
Inequalities on Submodular Functions

via Term Rewriting

Yuval Filmusa,1,∗

aUniversity of Toronto

Abstract

We devise a method for proving inequalities on submodular functions, with a term rewriting
flavour. Our method comprises of the following steps: (1) start with a linear combination
X of the values of the function; (2) define a set of simplification rules; (3) conclude that
X ≥ Y , where Y is a linear combination of a small number of terms which cannot be
simplified further; (4) calculate the coefficients of Y by evaluating X and Y on functions on
which the inequality is tight.

The crucial third step is non-constructive, since it uses compactness of the dual cone
of submodular functions. Its proof uses the classical uncrossing technique with a quadratic
potential function. We prove several inequalities using our method, and use them to tightly
analyze the performance of two natural (but non-optimal) algorithms for submodular max-
imization, the random set algorithm and local search.

Keywords: inequalities, submodularity, local search

1. Introduction

This paper concerns submodular functions [1, 2, 3]. These are functions f : 2U → R
for some ground set U (we say that f is a set-function on U), satisfying the submodular
inequality:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), A,B ⊆ U . (1)

We will be interested in inequalities satisfied by submodular functions. A simple example is
the inequality

E
A∈(U

k)
f(A) ≥ k

n
f(U) +

(
1− k

n

)
f(∅), (2)

where n is the cardinality of U , and
(U
k

)
consists of all subsets of U of size k. (The symbol

E denotes expectation.)

∗Corresponding author.
Email address: yuvalf@cs.toronto.edu (Yuval Filmus)

1Supported by NSERC.

Preprint submitted to Information Processing Letters March 4, 2013

Inequality (2) can be proved in many ways. Here is how our method goes about proving
it. The starting point is the left-hand side. Each time we apply an instance of inequality (1),
we replace one term by another term which is simpler in some precise sense (see §2). The
only terms that cannot be simplified further are of the form αf(U) + βf(∅), and so we
conclude that for some α, β,

E
A∈(U

k)
f(A) ≥ αf(U) + βf(∅). (3)

In order to compute α, β, we consider modular functions, which are functions in which (1)
holds with equality. If f is a modular function, then (3) must also hold with equality. By
picking appropriate modular functions, we can evaluate the coefficients α, β.

Inequality (2) is a particularly simple example, since we allowed the proof to use arbitrary
instances of the submodular inequality (1). Other cases necessitate limiting the instances
that are used.

Organization. We present the method, together with a few examples, in §2. We interpret
the example inequalities in the context of algorithms for submodular maximization in §3.

Notation. For n ∈ N, we use [n] = {1, . . . , n}. We denote set difference by \. We denote
symmetric difference by A4B = (A \ B) ∪ (B \ A). For a set S, the complete permutation
group on S is denoted Sym(S). The transposition exchanging i and j is denoted (i, j). For
a set S and integer k,

(
S
k

)
stands for the family of all subsets of S of cardinality k. The

expression E
A∈I

denotes expectation over a random variable A distributed uniformly over I.

Acknowledgements. The author would like to thank several anonymous referees for bringing
to his attention several references and for many helpful suggestions.

2. Method

In order to describe our method in full generality, we need to make several definitions
(§2.1). Then we state and prove the method (§2.2). Our proof uses the classical technique
of uncrossing with a quadratic potential function (see for example Schrijver [4, Chapter 49]).
Finally, we give several examples (§2.3), including a proof of (2). We also discuss some
similar results due to Vondrák [5] concerning the multilinear relaxation (§2.4).

2.1. Setup

The data for our method consists of the following:

• A ground set U .

• A permutation group G acting on U .

• A symmetric relation ~ (read: star) on 2U satisfying the following property: if A~B
then A * B and B * A (if this holds, we say that A,B form an antichain).

2

• A subset I ⊆ 2U satisfying the following property: if A,B ∈ I and A ~ B then
A ∪B,A ∩B ∈ I.

We extend the action of G to subsets of U : for A ⊆ U and π ∈ G, we define Aπ = {xπ :
x ∈ A}, where xπ is the action of π applied to x.

Given the foregoing, we define the cone C(I,G) ⊆ RI as the set of all non-negative vectors
X = (XA)A∈I which are symmetric under the action of G, that is, XA = XAπ for all A ∈ I
and π ∈ G. The magnitude of a vector X ∈ C(I,G) is

∑
AXA. If X ∈ C(I,G) and f is a

set-function on U , then X|f ∈ R is defined by

X|f =
∑
A∈I

XAf(A).

For A ∈ I, the vector χA ∈ C(I,G) has a single non-zero coordinate χAA = 1.
We say that a set A ⊆ U is (G,~)-stable if there does not exist π ∈ G such that A~Aπ.
We say that a set-function f on U is ~-modular if whenever A~B, we have f(A)+f(B) =

f(A ∪B) + f(A ∩B).

