face) distributed
according to µ2 to have both ends in I. On the other hand,

〈TXf, f〉 =
m#

i=1

li 〈f, vi〉2

" 〈f, 1〉2 +
m#

i=2

λ0 〈f, vi〉2

= 〈f, 1〉2 (1− λ0) + λ0 〈f, f〉

= E [f ]
2
(1− λ0) + λ0E

4
f2

5
.

Since f is an indicator function, E[f ] = E[f2] = α(X), and so

Pr
[x,y]∼µ2

[x,y ∈ I] " α(X)2 (1− λ0) + λ0α(X).

Note that

Pr
[x,y]∼µ2

[x,y ∈ I] ! α(X) ·max
x∈I

Pr
y∼µ1(Xx)

[y ∈ I]

and that for a fixed vertex x, the probability Pry∼µ1(Xx) [y ∈ I] is the measure of an
independent set of vertices in its link Xx, which is a (k − 1)-uniform hypergraph. By
the inductive assumption,

Pr
y∼µ1(Xx)

[y ∈ I] ! 1− 1

(1− λ0(Xx)) · · · (1− λk−3(Xx))
.

Clearly λi(Xx) " λi+1. Since the expression on the right-hand side is monotone
decreasing in λi(Xx),

Pr
y∼µ1(Xx)

[y ∈ I] ! 1− 1

(1− λ1) · · · (1− λk−2)
.

Combining the above bounds, we deduce that
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(1− λ0)α(X) + λ0 ! Pr
y∼µ1(Xx)

[y ∈ I] ! 1− 1

(1− λ1) · · · (1− λk−2)
,

which proves the required bound after rearrangement. □

Suppose now that an independent set I attains the bound in Theorem 4.2. Then
the following inequality involving f = 1I is tight:

〈TXf, f〉 =
m#

i=1

li〈f, vi〉2 " 〈f, 1〉2 +
m#

i=2

λ0〈f, vi〉2,

and so f − E[f ] belongs to the eigenspace of λ0. Furthermore, for each x ∈ I, the
bound

Pr
y∼µ1(Xx)

[y ∈ I] ! 1− 1

(1− λ0(Xx)) · · · (1− λk−3(Xx))

is tight, and λi(Xx) = λi+1 for 0 ! i ! k − 3. We obtain the following tightness
condition.

Theorem 4.3. If I is an independent set attaining the bound in Theorem 4.2 then
for every multiset A ⊆ I of size ℓ ! k − 2:

• λi(XA) = λi+ℓ for 0 ! i ! k − 2− ℓ. In particular, λ0(XA) = λℓ.
• f − µA(I) lies in the λℓ-eigenspace of TXA

.

4.1. Comparison to prior work. There are two known spectral upper bounds on
the independence number of a hypergraph (equivalently, a simplicial complex): one
in [26], to which we will refer as the Laplacian bound, and one in [4], to which we
will refer as the Theta bound. To the bound in Theorem 4.2 we will refer as the Link
bound.

The Link bound and the Laplacian bound are based on the same idea. Namely,
the bound on the size of an independent set is obtained via a combination of a lower
and an upper bound on the number of 2-faces between the maximal independent
set and its complement. However the comparison between them does not seem to be
straightforward. It is not clear how the spectra of the Laplace operators relate to the
spectra of the normalized adjacency operators of the links used to prove the Link
bound in the general case.

The Theta bound follows a different approach. In [4], the authors show that the
Theta bound is incomparable to the Laplacian bound by providing four families of
simplicial complexes, on half of them one bound is sharp while the other is not, and
vice versa.

The Link bound is sharp for all four examples provided in [4], as we show below.
In other words, the Link bound performs at least as good, and sometimes better, as
the Theta bound and the Laplacian bound. However, we do not have a proof that it
is always the case in general.

Here are the examples considered in [4]:

(1) Let S be a set of 3m elements of three colors, each color appearing m times.
What is the largest size of a subset of S in which no triple of elements contains
all three colors? In other words, what is the largest independent set of the
3-partite 3-uniform hypergraph on 3m vertices. The answer is 2m. This is
shown by the Theta bound by not by the Laplacian bound.

The Link bound is also sharp: if we introduce the uniform measure on the
hypergraph, then λ0 = − 1

2 and λ1 = −1, and the Link bound reads as 2
3 ,

which is exactly the measure of the set of 2m vertices.
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(2) Consider the set S again. What is the largest size of a subset of S in which
each triple of elements contains all three colors? The answer is 3. This is again
shown by the Theta bound by not by the Laplacian bound.

