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Abstract. During the last two decades, an active line of research in proof complexity has
been into the space complexity of proofs and how space is related to other measures. By
now these aspects of the resolution proof system are fairly well understood, but many open
problems remain for the related but stronger proof system polynomial calculus (PC/PCR).
For instance, the space complexity of many standard “benchmark formulas” is still open, as
well as the relation of space to size and degree in PC/PCR.

We prove that if a formula requires large resolution width, then making XOR substitution
yields a formula requiring large PCR space (and hence also PC space), providing some
circumstantial evidence that degree might be a lower bound for space. More importantly, this
immediately yields formulas that are very hard for space but very easy for size, exhibiting a
size-space separation similar to what is known for resolution. Using related ideas, we show
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that if a graph has good expansion and if in addition its edge set can be partitioned into
short cycles, then the Tseitin formula over this graph requires large PCR space. In particular,
Tseitin formulas over random 4-regular graphs almost surely require space at least Ω

(√
n
)
.

Our proofs use techniques introduced by Bonacina and Galesi (ITCS’13). Our final
contribution, however, is to show that these techniques provably cannot yield non-constant
space lower bounds for the functional pigeonhole principle, delineating the limitations of
this framework.

1 Introduction

Proof complexity studies how hard it is to provide succinct certificates of unsatisfiability for formulas in
propositional logic—i. e., proofs that formulas always evaluate to false under any truth value assignment,
where these proofs are verifiable in time polynomial in their size. It is widely believed that there is no
proof system where such efficiently verifiable proofs can always be of size at most polynomial in the size
of the formula. Showing this would establish NP 6= coNP, and hence P 6= NP, and the study of proof
complexity was initiated by Cook and Reckhow [23] as an approach towards this (still very distant) goal.

A second prominent motivation for proof complexity is the connection to applied SAT solving. Any
algorithm for solving SAT defines a proof system in the sense that the execution trace of the algorithm
constitutes a polynomial-time verifiable witness of unsatisfiability (such a witness is often referred to
as a refutation rather than a proof , and we will use the two terms interchangeably in this paper). In the
other direction, most modern SAT solvers can in fact be seen to search for proofs in systems studied in
proof complexity, and upper and lower bounds for these proof systems hence give information about the
potential and limitations of such SAT solvers.

In addition to running time, a major concern in SAT solving is memory consumption. In proof
complexity, these two resources are modelled by proof size/length and proof space. It is thus interesting
to understand these complexity measures and how they are related to each other, and such a study reveals
intriguing connections that are also of intrinsic interest to proof complexity. In this context, it is natural to
focus on proof systems at comparatively low levels in the proof complexity hierarchy that are, or could
plausibly be, used as a basis for SAT solvers. Such proof systems include resolution and polynomial
calculus. This paper takes as its starting point the former system but focuses on the latter.

1.1 Previous Work

The resolution proof system was introduced in [15], and is at the foundation of state-of-the-art SAT
solvers based on so-called conflict-driven clause learning (CDCL) [6, 36, 39]. In resolution, one derives
new disjunctive clauses from the clauses of the original CNF formula until contradiction is reached.
One of the early breakthroughs in proof complexity was the (sub)exponential lower bound on proof
length (measured as the number of clauses in a proof) obtained by Haken [29]. Truly exponential lower
bounds—i. e., bounds exp(Ω(n)) in the size n of the formula—were later established in [21, 44] and other
papers.

Ben-Sasson and Wigderson [13] identified width as a crucial resource, where the width is the size of
a largest clause in a resolution proof. They proved that strong lower bounds on width imply strong lower
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bounds on length, and used this to rederive essentially all known length lower bounds in terms of width.
The study of space in resolution was initiated by Esteban and Torán [25], measuring the space of

a proof (informally) as the maximum number of clauses needed to be kept in memory during proof
verification. Alekhnovich et al. [1] later extended the concept of space to a more general setting, including
other proof systems. The (clause) space measure can be shown to be at most linear in the formula size,
and matching lower bounds were proven in [1, 10, 25].

Atserias and Dalmau [4] established that space is in fact lower-bounded by width, which made it
possible to rederive all hitherto known space lower bounds as corollaries of width lower bounds. A
strong separation of the two measures was obtained in [11] (building on earlier work [40, 41]), exhibiting
a formula family with constant width complexity but almost linear space complexity. Also, dramatic
space-width trade-offs have been shown in [9], with formulas refutable in constant width and constant
space where optimizing one of the measures causes essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [4] that formulas of low space
complexity also have short proofs. For the subsystem of tree-like resolution, where each line in the proof
can only be used once, [25] showed that length upper bounds also imply space upper bounds, but for
general resolution [11] established that this is false in the strongest possible sense. Strong trade-offs
between length and space were proven in [12, 7].

This paper focuses on the more powerful polynomial calculus (PC)1 proof system introduced by Clegg
et al. [22], which is not at all as well understood. In a PC proof, clauses are interpreted as multilinear
polynomials (expanded out to sums of monomials), and one derives contradiction by showing that these
polynomials have no common root. Intriguingly, while proof complexity-theoretic results seem to hold
out the promise that SAT solvers based on polynomial calculus could be orders of magnitude faster
than CDCL, such algebraic solvers (such as [19]) have so far failed to be truly competitive.

Proof size2 in polynomial calculus is measured as the total number of monomials in a proof and the
analogue of resolution space is the number of monomials needed simultaneously in memory during proof
verification. Clause width in resolution translates into polynomial degree in PC. While length, space and
width in resolution are fairly well understood as surveyed above, our understanding of the corresponding
complexity measures in polynomial calculus is much more limited.

Impagliazzo et al. [32] showed that strong degree lower bounds imply strong size lower bounds. This
is a parallel to the length-width relation in [13], and in fact the latter paper can be seen as a translation of
the bound in [32] from PC to resolution. This size-degree relation has been used to prove exponential
lower bounds on size in a number of papers, with [2, 37] providing the most general setting.

The first lower bounds on space were reported in [1], but only sublinear bounds and only for
formulas of unbounded width. The first space lower bounds for k-CNF formulas for constant k were
presented in [27], and asymptotically optimal (linear) lower bounds were finally proven by Bonacina and
Galesi [18]. However, there are several formula families with high resolution space complexity for which
the polynomial calculus space complexity has remained unknown, e.g., Tseitin formulas (encoding that

1Strictly speaking, to get a stronger proof system than resolution we need to look at the generalization polynomial calculus
resolution (PCR) as defined in [1], but in the interest of simplicity of exposition we will not really distinguish between PC and
PCR in this introduction.

2The length of a proof is the number of lines, whereas size also considers the size of lines. In resolution the two measures are
essentially equivalent. In PC size and length can be very different, however, and so size is the right measure to study.
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the sum of all vertex degrees in an undirected graph must be even), ordering principle formulas (saying
that a finite ordered set has a minimal element), and functional pigeonhole principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is a lower bound for space
(which would be the analogue of what holds in resolution) and also it has been unknown whether the
two measures can be separated in the sense that there are formulas of low degree complexity requiring
high space. On the first question, the authors of [18] suggest that their techniques might be a step towards
understanding degree and proving that degree lower-bounds space, similar to how this was done for
resolution width in [4]. On the second, Beck et al. [8] proved a space-degree trade-off analogous to the
resolution space-width trade-off in [9] (in fact for the very same formulas). This could be interpreted
as indicating that there should be a space-degree separation analogous to the space-width separation in
resolution.

As to size versus space in polynomial calculus, essentially nothing has been known. It has been
open whether small space complexity implies small size complexity and/or the other way around. Some
size-space trade-offs have been reported in [8, 30], but these trade-offs are weaker than the corresponding
results for resolution.

1.2 Our Results

We study the relation of size, space, and degree in PC (and the stronger system PCR) and present a
number of new results as briefly described below.

1. We prove that if the resolution width of refuting a CNF formula F is w, then by substituting each
variable by an exclusive or of two new variables and expanding out we get a new CNF formula F [⊕]
requiring PCR space Ω(w). In one sense, this is stronger than claiming that degree is a lower bound
for space, since high width complexity is a necessary but not sufficient condition for high degree
complexity. In another sense, however, this is (much) weaker, in that XOR substitution can amplify
the hardness of formulas substantially. Nevertheless, to the best of our knowledge this is the first
result making any connection between width/degree and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between size and degree on
the one hand and space on the other. Namely, taking expander graphs and making double copies
of all edges, we show that Tseitin formulas over such graphs have proofs in size O(n logn) and
degree O(1) in PC but require space Θ(n) in PCR. (Furthermore, since these small-size proofs are
tree-like, this shows that there is no tight correlation between size and space in tree-like PC/PCR in
contrast to resolution.)

3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin formulas over
(simple or multi-)graphs where the edge set can be partitioned into small cycles. (The two copies
of every edge in the multi-graph above form such cycles, but this works in greater generality.) In
particular, for Tseitin formulas over random d-regular graphs for d ≥ 4 we establish that an Ω(

√
n)

PCR space lower bound holds asymptotically almost surely.

4. On the negative side, we show that the techniques in [18] cannot prove any non-constant PCR
space lower bounds for functional pigeonhole principle (FPHP) formulas. That is, although these
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formulas require high degree [37], the machinery developed in [18] provably cannot establish such
degree lower bounds or convert them into space lower bounds. Unfortunately, this seems to indicate
that we are further from characterizing degree in PC/PCR than previously hoped.

1.3 Subsequent Developments

Since the conference version of this paper appeared, there have been further developments for several of
the problems discussed above. Most significantly, Galesi et al. [28] have shown that the square root of
the resolution width provides an asymptotic lower bound for polynomial calculus space. This is closely
related to our first result, and significantly improves on it in the sense that the bound in [28] does not
require any XOR substitution to convert width lower bounds to space lower bounds. However, there is a
square root loss in the lower bound, whereas in our result the lower bound on PCR space is linear in the
resolution width.

As a corollary of this lower bound on polynomial calculus space in terms of resolution width, one
can also obtain Ω

(√
n
)

space lower bounds for (appropriate versions of) ordering principle formulas,
functional PHP formulas, and Tseitin formulas. In particular, this simplifies and generalizes our third
result, a space lower bound for Tseitin formulas, to work for any graph with good enough expansion,
regardless of whether this graph has been randomly sampled or not. However, this Ω

(√
n
)

lower bound
is weaker than the optimal Ω

(
n
)

lower bound that we obtain for Tseitin formulas over expander graphs
with two copies of every edge. It seems plausible that the correct lower bond should be Ω

(
n
)

for all of
these formulas, but the square root loss seems hard to avoid if one wants to use the approach in [28].

For Tseitin formulas, Austrin and Risse [5] recently improved the polynomial calculus space lower
bound to Ω(n/ logn), but this lower bound only holds for graphs of very large (though still constant)
vertex degree. In particular, for any graphs of degree less than 6, multi-graphs or not, the best lower
bound is still Ω

(√
n
)
, while for 6-regular multi-graphs the current paper establishes a lower bound Ω(n).

Finally, we should mention that one question left open in [18] was to prove polynomial calculus
space lower bounds for random 3-CNF formulas—the techniques in [18] only apply for k-CNF formulas
with k ≥ 4. This problem has been resolved by Bennett et al. [14], and their result is the first polynomial
calculus space lower bound for any CNF formulas of width less than 4.

1.4 Organization of This Paper

The rest of this paper is organized as follows. We briefly review preliminaries in Section 2. Section 3
presents an overview of our results and provides some proof sketches outlining the main technical ideas
that go into the proofs. In Section 4, we prove that resolution width lower bounds plus substitutions with
XOR or other suitable Boolean functions yield PCR space lower bounds. We use this in Section 5 to
separate size and degree from space in PC and PCR. In Section 6, we show PCR space lower bounds for
Tseitin formulas over graphs with edge sets decomposable into partitions of small cycles. The proof that
random d-regular graphs for d ≥ 4 (almost) decompose into cycles of length O(

√
n) is given in Section 7.

The fact that PCR space lower bounds cannot be obtained for the functional pigeonhole principle formulas
with techniques from [18] is proven in Section 8, and in the same section we show that a larger class of
formulas containing FPHP formulas have essentially the same space complexity for PC and PCR (so
that when proving lower bounds, one can without loss of generality ignore the complementary formal
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variables for negative literals in PCR and focus only on PC). We make some concluding remarks and
discuss some of the (many) open questions remaining in Section 9. For completeness, in Appendix A we
provide a full description of our version of the techniques in [18] and provide proofs that the same claims
still hold in this slightly different setting.

2 Preliminaries

Let us start by quickly reviewing some required background material. We refer the reader to, e.g., [20, 35]
for a more in-depth treatment of proof complexity.

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation ¬x
or x (a negative literal). It will also be convenient to use the alternative notation x0 = x, x1 = x, where
we identify 0 with true and 1 with false3 (so that xb is true if x = b). A clause C = a1 ∨ ·· · ∨ ak is a
disjunction of literals. We denote the empty clause by ⊥. A clause containing at most k literals is called
a k-clause. A CNF formula F =C1∧ ·· ·∧Cm is a conjunction of clauses. A k-CNF formula is a CNF
formula consisting of k-clauses. We think of clauses and CNF formulas as sets, so that order is irrelevant
and there is no repetitions.

Let F be a field and consider the polynomial ring F[x,x,y,y, . . .], where x and x are viewed as distinct
formal variables. We employ the standard notation [n] = {1, . . . ,n}.

Definition 2.1 (Polynomial calculus resolution (PCR)). A PCR configuration P is a set of polynomials in
F[x,x,y,y, . . .]. A PCR refutation of a CNF formula F is a sequence of configurations {P0, . . . ,Pτ} such
that P0 = /0, 1 ∈ Pτ , and for t ∈ [τ] we obtain Pt from Pt−1 by one of the following steps:

Axiom download Pt = Pt−1 ∪{p}, where p is either a monomial m = ∏i xb
i encoding a clause C =∨

i xb
i ∈ F , or a Boolean axiom x2− x or complementarity axiom x+ x−1 for any variable x (or x).

Inference Pt = Pt−1∪{p}, where p is inferred by linear combination q r
αq+β r or multiplication q

xq from
polynomials q,r ∈ Pt−1 for α,β ∈ F and x a variable.

Erasure Pt = Pt−1 \{p}, where p is a polynomial in Pt−1.