2.2. Method

Our method consists of the following proposition.

Proposition 1. Let U ,G,~, I be data for the method, as described in §2.1. For every
X ∈ C(I,G) there exists Y ∈ C(I,G) of the same magnitude as X such that

(a) The support of Y consists of (G,~)-stable sets.

(b) If f is submodular then X|f ≥ Y |f .

(c) If f is ~-modular then X|f = Y |f .

The proof of the proposition will require the following lemma.

Lemma 2. Let U ,G,~, I be data for the method. Define a mapping σ : C(I,G)→ R by

σ(X) =
∑
A∈I

XA|A|2.

Suppose A,B are an antichain, Y ∈ C(I,G) and t > 0. Define

Z = Y + t(χA∪B + χA∩B − χA − χB).

If Z ∈ C(I,G) then σ(Z) > σ(Y).

Proof. Let |A \B| = a, |B \ A| = b and |A ∩B| = c. We have

σ(Z)− σ(Y) = t[(a+ b+ c)2 + c2 − (a+ c)2 − (b+ c)2] = 2tab > 0,

using the fact that A,B are an antichain.

3

Proof of Proposition 1. Consider the following subset of C(I,G):

D =

X +
∑
A,B∈I
A~B

tA,B(χA∪B + χA∩B − χA − χB) : tA,B ≥ 0

 ∩ C(I,G).

Intuitively, D results from iteratively applying to X the uncrossing operation which is the
subject of Lemma 2.

Since the magnitude of all elements in D is the same, D is compact. Therefore σ attains
its maximum at some point Y ∈ D. We claim that the support of Y consists of sets which
are (G,~)-stable.

Suppose to the contrary that YA = t 6= 0 for some A which is not (G,~)-stable. Thus
A ~ B for some set B = Aπ, where π ∈ G. Since Y ∈ C(I,G), it is symmetric with respect
to G, and so

Z = Y + t E
π∈G

(χA
π∪Bπ + χA

π∩Bπ − χAπ − χBπ) ∈ D.

Note that (A ∪ B)π = Aπ ∪ Bπ and (A ∩ B)π = Aπ ∩ Bπ. Lemma 2 then shows that
σ(Z) > σ(Y), contradicting our choice of Y .

The other two properties are immediate from the definition of D.

It is instructive at this point to give an example showing the non-constructive nature of
the proof. For a ground set U , let

F (k) = E
A∈(U

k)
f(A).

This allows us to rewrite inequality (2) as

F (k) ≥ k

n
F (n) +

(
1− k

n

)
F (0). (4)

For any A ∈
(U
k−1

)
and any x, y ∈ U \ A such that x 6= y, submodularity implies that

f(A ∪ {x}) + f(A ∪ {y}) ≥ f(A ∪ {x, y}) + f(A).

Averaging over all possible choices of A, x, y, we deduce

2F (k) ≥ F (k + 1) + F (k − 1).

Here is one attempt at proving inequality (4) for n = 3 and k = 2:

F (2) ≥ 1

2
F (3) +

1

2
F (1)

≥ 1

2
F (3) +

1

4
F (2) +

1

4
F (0)

≥ 5

8
F (3) +

1

8
F (1) +

1

4
F (0)

≥ 5

8
F (3) +

1

16
F (2) +

5

16
F (0)

≥ . . .

4

Continuing this way, after infinitely many steps we reach the desired inequality

F (2) ≥ 2

3
F (3) +

1

3
F (0).

Our method guarantees that this approach always terminates, and also implies that the
inequality reached this way has a finitary proof.

2.3. Examples

We illustrate our method by proving four different inequalities. When describing data
for the method, we omit U when it is clear from the context, and X is always chosen so that
the left-hand side of the inequality we are trying to prove is X|f . The simplest is (2).

Lemma 3. Let f be a submodular function on U , where |U| = n. For 0 ≤ k ≤ n,

E
A∈(U

k)
f(A) ≥ k

n
f(U) +

(
1− k

n

)
f(∅).

Proof. We apply the method with the following data:

• G = Sym(U).

• A~B if A,B is an antichain.

• I = 2U .

Proposition 1 gives us a vector Y supported on (G,~)-stable sets. Clearly the sets U , ∅ are
(G,~)-stable. Any other set A is not (G,~)-stable since A ~ A(x,y) for any two elements
x ∈ A and y /∈ A. Hence

Y |f = αf(U) + (1− α)f(∅)

for some α ∈ R (recall that X and Y have the same magnitude). It is easy to check that the
function f(A) = |A| is modular and so ~-modular. Simple calculation gives X|f = k and
Y |f = αn, hence α = k/n.

The following example requires G to be smaller than the complete group, and also requires
~ to be defined in a non-trivial way. This is always the case when the inequality is tight for
some function which is not modular.