The Link bound is also sharp. To show this, we consider the 3-uniform hy-
pergraph whose triangles are all triples of distinct elements of S in which not
all colors are the same. We introduce a measure which gives each monochro-
matic triangle a probability p1 and each bichromatic triangle a probability
p2, where p1 = 2p2. We compute λ0 = − 1

2m−1 and λ1 = − 1
2m−2 , and so the

Link bound reads as 1
m = 3

3m .
(3) Let T be a set of 2m elements of two colors, each color appearing m times.

What is the largest size of a subset of T in which no triple of elements contains
both colors? The answer is m. This is shown by both the Theta bound and
the Laplacian bound, and so also by the Link bound.

The Link bound is also sharp: if we introduce the uniform measure on the
3-uniform hypergraph whose triangles are all bichromatic triples of distinct
elements of T , then λ0 = − 1

3 and λ1 = − 1
2 , and the Link bound reads as 1

2 ,
which is exactly the measure of the set of m vertices.

(4) Consider the set T again. What is the largest size of a subset of T in which
each triple of elements contains both colors? The answer is 4. This is shown
by the Laplacian bound and so also by the Link bound, but not by the Theta
bound.

The Link bound is also sharp: if we introduce the uniform measure on
the 3-uniform hypergraph whose triangles are all monochromatic triples of
distinct elements of T , then λ0 = − 1

m−1 and λ1 = − 1
m−2 , and so the Link

bound reads as 2
m = 4

2m .

More details on these examples can be found in Appendix A.

4.2. Sharpness of Hoffman bound on X implies sharpness in X⊗n. The goal
of this section is to prove that the bound (3) remains sharp for tensor powers of a
hypergraph if it is sharp for the hypergraph itself given all the minimal eigenvalues
are negative. First recall the following definition.

Definition 4.4. The tensor productX⊗X ′ of two k-uniform hypergraphsX = (V, µ)
and X ′ = (V ′, µ′) is a k-uniform hypergraph (V ×V ′, µ×µ′), where µ×µ′ stands for
the product measure on (V × V ′)[k] ≃ V [k] × V ′[k]. For a k-uniform hypergraph X,
we denote by X⊗n = X ⊗ · · ·⊗X& '( )

n

its n-th tensor power.

Proposition 4.5. Let Y = X ⊗X ′ be the tensor product of k-uniform hypergraphs
X and X ′. Then for all 0 ! i < k−2, the following holds for the smallest eigenvalues
of the normalized adjacency operator on the links of its i-faces:

λi(Y ) = min
σ∈Y (i−1)

[λ (S (Xσ))] =

$
λi (X)λi (X

′) , if λi (Xj) " 0 for j = 1, 2;

min {λi (X) ,λi (X
′)} , otherwise.

In particular, for the tensor power it reads as

λi(X
⊗n) =

$
λi (X) , if λi (X) ! 0;

λi (X)
n
, if λi (X) " 0.

Proof. The proposition is a combination of the following two facts. The first is that
for an i-face σ = (σ1,σ2) ∈ Y (i), its link is the tensor product of the links, i.e., Yσ =
Xσ1 ⊗X ′

σ2
. The second one is that the matrix of the normalized adjacency operator

of the tensor product of two graphs is the Kronecker product of the corresponding
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matrices of the factors. The result, which dates back to Kronecker himself, states that
the eigenvalues of the Kronecker product are exactly the products of the eigenvalues
of the factors (see [46] for the proof in the uniform case). Finally, since TX is a Markov
matrix, all of its eigenvalues are bounded in magnitude by 1, which implies the stated
formula. □

Theorem 4.6 (Restatement of second part of Theorem 1.4). Let X = (V, µ) be a
k-uniform hypergraph such that λi ! 0 for all 0 ! i < k − 2 and such that the bound
(3) is sharp for it, i.e.,

α(X) = 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
,

Then it is also sharp for X⊗n for any positive integer n, and

α(X⊗n) = 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
.

Furthermore, if λ0 > −1 then an independent set attaining the bound is a dictatorship
(depends on at most one of the n input coordinates).