If we drop complementarity axioms and encode each negative literal x as the polynomial (1− x), the
proof system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π is the number of monomials (counted with repetitions) in
all downloaded or derived polynomials in π , the (monomial) space Sp(π) is the maximal number of
monomials (counted with repetitions)4 in any configuration in π , and the degree Deg(π) is the maximal
degree of any monomial appearing in π . Taking the minimum over all PCR refutations of a formula F ,
we define the size SPCR(F `⊥), space SpPCR(F `⊥), and degree DegPCR(F `⊥) of refuting F in PCR
(and analogously for PC).

3Note that this notational convention is the opposite of what is found in many other papers, but as we will see shortly it is the
natural choice in the context of polynomial calculus.

4We note that in [1], space was defined without counting repetitions of monomials. All our lower bounds hold in this more
stringent setting as well.
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(a) Labelled triangle graph.

(x∨ y)

∧ (x∨ y)

∧ (x∨ z)

∧ (x∨ z)

∧ (y∨ z)

∧ (y∨ z)

(b) Corresponding Tseitin formula.

Figure 1: Example Tseitin formula.

Since PC refutations are a subset of PCR refutations, the size, space and degree of refuting F in
PCR are always at most those of refuting F in PC. The degree always coincides, simply because the
transformation x 7→ (1− x) is affine, but the size and monomial space may be exponentially larger; for
instance when a refutation needs to use the clause x1 ∨ ·· · ∨ xn as an axiom, which is encoded as a
single monomial x1 · · ·xn in PCR but as 2n monomials (1− x1) · · ·(1− xn) in PC. Furthermore there are
k-CNF formulas for which PCR is exponentially stronger than PC, in the sense that such formulas have
polynomial size refutations in PCR but require exponential size in PC to be refuted [24].

We can also define resolution in this framework, where proof lines are always clauses (i. e., single
monomials) and new clauses can be derived by the resolution rule inferring C∨D from C∨ x and D∨ x.
The length of a resolution refutation π is the number of downloaded and derived clauses, the space is the
maximal number of clauses in any configuration, and the width is the size of a largest clause appearing
in π (or equivalently the degree of such a monomial). Taking the minimum over all refutations as above
we get the measures LR(F `⊥), SpR(F `⊥), and WR(F `⊥). It is not hard to show that PCR can
simulate resolution efficiently with respect to all these measures.

We say that a refutation is tree-like if every line is used at most once as the premise of an inference
rule before being erased (though it can possibly be rederived later). All measures discussed above can
also be defined for restricted subsystems of resolution, PC and PCR admitting only tree-like refutations.

Let us now describe the family of CNF formulas which will be the main focus of our study.

Definition 2.2 (Tseitin formula). Let G = (V,E) be an undirected graph and χ : V →{0,1} be a function.
Identify every edge e ∈ E with a variable xe and let PARITYv,χ denote the CNF encoding of the constraint
that the number of true edges xe incident to a vertex v ∈V is equal to χ(v) (mod 2). Then the Tseitin
formula over G with respect to χ is Ts(G,χ) =

∧
v∈V PARITYv,χ .

When the degree of G is bounded by d, PARITYv,χ has at most 2d−1 clauses, all of width at most d,
and hence Ts(G,χ) is a d-CNF formula with at most 2d−1|V | clauses. Figure 1b gives an example Tseitin
formula generated from the graph in Figure 1a. We say that a set of vertices U has odd (even) charge if
χ(U) = ∑u∈U χ(u) is odd (even). By a simple counting argument one sees that Ts(G,χ) is unsatisfiable
if V (G) has odd charge. Lower bounds on the hardness of refuting such unsatisfiable formulas Ts(G,χ)
can be proven in terms of the expansion of G as defined next.
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Definition 2.3 (Connectivity expansion [1]). The connectivity expansion of G = (V,E) is the largest c
such that for every E ′ ⊆ E, |E ′| ≤ c, the graph G′ = (V,E \E ′) has a connected component of size strictly
greater than |V |/2.

If F is a CNF formula over a set of variables X and f : {0,1}d →{0,1} is a Boolean function, then
we can obtain a new CNF formula over a set of new variables Xd by substituting f (x1, . . . ,xd) for every
variable x ∈ X and expanding out to conjunctive normal form. We write F [ f ] to denote the resulting
substituted formula, where we will be interested in substitutions with a particular kind of functions
defined as follows.

Definition 2.4 (Non-authoritarian function [12]). We say that a Boolean function f (x1, . . . ,xd) is non-
authoritarian if for every xi and for every assignment α to xi there exist α0,α1 extending α such that
f (αb) = b for b ∈ {0,1}.

By way of example, exclusive or (XOR), denoted ⊕, is clearly non-authoritarian, since regardless of
the value of one variable, the other one can be flipped to make the function true or false, but standard
non-exclusive or ∨ is not.

Let us finally give a brief overview of the framework developed in [18], which we use to prove our
PCR space lower bounds.5 A partial partition Q of a variable set V is a collection of disjoint sets Qi ⊆V .
We use the notation

⋃
Q=

⋃
Qi∈Q Qi. For two sets of partial assignments H and H ′ to disjoint domains,

we denote by H×H ′ the set of assignments H×H ′ = {α ∪β | α ∈ H and β ∈ H ′}. A set of partial
assignments H to the domain Q is flippable on Q if for each variable x ∈ Q and b ∈ {0,1} there exists an
assignment αb ∈ H such that αb(x) = b. We say that H satisfies a formula F if all α ∈ H satisfy F .

A Q-structured assignment set is a pair (Q,H) consisting of a partial partition Q= {Q1, . . . ,Qt} of
V and a set of partial assignments H = ∏

t
i=1 Hi, where each Hi assigns to and is flippable on Qi. We

write (Q,H)4 (Q′,H′) if Q⊆ Q′ and H′�Q =H, where H′�Q = ∏Qi∈Q H ′i . A structured assignment set
(Q,H) respects a CNF formula F ′ if for every clause C ∈ F ′ either Vars(C)∩

⋃
Q= /0 or there is a set

Q ∈ Q such that Vars(C)⊆ Q and H satisfies C.
Expressed in this language, the key technical definition in [18] is as follows.

Definition 2.5 (Extendible family). A non-empty family F of structured assignment sets (Q,H) is
r-extendible for a CNF formula F with respect to a satisfiable F ′ ⊆ F if every (Q,H) ∈ F satisfies the
following conditions.

Size |Q| ≤ r.

Respectfulness (Q,H) respects F ′.

Restrictability For every Q′ ⊆ Q the restriction (Q′,H�Q′) is in F.

Extendibility If |Q|< r then for every clause C∈F \F ′ there exists (Q′,H′)∈F such that 1. (Q,H)4 (Q′,H′),
2. H′ satisfies C, and 3. |Q′| ≤ |Q|+1.

When F ′ = /0, we simply say that F is r-extendible for F .

5The actual definitions that we use are slightly different but essentially equivalent. We provide the full details including
proofs in Section A for completeness.
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To prove PCR space lower bounds for a formula F , it is sufficient to find an extendible family for F .

Theorem 2.6 ([18]). Suppose that F is a CNF formula which has an r-extendible family F with respect
to some F ′ ⊆ F. Then SpPCR(F `⊥)≥ r/4.

All space lower bounds presented in this paper are obtained in this manner, where in addition we
always have F ′ = /0.

3 Overview of Results and Sketches of Some Proofs

In this section, we give a more detailed overview with formal statements of our results, and also provide
some proof sketches in order to convey the main technical ideas. As a general rule, the upper bounds we
state are for polynomial calculus (PC) whereas the lower bounds hold for the stronger system polynomial
calculus resolution (PCR). In fact, even more can be said: just as is the case in [1, 27, 18], all our
lower bounds hold also for functional calculus, where proof lines are arbitrary Boolean functions over
clauses/monomials and anything that follows semantically from the current configuration can be derived
in a single step. We do not discuss this further below but instead refer to Appendix A for the details.

3.1 Relating PCR Space and Resolution Width

The starting point of our work is the question of how space and degree are related in polynomial calculus,
and in particular whether it is true that degree lower-bounds space. While an exact characterization
remains open, we make partial progress by showing that if the resolution width of refuting a CNF
formula F is large (which in particular must be the case if F requires high degree), then by making XOR
substitution we obtain a formula F [⊕] that requires large PCR space. In fact, this works not only for
exclusive or but for any non-authoritarian function (as defined in Definition 2.4). The formal statement is
as follows.

Theorem 3.1. Let F be a k-CNF formula and let f be any non-authoritarian function. Then it holds over
any field that SpPCR(F [ f ] `⊥)≥ (WR(F `⊥)− k+1)/4.

Proof sketch. In one sentence, the proof of Theorem 3.1 is by combining the concept of extendible
families in Definition 2.5 with the combinatorial characterization of resolution width in [4]. We show
that the properties of F implied by the width lower bound can be used to construct an extendible family
for F [ f ]. To make this description easier to parse, let us start by describing in somewhat more detail the
width characterization in [4].

Consider the following game played on F by two players Spoiler and Duplicator. Spoiler asks about
values assigned to variables in F and Duplicator answers true or false. Spoiler can only remember ` values
simultaneously, however, and has to forget some variable when this limit is reached. If Duplicator is later
asked about some forgotten variable, the new value needs not be consistent with the previous forgotten
one. Spoiler wins the game by constructing a partial assignment that falsifies some clause in F , and the
game is a Duplicator win if there is a strategy to keep playing forever without Spoiler ever reaching this
goal. It was proven in [4] that this game exactly captures resolution width in the sense that Duplicator has
a winning strategy if and only if `≤WR(F `⊥).
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Let us fix r = WR(F `⊥)− k+1 and use Duplicator’s winning strategy for `= WR(F `⊥) to build
an r-extendible family for F [⊕] (the proof for general non-authoritarian functions is very similar and is
given in Section 4). Consider any assignment α reached during the game. We define a corresponding
structured assignment set (Qα ,Hα) by adding a block Qx = {x1,x2} to Qα for every x ∈ dom(α), and let
Hx contain all assignments αx to {x1,x2} such that αx(x1⊕ x2) = α(x).

In the end the r-extendible family for F [⊕] is built as the set of all (Qα ,Hα) corresponding to the
partial assignments α reached during the game played on F . It only remains to verify that this construction
yields indeed an extendible family as described in Definition 2.5, and to apply Theorem 2.6.

3.2 Separation of Size and Degree from Space

An almost immediate consequence of Theorem 3.1 is that there are formulas which have small PC
refutations in constant degree but nevertheless require maximal space in PCR.

Theorem 3.2. For any field F of characteristic p > 0 there is a family of k-CNF formulas Fn (where k
depends on p) of size O(n) for which SpPCR(Fn `⊥) = Ω(n) over any field but which have tree-like PC
refutations πn : Fn`⊥ over F of size S(πn) = O(n logn) and degree Deg(πn) = O(1).

Proof sketch. Let us focus on p = 2, deferring the general proof to Section 5. Consider a Tseitin formula
Ts(G,χ) for any constant-degree graph G over n vertices with connectivity expansion Ω(n) and any
odd-charge function χ .

From [13] we know that WR(F `⊥) = Ω(n). It is not hard to see that XOR substitution yields another
Tseitin formula Ts(G′,χ) for the multi-graph G′ obtained from G by adding double copies of all edges.
This formula requires large PCR space (over any field) by Theorem 3.1. The upper bound follows by
observing that the CNF encodes a linear system of equations, which is easily shown inconsistent in PC by
summing up all equations in a tree-like fashion.

It follows from Theorem 3.2 that tree-like space in PC/PCR is not upper-bounded by tree-like size, in
contrast to resolution. This is the only example we are aware of where the relations between size, degree,
and space in PC/PCR differ from those between length, width, and space in resolution, so let us state this
as a formal corollary.

Corollary 3.3. It is not true in PC/PCR that tree-like space complexity is upper-bounded by the logarithm
of tree-like size complexity.

3.3 Space Complexity of Tseitin Formulas

A closer analysis of the proof of Theorem 3.2 reveals that it partitions the edge set of G′ into small
edge-disjoint cycles (namely, length-2 cycles corresponding to the two copies of each original edge) and
uses partial assignments that all maintain the same parities of the vertices on a given cycle. It turns out
that this approach can be made to work in greater generality as stated next.

Theorem 3.4. Let G = (V,E) be a connected graph of bounded degree d with connectivity expansion c
such that the edge set E can be partitioned into cycles of length at most b. Then it holds over any field
that SpPCR(Ts(G,χ) `⊥)≥ c/4b−d/8.
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Proof sketch. We build on the resolution space lower bound in [1, 25], where the proof works by induc-
tively constructing an assignment αt for each derived configuration Ct (which corresponds to removing
edges from G and updating the vertex charges accordingly) such that (a) αt satisfies Ct , and (b) αt does
not create any odd-charge component in G of size less than n/2. The inductive update can be performed
as long as the space is not too large, which shows that contradiction cannot be derived in small space
(since Ct is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an exponential number of such
good assignments, and in general we do not know how to do this. Nevertheless, some more thought
reveals that the only important aspect of our assignments are the resulting vertex parities. And if the
edge set is partitioned into cycles, we can always shift edge charges along the cycles so that for all the
exponentially many assignments, the vertex parities are all the same (meaning that on a higher level we
only have to maintain one good assignment after all). The full proof is presented in Section 6.

Some graphs, such as rectangular grids, can be partitioned into cycles of size O(1), yielding tight
bounds on space. A bit more surprisingly, random d-regular graphs for d ≥ 4 turn out to (sort of) admit
partitions into cycles of size O(

√
n), which yields the following theorem.

Theorem 3.5. Let G be a random d-regular graph on n vertices, where d ≥ 4. Then over any field it
holds almost surely that SpPCR(Ts(G,χ) `⊥) = Ω

(√
n
)
.

Proof sketch. As long as we are interested in properties holding asymptotically almost surely, we can
replace random 4-regular graphs with unions of two random Hamiltonian cycles [34]. We show that a
graph distributed according to the latter model almost surely decomposes into cycles of length O(

√
n),

along with εn additional edges (which are easily taken care of separately). Since random graphs are also
excellent expanders, we can apply Theorem 3.4. The argument extends straightforwardly to random
d-regular graphs for any d ≥ 4. The full proof, which contains a bit more by way of technical details, is
given in Section 7.