Lemma 4. Let f be a submodular function on U . Suppose U is partitioned into two non-
empty parts P1, P2 of sizes n1, n2. For 0 ≤ k1 ≤ n1 and 0 ≤ k2 ≤ n2,

E
A⊆U

|A∩P1|=k1
|A∩P2|=k2

f(A) ≥ k1k2
n1n2

f(U)+
k1(n2 − k2)

n1n2

f(P1)+
(n1 − k1)k2

n1n2

f(P2)+
(n1 − k1)(n2 − k2)

n1n2

f(∅).

Proof. We apply the method with the following data:

5

• G = Sym(P1)× Sym(P2).

• A~B if (1) A,B is an antichain and (2) either A ∩ P1 = B ∩ P1 or A ∩ P2 = B ∩ P2.

• I = 2U .

Proposition 1 gives us a vector Y supported on (G,~)-stable sets. Clearly the sets U , P1, P2, ∅
are (G,~)-stable. Any other set A is not (G,~)-stable since A~A(x,y) for any two elements
x ∈ A and y /∈ A belonging to the same part. Hence

Y |f = αf(U) + βf(P1) + γf(P2) + (1− α− β − γ)f(∅)

for some α, β, γ ∈ R.
Consider the function

f(A) = |A ∩ P1| · |A ∩ P2|.

It is easy to check that f is ~-modular, though not modular (consider A = P1 and B = P2).
We have

k1k2 = X|f = Y |f = αn1n2.

Hence α = k1k2/n1n2.
Next, it is easy to check that the function g(A) = |A∩P1| is modular and so ~-modular.

Simple calculation gives
k1 = X|g = Y |g = (α + β)n1.

Hence β = α− k1/n1. Similarly, the function h(A) = |A ∩ P2| implies γ = α− k2/n2.

The next example also requires G and ~ to be defined in a non-trivial way. The definition
of ~ is more complicated this time.

Lemma 5. Let f be a submodular function on U , where |U| = n. Suppose U is partitioned
into two non-empty parts P1, P2. For 1 ≤ k ≤ n− 1,

E
A∈(U

k)
f(A) ≥ k(k − 1)

n(n− 1)
f(U) +

k(n− k)

n(n− 1)
(f(P1) + f(P2)) +

(n− k)(n− k − 1)

n(n− 1)
f(∅).

Proof. We apply the method with the following data:

• G = Sym(P1)× Sym(P2).

• A~B if (1) A,B is an antichain and (2) for all p1 ∈ P1, p2 ∈ P2 it is not the case that
A ∩ {p1, p2} = {p1} and B ∩ {p1, p2} = {p2} or vice versa.

• I = 2U .

6

Proposition 1 gives us a vector Y supported on (G,~)-stable sets. The sets U , P1, P2, ∅ are
clearly (G,~)-stable. We claim that these are the only ones. Indeed, consider an arbitrary
subset Q = Q1 ∪ Q2 of U where Q1 ⊆ P1, Q2 ⊆ P2, and (without loss of generality)
Q1 /∈ {∅, P1}. Then Q~Q(x,y) for any two elements x ∈ Q1 and y ∈ P1 \Q1, since both sets
contain the same elements of P2. We deduce that for some α, β, γ ∈ R,

Y |f = αf(U) + βf(P1) + γf(P2) + (1− α− β − γ)f(∅).

Pick x1 ∈ P1, x2 ∈ P2, and define

f(A) =

{
1 if x1 ∈ A and x2 /∈ A,
0 otherwise.

Simple case analysis shows that f is ~-modular. Indeed, if f(A) = f(B) = 1 then f(A∪B) =
f(A ∩ B) = 1, and similarly if f(A) = f(B) = 0 then f(A ∪ B) = f(A ∩ B) = 0. When
f(A) = 1 and f(B) = 0, we could have f(A∪B) = f(A∩B) = 0 only if A∩{x1, x2} = {x1}
and B ∩ {x1, x2} = {x2}, which would contradict A ~ B. Thus f is ~-modular. Simple
calculation shows that

β = Y |f = X|f =

(
n−2
k−1

)(
n
k

) =
k(n− k)

n(n− 1)
.

A similar argument shows that γ = β. To determine α, consider the modular function
g(A) = |A|. Simple calculation shows that

k = X|g = Y |g = αn+ β|P1|+ γ|P2| =
(
α +

k(n− k)

n(n− 1)

)
n,

from which it is easy to calculate α.

The final example requires us to define I in a non-trivial way.