Proof. It is a direct corollary of Proposition 4.5 that the r.h.s. of the bound (3) is
the same for X⊗n as for X. In order to show that it is sharp, note that if I ⊆ V is a
maximal independent set in X, that is µ(I) = α(X), then the set (I, V, . . . , V ) ⊆ V n

is independent in X⊗n.
Suppose now that I is an independent set attaining the bound. Theorem 4.3 shows

that 1I−µ(I) lies in the λ0-eigenspace of TX⊗n , which consists of functions depending
on a single coordinate. Therefore we can express f = 1A in the form

f(x1, . . . , xn) =

n#

i=1

φi(xi).

Since f is Boolean, at most one φi can be non-constant, and so f is a dictator. □

4.3. Computing the generalized Hoffman bound. Given a k-uniform hyper-
graph X on the vertex set V and a distribution ν on V , the generalized Hoffman
bound gives an upper bound on the ν-measure of an independent set of X for each
k-uniform weighted hypergraph X = (V, µ) whose weight function satisfies the fol-
lowing two constraints: µ1 = ν and µ(x) = 0 whenever x /∈ X. We can formulate the
best bound obtainable in this way as a problem whose variables are the entries of µ:

min (1− λ0) · · · (1− λk−2)

s.t. TXs ≽ λ|s|Id

µ1 = ν

µ(x) = 0 ∀x /∈ X

µ " 0

In this program, s goes over all possible faces, TXs ≽ λ|s|Id means that TXs − λ|s|Id
is positive semidefinite, and µ " 0 means that all entries of µ are nonnegative. If a
solution to the program has objective value β, then this gives a bound of 1− 1/β on
the α-measure of an independent set of X.

Since the maximal eigenvalue of TXs is always 1, we can rephrase the constraint
TXs ≽ λ|s|Id equivalently as follows: the spectral radius of Id−TXs is at most 1−λ|s|.
Using Schur complements, this is easily seen to be equivalent to the semidefinite
constraint 6

(1− λ|s|)Id Id− TXs

Id− TT
Xs

(1− λ|s|)Id

7
≽ 0.
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Making 1− λ|s| a variable, we have expressed the problem of finding the best gener-
alized Hoffman bound as minimizing a semidefinite program whose objective value is
a product of k − 1 variables. When k = 2, this is just a semidefinite program, which
can be solved efficiently; up to the nonnegativity constraint µ " 0, we have recovered
the Lovász θ function. When k > 2, the objective function is no longer convex, and
it is not clear how to solve the program efficiently.

5. Frankl’s problem on extended triangles

5.1. The uniform version. Frankl’s Turán problem on hypergraphs without ex-
tended triangles reads as follows. A triangle in P ([n]), the power set on [n], is a
2k-uniform hypergraph supported on three sets {A,B,C} such that each element of
[n] belongs to an even number of the sets A,B,C. In other words, there exist disjoint
k-element sets D,E, F such that D∪E = A, D∪F = B, and E ∪F = C. Frankl [18],

asked how large can a family F ⊆
!
[n]
2k

"
be if it does not contain a triangle. The reason

for considering only even uniformities is that no k-uniform triangle exists for an odd
k. Equivalently, we are interested in the maximum independent set in the 3-uniform
hypergraph X whose vertices are the 2k-subsets of [n] and whose hyperedges are
triangles.

The skeleton of X is the graph on the same set of vertices whose edges are pairs
of subsets whose intersection has size exactly k. This graph is also known as the
generalized Johnson graph J(n, 2k, k). Brouwer, Cioabă, Ihringer and McGinnis [5,
Theorem 3.10] showed that when 3k ! n ! 4k − 1, the minimum eigenvalue is

λ0 =
n− 4k

2(n− 2k)
= 1− n

2(n− 2k)
.

Since the 3-faces in X are the triples of the form A,B,A△B, the link of a vertex is
a perfect matching, hence λ1 = −1. It follows that when 3k ! n ! 4k − 1, the size of
an independent set is at most

6
n

2k

76
1− 1

2(1− λ0)

7
=

6
n− 1

2k − 1

7
.