We believe that the true space bound should actually be Θ(n), just as for resolution, but such a result
seems beyond the reach of our current techniques. Also, note that to make Theorem 3.4 go through we
need graph expansion plus partitions into small cycles. It seems plausible that expansion alone should be
enough to imply linear PCR space lower bounds, as for resolution, but again we are not able to prove this.
In a recent paper, Galesi et al. [28] prove a space lower bound just using graph expansion, with no need
for a partition into small cycles to exist, but interestingly they obtain a Ω(

√
n) space lower bound as well.

3.4 Limitations of the PCR Space Lower Bound Technique

The framework in [18] can also be used to rederive all PCR space lower bounds shown previously
in [1, 27], and in this sense [18] sums up what we knew about PCR space lower bounds up to that point.
There are also intriguing similarities between [18] and the resolution width characterization in [4] (as
partly hinted in the proof sketch for Theorem 3.1), which raises the question whether extendible families
could perhaps be a step towards characterizing degree and showing that degree lower-bounds space in
PC/PCR.
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Even more intriguingly, there are CNF formulas for which extendible families are hard but possible
to construct, such as random 3-CNF formulas [14], and formulas where extendible families seem very
hard to construct. Such formulas include ordering principle formulas, for which PCR space lower bounds
are expected to hold, and functional pigeonhole principle (FPHP) formulas, for which (possibly not tight)
PCR space lower bounds can be proven by other means [28].

We show that the problems in applying [18] to the functional version of the pigeonhole principle are
inherent, in that these techniques provably cannot establish any nontrivial space lower bound. We refer to
Section 8 for the formal description of the formulas and the proof of the next theorem.

Theorem 3.6. There is no r-extendible family for FPHPn+1
n for r > 1.

Since by [43, 37] these formulas require PC refutation degree Ω(n), one way of interpreting Theo-
rem 3.6 is that the concept of r-extendible families is very far from providing the hoped-for characteriza-
tion of degree. That is a pity since in principle the framework in [18] allows to show space lower bounds
up to linear size, while the technique in [28] cannot.

One step towards proving linear space lower bounds for PCR could be to obtain a weaker linear space
lower bound for PC—as noted above in the discussion of 3-CNF formulas, this can sometimes be easier.
For FPHPn+1

n , however, and for a slightly more general class of formulas described in Section 8, it turns
out that the monomial space is more or less the same between PC and PCR.

Theorem 3.7. SpPCR(FPHPn+1
n `⊥) = Θ(SpPC(FPHPn+1

n `⊥)).

Proof sketch. In FPHPn+1
n we have variables xi, j for i ∈ [n+1], j ∈ [n], encoding that pigeon i goes into

hole j. The clauses of the formula require that every pigeon is mapped to some hole and that this mapping
is one-to-one. Because of this, the negation of xi, j is equivalent to

∨
j′ 6= j xi, j′ and so the literal xi, j can be

encoded as the monomial ∏ j′ 6= j xi, j′ in PC. Since this substitutes a monomial for a monomial the space
does not increase. Now we can take any PCR refutation of FPHPn+1

n and apply such substitutions line by
line. The inferences remain sound (with some local auxiliary steps added) and so this process gives a PC
refutation of FPHPn+1

n in roughly the same space.

4 PCR Space Lower Bounds From Resolution Width

In the rest of this paper, we give formal proofs of the results described in Section 3. We start by
considering the question of relating space and degree in PCR. Although we do not know how to prove (or
rule out) an analogue of the relation between space and width in resolution, we can use the combinatorial
game from [4] to prove a weaker relation between PCR space and resolution width. Recall from the
informal description of the game in Section 3.1 that we have two players, Spoiler and Duplicator, and that
Duplicator needs to be able to provide an answer to any of Spoiler’s questions about assignments to some
bounded number of variables in order to win the game. Formally, a winning strategy for Duplicator is
defined as follows.

Definition 4.1 (Duplicator’s strategy [4]). A Duplicator winning strategy for the Boolean existential
`-pebble game on a CNF formula F is a non-empty family D of partial truth value assignments to Vars(F)
such that every α ∈D satisfies the following conditions:
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1. No clause C ∈ F is falsified by α .

2. The domain of α has size at most |dom(α)| ≤ `.

3. For every subassignment α ′ ⊆ α it holds that α ′ ∈D.

4. If |dom(α)| < `, then for every variable x there exists an α ′ ∈ D that assigns a value to x and
extends α (i. e., α ′ ⊇ α).

In [4], Atserias and Dalmau proved the following tight connection between Duplicator winning
strategies and resolution refutation width.

Theorem 4.2 ([4]). The CNF formula F has a resolution refutation of width ` if and only if Duplicator
has no winning strategy for the Boolean existential (`+1)-pebble game on F.

The Duplicator strategy in Definition 4.1 has some similarities with the extendible family in Defini-
tion 2.5, which can be taken to suggest that there might be a relation between resolution width and PCR
space. The main difference is that extendible families consist of sets of assignments in which we must be
able to flip every variable, while Duplicator’s strategy is built on fixed individual assignments. However,
if we substitute every variable in F with a non-authoritarian function as defined in Definition 2.4, then it
is straightforward to make the transition from fixed assignments to sets of flippable assignments.

Lemma 4.3. Let F be a k-CNF formula and let f be a non-authoritarian function. If Duplicator wins the
Boolean existential `-pebble game on F, then there exists an (`− k+1)-extendible family for F [ f ].

Proof. Let D be a winning Duplicator strategy for F . We will use D to construct an (`−k+1)-extendible
family F for the substituted formula F [ f ]. In what follows, let us denote by Varsd(x) the set of variables
that we get when we substitute x by f (x1, . . . ,xd) in F for some non-authoritarian function f of arity d.

For x ∈ Vars(F), define Qx = Varsd(x) and let Hx,α = {β | dom(β ) = Qx and f (β ) = α(x)} be the
set of all assignments over Qx for which f evaluates to the value that α assigns to x. For any partial
assignment α ∈D we let the corresponding structured assignment set (Qα ,Hα) be the pair consisting of
Qα = {Qx | x ∈ dom(α)} and Hα = ∏x∈dom(α) Hx,α . We define F to encompass all structured assignment
sets (Qα ,Hα) corresponding to partial assignments α ∈D with |dom(α)| ≤ `− k+1. We need to prove
that F constructed in this way is an (`− k+1)-extendible family with respect to F ′ = /0.

By construction, for every (Qα ,Hα) ∈ F we have that Qα is a partial partition and that the partial
assignments Hx,α ∈Hα assign to Qx ∈ Qα . Furthermore, Hx,α is flippable on Qx. This is so since f is
a non-authoritarian function, which means that for very variable in xi ∈ Qx there exist assignments βb,
b ∈ {0,1}, to Qx such that βb(xi) = b and f (βb) = α(x). Hence, all (Qα ,Hα) ∈ F are structured
assignment sets.

The size condition |Qα | ≤ `− k+1 in Definition 2.5 is clearly satisfied for all (Qα ,Hα) ∈ F, and
respectfulness is vacuously true. To see that the restriction property also holds, consider any (Qα ,Hα) ∈ F

obtained from α ∈D. For any subset Q′ ⊆Qα , let α ′ be the subassignment of α restricted to {x |Qx ∈Q′}
and let H′ = ∏Qx∈Q′ Hx,α = ∏x∈dom(α ′) Hx,α ′ . Then since α ′ ∈ D by Definition 4.1, it follows by the
construction of F that (Q′,H�Q′) = (Q′,H′) ∈ F as required.

It remains to prove that F has the extension property. Let (Qα ,Hα) ∈ F be such that |Qα |< `−k+1
and let C be a clause in F [ f ]. We need to argue that (Qα ,Hα) can be extended to satisfy C. Let A ∈ F be
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the clause such that C ∈ A[ f ], i. e., C is one of the clauses obtained when substituting f in A. If α ∈D

satisfies A, it follows by construction that Hα satisfies all of A[ f ] and hence, in particular, C, and we
are done. Otherwise, it follows from the definition of a winning Duplicator strategy and the fact that
|α| ≤ `− k that α can be extended to an assignment α ′ that queries all of the (at most k) variables in A
without falsifying the clause. Such an α ′ must satisfy A. Fix some variable x∗ ∈ dom(α ′)\dom(α) such
that α ′ satisfies A by assigning to x∗, and let α∗ be the subassignment of α ′ with domain dom(α)∪{x∗}.
This α ′ must be in D by Definition 4.1, and analogously to what was argued above it must hold that Hα∗

satisfies C ∈ A[ f ]. It is clear that (Qα ,Hα)4 (Qα∗ ,Hα∗), and that |Qα∗ | ≤ |Qα |+1. Hence, F satisfies
extendibility, and the lemma follows.

Combining Lemma 4.3 with the combinatorial characterization of width in Theorem 4.2 and the
lower bound on space in terms of extendible families in Theorem 2.6, we obtain the first theorem claimed
in Section 3.

Theorem 3.1 (restated). Let F be a k-CNF formula and let f be any non-authoritarian function. Then

SpPCR(F [ f ] `⊥)≥ WR(F `⊥)− k+1
4

.

While it can be argued that this theorem might be interpreted as an indication that degree could be
a lower bound for space in PCR, a more immediate and concrete consequence is that it gives us a way
to prove the existence of formulas which have very small PCR refutations, but for which any refutation
must have essentially maximal space. For polynomial calculus over fields of characteristic 2, we already
have all the tools needed to argue this. In particular, the space lower bound needed follows immediately
from Theorem 3.1 as described next.

Corollary 4.4. Let G be an expander graph of bounded degree over n vertices, let χ be an odd-charge
function on V (G), and let G′ be the multi-graph obtained by adding two copies of each edge in G. Then

SpPCR(Ts(G′,χ) `⊥) = Ω(n) .

Proof. As shown in [13], refuting Tseitin formulas over expander graphs requires linear width in resolu-
tion. It is not hard to see that substituting with XOR in a Tseitin formula over G is the same as considering
the formula over the multi-graph with two copies of every edge. Thus Ts(G′,χ) requires monomial space
Ω(n) by Theorem 3.1, which is linear in the formula size if G is a constant-degree expander.

As briefly discussed in Section 3.2, it is not hard to show that Tseitin formulas have small refutations
in PCR (and even PC) over fields of characteristic 2, which yields Corollary 3.3 for this characteristic.
However, this upper bound does not hold for characteristics distinct from 2. Therefore, we need to work
with generalized version of Tseitin formulas and prove our results for such formulas instead. We do so in
the next section.

5 Formulas With Small Proofs May Require Large Space

In Section 2 we defined Tseitin formulas as the CNF encoding of particular linear systems over F2. Here
we consider a generalization over fields of any positive characteristic. Any such formula essentially
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defines an unsatisfiable linear system over Fp for some prime p. In order to efficiently encode this linear
system as a CNF it is important that each equation mentions a small (for instance, constant) number of
variables: any equation over d variables can be encoded as a set of at most 2d clauses with d literals each.
In particular, Tseitin formulas are defined on directed graph as follows.

Definition 5.1. Let G = (V,E) be a directed graph and χ : V → Fp be a function. Identify every directed
edge (u,v) ∈ E with a variable x(u,v) and let Modp

v,χ denote the CNF encoding of the constraint that the
number of incoming edges x(u,v) incident to a vertex v ∈ V that are set to true, minus the number of
outgoing edges x(v,w) set to true is equal to χ(v) (mod p). Then the Tseitin formula over G with respect
to χ is Tsp(G,χ) =

∧
v∈V Modp

v,χ .

This formula is unsatisfiable when ∑v χ(v) 6≡ 0 (mod p). Compare Definition 2.2 with Definition 5.1:
for p = 2 the definitions coincide because in such characteristic there is no difference between the
contribution of the incoming and the outgoing edges. For p = 2 it is natural to define the formula in
terms of undirected graphs, indeed. Not surprisingly, polynomial calculus over a field of characteristic p
efficiently refutes unsatisfiable Tseitin formulas defined on sums modulo p.

Lemma 5.2. Consider a directed graph G = (V,E) with n vertices and constant degree, and a function
χ : V → Fp with ∑v χ(v) 6≡ 0 (mod p). The formula Tsp(G,χ) has a tree-like polynomial calculus
refutation of constant degree, size O(n logn), and monomial space O(n).

Furthermore, given any boolean function f on a constant number of variables, the result holds for
the substituted formula Tsp(G,χ)[ f ].

Proof. Let us first consider the case without substitution. Recall that true value is encoded as 0 and false
as 1. In this encoding formula Modp

v,χ is equivalent to

∑
u : (u,v)∈E

(1− xuv)− ∑
w : (v,w)∈E

(1− xvw)≡ χ(v) (mod p) . (5.1)

The proof is based on the natural intuition that summing the equations (5.1) for all vertices in the
graph results in a contradiction, since in the sum each variable appears twice: once with positive and once
with negative sign. Fix an enumeration of V = {v1, . . .vn}, and fix the following notation for partial sums:

Sa,b :=
b

∑
i=a

[
∑

u:(u,vi)∈E
(1− xuvi)− ∑

w:(vi,w)∈E
(1− xviw)

]
≡

b

∑
i=a

χ(vi) (mod p) . (5.2)

We fix t = 2dlogne < 2n and consider Si,i to be the equation “0 = 0” for all n < i≤ t. We set up a tree
of height dlogne, where leaves are labeled by equations Si,i and internal nodes are labeled by the sum of
the two children labels (i. e., a node at level k is labeled by the equation Si,i+2k−1 for some i).

Each equation Si,i is derived from the encoding of Modp
vi,χ . This equation mentions only a constant

number of variables, so by implicational completeness of polynomial calculus (see Lemma 5.3) we have
a derivation of constant space and size.

Equations in internal nodes are derived by summing the equations of the children. We derive all the
equations of the tree in a bottom-up fashion. This concludes the refutation since the equation S1,t at the

THEORY OF COMPUTING 15

http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS

root is

n

∑
i=1

[
∑

u:(u,vi)∈E
(1− xuvi)− ∑

w:(vi,w)∈E
(1− xviw)

]
≡

n

∑
i=1

χ(vi) (mod p) (5.3)

∑
(u,v)∈E

(1− xuv)− ∑
(v,w)∈E

(1− xvw)≡
n

∑
i=1

χ(vi) (mod p) (5.4)

0≡
n

∑
i=1

χ(vi) (mod p) (5.5)

Which is the end of the refutation, since ∑
n
i=1 χ(vi) is non-zero.