Lemma 6. Let f be a submodular function on U = S ∪ O, where S = {S1, . . . , Sn} and
O = {O1, . . . , On} are disjoint sets of size n. For 1 ≤ k ≤ n− 1,

E
I∈([n]

k)
f({Oi : i ∈ I} ∪ {Si : i /∈ I}) ≥

k(n− k)

n(n− 1)
f(S ∪ O) +

k(k − 1)

n(n− 1)
f(O) +

(n− k)(n− k − 1)

n(n− 1)
f(S) +

k(n− k)

n(n− 1)
f(∅).

Proof. We apply the method with the following data:

• G = Sym([n]) which acts on U by permuting the indices.

• A~B if (1) A,B is an antichain, (2) for all i 6= j it is not the case that A∩{Si, Oj} =
{Si} and B ∩ {Si, Oj} = {Oj} or vice versa, and (3) A ∪B,A ∩B ∈ I (defined next).
Note that (2) can be falsified only if A4B contains both Si and Oj for some i 6= j.

7

• A ∈ I if either (1) for every i ∈ [n], |A ∩ {Si, Oi}| ≤ 1, or (2) for every i ∈ [n],
|A ∩ {Si, Oi}| ≥ 1.

Proposition 1 gives us a vector Y supported on (G,~)-stable sets, each in addition belonging
to I. The sets U ,O,S, ∅ clearly satisfy these requirements, and we claim that these are the
only ones. Indeed, consider an arbitrary A ∈ I which is (G,~)-stable. We consider three
cases, corresponding to the cases in the definition of I and their combination.

Case 1: For all i ∈ [n], |A ∩ {Si, Oi}| ≤ 1, and for some j ∈ [n], Sj, Oj /∈ A. If A 6= ∅
then (without loss of generality) Si ∈ A for some i ∈ [n]. Let B = A(i,j), so that Sj ∈ B and
Si, Oi /∈ B. Clearly both A∪B and A∩B satisfy case 1 of the definition of I. Furthermore,
A4B = {Si, Sj}, hence item 2 of the definition of ~ is satisfied. We conclude that A ~ B
and so A is not (G,~)-stable.

Case 2: For all i ∈ [n], |A ∩ {Si, Oi}| ≥ 1, and for some j ∈ [n], Sj, Oj ∈ A. If A 6= U
then (without loss of generality) Si /∈ A for some i ∈ [n]. Let B = A(i,j), so that Sj /∈ B and
Si, Oi ∈ B. Clearly both A∪B and A∩B satisfy case 2 of the definition of I. Furthermore,
A4B = {Si, Sj}, hence item 2 of the definition of ~ is satisfied. We conclude that A ~ B
and so A is not (G,~)-stable.

Case 3: For all i ∈ [n], |A ∩ {Si, Oi}| = 1. If A /∈ S,O then Si, Oj ∈ A for some i 6= j.
Let B = A(i,j), so that Sj, Oi ∈ B. Clearly A ∪ B satisfies case 2 of the definition of I, and
A ∩ B satisfies case 1 of the definition. Furthermore, A4B = {Si, Sj, Oi, Oj}, hence item 2
of the definition of ~ can be falsified only for i, j, and that is not the case by inspection. We
conclude that A~B and so A is not (G,~)-stable.

It follows that for some α, β, γ ∈ R,

Y |f = αf(U) + βf(O) + γf(S) + (1− α− β)f(∅).

Define

f(A) =

{
1 if O1 ∈ A and S2 /∈ A,
0 otherwise.

As in the proof of Lemma 5, item 2 of the definition of ~ guarantees that f is ~-modular.
Simple calculation shows that

β = Y |f = X|f =

(
n−2
k−2

)(
n
k

) =
k(k − 1)

n(n− 1)
.

Similarly we can calculate the value of γ. To determine α, consider the modular function
g(A) = |A|. Simple calculation shows that

n = X|g = Y |g = 2αn+ βn+ γn = (2α + β + γ)n.

Therefore 2α + β + γ = 1, and we can compute α.

8

2.4. Relation to the multilinear relaxation

Results very similar to Lemma 3, Lemma 4 and Lemma 5 appear in Vondrák [5], in
the context of analyzing the multilinear relaxation. Given a set function f on a ground set
U , the multilinear relaxation F : [0, 1]U → R is defined by F (X) = EA f(A), where each
element i ∈ U is in A with probability Xi independently. The related Lovász extension
F̃ (X) : [0, 1]U → R is defined by

F̃ (X) = E
λ∈[0,1]

f({i ∈ U : Xi > λ}).

Vondrák proves two results. His Lemma A.4 shows that for every submodular function f
and vector X ∈ [0, 1]U ,

F (X) ≥ F̃ (X).

His Lemma A.5 shows that for every partition U = P1 ∪ P2, submodular function f and
vector X ∈ [0, 1]U ,

F (X) ≥ E
λ1,λ2∈[0,1]

f({i ∈ P1 : Xi > λ1} ∪ {i ∈ P2 : Xi > λ2}).