In particular, when n = 4k − 1, an independent set contains at most a 2k
4k−1 fraction

of subsets.
Furthermore, if I is an independent set of maximal size and f = 1I then f − E[f ]

must belong to the eigenspace of λ0. When 3k ! n < 4k − 1, this eigenspace consists
of all functions of degree 1 (this follows from the techniques of Brouwer et al.), and

so deg f ! 1, implying that f is a dictatorship (see [16]).(4)

Now suppose that n " 4k, and let F be a triangle-free family. Consider the following
random experiment: choose a random (4k − 1)-subset S of [n], and check whether a
random 2k-subset of S belongs to F . On the one hand, this is at most 2k

4k−1 . On the
other hand, this is equal to the density of F . This completes the proof of the following
theorem.

Theorem 5.1. If F is a family of 2k-subsets of [n] which does not contain three
distinct subsets whose symmetric difference is empty, then |F| !

!
n−1
2k−1

"
if 3k ! n !

4k − 1, and |F| ! ( 12 + 1
8k−2 )

!
n
2k

"
if n " 4k.

This bound is sharp: If 3k ! n ! 4k − 1 then the family of 2k-sets containing a
fixed element satisfies the condition and has size

!
n−1
2k−1

"
. Furthermore, these are the

(4)When n = 4k − 1, the methods of Brouwer et al. only imply that deg f ! 2. Indeed, there are
other examples: all sets intersecting {i, j} at exactly one point. We thank Ferdinand Ihringer for this
example.
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unique examples if n < 4k − 1. If n " 4k then the family of 2k-sets containing an
odd number of elements among the first ⌊n/2⌋ satisfies condition and asymptotically
contains half the 2k-sets.

Frankl [18] gave the upper bound ( 12 +
2k

n−4k )
!
n
2k

"
, which is better when n > (4k)2.

5.2. The p-biased version. The p-biased version of the problem is as follows:

Given p ! 2
3 , how large can µp (F) be if F ⊆ P ([n]) does not contain

a triangle?

The reason for the condition p ! 2
3 is the fact that the example

.
A : |A| > 2

3n
/
is

triangle-free, and its p-biased measure tends to 1 as n tends to infinity.
The p-biased version of Frankl’s problem is the problem of determining the in-

dependence number of the 3-uniform hypergraph X⊗n, where X = (V, µ) is with
V = {0, 1} and

µ ([1, 1, 0]) =
3

2
p, µ ([0, 0, 0]) = 1− 3

2
p.

The induced measures are

µ2([1, 1]) =
1

2
p, µ2 ([1, 0]) = p, µ2 ([0, 0]) = 1− 3

2
p;

µ1(0) = 1− p, µ1(1) = p.

And therefore, the matrix of the normalized adjacency operator TX on the skeleton
of X is

TX =

8
1− 3

2p

1−p

1
2p

1−p
1
2p

p

1
2p

p

9
=

6 2−3p
2(1−p)

p
2(1−p)

1
2

1
2

7
,

with eigenvalues 1 and 1−2p
2(1−p) . The induced distribution on the link of [0] is supported

on the faces [0, 0] and [1, 1], hence the corresponding matrix TX0 is

TX0
=

6
1 0
0 1

7
,

while the link of [1] is supported on [0, 1], and TX1 is

TX1 =

6
0 1
1 0

7
.

The above shows that λ0 = 1−2p
2(1−p) and λ1 = −1. When p > 1/2, λ0 is negative,

implying

α(X⊗n) ! 1− 1

(1− 1−2p
2(1−p) ) · 2

= p.

Moreover, λ0 > −1, and so all extremal families are dictators.
When p ! 1/2, λ0(X) is nonnegative, and so λ0(X

⊗n) " 0, implying

α(X⊗n) ! 1− 1

1 · 2 =
1

2
.

This completes the proof of the following statement.

Theorem 5.2. Let {0, 1}n denote the space of {0, 1}-vectors of length n, and µ be the
p-biased measure on it, with p ! 2/3. If F ⊆ {0, 1}n is a family of vectors which does
not contain three distinct vectors whose sum to zero, then µ(F) ! max(p, 1/2).

This bound is sharp: if p ! 1/2 then the family of vectors having odd parity satisfies
the condition and has measure tending to 1/2 as n → ∞, and if p > 1/2 then the set
of all vectors having 1 as their first coordinate satisfies the condition and has measure
p, and moreover these are the unique extremal families.
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6. Mantel’s Theorem

The classical Mantel’s theorem bounds the number of edges in a triangle-free graph.

Theorem 6.1. [35] If a graph on n vertices contains no triangles, then it contains at

most
*
n2

4

+
edges.