The size of the proof accounts O(1) for the deduction of each Si,i, and O(n) for the total number of
monomials at each level of the tree: at level k there are t

2k equations with at most O(2k) monomials. So
the total size is as claimed.

Regarding the monomial space, notice that we need to keep simultaneously in memory only the
equations of two adjacent levels, which have at most O(n) monomials.

The degree of the refutation is O(1) for the inference of each equation Si,i. The rest of the proof has
degree 1.

The case with substitution is similar: consider a substituting function f on a constant number of
variables. There is a multilinear polynomial p f which evaluates exactly as f on all {0,1} inputs, and
which mentions a constant number of monomials.

The substituted linear forms Si,i[ f ] are linear combinations of copies of p f , so they have a constant
number of variables each and their inference from Modp

vi,χ [ f ] is doable in constant space, size and degree
because of Lemma 5.3.

Once the equations Si,i[ f ] are derived, the refutation goes exactly as shown for the case with no
substitution. From this point on the original refutation is linear; applying the trivial substitution to these
proof lines increases the space, degree and size only by constant factors.

For the sake of self-containment, we give a proof of the implicational completeness of polynomial
calculus. This completes the proof of Lemma 5.2.

Lemma 5.3. Consider a polynomial implication p1, . . . , pl |= p which is valid over {0,1} assignments.
Assume all involved polynomials collectively mention d variables and have degree O(d); then there is a
PC proof of this implication in degree O(d), space 2O(d), and size 2O(d).

Proof. Without loss of generality we assume that all polynomials are in multilinear form. This is because
we can transform any polynomial of degree O(d) between its original and multilinear version in size and
space 2O(d). So each of the polynomials has size at most 2d and degree d. Let α = {x1 7→ v1, . . . ,xd 7→ vd}
be an assignment; we define Cα as ∏i(vixi+(1−vi)(1−xi)), the polynomial which evaluates to 1 exactly
on the assignment α . We list some useful observations:

Observation (1) is that given the axioms {xi = vi}i∈[d] and any polynomial q on variables x1, . . . ,xd ,
it is possible to efficiently infer q−α(q) = 0. We prove this by induction on the number of variables.
If d = 0 then q = α(q). Now assume that q−α(q) = s+ xt −α(q). If we have deduced q�x=0 =
s−α(q) and we have the axiom x, we can easily infer xt and then s+ xt−α(q). If we have deduced
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q�x=1 (which is s + t −α(q)) and we have the axiom x− 1, we can easily infer (x− 1)t and then
s+ t +(x−1)t−α(q) = s+ xt−α(q). This derivation requires O(d) steps, one per variable, and both
size and space are proportional to the number of monomials in q. The degree is equal to the degree of q
plus d.

Observation (2) is that for any q on variables x1, . . . ,xd , we can infer from Boolean axioms the
polynomial Cα(q−α(q)), for every assignment α on such variables. The inference is in degree O(d),
and size and space are 2O(d). It is immediate for the simple case q = xi: each Cα(xi− vi) contains the
factor x2

i − xi by construction. For any non-trivial q we apply the inference in Observation (1), with the
caveat that each line is multiplied by Cα . The resulting polynomial is Cα(q−α(q)).

Observation (3) is that ∑α∈{0,1}d Cα = 1, and this is an easy induction over d (it also follows from the
semantics of polynomials Cα ).

We now see how to deduce Cα p for every assignment α . For α which satisfy p we derive Cα(p−0)
using observation (2). For α which falsify p, pick any falsified pi and deduce both Cα(pi−α(pi)) and
Cα pi, using observations (2) and multiplication rule, respectively. The sum is Cαα(pi), and since α(pi)
is a non-zero field element, we can multiply by p

α(pi)
to get Cα p.

Having deduced all Cα p we can use observation (3) to infer p. Notice that we did 2d inferences (one
for each α), each of them of degree O(d) and each of them in space 2O(d), which also gives upper bound
of 2O(d) on size.

Now we have seen that (substituted) Tseitin formulas are easy for polynomial calculus under de-
termined conditions. Nevertheless we can use the tools from Section 4 to show that even under such
conditions, any refutation requires large space.

Theorem 5.4 (restatement of Theorem 3.2). For F any field of characteristic p > 0 there is a family
of k-CNF formulas Fn (where k depends on p) of size O(n) for which SpPCR(Fn `⊥) = Ω(n) over any
field but which have tree-like PC refutations πn : Fn`⊥ over F of size S(πn) = O(n logn) and degree
Deg(πn) = O(1).

Proof. The formula family we consider is based on Tseitin formulas over a family of Ramanujan graphs
of constant degree. This is a family of simple graphs with good expansion properties; a construction
is given in [38]. Consider such a graph G on m vertices: set an arbitrary orientation on the edges, and
consider any χ : [m]→ Fp with ∑i χ(i) 6= 0 mod p.

In Corollary 4.5 of [2], it is claimed that if G is a d-regular Ramanujan graph for d at least some
constant value dp, then Tsp(G,χ) requires refutations of degree Ω(m) in polynomial calculus over any
field of characteristic different from p.

Polynomial calculus simulates resolution over any characteristic, and the degree of the simulation is
exactly the width of the simulated resolution proof. This implies that resolution requires width Ω(m) to
refute the formula.

Fix k = 2d. We apply a XOR substitution on formula Tsp(G,χ), and we get a k-CNF formula
on n = dm variables. Theorem 3.1 implies that any polynomial calculus (or PCR) refutation requires
monomial space Ω(n), under any characteristic.

If the characteristic of the underlying field is p the upper bound follows by Lemma 5.2.

THEORY OF COMPUTING 17

http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS

6 PCR Space Lower Bounds for Tseitin Formulas

In the following exposition we assume that G = (V,E) is a graph with connectivity expansion c and
χ : V → {0,1} is a Boolean function. We call a pair (G,χ) a charged graph, and we say that a set of
vertices U is even (odd) charged if ∑v∈U χ(v) is even (odd). We denote the set of edges incident to a
vertex v by E(v) and extend the notation to sets of vertices. We write α to denote the complementary
assignment of α obtained by flipping the value of all variables in the domain dom(α).

Definition 6.1. The charged graph induced by a partial assignment α is ((V,E \ dom(α)),γ), where
γ(v) = χ(v)+∑e3v(1−α(e)).

Observation 6.2. The formulas Ts((V,E \dom(α)),γ) and Ts(G,χ)�α are equivalent. An assignment α

satisfies the clauses PARITYv,γ if and only if the vertex v is isolated and even (as a singleton set) in the
charged graph induced by α . In that case, we say that the assignment α satisfies the vertex v.

Definition 6.3 (non-splitting assignment). A charged graph is non-splitting if all its connected components
of size at most n/2 are even. A partial assignment α is non-splitting if the charged graph induced by α is
non-splitting.

Observation 6.4. The empty assignment is non-splitting for the charged graph (G,χ) if and only if (G,χ)
is non-splitting. A connected graph is always non-splitting.

Observation 6.5. Suppose α is a partial assignment extending a partial assignment β (or conversely,
β = α�D for some D⊆ dom(α)). If α is non-splitting, then so is β . In other words, “unsubstituting” an
edge cannot result in an odd component that has size less than or equal to n/2 because component sizes
can only increase.

The key idea in the resolution space lower bound is that if a proof does not mention many edges,
then it is possible to maintain a satisfiable assignment to the edges the proof mentions. This satisfiable
assignment shifts the charge in the graph so that a contradiction only arises in vertices that the proof does
not mention and leaves enough freedom to keep adding edges to the assignment unless the proof reaches a
space threshold. Thus the proof is unable to derive a contradiction unless it mentions many edges at once.

The following lemma implements the charge shifting idea.

Lemma 6.6. Let α be a non-splitting assignment. Let e be an edge. Let D = dom(α)∪{e}. If |D| ≤ c
then we can extend α to some non-splitting assignment β such that dom(β ) = D.

Proof. Let (G′,γ) be the charged graph induced by α . Let e = (u,v). Let C be the connected component
in G′ that contains the vertices u and v. Let α0 = α ∪{e 7→ 0} and α1 = α ∪{e 7→ 1}. Let (G′′,γ0) and
(G′′,γ1) be the charged graphs induced by α0 and α1 respectively. Observe that γ0(C) = γ1(C) = γ(C),
where γ(C) =

(
∑v∈V (C) γ(v)

)
mod 2 for the vertices V (C) of component C.

If e is not a bridge, i. e., removing the edge e from G′ does not disconnect C, then we can extend α to
either α0 or α1. In this case there is no new component.

If e is a bridge, let C′ and C′′ be the components in G′′ that e disconnects C into. If γ(C) is even, either
both γ0(C′) and γ0(C′′) are even, in which case we can extend α to α1, or both γ0(C′) and γ0(C′′) are odd,
in which case we can extend α to α0 reversing both parities. In this case all new components are even.
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Otherwise if γ(C) is odd, since α is non-splitting, it holds that |C|> n/2. Since |D| ≤ c, the graph
G′′ has a connected component larger than n/2. The graph G′ cannot have two disjoint components both
larger than n/2, so this large component is a subset of C; either C′ or C′′. Assume it is C′ without loss of
generality. Since C is odd, either γ0(C′) is odd and γ0(C′′) is even, in which case we can extend α to α1,
or γ0(C′) is even and γ0(C′′) is odd, in which case we can extend α to α0 reversing both parities. In this
case there is one new odd component, but it is larger than n/2.

Corollary 6.7. Let α be a non-splitting assignment. Let E be a set of edges. Let D = dom(α)∪E. If
|D| ≤ c then we can extend α to some non-splitting assignment β such that dom(β ) = D.

To extend this idea to a PCR lower bound for space, and in particular to the framework of [18], we
need to use assignments that are not only non-splitting but also resilient to flips of the values of some
variables.

Observe that if all the edges along a cycle change their value, the graph induced by the cycle stays the
same. The following definition will let us formalize this property. Recall the cartesian product notation for
sets of assignments, for instance, {α1,α1}×{α2,α2} is equal to {α1∪α2,α1∪α2,α1∪α2,α1∪α2}.

Definition 6.8 (Flipped assignments). Let α be a partial assignment and let Q be a (total) partition of
dom(α). The set of flipped assignments of α with respect to Q is the set of assignments given by

Flip(Q,α) = ∏
Q∈Q
{α�Q,α�Q} .

Essentially Flip(Q,α) is the set of all partial assignments obtained by α taking a subset the partition
Q and flipping the coordinates covered by this subset.

Observation 6.9. If α is an assignment over a cycle C, then α and α induce the same charged graph.
Therefore, if Q is a set of edge-disjoint cycles, all the flipped assignments of some assignment α with
respect to Q induce the same charged graph.

Theorem 6.10 (Strengthening of Theorem 3.4). Let (G,χ) be non-splitting charged graph of maximal
degree d with connectivity expansion c such that a partition M of E into edge-disjoint cycles of length at
most b exists. Then

SpPCR(Ts(G,χ) `⊥)≥ c/4b−d/8 .

Note that this is a strengthening of Theorem 3.4 since if G is connected then (G,χ) is trivially
non-splitting for every χ .

Proof. By Theorem 2.6, it is sufficient to build an r-extendible family for r = c/b−d/2. Let F be the
set of all pairs (Q,Hα) satisfying:

1. Q⊆M and |Q| ≤ r.

2. Hα = Flip(Q,α), where α is any non-splitting assignment over
⋃
Q.

THEORY OF COMPUTING 19

http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS

Note that Q is a collection of edge-disjoint cycles and every Hα consists of the some non-splitting
assignment α and its flips over cycles. Each (Q,Hα) ∈ F has many different representations, since
Hα =Hβ whenever β ∈ Flip(Q,α).

Let us show that F is an extendible family. First, pairs (Q,Hα) are Q-structured by construction.
The empty assignment is non-splitting by Observation 6.4. So the family F is not empty because

( /0,H /0) ∈ F, where /0 is the empty assignment.
Let us show that the family is closed under restriction. Consider any (Q,H) ∈ F and Q′ ⊆ Q. Let

α ∈H, and let β be the restriction of α to
⋃
Q′. By construction α is non-splitting, and restriction

preserves the property of being non-splitting as noted in Observation 6.5, so (Q′,Hβ ) ∈ F. Finally
H�Q′ = Flip(Q,α)�Q′ = Flip(Q′,β ) =Hβ .

Let us show that the family is closed under extension. Let (Q,H) ∈ F with |Q| < r and let p ∈
PARITYv,χ for some vertex v ∈V .

If H satisfies p we are done; otherwise we will extend a non-splitting assignment associated with H.
Let α ∈H be a non-splitting assignment that does not satisfy p. Let Qv = {C ∈M | v ∈C} be the

cycles adjacent to v, and let Q+ = Qv \Q; we will see that Q+ is not empty, but we do not need to assume
it now. Let D = dom(α)∪

⋃
Q+. By hypothesis |Q∪Q+|< r+d/2, and it follows that |D|< c. Thus we

can apply Corollary 6.7 on α and
⋃
Q+ to extend α to a non-splitting assignment β over D.

The assignment β disconnects the component {v} and is non-splitting, so it makes the component
{v} even. By Observation 6.2, β satisfies the vertex v. Note that β falsifies the subclause of p that
mentions variables in

⋃
Q, as α does not satisfy p. If for all C ∈ Q+ and subclauses pC of p that mention

variables in C, the assignment β either falsified or satisfied all literals in pC, then there would be a
non-splitting assignment in Flip(Q+,β ) that falsified all literals in p. However, this cannot happen
as such an assignment would falsify the vertex v, while keeping its charge the same as the satisfying
assignment β .

Thus, there is a cycle C ∈ Q+ that contains one literal of p that β satisfies and one literal that β

falsifies. Let Q′ = Q∪{C} and let H′ = Hβ . By construction (Q′,H′) ∈ F, and assignments in H′

restricted to C satisfy p, showing that (Q′,H′) satisfies the extension condition.

Theorem 3.4 is somewhat restrictive, in that it requires us to partition all edges in the graph into short
cycles. However, as the following corollary shows, it is enough to partition most of the edges.

