AND testing

Yuval Filmus, Noam Lifshitz, Dor Minzer, Elchanan Mossell

April 12, 2021

Abstract

If a function $f: \{0,1\}^n \to \{0,1\}$ satisfies $f(x \land y) = f(x) \land f(y)$ for all $x, y \in \{0,1\}^n$ then either f = 0 or f is an AND of a subset of coordinates. We show that if $f(x \land y) = f(x) \land f(y)$ holds with probability $1 - \epsilon$ then f is δ -close to 0 or to an AND, where $\delta = 1/\log^{\Omega(1)}(1/\epsilon)$. This improves on a result of Nehama (in which δ depends on n) and substantially simplifies a result by the authors.

1 Introduction

Which functions $f: \{0,1\}^n \to \{0,1\}$ satisfy $f(x \wedge y) = f(x) \wedge f(y)$ for all $x, y \in \{0,1\}^n$ (where $x \wedge y$ is bitwise AND)? It is not hard to show that the set of solutions includes f = 0 and $f = \bigwedge_{i \in S} x_i$ (when $S = \emptyset$, this is just f = 1). In this note, our goal is to prove a stability version of this result:

Theorem 1. Suppose that $f: \{0,1\}^n \to \{0,1\}$ satisfies

$$\Pr_{x,y \in \{0,1\}^n} [f(x \land y) = f(x) \land f(y)] = 1 - \epsilon,$$

where x, y are chosen uniformly at random from $\{0,1\}^n$.

Then f is δ -close to 0 or to an AND of a subset of the coordinates, where $\delta = 1/\log^{\Omega(1)}(1/\epsilon)$.

We conjecture that Theorem 1 holds with $\delta = O(\epsilon)$.

Theorem 1 improves on a result of Nehama [Neh13], in which δ depends on n (but has much better dependence on ϵ). Theorem 1 also appears in our work [FLMM20], but the proof here is substantially simpler.

Preliminaries We assume that the reader is familiar with Boolean function analysis. The only deep result we use is Bourgain's theorem, in a form due to Kindler, Kirshner and O'Donnell [KKO18]:

Theorem 2 ([KKO18, Theorem 1.6]). If $f: \{0,1\}^n \to \{0,1\}$ satisfies $||f^{>k}||^2 \leq \epsilon$ then f is $O(\epsilon\sqrt{k})$ -close to a Boolean junta depending on $\epsilon^{-4}2^{O(k)}$ variables.

(The original version refers to functions from $\{\pm 1\}^n$ to $\{\pm 1\}$, but this only affects some constants.)

2 Proof

Let $f: \{0,1\}^n \to \{0,1\}$ be a function that satisfies

$$\Pr_{x,y}[f(xy) = f(x)f(y)] = 1 - \epsilon.$$

(We replaced \wedge with product since they are the same for $\{0, 1\}$ variables.)

The general idea of the proof is to show that f is close to a junta, using Theorem 2. The first step is to relate f to a noisy version of itself.

Lemma 3. Let $\mu := \mathbb{E}[f]$ and

$$T_{\downarrow}f(x) = \mathop{\mathbb{E}}_{y}[f(xy)].$$

We have

$$||T_{\downarrow}f - \mu f||^2 = O(\epsilon).$$

Proof. This follows from

$$\|T_{\downarrow}f - \mu f\|^2 = \mathbb{E}_x \left[\left(\mathbb{E}_y[f(xy)] - \mathbb{E}_y[f(x)f(y)] \right)^2 \right] \le \mathbb{E}_{x,y}[(f(xy) - f(x)f(y))^2] = O(\epsilon).$$

This lemma is helpful since $T_{\downarrow}f$ has small Fourier tails. To show this, we give a formula for the Fourier expansion of $T_{\downarrow}f$ in terms of the *biased* Fourier expansion of f.

Lemma 4. Let the 1/4-biased Fourier expansion of f be

$$f = \sum_{S \subseteq [n]} c_S \omega_S, \text{ where } \omega_S = \prod_{i \in S} \frac{4x_i - 1}{\sqrt{3}}.$$

(The functions ω_S form an orthonormal basis with respect to $\mu_{1/4}$.) Then

$$\hat{f}(S) = \left(\frac{1}{\sqrt{3}}\right)^{|S|} c_S.$$

(This is the coefficient of the Fourier character $\prod_{i \in S} (2x_i - 1)$.)

Proof. It suffices to consider $T_{\downarrow}\omega$, where $\omega = (4x-1)/\sqrt{3}$. Direct computation gives

$$T_{\downarrow}\omega = \frac{1}{2} \cdot \frac{4x - 1}{\sqrt{3}} + \frac{1}{2} \cdot \frac{-1}{\sqrt{3}} = \frac{2x - 1}{\sqrt{3}}.$$

We can now bound the Fourier tails of f.

Lemma 5. For every k,

$$||f^{>k}||^2 \le O(\sqrt{1/3}^k + \epsilon)\mu^{-2}.$$

Proof. Lemma 4 shows that

$$||(T_{\downarrow}f)^{>k}||^2 \le \left(\frac{1}{\sqrt{3}}\right)^k \sum_{|S|>k} c_S^2 \le \left(\frac{1}{\sqrt{3}}\right)^k,$$

since

$$\sum_{S} c_{S}^{2} = \mathop{\mathbb{E}}_{\mu_{1/4}} [f^{2}] \le 1.$$

Lemma 3 now implies that

$$\mu^2 \|f^{>k}\|^2 = \|(\mu f)^{>k}\|^2 \le 2\|(T_{\downarrow}f)^{>k}\|^2 + 2\|(T_{\downarrow}f)^{>k} - (\mu f)^{>k}\|^2 \le O((1/\sqrt{3})^k) + 2\|T_{\downarrow}f - \mu f\|^2 = O((1/\sqrt{3})^k + \epsilon).$$

Invoking Theorem 2, we approximate f by a junta.