Mantel’s theorem has many different proofs. We give a new proof of Mantel’s
theorem for graphs with 2n vertices that relies on a variation of the bound (3). Ours
is not the first spectral proof of Mantel’s theorem: Tait and Tobin [45] give a very
simple such proof. However, their proof is very similar to existing arguments, such
as the ones that can be found in Zhao’s lecture notes [48]. In contrast, our proof is
rather different from all existing ones.

Apart from presenting a “genuine” spectral proof of this fundamental result, we
would like to show the flexibility of the presented spectral approach. In some cases,
one can improve the bound (3) by taking not the smallest eigenvalue of the normalized
adjacency operator but a larger one. This is possible when the characteristic function
of the independent set we are interested in is orthogonal to the eigenfunctions that
correspond to smaller eigenvalues.

Proof. First, we encode the statement of the theorem in terms of the independent
sets of a hypergraph. Let G be a triangle-free graph on 2n vertices, which we identify
with the set [2n]. Let X2n be a 3-partite 3-uniform hypergraph on the vertex set
V = V1 ∪ V2 ∪ V3, where each part Vi, i = 1, 2, 3, is a copy of the set [2n]× [2n]. The
3-faces of X2n are the triples of the form [(i, j) , (j, k) , (k, i)], where 1 ! i, j, k ! 2n.
Assume the probability distribution on the 3-faces to be the uniform probability
distribution on these triples. We encode G as an independent set I of X2n , namely,
I = I1 ∪ I2 ∪ I3, where for each i = 1, 2, 3,

Ii = {(v, u) ∈ Vi : the set {v, u} makes an edge of G} .
Note that X⊗n

2 = X2n and hence this gives the desired encoding of G as the indepen-
dent set I in a 3-uniform hypergraph which is also a tensor power.

It follows immediately from the construction of X2n , in particular, from the fact
that it is 3-partite, that the matrix of the normalized adjacency operator T on the
skeleton of X2n is the Kronecker product of the following 3× 3 matrix

M =

0

1
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

2

3

and the matrix Mn which, in turn, is the n-th tensor power of M1, given by the
following 4× 4 matrix indexed by the elements of [2]× [2]:

M1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)

:
;;;;<

;;;;=

0

>>>1

1
2

1
4

1
4 0

1
4 0 1

2
1
4

1
4

1
2 0 1

4

0 1
4

1
4

1
2

2

???3

& '( )
(1, 1) (1, 2) (2, 1) (2, 2)

.

Since T is the Kronecker product of M and Mn, its eigenvalues are exactly the prod-
ucts of the eigenvalues of M and Mn. The eigenvectors and eigenvalues of M are

0

1

0

1
1
1
1

2

3 , 1

2

3 ,

0

1

0

1
1
0
−1

2

3 ,−1

2

2

3 ,

0

1

0

1
1
−1
0

2

3 ,−1

2

2

3 .
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The eigenvectors and eigenvalues of M1 are

(χ1,λ1) =

0

>>1

0

>>1

1
1
1
1

2

??3 , 1

2

??3 , (χ2,λ2) =

0

>>1

0

>>1

−1
1
1
−1

2

??3 , 0

2

??3 ,

(χ3,λ3) =

0

>>1

0

>>1

1
0
0
−1

2

??3 ,
1

2

2

??3 , (χ4,λ4) =

0

>>1

0

>>1

0
1
−1
0

2

??3 ,−1

2

2

??3 .

We now exploit the symmetries of the set I to show that its characteristic function
1I is orthogonal to the subspace of eigenvectors of T with negative eigenvalues. First,
note that the set I is invariant under the action of the symmetric group S3 acting on
X2n by permutations of the parts {V1, V2, V3}. The only eigenvector of M invariant
under the action of S3 is the constant vector with eigenvalue 1. A vertex in X2 is a
pair (i, j). Let S0 be the operator that swaps between i and j, which satisfies

S0χi =

$
χi i = 1, 2, 3

−χi i = 4
.

The operator S that swaps the coordinates of a vertex in X2n is of the form S = S⊗n
0 .

The set I is invariant under the action of S by the construction.
Since the characteristic function 1I is orthogonal to the subspace spanned by eigen-

vectors of the normalized adjacency operator with negative eigenvalues, we may take
0 instead of λ0 in (3). Note that since the link of most vertices in X2n is bipartite,
λ1 = −1 (which is the minimal possible eigenvalue of a Markov matrix). Hence, the
bound (3) reads as

|I|
3 · 4n ! 1− 1

1 · 2 =
1

2
.

