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Abstract

If a function f : {0, 1}n → {0, 1} satisfies f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ {0, 1}n then either
f = 0 or f is an AND of a subset of coordinates. We show that if f(x ∧ y) = f(x) ∧ f(y) holds with
probability 1 − ε then f is δ-close to 0 or to an AND, where δ = 1/ logΩ(1)(1/ε). This improves on a
result of Nehama (in which δ depends on n) and substantially simplifies a result by the authors.

1 Introduction

Which functions f : {0, 1}n → {0, 1} satisfy f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ {0, 1}n (where x ∧ y is
bitwise AND)? It is not hard to show that the set of solutions includes f = 0 and f =

!
i∈S xi (when S = ∅,

this is just f = 1). In this note, our goal is to prove a stability version of this result:

Theorem 1. Suppose that f : {0, 1}n → {0, 1} satisfies

Pr
x,y∈{0,1}n

[f(x ∧ y) = f(x) ∧ f(y)] = 1− ε,

where x, y are chosen uniformly at random from {0, 1}n.
Then f is δ-close to 0 or to an AND of a subset of the coordinates, where δ = 1/ logΩ(1)(1/ε).

We conjecture that Theorem 1 holds with δ = O(ε).
Theorem 1 improves on a result of Nehama [Neh13], in which δ depends on n (but has much better

dependence on ε). Theorem 1 also appears in our work [FLMM20], but the proof here is substantially
simpler.

Preliminaries We assume that the reader is familiar with Boolean function analysis. The only deep result
we use is Bourgain’s theorem, in a form due to Kindler, Kirshner and O’Donnell [KKO18]:

Theorem 2 ([KKO18, Theorem 1.6]). If f : {0, 1}n → {0, 1} satisfies ‖f>k‖2 ≤ ε then f is O(ε
√
k)-close

to a Boolean junta depending on ε−42O(k) variables.

(The original version refers to functions from {±1}n to {±1}, but this only affects some constants.)

2 Proof

Let f : {0, 1}n → {0, 1} be a function that satisfies

Pr
x,y

[f(xy) = f(x)f(y)] = 1− ε.

(We replaced ∧ with product since they are the same for {0, 1} variables.)
The general idea of the proof is to show that f is close to a junta, using Theorem 2. The first step is to

relate f to a noisy version of itself.
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Lemma 3. Let µ := E[f ] and
T↓f(x) = E

y
[f(xy)].

We have
‖T↓f − µf‖2 = O(ε).

Proof. This follows from

‖T↓f − µf‖2 = E
x

"#
E
y
[f(xy)]− E

y
[f(x)f(y)]

$2
%
≤ E

x,y
[(f(xy)− f(x)f(y))2] = O(ε).

This lemma is helpful since T↓f has small Fourier tails. To show this, we give a formula for the Fourier
expansion of T↓f in terms of the biased Fourier expansion of f .

Lemma 4. Let the 1/4-biased Fourier expansion of f be

f =
&

S⊆[n]

cSωS , where ωS =
'

i∈S

4xi − 1√
3

.

(The functions ωS form an orthonormal basis with respect to µ1/4.) Then

f̂(S) =

#
1√
3

$|S|
cS .

(This is the coefficient of the Fourier character
(

i∈S(2xi − 1).)

Proof. It suffices to consider T↓ω, where ω = (4x− 1)/
√
3. Direct computation gives

T↓ω =
1

2
· 4x− 1√

3
+

1

2
· −1√

3
=

2x− 1√
3

.

We can now bound the Fourier tails of f .

Lemma 5. For every k,

‖f>k‖2 ≤ O
)*

1/3
k
+ ε

+
µ−2.

Proof. Lemma 4 shows that

‖(T↓f)
>k‖2 ≤

#
1√
3

$k &

|S|>k

c2S ≤
#

1√
3

$k

,

since &

S

c2S = E
µ1/4

[f2] ≤ 1.