These two results can be used to prove analogs of our lemmas where hard cardinality con-
straints of the form |A| = k are replaced by choosing each element to be in A with probability
k/n independently, where n = |U|. We denote the distribution of such a set by Bin(U , k/n).

For the analog of Lemma 3, let f be a submodular function on U , where |U| = n, and let
k satisfy 0 ≤ k ≤ n. Take X to be the constant k/n vector. Vondrák’s Lemma A.4 shows
that

E
A∼Bin(U ,k/n)

f(A) ≥ k

n
f(U) +

(
1− k

n

)
f(∅).

For the analog of Lemma 4, let f be a submodular function on U , where |U| = n, let P1, P2

be a partition of U into sets of size n1, n2, respectively, and let k1, k2 satisfy 0 ≤ k1 ≤ n1,
0 ≤ k2 ≤ n2. Take X to be k1/n1 over P1 and k2/n2 over P2. Vondrák’s Lemma A.5 shows
that

E
A1∼Bin(P1,k1/n1)
A2∼Bin(P2,k2/n2)

f(A1 ∪ A2)

≥ k1k2
n1n2

f(U) +
k1(n2 − k2)

n1n2

f(P1) +
(n1 − k1)k2

n1n2

f(P2) +
(n1 − k1)(n2 − k2)

n1n2

f(∅).

For the analog of Lemma 5, let f be a submodular function on U , where |U| = n, let
P1, P2 be a partition of U , and let k satisfy 1 ≤ k ≤ n− 1. Take X to be the constant k/n
vector. Vondrák’s Lemma A.5 shows that

E
A∼Bin(U ,k/n)

f(A) ≥ k2

n2
f(U) +

k(n− k)

n2
(f(P1) + f(P2)) +

(n− k)2

n2
f(∅).

Note the slightly different coefficients in this case.

9

3. Applications

We consider several different algorithms for maximizing a given submodular function f
defined on some ground set U . We assume throughout that f attains only non-negative
values.

The functions we consider are either unconstrained, symmetric or monotone:

• A symmetric function satisfies f(A) = f(U \ A).

• A monotone function satisfies f(A) ≤ f(B) whenever A ⊆ B.

The algorithms we consider attempt to maximize f over some subset D ⊆ 2U . We
consider two different sets of constraints:

1. Uniform constraint: D =
(U
k

)
for some k.

2. Partition constraint: The ground set U is partitioned into k parts P1, . . . , Pk, and D
consists of those sets containing exactly one element from each part.

We will denote by O a set maximizing f under the constraint O ∈ D.

Comments. (1) Both types of constraints we consider are matroid constraints: the domain
D consists of the bases of a uniform matroid or a partition matroid, respectively. Our results
under the partition constraint actually hold even when D is an SBO matroid2 of rank k.
When k = 1, a theorem of Brualdi [7] implies that the results hold for any matroid.

(2) The algorithms we consider are natural but naive, and are superseded by superior
algorithms. However, we believe that our analysis has merit. The first algorithm we con-
sider, the random set algorithm, is a variant of an algorithm considered by Feige et al. [8],
which is optimal for maximizing symmetric submodular functions over D = 2U . The sec-
ond algorithm we consider, the local search algorithm, is not only natural but also leads
to an optimal algorithm for maximizing monotone submodular functions over an arbitrary
matroid constraint [9]. Local search algorithms are also used for non-monotone submodular
maximization. Whereas in some situations the approximation ratio improves by a constant
when larger local changes are considered (see for example Lee et al. [10]), in our case the
improvement is only sub-constant. A short survey of the best known algorithms appears
in Appendix A.

3.1. Random set algorithm

The random set algorithm for maximizing a submodular function over the uniform con-
straint D =

(U
k

)
consists of choosing a uniformly random set from D. We say that the

algorithm has approximation ratio θ if E f(S) ≥ θf(O), where S is a uniformly random set
chosen from D.

2A matroid is strongly base orderable (SBO) if for any two bases B1, B2 there is a bijection ρ : B1 → B2

such that (B1 \X) ∪ ρ(X) is a base for all X ⊆ B1; see Brualdi [6].

10

Theorem 7. Let f be a non-negative submodular function on U , n = |U| and 1 ≤ k ≤ n−1.

(a) The random set algorithm has the approximation ratio

k(n− k)

n(n− 1)
.

(b) If f is symmetric, then the algorithm has the approximation ratio

2k(n− k)

n(n− 1)
.

(c) If f is monotone, then the algorithm has the approximation ratio

k

n
.

Moreover, the bounds are tight for the random set algorithm in the worst case.

Proof. We first prove the stated approximation ratios, and then show that they are tight. For
an unconstrained f , the approximation ratio follows from substituting P1 = O, P2 = U \ O
in Lemma 5. For symmetric f , the same application yields a stronger inequality using
f(P1) = f(P2). Finally, for monotone f , the approximation ratio follows from Lemma 3
using f(U) ≥ f(O).