Taking into account the fact that every edge of G is counted six times in |I| completes
the proof. □

7. Frankl–Tokushige Theorem on Intersecting Families

Our method also provides a new proof for the result of Frankl and Tokushige on
k-wise intersecting families [19].

Theorem 7.1 ([19]). Let k " 2 and p ! k−1
k . Assume F ⊂ P([n]) is k-wise intersect-

ing, that is, for all F1, . . . , Fk ∈ F
F1 ∩ · · · ∩ Fk ∕= ∅.

Then µp(F) ! p, where µp stands the p-biased measure. This bound is attained by
dictators, uniquely (unless k = 2 and p = 1/2).

Proof. We will show that the theorem holds for all k−2
k−1 ! p ! k−1

k . If p < k−2
k−1 then

we can deduce the theorem by applying it for k := k − 1, since a k-wise intersecting
family is also (k − 1)-wise intersecting.

Let X be the k-uniform hypergraph on {0, 1} weighted by the measure µ([0(k)]) =
1− k

k−1p, µ([0, 1
(k−1)]) = k

k−1p. Here 0(k) means k copies of 0. The induced measure

µ1 on the vertex set {0, 1} is the p-biased one, i.e., µ1(1) = p and µ1(0) = 1− p. The
matrix form of TX is directly calculated to be

8
1− k

k−1p

1−p

1
k−1p

1−p
1

k−1
k−2
k−1

9
,
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from which it follows that its smallest eigenvalue is λ0 =
k−2
k−1−p

1−p ! 0, hence 1
1−λ0

=

(k−1)(1−p). Furthermore, λ0 > −1 as long as p < 1− 1
2(k−1) , which is automatically

satisfied when k > 2.
In order to calculate λi for i > 0, notice that the only links with non-trivial µ1(XS)

are of the faces S = [1ℓ]. The matrix form of TXS
is directly calculated to be

6
0 1
1

k−1−ℓ
k−2−ℓ
k−1−ℓ

7
,

and so λℓ = − 1
k−1−ℓ < 0 and 1

1−λℓ
= k−1−ℓ

k−ℓ . Applying the generalized Hoffman bound

for tensor powers (Theorem 1.4), we conclude

α(X⊗n) ! 1− (k − 1)(1− p) · k − 2

k − 1
· · · · · 1

2
= p.

Since the edges of X are exactly the multisets with either all 0’s or exactly one 0,
every k-wise intersecting set is independent in X⊗n. □
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Appendix A. More details on examples from Section 4.1

Example 1. We start by describing the weighted hypergraph (V, µ). The set of vertices
is V = [3] × [m]. If x, y, z are of different color, then µ([x, y, z]) = 1

6m3 . The skele-
ton is the complete tripartite graph Km,m,m, and so its eigenvalues are simply the
eigenvalues of Km,m,m, normalized by the regularity 2m. The eigenvalues of Km,m,m

are readily seen to be 2m, 0,−m, and so λ0 = − 1
2 . The link of any vertex is the

complete bipartite graph Km,m, whose eigenvalues are m,−m. After normalizing by
the regularity m, we get λ1 = −1. Altogether, the Link bound is 1− 2

3 · 1
2 = 2

3 .

Example 2. The weighted hypergraph (V, µ) has the vertex set V = [3]× [m]. If x, y, z
are distinct vertices of the same color, then µ([x, y, z]) = 1

6m(m−1)(2m−1) , and if they

are distinct vertices of two different colors, then µ([x, y, z]) = 1
12m(m−1)(2m−1) .

We compute µ([x, y]) = 1
3m(2m−1) if x ∕= y have the same color and µ([x, y]) =

1
6m(2m−1) if they have different color. Therefore the normalized adjacency operator is

TX =
1

4m− 2

0

1
2(J − I) J J

J 2(J − I) J
J J 2(J − I)

2

3 =
1

4m− 2

0

1
2 1 1
1 2 1
1 1 2

2

3⊗ J − 1

2m− 1
I.

The eigenvalues of the small matrix are 4, 1, and so the eigenvalues of TX are
1, m−2

4m−2 ,−
1

2m−1 , hence λ0 = − 1
2m−1 .