Lemma 6. Suppose that $\mu \geq \sqrt[3]{\epsilon}$. There exists a constant K > 0 such that for every $N < (1/\epsilon)^K$ there is a junta F, depending on N coordinates, such that

$$||f - F||^2 = \frac{1}{N^{\Omega(1)}}.$$

Proof. Let k be such that $\sqrt{1/3}^k \ge \epsilon$. Lemma 5 shows that $||f^{>k}||^2 = O(\sqrt{1/3}^k \sqrt[3]{\epsilon}) = O(\rho^k)$, for some $\rho < 1$. According to Theorem 2, f is $O(\rho^k \sqrt{k})$ -close to a junta depending on $2^{O(k)}$ variables. Choosing $k = c \log N$ for an appropriate constant c > 0 completes the proof.

Let us now see how this helps us.

Lemma 7. Suppose that $\mu \geq \sqrt[3]{\epsilon}$. Let $N < (1/\epsilon)^K$, and let F be the junta promised by Lemma 6. For an assignment α to the non-junta variables, let f_{α} be the corresponding restriction of f.

There exist assignments α, β to the non-junta variables such that

$$\Pr_{x,y}[f_{\alpha}(x)f_{\beta}(y) = f_{\alpha\beta}(xy)] \ge 1 - \kappa\epsilon$$

for some constant $\kappa > 0$, and f_{α}, f_{β} are $N^{-\Omega(1)}$ close to F.

Proof. If we choose α, β at random then

$$\mathbb{E}_{\alpha,\beta} \Big[\Pr_{x,y} [f_{\alpha}(x) f_{\beta}(y) \neq f_{\alpha\beta}(xy)] \Big] = \epsilon.$$

Furthermore,

$$\mathbb{E}_{\alpha} \Big[\Pr[F \neq f_{\alpha}] \Big] = \Pr[F \neq f] = \frac{1}{N^{\Omega(1)}}$$

according to Lemma 6, and similarly for f_{β} . In particular, the probability (over α, β) that each of these probabilities exceeds its expectation by a factor of 4 is at most 1/4. Applying the union bound, there is a choice of α, β for which none of these probabilities exceeds its expectation by more than a factor of 4.

If we choose N small enough, then the identity $f_{\alpha}(x)f_{\beta}(y) = f_{\alpha\beta}(xy)$ will always hold. In this case, the solutions are given by the following easy lemma.

Lemma 8. Suppose that $a, b, c: \{0, 1\}^m \rightarrow \{0, 1\}$ satisfy

$$a(x)b(y)=c(xy) \\$$

for all $x, y \in \{0, 1\}^m$. Then either a = c = 0, or b = c = 0, or there exists a set $S \subseteq [m]$ such that

$$a(x) = b(x) = c(x) = \prod_{i \in S} x_i$$

Proof. If a = 0 or b = 0 then clearly c = 0, so we can assume that $a, b \neq 0$.

We expand a, b, c in terms of the basis $x_S := \prod_{i \in S} x_i$:

$$a(x) = \sum_{S \subseteq [m]} \tilde{a}(S) x_S,$$

and similarly for b, c. The condition a(x)b(y) = c(xy) translates to

$$\sum_{S,T\subseteq[m]} \tilde{a}(S)\tilde{b}(T)x_Sy_T = \sum_{S\subseteq[m]} \tilde{c}(S)x_Sy_S.$$

Comparing coefficients (using the fact that $x_S y_T$ is a basis for all functions on x, y), we see that if $\tilde{a}(S) \neq 0$ then $\tilde{b}(T) = 0$ for all $T \neq S$.

Since $a \neq 0$, there must be some S such that $\tilde{a}(S) \neq 0$. If $\tilde{a}(S') \neq 0$ for some $S' \neq S$ then b = 0, contradicting our assumption. Thus a and b are both multiples of x_S . Since a and b are Boolean, necessarily $a = b = x_S$, and so $c = x_S$ as well.

We can now put everything together, proving Theorem 1.

Proof of Theorem 1. If $\mu < \sqrt[3]{\epsilon}$ then f is $\sqrt[3]{\epsilon}$ -close to 0, so we can assume that $\mu \geq \sqrt[3]{\epsilon}$.

We apply Lemma 7 with $N = \log(1/\kappa\epsilon) - 1$, so that $2^{-N} < \kappa\epsilon$; note that $N < (1/\epsilon)^K$ unless ϵ is larger than some constant, in which case the theorem trivializes. It follows that $f_{\alpha}(x)f_{\beta}(y) = f_{\alpha\beta}(xy)$ holds for all inputs x, y, and so f_{α} is either 0 or an AND, by Lemma 8. The theorem follows since F is $1/N^{\Omega(1)}$ -close to f_{α} (Lemma 7) and f is $1/N^{\Omega(1)}$ -close to F (Lemma 6).

References

- [FLMM20] Yuval Filmus, Noam Lifshitz, Dor Minzer, and Elchanan Mossel. AND testing and robust judgement aggregation. In 52nd ACM Symposium on Theory of Computing (STOC'20), 2020.
- [KKO18] Guy Kindler, Naomi Kirshner, and Ryan O'Donnell. Gaussian noise sensitivity and Fourier tails. Israel J. Math., 225(1):71–109, 2018.
- [Neh13] Ilan Nehama. Approximately classic judgement aggregation. Ann. Math. Artif. Intell., 68(1-3):91–134, 2013.