Next, we exhibit in each of the three cases functions for which E f(S) = θf(O), where
θ is the relevant approximation ratio. Let x, y ∈ U be two different elements. For an
unconstrained f , such a function is given by

f1(A) =

{
1 if x ∈ A and y /∈ A,
0 otherwise.

For symmetric f , such a function is given by

f2(A) =

{
1 if |A ∩ {x, y}| = 1,

0 otherwise.

Finally, for monotone f we can take the function f3(A) = |A|.

Feige et al. [8] prove a similar result when the random set is chosen by putting each
element in with probability 1/2 independently. They show that the approximation ratio of
this algorithm for the constraint D = 2U is 1/2 when the function is symmetric and 1/4
otherwise. Theorem 7 suggests a slightly superior algorithm for this constraint: choose a
random set of size bn/2c.

11

3.2. Local search

Local search [11] attempts to find the maximum by starting at an arbitrary set in D, and
making small changes that increase the value of f . The algorithm has a parameter k ∈ N,
and returns a set S ∈ D satisfying

f(S) ≥ f(S \ A ∪B)

for all A ⊆ S, B ⊆ U \ S such that |A| = |B| ≤ k and S \ A ∪ B ∈ D. Such a set is known
as a local optimum. We say that the algorithm has approximation ratio θ if f(S) ≥ θf(O)
whenever S is a local optimum. This algorithm is also known as k-local search.

We consider separately uniform constraints and partition constraints. In both cases, we
analyze both unconstrained f and monotone f , but not symmetric f .

Theorem 8. Let f be a non-negative submodular function on U and 1 ≤ k ≤ n ≤ |U|. Set
D =

(U
n

)
.

(a) Local search with parameter k has the approximation ratio

k

2n− k
.

(b) If f is monotone, then local search has the approximation ratio

n

2n− k
.

Proof. Write O = {O1, . . . , On} and S = {S1, . . . , Sn}. Suppose first that O and S are
disjoint. The fact that S is a local optimum implies that

f(S) ≥ E
I,J∈([n]

k)
f({Si : i /∈ I} ∪ {Oj : j ∈ J}).

The stated approximation ratios now follow directly from Lemma 4, in the case of monotone
f using f(S ∪ O) ≥ f(O); we use P1 = S, P2 = O, n1 = n2 = n, k1 = n− k and k2 = k.

If O and S are not disjoint, let C = O ∩ S and c = |C|. If n − c ≤ k then local
optimality implies f(S) ≥ f(O), so assume n − c > k. Define a function f ′ on U ′ = U \ C
by f ′(A) = f(C ∪ A). Set D′ =

(U ′

n′

)
, where n′ = n− c. The following properties are easy to

verify: f ′ is submodular, if f is monotone then so is f ′, O′ = O\C is a set maximizing f ′ over
D′, and S ′ = S \ C is a local optimum for local search with parameter k. For unconstrained
f , since O′ and S ′ are disjoint,

f(S)

f(O)
=
f ′(S ′)
f ′(O′)

≥ k

2n′ − k
>

k

2n− k
.

So the stated approximation ratio holds even when O and S are not disjoint. A similar
argument works when f is monotone:

f(S)

f(O)
=
f ′(S ′)
f ′(O′)

≥ n′

2n′ − k
=

n− c
2n− k − 2c

>
n

2n− k
.

12

Theorem 9. Let f be a non-negative submodular function on U and 1 ≤ k ≤ n ≤ |U|.
Suppose U is partitioned into n non-empty parts P1, . . . , Pn, and let D consist of all sets
intersecting each Pi at exactly one point.

(a) Local search with parameter k has the approximation ratio

k − 1

2n− k − 1
.

(b) If f is monotone, then local search has the approximation ratio

n− 1

2n− k − 1
.

Proof. Write O = {O1, . . . , On} and S = {S1, . . . , Sn}, where Oi, Si ∈ Pi. Suppose first that
O and S are disjoint. The fact that S is a local optimum implies that

f(S) ≥ E
I∈([n]

k)
f({Si : i /∈ I} ∪ {Oi : i ∈ I}).

The stated approximation ratios now follow directly from Lemma 6, in the case of monotone
f using f(S ∪O) ≥ f(O). When O and S are not disjoint, use the argument in the proof of
the preceding theorem.

The results obtained in Theorem 8 and Theorem 9 are tight. In order to show that, we
present a repertory of well-known submodular functions.

Set coverage functions. A set coverage function f : 2U → R is given by a universe V , a weight
function w : V → R≥0, and for each x ∈ U , a set S(x) ⊆ V . The function itself is defined by

f(A) =
∑

a∈
⋃
x∈A S(x)

w(a).