The link of a vertex x, a graph over 3m − 1 vertices, has the following form. If
y, z have the same color, then µx([y, z]) =

1
2m−1 . If y, z have the the same color but

not that of x, or if exactly one of them has the color of x, then µx([y, z]) = 1
4m−2 .

Therefore the normalized adjacency operator (with blocks of size m− 1,m,m) is

TXx =
1

4m− 4

0

1
2(J − I) J J

2J 2(J − I) 0
2J 0 2(J − I)

2

3 =
1

4m− 4

0

1
2J J J
2J 2J 0
2J 0 2J

2

3− 1

2m− 2
I.
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The matrix on the right has rank 2. Its column space is spanned by the eigenvectors
(1, 1, 1) and (0, 1,−1), corresponding to the eigenvalues 4m− 2 and 2m, respectively.
Therefore the eigenvalues of TXv are 1, 1

2 ,−
1

2m−2 . In particular, λ1 = − 1
2m−2 .

Altogether, the Link bound is 1− 2m−1
2m · 2m−2

2m−1 = 1
m .

Example 3. In this example, the weighted hypergraph X = (V, µ) has vertices V =
[2] × [m]. If x, y, z are distinct vertices, not all of the same color, then µ([x, y, z]) =

1
6m2(m−1) .

We compute µ([x, y]) = 1
6m(m−1) if x, y are distinct vertices of the same color, and

µ([x, y]) = 1
3m2 if x, y don’t have the same color. Therefore the normalized adjacency

operator is

TX =

6 1
3m−3 (J − I) 2

3mJ
2

3mJ 1
3m−3 (J − I)

7
=

6 1
3m−3

2
3m

2
3m

1
3m−3

7
⊗ J − 1

3m− 3
I.

The small matrix has eigenvalues 3m−2
3m(m−1) ,

−m+2
3m(m−1) , and so the eigenvalues of TX are

1,− 1
3m−3 ,−

1
3 . This shows that λ0 = − 1

3 .
The link of a vertex x consists of a complete bipartite graph between m− 1 and m

vertices together with a clique on the larger side. Therefore the normalized adjacency
operator (with blocks of size m− 1,m) is

TXx =

6
0 1

mJ
1

2m−2J
1

2m−2 (J − I)

7
=

6 1
2m−2I

1
mJ

1
2m−2J

1
2m−2J

7
− 1

2m− 2
I.

The matrix on the right has the following eigenvectors: (1, 1) with eigenvalue 2m−1
2m−2 ;

(1,− 1
2 ) with eigenvalue − m−2

2m−2 ; (x, 0) with eigenvalue 1
2m−2 for any x ⊥ 1 (multiplic-

ity m− 2); and (0, y) with eigenvalue 0 for any y ⊥ 1 (multiplicity m− 1). Therefore
the eigenvalues of TXx are 1,− 1

2 , 0,−
1

2m−2 . In particular, λ1 = − 1
2 .

Altogether, the Link bound is 1− 3
4 · 2

3 = 1
2 .

Example 4. Here the weighted hypergraph X = (V, µ) is simply the union of two
disjoint 3-uniform m-cliques. That is, V = [2]× [m], and µ([x, y, z]) = 1

2m(m−1)(m−2)

whenever x, y, z are distinct vertices having the same color.
The skeleton is simply the union of two m-cliques, and so its eigenvalues are simply

the eigenvalues of Km, normalized by the regularity m−1. In particular, λ0 = − 1
m−1 .

Similarly, the link of a vertex is a single (m− 1)-clique, and so λ1 = − 1
m−2 . It follows

that the Link bound is 1− m−1
m · m−2

m−1 = 2
m .

References

[1] Rudolf Ahlswede and Gyula OH Katona, Contributions to the geometry of Hamming spaces,
Discrete Mathematics 17 (1977), no. 1, 1–22.

[2] Noga Alon, Irit Dinur, Ehud Friedgut, and Benny Sudakov, Graph products, Fourier analysis
and spectral techniques, Geometric & Functional Analysis GAFA 14 (2004), no. 5, 913–940.

[3] Noga Alon and Eyal Lubetzky, Independent sets in tensor graph powers, Journal of Graph
Theory 54 (2007), no. 1, 73–87.

[4] Christine Bachoc, Anna Gundert, and Alberto Passuello, The theta number of simplicial com-
plexes, Israel Journal of Mathematics 232 (2019), no. 1, 443–481.
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