Corollary 6.11. Let (G,χ) be a non-splitting charged graph of maximal degree d with connectivity
expansion c such that a partition M of E into edge-disjoint cycles of length at most b and an additional
number of t < c edges exist. Then

SpPCR(Ts(G,χ) `⊥)≥ (c− t)/4b−d/8

Proof. Let H be the graph obtained by removing the t extra edges. Note that the connectivity expansion
of H is at least c− t. Corollary 6.7 on page 19 shows that there exists a non-splitting assignment α on
G\H. The assignment α induces, by Observation 6.2 on page 18, a non-splitting charged graph (H,γ),
for some γ . By a restriction argument, any PCR refutation of a non-splitting Tseitin formula on G in
space S can be translated to a PCR refutation of a non-splitting Tseitin formula on H in space at most S.
Theorem 3.4 shows that S≥ (c− t)/4b−d/8.
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6.1 Application: Grid Graphs

There are families of graphs where we actually get matching upper and lower bounds for PCR space. One
such family is square grids. For the following subsection let n be an even integer and denote Zn = Z/nZ,
the integers modulo n. The following defines a grid over a torus.

Definition 6.12 (Grid graph). The grid graph (or discrete torus) T (n) is a 4-regular graph with vertices
V = Zn×Zn and edges

E =
{(

(i, j),(i+1, j)
)
,
(
(i, j),(i, j+1)

)∣∣i, j ∈V
}

,

where the sums are over Zn. We order the vertices of T (n) lexicographically: (i, j) < (k, l) if i < k or
i = k and j < l. The predecessor of a vertex (i, j) 6= (1,1), denoted pred(i, j), is the vertex immediately
preceding (i, j) in this order.

We will explicitly refer to the edges we need to disconnect a set of vertices from a graph. This notion
is known as edge boundary.

Definition 6.13. Let G(V,E) be a graph and U ⊆V be a subset of vertices. The edge boundary of U is
the set of edges ∂e(U) = {(x,y) ∈ E : x ∈U, y /∈U}.

We can find an upper bound on PC space by mentioning all the vertices in lexicographical order.

Lemma 6.14. The space of refuting a Tseitin formula over the n× n grid graph for an odd charge
function χ over characteristic 2 is SpPC(Ts(T (n),χ) `⊥) = O(n).

Proof sketch. Observe that for every set of vertices U it holds that ∑e∈E(U) e≡∑e∈∂e(U) e (mod 2) where
E(U) is the set of all edges incident to vertices in U , and that in PC over characteristic 2 this expression
corresponds to the polynomial ∑e∈∂e(U) e. Thus, we can express ∑e∈E(U) e≡ χ(U) in space ∂e(U). If we
let Ui j = {(a,b) ∈V | (a,b)≤ (i, j)}, the edge boundary of any Ui j is at most 2n+1, so the monomial
space of each of the polynomials pi j = ∑e∈∂e(Ui j) e−χ(Ui j) is at most 2n+1 = O(n).

If we show how to derive the polynomials pi j in lexicographical order in O(n) space, we will be done.
And indeed, for any vertex (i, j) in the grid graph we can infer the polynomial qi j = ∑e3(i, j) e−χ((i, j))
by downloading the 2d−1 axioms PARITY(i, j),χ and adding all of them in constant space. To derive pi j

from ppred(i j) it is enough to add the polynomials ppred(i j) and qi j. The maximum space is Sp(ppred(i j))+
Sp(pi j)+O(1) = O(n).

The connectivity expansion follows from the following isoperimetric inequality.

Theorem 6.15 ([17]). Let U be a subset of vertices of T (n) with |U | ≤ n2/2. Then

|∂e(U)| ≥min{2n,4|U |1/2} .

Corollary 6.16. The connectivity expansion of T (n) is 2n−1.

Proof. If we erase 2n− 1 or less edges from T (n), then by Theorem 6.15 the largest region we can
disconnect has size |U | ≤

(
(2n−1)/4

)2
< n2/2, so c≥ 2n−1. If we erase the 2n edges {((i,0),(i,1)) | i∈

Zn}∪{((i,n/2),(i,n/2+1)) | i ∈ Zn} we obtain two connected components of size n2/2, so c < 2n.
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The lower bound on PCR space follows.

Corollary 6.17. The space of refuting a Tseitin formula over the n×n grid graph, where n is even, is
SpPCR(Ts(T (n),χ) `⊥) = Ω(n) (over any characteristic).

Proof. Let us find a partition of the edges of T (n). Let C(i, j) be the set of edges of the cycle
(
(i, j),(i+

1, j),(i+1, j+1),(i, j+1)
)
. Then the set M = {C(i, j) | i+ j≡ 0 (mod 2)} is a partition of the edges of

T (n) into edge-disjoint cycles of length 4. By Theorem 6.10, SpPCR(Ts(T (n),χ) `⊥)≥ (2n−9)/16.

Theorem 6.18. The space of refuting a Tseitin formula over the n× n grid graph for an odd charge
function χ over characteristic 2 is SpPCR(Ts(T (n),χ) `⊥) = Θ(n).

6.2 Application: Triangulations

Given a graph with good expansion, we can add a few edges to it and obtain a new graph whose Tseitin
formula we can prove to be hard for PCR space. We already showed in Section 4 how to use a XOR
substitution to obtain such a multi-graph; the following subsection shows how to obtain a simple graph.
The proposed method is to convert every edge into a triangle, and a greedy strategy is enough as the
following lemma shows.

Lemma 6.19. Let G be a simple graph of order n, size m and maximal degree d. If T is an integer such
that T (n−4d−2(T +1))≥ m then there exists a simple graph H of maximal degree at most 2d +2T
which is a supergraph of G whose edges can be partitioned into edge-disjoint triangles.

Proof. Consider the algorithm that iteratively chooses any edge (x,y) not yet handled, chooses a vertex z
not adjacent to any of the endpoints of minimal degree, and adds the two remaining edges (x,z) and (y,z)
from the endpoints to the vertex.

We consider the new edges to be directed (from x and y to z) and the indegree and outdegree to refer to
new edges only. The degree of a vertex is thus the sum of its initial degree, its indegree and its outdegree.
Observe that at every step the outdegree of every vertex is at most its initial degree, which is at most d.
When choosing the vertex z, we will choose the vertex of minimal indegree.

Assume that at some state S of the execution of the algorithm the maximal indegree is 2t. We
claim that the algorithm handles at least the next n−4d−4(t +1) edges without the indegree exceeding
2(t +1).

Indeed, consider the k-th edge (x,y) the algorithm visits after state S for k ≤ n−4d−4(t +1). Its
endpoints are connected to at most d+2(t+1)+d vertices each, which we discard as candidates for z, and
at most k−1 vertices increased their indegree to 2(t+1). There remain at least n−4d−4(t+1)−k+1≥
1 potential vertices of indegree at most 2t, and the greedy algorithm chooses one of these.

The initial indegree of all vertices is 0. After handling all m edges, the maximal indegree increases at
most T times, where T is such that

m≤
T−1

∑
t=0

(n−4d−4(t +1)) = T (n−4d−2(T +1)) . (6.1)
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In particular, if d ≤ n/4−
√

2m/2−1/2 such a T exists, and if d = o(n) the inequality (6.1) holds
asymptotically for T =

⌈d+1
2

⌉
. The lower bound on space follows by applying theorem Theorem 2.6 to

the resulting supergraph and noting that the connectivity expansion cannot decrease.

Theorem 6.20. Let G be a simple graph of maximal degree d = o(n) and connectivity expansion c. There
exists a simple graph H of maximal degree at most 3d +2 which is a supergraph of G such that the space
of refuting a Tseitin formula over H is at least SpPCR(Ts(H,χ) `⊥)≥ c/12− (3d +2)/8.

7 Cycle Partitions of Random Regular Graphs

7.1 Models of Random Regular Graphs

Let Pn be a sequence of probability spaces. A sequence of events En on Pn holds asymptotically almost
surely if Pr[En]−→ 1. In the sequel, we often abuse notation and say that an event is true asymptotically
almost surely in a probability space, when we actually mean sequences of both. The probability space
will depend on a parameter n.

Two probability spaces are contiguous if every event which holds asymptotically almost surely in one
also holds asymptotically almost surely in the other; we will use the notation A≈ B to denote that A and
B are contiguous. Let Dd be the probability space of random d-regular graphs on n vertices, H+H be
the probability space of unions of (not necessarily disjoint) random Hamilton cycles on n vertices, and
H⊕H be the probability space of unions of edge-disjoint random Hamilton cycles on n vertices; H⊕H

is obtained by conditioning H+H upon the event that the two random Hamilton cycles are edge-disjoint.
Note that H+H is a probability space on multi-graphs. Kim and Wormald [34] proved the following
theorem (see also Wormald’s survey [45] and [33, §9.3–9.6]).

Theorem 7.1. We have D4 ≈H⊕H.

We will need one more fact from [34], whose proof we only sketch.

Lemma 7.2. If G∼H+H then Pr[G is simple]−→ e−2.

Proof sketch. Fix the first Hamilton cycle H1. Let ei be the (random) ith edge of the second Hamilton
cycle H2. It is easy to see that Pr[ei ∈H1] = 2/(n−1), hence E[|H1∩H2|]−→ 2. Moreover, one can show
using Brun’s sieve (for example [3, Theorem 8.3.1]) that the distribution of |H1∩H2| is asymptotically
Poisson; the required calculations are sketched in [34, §2(iii)]. Hence Pr[|H1∩H2|= 0]−→ e−2.

Putting both facts together, we get the following result which will serve as our vantage point over
random 4-regular graphs.

Lemma 7.3. Suppose E is an event which holds asymptotically almost surely in H+H. Then E also
holds asymptotically almost surely for random 4-regular graphs.

Proof. Lemma 7.2 shows that E holds asymptotically almost surely in H⊕H, and so in D4 by Theo-
rem 7.1.

Corollary 7.4. A random 4-regular graph is connected asymptotically almost surely.
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7.2 Expansion Properties of Random Regular Graphs

For a graph G = (V,E) and a subset U of the vertices, recall that ∂e(U) is the set of edges connecting
U and V \U . We say that the graph G is a δ -edge expander if for every set U of at most |V |/2 vertices,
|∂e(U)| ≥ δ |U |. Bollobás [16] proved that random regular graphs are good expanders, as stated next for
degree-4 graphs.

Theorem 7.5. There is a constant c1 such that asymptotically almost surely, a random 4-regular graph is
a c1-edge-expander.

In fact, we can choose any c1 < 2(1−η) ≈ 0.4401, where η is the unique positive solution of
(1−η)1−η(1+η)1+η = 2. In particular, asymptotically almost surely a random 4-regular graph is a
0.44-edge-expander.

The following lemma gives a lower bound on the connectivity expansion of a random 4-regular graph,
defined in Definition 2.3.

Lemma 7.6. There is a constant c2 such that asymptotically almost surely, the connectivity expansion of
a random 4-regular graph on n vertices is at least c2n.

Proof. Let G be a random 4-regular graph. Theorem 7.5 shows that asymptotically almost surely, G
is a c1-edge-expander. Suppose G has connectivity expansion s. There is a set W of s edges and an
edge e such that G\W has a component of size larger than n/2, but G\ (W ∪{e}) has no component
of size larger than n/2. Since e breaks the giant component into two components, G\ (W ∪{e}) must
have a component U of size larger than n/4. Expansion shows that |∂e(U)| ≥ c1|U |> (c1/4)n, and so
s = |W | ≥ (c1/4)n. This shows that we can choose c2 = c1/4.

7.3 Simple Lower Bound

In this section we prove that refuting a non-splitting Tseitin formula on a random 4-regular graph on n
vertices requires space Ω

(√
n/ logn

)
, asymptotically almost surely over the choice of the graph.

The idea is to prove that asymptotically almost surely, a random 4-regular graph on n vertices can
be partitioned into cycles of length O

(√
n logn

)
. Note that every Eulerian graph can be partitioned into

cycles, and what we need to show is that the cycles are short. In order to prove that, it will be useful to
consider a model related to H+H.

Let [n] = {1, . . . ,n}, and let Sn be the set of all permutations on [n]. Every permutation π ∈ Sn

determines a Hamilton cycle

H(π) = (π(1),π(2)),(π(2),π(3)), . . . ,(π(n−1),π(n)),(π(n),π(1)) . (7.1)

(The cycle is undirected.) Let ι denote the identity permutation. We will consider the probability space
H(ι)+H(π) formed by taking the union of H(ι) and H(π), where π is chosen uniformly at random
from Sn.

The idea of the proof is to divide [n] into
√

n/ logn blocks of length
√

n logn. We will show that
asymptotically almost surely, each block Ik contains a point tk such that sk = π(tk) ∈ Ik. For any two
adjacent blocks Ik, Ik+1, we can form a cycle of length O

(√
n logn

)
by pasting together the path from

THEORY OF COMPUTING 24

http://dx.doi.org/10.4086/toc


TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

sk sk+1

tk tk+1

H(ι)

H(π)

π

Pπk

P ιk

G

Ck = P ιk ∪ Pπk

Figure 2: One block of the decomposition of a random regular graph into short cycles. We obtain Ck by
identifying the vertices of H(ι) with the vertices of H(π) according to π .

sk to sk+1 in H(ι) and the path from π(tk) to π(tk+1) in H(π), both of which are shorter than 2
√

n logn.
As a result, the graph decomposes into

√
n/ logn cycles of length O

(√
n logn

)
. See Figure 2 for an

illustration.
Let m be a parameter depending on n; in this section, we choose m =

√
n logn, while in the next

section, we choose m =C
√

n. For simplicity, we assume that m and n/m are both integers. We partition
[n] into n/m blocks I1, . . . , In/m of size m: Ik = {(k−1)m+1, . . . ,(k−1)m+m}. Let Bk be the event that
π(Ik)∩ Ik = /0. We think of Bk as a bad event, and our goal in this section is to show that asymptotically
almost surely, none of the Bk happen. In order to show this, we estimate the probability that Bk happens.

Lemma 7.7. For k ∈ [n/m], Pr[Bk]≤ e−m2/n.

Proof. Using 1− x≤ e−x, we calculate

Pr[Bk] =
m−1

∏
i=0

(
1− m

n− i

)
≤
(

1− m
n

)m
≤ e−m2/n . (7.2)

If Bk holds, we define tk to be the first point in Ik such that π(tk) ∈ Ik, and let sk = π(tk).