In other words, f(A) is the total weight of all elements covered by the sets in A. A set
coverage function is always monotone and submodular.

Directed cut functions. A directed cut function is given by a directed graph on U with non-
negative weights on the edges w(a, b); edges not in the graph have zero weight. The function
is given by

f(A) =
∑
a∈A,
b/∈A

w(a, b).

In other words, f(A) is the total weight of all edges crossing the cut (A,A). A directed cut
function is always submodular, but not necessarily monotone.

Set coverage functions will be used in the monotone case, while directed cut functions
will be used in the unconstrained case.

13

Theorem 10. The approximation ratios given in Theorem 8 and Theorem 9 are tight.

Proof. Let k, n be given. In each case, we will describe a function defined on U = S ∪ O =
{Si : i ∈ [n]} ∪ {Oi : i ∈ [n]}. For Theorem 9 we will consider the partition Pi = {Si, Oi}.
In order to show that S is a local optimum, we will consider the hybrids

Ct = {S1, . . . , Sn−t, On−t+1, . . . , On}

for t ≤ k.

Theorem 8, monotone case. Consider the following set coverage function. The universe
consists of elements x(i, j), i, j ∈ [n] (possibly equal) of weight 1, and elements y(i), i ∈ [n]
of weight n− k. The sets are given by

Si = {x(i, j) : j ∈ [n]}, Oi = {x(j, i) : j ∈ [n]} ∪ {y(i)}.

We have f(S) = n2 and f(O) = n2 + n(n− k), so f(S)/f(O) = n/(2n− k), as claimed.
In order to see that S in a local optimum, consider the hybrid Ct. An element x(i, j) is

covered unless i ∈ {n− t+1, . . . , n} and j ∈ {1, . . . , n− t}, for a total of n2− t(n− t) covered
elements of this form. Also, t elements of the form y(i) are covered. Hence

f(Ct) = n2 − t(n− t) + t(n− k) = n2 − (k − t)t ≤ f(S).

Theorem 9, monotone case. We slightly modify the previous example by setting the weight
of the elements x(i, i) to zero. We then have f(S) = n(n−1) and f(O) = n(n−1)+n(n−k),
so f(S)/f(O) = (n− 1)/(2n− k − 1), as claimed. The hybrid Ct now satisfies

f(Ct) = n(n− 1)− t(n− t) + t(n− k) = n(n− 1)− (k − t)t ≤ f(S).

Theorem 8, unconstrained case. Consider the following directed cut function. For i, j ∈ [n]
(possibly equal), there is an edge (Si, Oj) of weight k, and an edge (Oj, Si) of weight 2n− k.
Clearly f(S)/f(O) = k/(2n− k), as claimed. The hybrid Ct satisfies

f(C) = (n− t)2k + t2(2n− k) = n2k − 2n(k − t)t ≤ n2k = f(S).

Theorem 9, unconstrained case. We slightly modify the previous example, by the setting the
weight of the edges (Si, Oi) and (Oi, Si) to zero, by reducing the weight of the edges (Si, Oj)
to k−1, and by reducing the weight of the edges (Oi, Sj) to 2n−k−1 (where i 6= j). Clearly
f(S)/f(O) = (k − 1)/(2n− k − 1). The hybrid Ct now satisfies

f(C) = (n− t)(n− t− 1)(k − 1) + t(t− 1)(2n− k − 1)

= n(n− 1)(k − 1)− 2(n− 1)(k − t)t ≤ n(n− 1)(k − 1) = f(S).

Theorem 8(b) is proved in Fisher et al. [11]. Theorem 9(b) is proved in Filmus and
Ward [12] for the case of coverage functions. The reader is invited to compare the proof
there to the proof of the underlying Lemma 6 here. Extensions to optimization over the
intersection of several matroids are considered by Fisher et al. [13] and by Lee et al. [14].

14

[1] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Combinatorial
structures and their applications, Gordon and Breach, New York, 1970, pp. 69–87.

[2] L. Lovász, Submodular functions and convexity, in: Mathematical Programming —
The State of The Art, Springer, Berlin, 1983, pp. 235–257.

[3] S. Fujishige, Submodular Functions and Optimization, volume 58 of Annals of Discrete
Mathematics, Elsevier, second edition, 2005.

[4] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

[5] J. Vondrák, Symmetry and approximability of submodular maximization problems, in:
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2009).

[6] R. A. Brualdi, Induced matroids, Proceedings of the American Mathematical Society
29 (1971) 213–221.

[7] R. A. Brualdi, Comments on bases in dependence structure, Bulletin of the Australian
Mathematical Society 1 (1969) 161–167.

[8] U. Feige, V. S. Mirrokni, J. Vondrak, Maximizing non-monotone submodular functions,
SIAM Journal on Computing 40 (2011) 1133–1153.