Lemma 3 now implies that

µ2‖f>k‖2 = ‖(µf)>k‖2 ≤ 2‖(T↓f)
>k‖2 + 2‖(T↓f)

>k − (µf)>k‖2 ≤
O((1/

√
3)k) + 2‖T↓f − µf‖2 = O((1/

√
3)k + ε).

Invoking Theorem 2, we approximate f by a junta.

Lemma 6. Suppose that µ ≥ 3
√
ε. There exists a constant K > 0 such that for every N < (1/ε)K there is a

junta F , depending on N coordinates, such that

‖f − F‖2 =
1

NΩ(1)
.
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Proof. Let k be such that
*
1/3

k ≥ ε. Lemma 5 shows that ‖f>k‖2 = O(
*
1/3

k
3
√
ε) = O(ρk), for some

ρ < 1. According to Theorem 2, f is O(ρk
√
k)-close to a junta depending on 2O(k) variables. Choosing

k = c logN for an appropriate constant c > 0 completes the proof.

Let us now see how this helps us.

Lemma 7. Suppose that µ ≥ 3
√
ε. Let N < (1/ε)K , and let F be the junta promised by Lemma 6. For an

assignment α to the non-junta variables, let fα be the corresponding restriction of f .
There exist assignments α,β to the non-junta variables such that

Pr
x,y

[fα(x)fβ(y) = fαβ(xy)] ≥ 1− κε

for some constant κ > 0, and fα, fβ are N−Ω(1) close to F .

Proof. If we choose α,β at random then

E
α,β

,
Pr
x,y

[fα(x)fβ(y) ∕= fαβ(xy)]
-
= ε.

Furthermore,

E
α

,
Pr[F ∕= fα]

-
= Pr[F ∕= f ] =

1

NΩ(1)

according to Lemma 6, and similarly for fβ . In particular, the probability (over α,β) that each of these
probabilities exceeds its expectation by a factor of 4 is at most 1/4. Applying the union bound, there is a
choice of α,β for which none of these probabilities exceeds its expectation by more than a factor of 4.

If we choose N small enough, then the identity fα(x)fβ(y) = fαβ(xy) will always hold. In this case, the
solutions are given by the following easy lemma.

Lemma 8. Suppose that a, b, c : {0, 1}m → {0, 1} satisfy

a(x)b(y) = c(xy)

for all x, y ∈ {0, 1}m. Then either a = c = 0, or b = c = 0, or there exists a set S ⊆ [m] such that

a(x) = b(x) = c(x) =
'

i∈S

xi.

Proof. If a = 0 or b = 0 then clearly c = 0, so we can assume that a, b ∕= 0.
We expand a, b, c in terms of the basis xS :=

(
i∈S xi:

a(x) =
&

S⊆[m]

ã(S)xS ,

and similarly for b, c. The condition a(x)b(y) = c(xy) translates to
&

S,T⊆[m]

ã(S)b̃(T )xSyT =
&

S⊆[m]

c̃(S)xSyS .

Comparing coefficients (using the fact that xSyT is a basis for all functions on x, y), we see that if ã(S) ∕= 0
then b̃(T ) = 0 for all T ∕= S.

Since a ∕= 0, there must be some S such that ã(S) ∕= 0. If ã(S′) ∕= 0 for some S′ ∕= S then b = 0,
contradicting our assumption. Thus a and b are both multiples of xS . Since a and b are Boolean, necessarily
a = b = xS , and so c = xS as well.

We can now put everything together, proving Theorem 1.

Proof of Theorem 1. If µ < 3
√
ε then f is 3

√
ε-close to 0, so we can assume that µ ≥ 3

√
ε.

We apply Lemma 7 with N = log(1/κε)− 1, so that 2−N < κε; note that N < (1/ε)K unless ε is larger
than some constant, in which case the theorem trivializes. It follows that fα(x)fβ(y) = fαβ(xy) holds for all
inputs x, y, and so fα is either 0 or an AND, by Lemma 8. The theorem follows since F is 1/NΩ(1)-close to
fα (Lemma 7) and f is 1/NΩ(1)-close to F (Lemma 6).
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