Lemma 7.8. Suppose Bk and Bk+1 both hold (indices taken modulo n/m). Define a (possibly self-
intersecting) cycle Ck by taking two paths Pι

k ,P
π
k from sk = π(tk) to sk+1 = π(tk+1), one from each of the

two Hamilton cycles:

Pι
k = (sk,sk +1),(sk +1,sk +2), . . . ,(sk+1−1,sk+1) ,

Pπ
k = (π(tk),π(tk +1)),(π(tk +1),π(tk +2)), . . . ,(π(tk+1−1),π(tk+1)) .

The length of Ck is at most 4m.
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Proof. Assume for simplicity that k 6= n/m. Then sk, tk ≥ (k− 1)m+ 1 and sk+1, tk+1 ≤ km+m. The
length of Ck is (sk+1− sk)+(tk+1− tk)≤ 4m−2.

If none of the bad events happen, then the cycles C1, . . . ,Cn/m cover all of the graph: by construction
{Pι

k}k partitions H(ι), while {Pπ
k }k partitions H(π). Choosing m accordingly, we can ensure that this

happens asymptotically almost surely.

Lemma 7.9. Let m =
√

n logn. Asymptotically almost surely, a graph chosen according to H(ι)+H(π)
decomposes into n/m cycles of size at most 4m.

Proof. According to Lemma 7.7, for each k ∈ [n/m], Pr[Bk]≤ e− logn = 1/n. A union bound shows that
asymptotically almost surely, none of the Bk happen. Lemma 7.8 shows that the graph decomposes into
n/m cycles of size at most 4m.

The lemma easily implies the lower bound.

Theorem 7.10. Asymptotically almost surely, the space required to refute in PCR any Tseitin formula on
a random 4-regular graph on n vertices is Ω

(√
n/ logn

)
.

Proof. By a symmetry argument, Lemma 7.9 implies that asymptotically almost surely, a graph chosen
according to H+H decomposes into cycles of size at most 4

√
n logn. Lemma 7.6 shows that asymptoti-

cally almost surely, the connectivity expansion of the graph is at least Ω(n). Corollary 7.4 shows that
asymptotically almost surely, the graph is connected, and so the Tseitin formula is non-splitting. Hence
Theorem 3.4 gives a lower bound of Ω(

√
n/ logn).

7.4 Improved Lower Bound

In this section we improve the results of Section 7.3 by showing that refuting a non-splitting Tseitin
formula on a random 4-regular graph on n vertices requires space Ω

(√
n
)
, asymptotically almost surely

over the choice of the graph.
We use the general method of Section 7.3, with a different choice of m, namely m =C

√
n for some

constant C to be determined later. Thinking of Bk as an indicator variable, let B = ∑
n/m
k=1 Bk. Lemma 7.7

shows that E[B]≤ e−C2
(n/m). We will show that asymptotically almost surely, B≤ 2e−C2

(n/m). This
implies that the cycles Ck together cover most of the graph, and therefore Corollary 6.11 applies. The
difficult part of the proof is showing that B is concentrated around its mean.

Let p = Pr[Bk] (all the probabilities are the same). We need the following strengthening of Lemma 7.7.

Lemma 7.11. Let p = Pr[Bk], where Bk is the event that Ik ∩ π(Ik) = /0. As n −→ ∞, we have that
p−→ e−C2

.

In order to show that B is concentrated around its mean, we show that for k 6= l, the events Bk and Bl
are asymptotically negatively correlated.

Lemma 7.12. For every k 6= l ∈ [n/m], Pr[Bk∧Bl]≤ p2 +o(1).
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We prove both lemmas below, but first, let us see how they imply the desired result. The idea is that
since any two bad events are asymptotically negatively correlated, the variance of B is small, and so
Chebyshev’s inequality shows that B is concentrated around its mean.

Lemma 7.13. Asymptotically almost surely, B≤ 2e−C2
(n/m).

Proof. We have E[B] = (n/m)p and

Var(B) = E[B2]− (E[B])2

= (n/m)p+(n/m)(n/m−1)(p2 +o(1))− (n/m)2 p2

= (n/m)p(1− p)+o
(
(n/m)2) ,

using Lemma 7.12. Chebyshev’s inequality shows that

Pr[|B−E[B]|> E[B]]≤ Var(B)
E[B]2

≤
(n/m)p+o

(
(n/m)2

)
(n/m)2 p2 = o(1) , (7.3)

since p = Ω(1) by Lemma 7.11. Therefore asymptotically almost surely, B ≤ 2E[B] = 2(n/m)p ≤
2e−C2

(n/m), using Lemma 7.7.

The preceding lemma shows that the fraction of bad indices (indices k such that Bk holds) is small.
Say that a block Ik is good if Bk and Bk+1 both hold, and say that it is supergood if both Ik−1 and Ik are
good. Lemma 7.8 associates a cycle Ck with each good block Ik. If Ik is supergood, then the cycles Ck−1
and Ck together cover the entire stretch of Ik, as the following lemma shows.

Lemma 7.14. Suppose that block Ik is supergood. Then the union of the cycles Ck−1,Ck given by
Lemma 7.8 contains the path of length m from min Ik to min Ik+1 in H(ι), as well as the path of length m
from π(min Ik) to π(min Ik+1) in H(π).

Proof. The cycle Ck−1 contains the path from sk−1 < min Ik to sk in H(ι). The cycle Ck contains the path
from sk to sk+1 ≥min Ik+1 in H(ι). Both paths together cover the path from min Ik to min Ik+1 in H(ι).
The argument for H(π) is identical.

We can now prove an analogue of Lemma 7.9.

Lemma 7.15. Let m =C
√

n. Asymptotically almost surely, a graph chosen according to H(ι)+H(π)

decomposes into cycles of size at most 4m and t additional edges, where t ≤ 8e−C2
n.

Proof. Lemma 7.13 shows that asymptotically almost surely, all but 4e−C2
(n/m) of the n/m blocks

I1, . . . , In/m are supergood, as each bad block prevents two blocks from being supergood. Let C be the
(disjoint) union of all cycles Ck constructed using Lemma 7.8 for all supergood blocks Ik. The lemma
shows that each cycle has size at most 4m. Lemma 7.14 shows that C contains all but at most 8e−C2

n
edges of the graph.

Replacing Theorem 3.4 with its corollary, Lemma 7.15 easily implies the lower bound.
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Theorem 7.16. Asymptotically almost surely, the space required to refute in PCR any Tseitin formula on
a random 4-regular graph on n vertices is Ω

(√
n
)
.

Proof. For reasons of symmetry, Lemma 7.15 implies that asymptotically almost surely, a graph chosen
according to H+H decomposes into cycles of size at most 4C

√
n and t additional edges, where t ≤

8e−C2
n. For an appropriate choice of C we have t ≤ (c2/2)n. Lemma 7.6 shows that asymptotically almost

surely, the connectivity expansion of the graph is at least c2n. Corollary 7.4 shows that asymptotically
almost surely, the graph is connected, and so the Tseitin formula is non-splitting. Hence Corollary 6.11
gives a lower bound of Ω

(√
n
)
.

7.4.1 Technical Lemmas

We now turn to the proofs of Lemma 7.11 and Lemma 7.12. We start with the former.

Proof of Lemma 7.11. It is easy to check that for 0≤ x≤ 1/2, 1−x≥ e−x−x2
. Therefore for large enough

n,

p =
m−1

∏
i=0

(
1− m

n− i

)
≥
(

1− m
n−m

)m

≥ exp
[
− m2

n−m
− m3

(n−m)2

]
. (7.4)

For large enough n, m≤ n/2, and so m2/(n−m) = m2/n+m3/(n(n−m))≤ m2/n+2m3/n2. Similarly,
m3/(n−m)2 ≤ 4m3/n2. Therefore, using e−x ≥ 1− x,

p≥ exp
[
−m2

n
−6

m3

n2

]
= exp

[
−C2− 6C3

√
n

]
≥ e−C2

(
1− 6C3
√

n

)
. (7.5)

Hence liminf p≥ e−C2
. Lemma 7.7 shows that also limsup p≤ e−C2

.

The proof of Lemma 7.12 is more involved. Recall that the lemma claims that the events Bk and
Bl are asymptotically negatively correlated. In fact, they are asymptotically uncorrelated. Recall that
Pr[Bk] is roughly equal to e−C2

. Given the value of π on Ik, the probability Pr[Bl] depends on |π(Ik)∩ Il|.
Typically, this intersection will be very small, and so Pr[Bl] is also roughly equal to e−C2

.
We will show that |π(Ik)∩ Il| is typically small using an extension of the well-known Chernoff bound

due to Kabanets and Impagliazzo [31, Theorem 1.1], attributed there to Panconesi and Srinivasan [42].

Theorem 7.17. Let X1, . . . ,Xr be Boolean random variables such that for any set S⊆ [r], Pr[
∧

i∈S Xi]≤ δ |S|.
Then for γ ≥ δ ,

Pr

[
r

∑
i=1

Xi ≥ γr

]
≤ e−2r(γ−δ )2

.

The following lemma applies this bound to our situation (in an abstracted version).

Lemma 7.18. Let a,b,c be integers such that a≥ b,c, and let T be a random subset of [a] of size b. For
all ρ ≥ 1,

Pr[|T ∩ [c]| ≥ ρ(bc/a)]≤ e−2c(ρ−1)2(b/a)2
.
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Proof. For i ∈ [c], let Xi be the event that i ∈ T . For S⊆ [c] such that |S| ≤ b,

Pr
T
[S⊆ T ] =

(a−|S|
b−|S|

)(a
b

) =
|S|−1

∏
k=0

b− k
a− k

≤
(

b
a

)|S|
. (7.6)

Therefore we can apply Theorem 7.17 with r = c, δ = b/a and γ = ρ(b/a).

We can now prove Lemma 7.12.

Proof of Lemma 7.12. We will show that Pr[Bl |Bk]≤ p+o(1). This implies that Pr[Bk∧Bl] =Pr[Bk]Pr[Bl |
Bk]≤ p(p+o(1)) = p2 +o(1).

Assuming the event Bk happens, π(Ik) is a random subset of [n]\ Ik of size m. Plugging a = n−m
and b = c = m in Lemma 7.18, we deduce that for all ρ ≥ 1 and large enough n

Pr[|π(Ik)∩ Il| ≥ ρC2 | Bk]≤ e−2(ρ−1)2m(m/(n−m))2
(7.7)

≤ e−2(ρ−1)2m3/n2
= e−2C3(ρ−1)2/

√
n . (7.8)

Hence with probability 1−o(1) given Bk, D, |π(Ik)∩ Il| ≤
√

m logm. Now

Pr[Bl | D = d] =
m−1

∏
i=0

(
1− m−d

n−m− i

)
≤
(

1− m−d
n

)m

≤ e−m(m−d)/n . (7.9)

For 0≤ x≤ 1, one can check that ex ≤ 1+2x. Hence

Pr[Bl | D≤
√

m logm]≤ e−m(m−
√

m logm)/n (7.10)

= e−C2+m
√

m logm/n ≤ e−C2
(

1+
2m
√

m logm
n

)
. (7.11)

Using Lemma 7.11, we deduce that Pr[Bl | D≤
√

m logm]≤ e−C2
+o(1) = p+o(1). We conclude that

Pr[Bl | Bk] = p+o(1) and so Pr[Bk∧Bl] = p2 +o(1).

7.5 Regular Graphs of Degree Larger Than Four

Wormald [45, Corollary 4.17] showed that when d > 4, a random d-regular graph can be obtained (up to
contiguity) by taking the disjoint union of a random 4-regular graph and a random (d−4)-regular graph,
a result summarized in the following theorem (see also [33, Corollary 9.44]).

Theorem 7.19. For d > 4 we have Dd ≈ D4⊕Dd−4. Furthermore, the probability that a uniformly
random 4-regular graph and a uniformly random (d−4)-regular graph do not intersect tends to a positive
constant.

A Tseitin formula on a random d-regular graph generated according to D4⊕Dd−4 is harder to refute
than a Tseitin formula on a random 4-regular graph, and so we can generalize Theorem 7.16 to random
d-regular graphs for arbitrary d ≥ 4.
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Theorem 7.20 (restatement of Theorem 3.5). Let d ≥ 4. Asymptotically almost surely, the space required
to refute in PCR any Tseitin formula on a random d-regular graph on n vertices is Ω

(√
n
)
.

Proof. If d = 4 then Theorem 7.16 already applies, so assume d > 4. Let G1 be a random 4-regular
graph, and let G2 be a random (d−4)-regular graph. The graph G = G1 +G2 is distributed according
to D4 +Dd−4. We show below that asymptotically almost surely, the space required to refute in PCR
any Tseitin formula on G is Ω

(√
n
)
. Since G1 and G2 are disjoint with constant probability according to

Theorem 7.19, the theorem follows.
Let α be an arbitrary assignment to the edges of G2. Observation 6.2 on page 18 shows that for

every function f , Ts(G,χ)�α = Ts(G1,γ) for some other function γ . By a restriction argument, any PCR
refutation of Ts(G,χ) in space S can be translated to a PCR refutation of Ts(G1,γ) in space at most S.
Theorem 7.16 on page 28 shows that asymptotically almost surely, we must have S = Ω

(√
n
)
.

8 Bonacina–Galesi Framework and the Functional Pigeonhole Principle

We now discuss the intrinsic limitations of the techniques employed so far. In Section 8.1 we show that
Bonacina–Galesi framework does not allow to prove PCR space lower bounds for an interesting formula
like functional pigeonhole principle. In Section 8.2 we show that restricting to PC does not make the
problem easier.

8.1 FPHP Formulas Do Not Have Extendible Families

One of the limits of the Bonacina–Galesi framework is that we cannot apply it to formulas for which
fixing a small set of variables causes a lot of unit clause propagation. Indeed, most of the lower bound
strategies in this paper aim to control this phenomenon (see for example Lemma 4.3). For the functional
pigeonhole principle these strategies do not work, as we now prove.

Definition 8.1. The functional pigeonhole principle on m pigeons and n holes is the formula defined on
variables xi j for i ∈ [m] and j ∈ [n], made of the following clauses:∨

j∈[n]
xi j for all i ∈ [m]; (pigeon axioms)

¬xi j ∨¬xi′ j for any i 6= i′ ∈ [m] and j ∈ [n]; (hole axioms)

¬xi j ∨¬xi j′ for any i ∈ [m] and j 6= j′ ∈ [n]. (functional axioms)

It is already known that this formula requires large space in resolution [13, 4]. Thanks to [28] we
know that this formula needs Ω(

√
n) monomial space as well. We suspect that the true lower bound is

actually Ω(n), however the Bonacina–Galesi framework is not strong enough to prove it. That framework
cannot even prove a non constant lower bound for functional pigeonhole principle.