[9] Y. Filmus, J. Ward, A tight combinatorial algorithm for submodular maximization
subject to a matroid constraint, in: Proceedings of the 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2012).

[10] J. Lee, V. Mirrokni, V. Nagarajan, M. Sviridenko, Non-monotone submodular maxi-
mization under matroid and knapsack constraints, SIAM Journal on Discrete Mathe-
matics 23 (2010) 2053–2078.

[11] M. L. Fisher, G. L. Nemhauser, L. A. Wolsey, An analysis of approximations for
maximizing submodular set functions I, Mathematical Programming 14 (1978) 265–
294.

[12] Y. Filmus, J. Ward, The power of local search: Maximum coverage over a matroid,
in: Proceedings of the 29th annual Symposium on Theoretical Aspects of Computer
Science (STACS 2012), pp. 601–612.

[13] M. L. Fisher, G. L. Nemhauser, L. A. Wolsey, An analysis of approximations for max-
imizing submodular set functions—II, in: Polyhedral Combinatorics, Springer Berlin
Heidelberg, 1978, pp. 73–87.

[14] J. Lee, M. Sviridenko, J. Vondrák, Matroid matching: the power of local search, in:
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp.
369–378.

15

[15] G. Cornuejols, M. L. Fisher, G. L. Nemhauser, Location of bank accounts to optimize
float: An analytic study of exact and approximate algorithms, Management Science 23
(1977) pp. 789–810.

[16] D. S. Hochbaum, A. Pathria, Analysis of the greedy approach in covering problems,
Naval Research Quarterly 45 (1998) 615–627.

[17] P. R. Goundan, A. S. Schulz, Revisiting the greedy approach to submodular set function
maximization, 2009. Preprint.

[18] U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM 45 (1998)
634–652.

[19] G. Calinescu, C. Chekuri, M. Pál, J. Vondrák, Maximizing a monotone submodular
function subject to a matroid constraint, SIAM Journal on Computing 40 (2011) 1740–
1766.

[20] N. Buchbinder, M. Feldman, J. S. Naor, R. Schwartz, A tight linear time (1/2)-
approximation for unconstrained submodular maximization, in: Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012).

Appendix A. Algorithms for submodular maximization

In §3 we analyze two algorithms: the random set algorithm and local search. In order
to complete the picture, we describe the best known polynomial-time algorithms for the
problems we consider.

Monotone functions. Monotone submodular maximization over a uniform constraint is a
generalization of the classical NP-complete problem maximum coverage. The greedy algo-
rithm [15, 11, 16, 17] produces the approximation ratio 1−1/e for monotone functions, which
was shown to be optimal by Feige [18] unless P=NP.

Monotone submodular maximization over a partition constraint is a generalization of
another classical NP-complete problem, maximum satisfiability (MAX-SAT). The function
f in question is a set coverage function (see §3.2) in which the parts correspond to vari-
ables, and the two elements in each part represent the set of clauses satisfied by a given
assignment to the variable. Both the continuous greedy algorithm [19] and non-oblivious
local search [9] produce the optimal approximation ratio 1−1/e for monotone functions over
matroid constraints, which generalize partition constraints.

In contrast, the best algorithm we consider in §3 (local search) produces an approximation
ratio which is roughly 1/2 in any variant which runs in polynomial time.

16

Non-monotone functions. Non-monotone submodular maximization is often considered for
D = 2U , and this is a generalization of the classical NP-complete problem maximum cut
(MAX-CUT). Feige et al. [8] show that the random set algorithm produces a 1/2 approxi-
mation for symmetric functions, which is optimal in the value oracle model: every algorithm
that queries the function as a black box and has an approximation ratio better than 1/2
must query the function in exponentially many places. The recent double greedy algorithm
of Feldman et al. [20] produces a 1/2 approximation for an arbitrary submodular function.

Submodular maximization over bases of a matroid, a constraint generalizing the partition
constraint, is considered by Vondrák [5] and Lee et al. [10]. Lee et al. give a 1/3 − ε
approximation algorithm for symmetric functions, and Vondrák gives a 1/4−ε approximation
algorithm for arbitrary submodular functions, which works under some mild constraints
on the matroid (it has to contain at least two disjoint bases). For the case of a partition
constraint, this condition holds if each part contains at least two different elements. Vondrák
also shows that in the value oracle model, the best achievable approximation ratio is at most
1/2.

In contrast, the local search algorithm has an o(1) approximation ratio in any variant
which runs in polynomial time, even for a uniform constraint.

For completeness, we also mention that submodular maximization is often considered
over the independent sets of a matroid. For a uniform constraint, that means optimization
over all sets of cardinality at most k instead of exactly k. For a partition constraint, that
means optimization over all sets containing at most one element from each part.

17