Theorem 8.2 (restatement of Theorem 3.6). There is no r-extendible family for FPHPm
n for r > 1.

Proof. Assume that there is an r-extendible family F for the formula FPHPm
n which respects some

satisfiable F ′ ⊆ FPHPm
n , for r > 1.
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Let C be any clause in FPHPm
n \F ′; such clause exists because FPHPm

n is a contradiction. The
extension property of F implies that there is a pair ({Q1},H1) ∈ F, where H1 satisfies C.

Recall that 0 encodes true, and 1 encodes false. Pick a variable xi j in Q1. In H1 there is at least one
partial assignment for which xi j = 0, and for any such assignment it holds that xi′ j = 1 and xi j′ = 1 for all
i′ 6= i and j′ 6= j, otherwise an initial clause would be false.

Indeed, fix v to be any of these variables (either xi′ j or xi j′); the clause ¬xi j∨¬v is an axiom. If v 6∈Q1
then this clause is not in F ′ because of the respectfulness of F, and furthermore there is at least one
assignment in H1 which does not satisfy it (i. e., any assignment with xi j = 0). The extension property of
F guarantees that there is ({Q1,Q2},H1×H2) ∈ F with v ∈Q2, such that H1×H2 satisfies ¬xi j∨¬v. But
this contradicts the fact that H1×H2 contains the assignment {xi j = 1,v = 1}, which falsifies ¬xi j ∨¬v.

It follows that {xi′ j,xi j′ | i′ 6= i and j′ 6= j} ⊆ Q1, and that H1 satisfies all axioms involving either pi-
geon i or hole j. We have just shown that assuming some xi j ∈Q1, we get {xi′ j,xi j′ | i′ ∈ [m], j′ ∈ [n]} ⊆ Q1.
This choice was arbitrary, so it follows that for any i ∈ [m], j ∈ [n], the variable xi j is in Q1. In other
words, Q1 contains all the variables. Since FPHPm

n \F ′ is contradictory, every assignment in H1 falsifies
some clause, and so the extension property fails for any such clause. We conclude that FPHPm

n has no
2-extendible family.

8.2 Formulas with Equal PC and PCR Space Complexities

Although finding an r-extendible family for the functional pigeonhole principle (and hence proving
a linear space lower bound) is not feasible, we might try and prove a weaker PC space lower bound.
However, as we have pointed out in Section 3.4, in the case of functional pigeonhole principle this makes
no difference. In this section, we prove formally this result for a broader class of formulas that is captured
by the following definition.

Definition 8.3. We say that a CNF formula F is totally weight constrained if for every variable x
appearing in F there exists a clause Cx ∈ F with the following properties:

1. All literals in Cx are positive;

2. x is one of the variables appearing in Cx;

3. For every two distinct variables y,z appearing in Cx, clause y∨ z is in F .

For each variable x we refer to Cx as the x-neighborhood clause.

In such formulas each negative literal can be replaced with a clause/monomial consisting of only
positive literals that has the same semantic meaning. Thus, we can turn a PCR refutation into a PC
refutation without any substantial loss of space. In order for us to be able to show that such a refutation is
a valid PC refutation we need to show that there are PC derivations of these monomials that use small
space.

Theorem 8.4. For a totally weight constrained CNF formula F, where each clause has a constant number
of negative literals, it holds that SpPC(F `⊥) = Θ(SpPCR(F `⊥)).
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Proof. We can easily see that PCR simulates PC with only a constant loss in space. The only problem in
the simulation could arise when downloading an axiom that has negative literals. Nevertheless, it is not
hard to prove that PCR can expand every axiom to its PC form while respecting the stated space bound.

In the other direction, we prove that PC can simulate a PCR refutation of F . Let π be a PCR refutation
of F in space at most s. As F is a totally weight constrained formula, for every variable x we can fix its
x-neighborhood clause Cx. Let us denote by N(x) the set of variables from Cx excluding x. We transform
the PCR refutation π into a PC refutation by replacing each negative literal x with the monomial ∏y∈N(x) y.
Obviously this transformation preserves space and we need to show that the transformed configurations
form a backbone of a valid PC refutation.

If the PCR refutation deletes a polynomial, we delete the appropriate transformed polynomial from
the configuration in the PC refutation. Similarly, in the case of linear combination steps we just deduce
the linear combination of the transformed polynomials. Hence, these two types of steps can be done
without any loss in space. In the case of multiplication with a literal, if the literal is positive we multiply
the appropriate transformed polynomial with the same literal. Otherwise, the literal is negative and we
multiply the polynomial with all the variables in N(x), where x is the literal, while making sure to delete
the intermediate polynomials when they are no longer needed. In this way we derive the transformed
polynomial in at most O(s) space.

The axiom download steps are the only ones that remain. In the case of Boolean axiom download,
if we downloaded an axiom for a positive literal, we just download the appropriate axiom in the PC
refutation. Otherwise, the Boolean axiom corresponds to some negative literal x and we need to derive the
polynomial ∏y∈N(x) y2−∏y∈N(x) y. This is done by downloading the Boolean axioms for each y ∈ N(x)
and combining them to get the transformed polynomial. Let B2−B be one of the intermediate polynomials
in the derivation of the transformed Boolean axiom, where B is a monomial formed by multiplying the
variables in some subset of N(x). Then, for some variable y not mentioned in B, we derive (By)2−By by
downloading y2− y and taking the linear combination of y(B2−B) and B2(y2− y). This PC derivation
uses O(1) more monomials than the PCR axiom download.

When the PCR proof downloads the complementarity axiom 1− x− x, the corresponding PC proof
needs to derive the polynomial 1− x−∏y∈N(x) y. Let N(x) = {y1, . . . ,yl}. We derive the transformed
polynomial by successively deriving polynomials

T (i) =
l

∏
k=i+1

yk− x
l

∏
k=i+1

yk−∏
k

yk , (8.1)

for i = 1, . . . , l. Note that T (l) is our transformed polynomial. The first T (1) in the PC proof can be
derived by downloading the axiom (1− x)(1− y1) and multiplying it with variables y2, . . . ,yl in order to
get T (1)+ x∏k yk. Subtracting from it the x-neighborhood clause Cx = x∏k yk we get T (1).

We proceed to derive T (i+ 1) from T (i) for all i. Similarly as before, we start by downloading
the axiom (1− x)(1− yi+1) and multiplying it with variables yi+2, . . . ,yl in order to get T (i+1)−T (i).
Adding this polynomial to T (i) we derive the (i+ 1)st polynomial T (i+ 1) in our derivation of the
transformed complementarity axiom. This PC derivation uses O(1) more monomials than the PCR proof
and all axioms of the form (1− x)(1− yi) exist because F is totally weight constrained.

In the case of axiom download step for a clause axiom, we again have two cases. If all literals of
the axiom are positive we download the corresponding axiom in the PC proof. Otherwise, we can write
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the axiom as x1 · · ·xs · xs+1 · · ·xl , where s is the number of its negative literals. Let us denote by A(i) the
polynomial

A(i) = ∏
y1∈N(x1)

y1 · · · ∏
yi∈N(xi)

yi(1− xi+1) · · ·(1− xs)xs+1 · · ·xl , (8.2)

where i ranges over 0, . . . ,s. Note that A(0) is the original PC axiom, while A(s) is the transformed axiom
that we want to derive. Also, let us denote by R(i) the polynomial

R(i) = ∏
y1∈N(x1)

y1 · · · ∏
yi−1∈N(xi−1)

yi−1 · (1− xi+1) · · ·(1− xs)xs+1 · · ·xl , (8.3)

for i ranging from 1 to s, that is A(i) = R(i)∏yi∈N(xi) yi = R(i+1)(1− xi+1).
We first derive A(1) by deriving the transformed complementarity axiom 1− x1−∏y1∈N(x1) y1 for the

variable x1 and multiplying it with R(1) in order to get A(0)−A(1). Now we can get A(1) by subtracting
the derived polynomial from the PC axiom A(0).

We proceed to derive A(s) by deriving A(i+1) from A(i) for all i from 1 to s−1. This is again done
by first deriving the appropriate complementarity axiom 1−xi+1−∏yi+1∈N(xi+1) yi+1 and multiplying it by
R(i+1) in order to get A(i)−A(i+1). Subtracting the derived polynomial from previously derived A(i),
we get the (i+1)st polynomial in our derivation. These steps use O(2s) monomials, which is constant by
the theorem hypothesis, and the PC derivation of the transformed axiom uses at most O(1) monomials
more than the PCR axiom download step.

Hence, the theorem follows. Also, although we have ignored the constants involved in the simulation,
these constants can be computed explicitly and are small. The only possible exception is the additive
constant O(2s∗), where s∗ is the largest number of negative literals in a clause of F .

An obvious example of the totally weight constrained formula is the functional pigeonhole principle.

Corollary 8.5 (Restatement of Theorem 3.7). It holds that

SpPCR(FPHPm
n `⊥) = Θ(SpPC(FPHPm

n `⊥)) .

Proof. It is easy to see that FPHPm
n formula is totally weight constrained, as every variable appears in

some pigeon axiom that is constrained by the functional axioms. Also, FPHPm
n has at most 2 negative

literals in each clause and hence we have that SpPCR(FPHPm
n `⊥) = Θ(SpPC(FPHPm

n `⊥)).

Actually, we can say even more about the space complexity of the functional pigeonhole principle
formulas. In [27], the authors prove that the PCR space complexity of FPHPm

n is equal (up to constant
factors) to the PCR space complexity of the extended formula F̃PHPm

n , where F̃PHPm
n is the canonical

equivalent 3-CNF version6 of the formula FPHPm
n . Hence, we have that the PC space complexity lower

bound for FPHPm
n would actually lower bound the PCR space complexity of F̃PHPm

n .
This holds in greater generality for totally weight constrained formulas that also fulfill the following

technical condition: F is a weight-constrained CNF formula if for each clause a1∨a2∨ . . .∨am of F

6We substitute every clause a1∨a2∨ . . .∨ak, which has more than three literals, with the formula (a1∨ y1)∧ (¬y1∨a2∨
y2)∧ . . .∧ (¬yi−1 ∨ ai ∨ yi)∧ . . .∧ (¬yk−1 ∨ ak) where for each substituted clause all variables yi are new. The substituted
formula is a 3-CNF and it is satisfiable if and only if the original one is. It is also easy to deduce the original clause from the
substituting formula.
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with more than three literals, the formula also contains clauses ¬ai∨¬a j for all 1≤ i < j ≤ m. We stress
the fact that the conditions of being weight-constrained and totally weight constrained are incomparable.

Corollary 8.6. For a simultaneously weight-constrained and a totally weight constrained formula F,
where each clause has a constant number of negative literals, it holds that

SpPCR(F̃ `⊥) = Θ(SpPCR(F `⊥)) = Θ(SpPC(F `⊥)) .

9 Concluding Remarks

In this paper, following up on work in [8, 18, 27, 30], we report further progress on understanding space
complexity in polynomial calculus and how the space measure is related to size and degree. Specifically,
we separate size and degree from space, and provide some circumstantial evidence for the conjecture that
degree might be a lower bound on space in polynomial calculus (PC) and polynomial calculus resolution
(PCR), where PCR is a strengthening of PC with separate formal dual variables for negated literals
(making PCR more suited to the study of space complexity). We also prove space lower bounds for a
large class of Tseitin formulas, a well-studied formula family for which nothing was previously known
regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs are not optimal, however.
And for the functional pigeonhole principle, we show that the technical tools developed in [18] cannot
prove any non-constant PCR space lower bounds. Although we have not been able to prove this, we
believe that similar impossibility results should hold also for ordering principle formulas and for the
canonical 3-CNF version of the pigeonhole principle. Since all of these formulas require large degree
in PCR and large space in resolution, it is natural to suspect that they should be hard for PCR space as
well. The fact that arguments along the lines of [18] do not seem to be able to establish this suggests
that we are still far from a combinatorial characterization of degree analogous to the characterization of
resolution width in [4].

It thus remains a major open problem to understand the exact relation between degree and space in
PC/PCR. Subsequent to the conference version of this paper, Galesi et al. [28] have shown that PCR space
is lower-bounded by the square root of resolution width (and hence also by the square root of polynomial
calculus degree), but it is not clear whether this square root loss is necessary. For formulas such as Tseitin
formulas, functional PHP formulas, and ordering principle formulas, it seems reasonable to believe that
PCR space lower bounds without the square root should hold.

Also, our separations of size and degree on the one hand and space on the other depend on the
characteristic of the underlying field, in that the characteristic must be chosen first and the formula family
exhibiting the separation works only for this specific characteristic. It follows from [28] that there are
formulas (namely, graph-based versions of onto functional pigeonhole principle formulas) of size Θ(n)
that can be refuted in polynomial calculus in constant degree and size O(n logn), but that require PCR
space Ω

(√
n
)
. However, this is still weaker than our separation results, which depend on the characteristic

but gives an optimal separation with a space lower bound Ω(n). The separation results in [28] and our
paper are therefore incomparable, and it remains an interesting open problem to establish an optimal
separation that would also be independent of the characteristic of the underlying field.
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Finally, an intriguing question is how (monomial) space in PC/PCR is related to (clause) space in
resolution. Since there are separations known for polynomial calculus size versus resolution length,
and for polynomial calculus degree versus resolution width, it would seem reasonable to expect that
PCR should be strictly stronger than resolution also with respect to space, but this is completely open.7

Turning this question around, one can also ask to what extent space lower bound techniques for resolution
carry over to PC/PCR. Since so far we do not know of any counter-examples, it is natural to wonder,
for instance, whether semiwide CNF formulas as defined in [1] have high space complexity not only in
resolution but also in PCR.
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A PCR Space Lower Bounds from Extendible Families

For the sake of self-containment, in this appendix we give an exposition of the Bonacina–Galesi frame-
work [18] for proving space lower bounds in Polynomial Calculus. We show how the existence of an
r-extendible family for a large value of r implies such bounds. This framework can actually prove space
lower bounds for a proof system that it stronger than PC or PCR.

Definition A.1 (Functional Calculus (FC)). A functional calculus configuration is a set of arbitrary
Boolean functions over Boolean variables. There is a single derivation rule, semantic implication, where
g can be inferred from f1, . . . , fn if every assignment that satisfies f1∧·· ·∧ fn also satisfies g.

Verifying a proof in FC is coNP-complete, and so FC is not a proof system in the sense of Cook and
Reckhow [23] unless coNP = NP.

There are many different circuit representations of the same Boolean function, so we need to choose
a minimal representation in order to define space.

Definition A.2. Let P be a FC configuration. A set of monomials U = {m1, . . . ,ms} defines P if for every
function f ∈ P there is a function g such that g(m1, . . . ,ms)≡ f (x1, . . . ,xn). The monomial space of P,
denoted by Sp(P), is the minimum size of a defining set of monomials.

We can interpret polynomials in PCR as Boolean functions if we project them to the Boolean ring
F[x,x,y,y, . . .]/Span

(
x2− x,1− x− x,x2− x,y2− y, . . .

)
. Furthermore, the set of monomials in a PCR

configuration counted without repetitions is a defining set of monomials for a FC configuration. Therefore
we can view every proof in PCR as a proof in FC that uses at most the same space. In particular,
SpFC(F `⊥)≤ SpPCR(F `⊥).

7For completeness, we mention that there is a very weak (constant-factor) separation in [1], but it crucially depends on a
somewhat artificial definition of space where monomials are not counted with repetitions.
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We now prove Theorem 2.6, following Bonacina and Galesi [18]. The general plan of the proof is to
consider a FC derivation from a formula F in small space, and show that every configuration arising in
the derivation is satisfiable. Since a refutation ends with an unsatisfiable configuration, the derivation is
not a refutation.

In order to show that every configuration arising in the derivation is satisfiable, we maintain a
satisfiability witness, in the form of a structured set of assignments together with a CNF formula. The
following definition captures the sense in which a satisfiability witness guarantees that a configuration is
satisfiable. Fix a set of variables V and consider partitions and total assignments with respect to this set.
Recall that a total assignment assigns a value to each variable in V .

Definition A.3. Let (Q,H) be a structured set of assignments, G be a CNF formula, and P be a set of
Boolean functions. We write G |=(Q,H) P if every total assignment that extends some partial assignment
in H and satisfies G also satisfies P.

In the proof, P is one of the configurations that form the FC refutation, and (Q,H),G together form
a satisfiability witness for P. The CNF G is composed of two parts: a satisfiable subset F ′ ⊂ F , which
could be empty, and a 2-CNF M with a very specific form given by the following definition.

Definition A.4. Let M be a 2-CNF formula over the variables V . We say that M is a transversal of a
partial partition Q defined on V if M mentions exactly one variable from each block Qi ∈ Q, and each
mentioned variable appears exactly once. (In particular, |Q| must be even and the number of clauses in M
is |Q|/2.)

A transversal CNF formula is always satisfiable, and so for F ′ = /0, any configuration P that has
a satisfiability witness of this form must in fact be satisfiable. To handle an arbitrary F ′, we add the
requirement that (Q,H) respect F ′. Finally, we can formally define the concept of satisfiability witness.

Definition A.5. Let P be a set of Boolean functions. A tuple (F ′;Q,H,M) is a satisfiability witness for P
if:

1. F ′ is a satisfiable CNF formula.

2. (Q,H) is a structured assignment set which respects F ′.

3. M is a 2-CNF formula which is a transversal of Q.

4. F ′∧M |=(Q,H) P.

The size of a satisfiability witness (F ′;Q,H,M) is |M|.

We single F ′ out since its value is fixed while Q,H,M are dynamic and change throughout the FC
refutation.

A FC refutation is composed of three kinds of steps: axiom download, inference and erasure. It turns
out that the first two steps are relatively easy to handle, as long as we maintain the invariant that the
size of the satisfiability witness is O(Sp(P)). This invariant allows us to expand the witness in order to
accommodate new axioms as long as the monomial space is small enough, using the extension property
of extendible families.
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Erasure is more difficult, since the monomial space of the configuration could shrink, and in order
to maintain the invariant, we need to shrink the witness as well. This is accomplished by the following
crucial lemma, which shows that if a configuration has any satisfiability witness, then we can find another
satisfiability witness for the configuration whose size is bounded in terms of the monomial space of the
configuration.

Because of the technical issue of multiple representations we also need to use the locality lemma in
axiom download steps, but we could omit it in a proof of a space lower bound for PCR. It is however a
key piece in erasure steps.

Lemma A.6 (Locality lemma). Suppose (F ′;Q,H,M) is a satisfiability witness for some set of Boolean
functions P. There is another satisfiability witness (F ′;Q′,H′,M′) for P such that Q′ ⊆ Q, H′ =H�Q′
and |M′| ≤ 2Sp(P).

Proof. In this proof Q[x] denotes the (unique) class in Q that contains variable x.
The starting point of the proof is understanding the relation between monomials in a defining set

of monomials U of P and clauses in M which underlies the property F ′∧M |=(Q,H) P. A clause C ∈M
affects a monomial m ∈U whenever the two mention variables belonging to the same partition in Q. If a
clause C does not affect a monomial m, then the clause C puts no constraints on the value of m.

Formally, we construct a bipartite graph between a minimal defining set of monomials U and the set
of clauses in M (which we identify with M itself). We draw an edge between m ∈U and C ∈M whenever
for some Q ∈ Q, both m and C mention some variable in Q.

We break U into two parts: one part which is collectively affected by a small number of clauses, and
another part in which we can associate with each monomial two clauses affecting it. To this end, let U1
be an inclusion-maximal set under the constraint |N(U1)| ≤ 2|U1|, and let U2 =U \U1. We partition M
accordingly into M1 = N(U1) and M2 = M \M1. As a slight modification of Hall’s marriage theorem
shows, the maximality of U1 implies that we can associate with each monomial in U2 two unique clauses
in M2 (that is, each clause in M2 is associated with at most one monomial). In other words, there is a
double matching from U2 to M2. (For more details on this step, see [1, 27, 18].)

We construct the new 2-CNF M′ out of two parts: M′ = M1∪M′2. The first part M1, taken verbatim
from M, takes care of U1. The other part M′2, which we construct from the double matching, takes care of
U2.

The 2-CNF M′2 consists of one clause Cm for every monomial m∈U2. In order to define Cm, let xa∨yb

and zc∨wd be the two clauses in M2 that are matched to m in the double matching. Assume without loss
of generality that m = res f m′, where r ∈ Q[x] and s ∈ Q[z]. The clause Cm is defined as Cm = re∨ s f .

By construction, |M′| ≤ 2|U1|+ |U2| ≤ 2|U |= 2Sp(P). Having defined M′, we complete the definition
of the new satisfiability witness as follows. First, let Q′ = {Q[x] | x ∈ Vars(M′)}; this guarantees that M′ is
a transversal of Q′. Observe that Q′ ⊆ Q. Second, let H′ =H�Q′ . It is easy to check that (F ′;Q′,H′,M′))
satisfies the first three properties of a satisfiability witness. It remains to prove that F ′∧M′ |=(Q′,H′) P.

In order to show that F ′ ∧M′ |=(Q′,H′) P, we consider an arbitrary total assignment α extending
some partial assignment in H′ and satisfying F ′∧M′. We will modify α to another total assignment β

that extends some partial assignment in H and satisfies F ′∧M, and furthermore has the property that
β (m) = α(m) for every m ∈U . By assumption, F ′∧M |=(Q,H) P, and so β (P) = 0. Since β (m) = α(m)
for every m ∈U , we conclude that α(P) = 0 as well.
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We proceed to define β . For each clause xa∨ yb in M2, we will define β on Q[x],Q[y] using partial
assignments from H, distinguishing two cases: the clause is matched to some monomial in U2, or it is
unmatched. The values of all the other variables are taken directly from α .

Suppose m ∈U2 is matched to the clauses xa∨ yb and zc∨wd and Cm = re∨ s f , where Q[x] = Q[r]
and Q[z] = Q[s]. (In other words, we are in exactly the same situation described above while constructing
M′.) Define β on Q[x],Q[y],Q[z],Q[w] using partial assignments from H satisfying re,yb,s f ,wd . As a
result, β satisfies the clauses xa∨ yb and zc∨wd and the monomial m.

For each unmatched clause xa∨ yb in M2, we define β on Q[x] and Q[y] using partial assignments
from H satisfying xa and yb. As a result, β satisfies the clause xa∨ yb. Finally, complete the definition of
β by defining β (x) = α(x) for any hitherto undefined variable x. From the construction it is clear that β

extends some partial assignment in H.
In order to complete the proof, we need to show that β satisfies F ′∧M, and that β agrees with α on

all the monomials in U . We start by showing that β satisfies F ′∧M. By construction, β satisfies the
clauses in M2. Since β agrees with α on variables mentioned in M1, β satisfies M1. Finally, let C ∈ F ′.
Since (Q,H) respects F ′, either the variables in C are disjoint from

⋃
Q, or the variables in C all belong

to some Qi ∈ Q, and all assignments in the respective Hi ∈H satisfy C. In the former case, β agrees with
α on variables mentioned in C, and so β satisfies C. In the latter case, β satisfies C since β extends some
partial assignment in H.

It remains to show that β (m) = α(m) for all monomials m ∈U . In short, this is true for monomials in
U1 since α and β agree on all the relevant variables, and for monomials in U2 since in both assignments
they are reduced to zero. We proceed to show this formally.

Suppose first that m ∈U1. We claim that α(v) = β (v) for all variables v mentioned in m. Indeed, if
α(v) 6= β (v) then v ∈ Q[x] for some clause C = xa∨ yb in M2. Yet this implies that m is connected to C,
contradicting the definition of M2. We conclude that α and β agree on all variables mentioned in m, and
so α(m) = β (m) in this case.

Suppose next that m ∈U2. We claim that α(m) = β (m) = 0. Let Cm = re∨ s f , and recall that m is of
the form m = res f m′. Thus α(m) = 0 since α satisfies Cm, and β (m) = 0 since it satisfies re and s f by
construction.

Theorem A.7 (restatement of Theorem 2.6 [18]). Let F be a CNF formula with an r-extendible family F
with respect to some F ′ ⊆ F. Then SpFC(F `⊥)≥ r/4.

Proof. Let F be an r-extendible family with respect to some satisfiable F ′ ⊆ F . Let π be a derivation
from F in space Sp(π) < r/4. We will show that 1 /∈ π or, even stronger, that every configuration Pt

appearing in π is satisfiable.
We will maintain a satisfiability witness (F ′;Qt ,Ht ,Mt) for every configuration Pt . Our satisfiability

witnesses will satisfy two conditions: (Qt ,Ht) ∈ F, and the size bound |Mt | ≤ 2Sp(Pt). The existence of
a satisfiability witness implies that Pt is satisfiable. Indeed, let α ∈Ht be some partial assignment that
satisfies all the literals in Mt . Since (Qt ,Ht) respects F ′, each clause in F ′ is either already satisfied by α

or is completely disjoint from the domain of α . As F ′ is satisfiable, we can extend α to a total assignment
β which satisfies F ′. Hence, from F ′∧Mt |=(Qt ,Ht) Pt we have that β satisfies Pt , and so Pt is satisfiable.

We construct the satisfiability witnesses by induction. For t = 0, the satisfiability witness is (F ′; /0, /0, /0).
For the induction step, suppose we are given a satisfiability witness (F ′;Q,H,M) for Pt . We will construct
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a satisfiability witness (F ′;Q′,H′,M′) for Pt+1. To simplify the notation, let P= Pt and P′ = Pt+1. We
distinguish three cases, which correspond to the three possible steps in the proof.

Axiom download. Let C be the downloaded clause, which we also regard as a monomial. If C ∈ F ′ or
every extension α of a partial assignment in H satisfies C, then in particular F ′∧M |=(Q,H) P∪{C}= P′,
and M′ = M, Q′ = Q, H′ =H form a satisfiability witness.

Otherwise, by hypothesis Sp(P′) < r/4 and so Sp(P) < r/4− 1. Indeed, if U is a defining set
of monomials of P, then U ∪{C} is a defining set of monomials of P′. By the induction hypothesis,
|Q|< r−1. By the extension property of extendible family, there exists a structured set of assignments
(Q̃,H̃) ∈ F such that |Q̃|< r, (Q,H)4 (Q̃,H̃) and H̃ |=C. By assumption H 6|=C and so Q 6= Q̃. Let
Q̃= Q∪{Q}.

The assignments corresponding to Q in H̃ will ensure that the clause C is satisfied. Since we are
going to add a new clause to M′, we need to come up with two new parts in Q′, and so we repeat the
process. Let D be any axiom in F \F ′ such that H̃ 6|= D; if no such axiom exists then F is satisfiable
and the theorem follows vacuously. Repeat the argument above and obtain a new disjoint set Q′ and a
structured set of assignments (Q′,H′) ∈ F.

Choose arbitrary variables x∈Q and y∈Q′, and let M′=M∪{x∨y}. By construction, (F ′;Q′,H′,M′)
is a satisfiability witness for P′.

In both cases, by Lemma A.6 there is another satisfiability witness (F ′;Q′′,H′′,M′′) for P′ satisfying
the size bound and with Q′′ ⊆ Q′, H′′ =H′�Q′′ . By the restriction property of extendible families, we
have (Q′′,H′′) ∈ F.

Inference. It is enough to pick M′ = M, Q′ = Q, H′ =H. The first three properties in the definition of
satisfiability witness continue to hold, while the last property follows from the soundness of FC. Finally,
the size bound trivially holds since |P′| ≥ |P|.

Erasure. Since FC is sound, (F ′;Q,H,M) is a satisfiability witness for P′ as well. Hence Lemma A.6
furnishes us with a satisfiability witness (F ′;Q′,H′,M′) for P′ satisfying the size bound and with Q′ ⊆ Q,
H′ =H�Q′ . By the restriction property of extendible families, (Q′,H′) ∈ F.
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mial calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.
[doi:10.1007/s000370050024] 3

[33] SVANTE JANSON, TOMASZ ŁUCZAK, AND ANDRZEJ RUCIŃSKI: Random graphs. Wiley-
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