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Abstract

If a function f: {0,1}" — {0,1} satisfies f(z Ay) = f(z) A f(y) for all z,y € {0,1}" then either
f=0or fis an AND of a subset of coordinates. We show that if f(x Ay) = f(x) A f(y) holds with
probability 1 — € then f is d-close to 0 or to an AND, where § = l/logﬂ(l)(l/e). This improves on a
result of Nehama (in which § depends on n) and substantially simplifies a result by the authors.

1 Introduction
Which functions f: {0,1}™ — {0,1} satisfy f(z Ay) = f(z) A f(y) for all z,y € {0,1}™ (where x Ay is

bitwise AND)? It is not hard to show that the set of solutions includes f = 0 and f = A\, g x; (when S = 0,
this is just f = 1). In this note, our goal is to prove a stability version of this result:

i€S
Theorem 1. Suppose that f: {0,1}™ — {0, 1} satisfies

L L@ Ay) = f@) A )] =1

where x,y are chosen uniformly at random from {0,1}".
Then f is d-close to 0 or to an AND of a subset of the coordinates, where § = 1/10g9(1)(1/e).

We conjecture that Theorem 1 holds with 6 = O(e).

Theorem 1 improves on a result of Nehama [Neh13], in which ¢ depends on n (but has much better
dependence on €). Theorem 1 also appears in our work [FLMM20], but the proof here is substantially
simpler.

Preliminaries We assume that the reader is familiar with Boolean function analysis. The only deep result
we use is Bourgain’s theorem, in a form due to Kindler, Kirshner and O’Donnell [KKO18]:

Theorem 2 ([KKO18, Theorem 1.6]). If f: {0,1}™ — {0,1} satisfies | f>*||> < € then f is O(ev'k)-close
to a Boolean junta depending on e *2°F) variables.

(The original version refers to functions from {+1}" to {£1}, but this only affects some constants.)

2 Proof

Let f: {0,1}™ — {0,1} be a function that satisfies
Prf(zy) = f(x)f(y)] =1 —e.

z,y

(We replaced A with product since they are the same for {0,1} variables.)
The general idea of the proof is to show that f is close to a junta, using Theorem 2. The first step is to
relate f to a noisy version of itself.



Lemma 3. Let p:=E[f] and
T,1() = Elf )]

We have
IT,f = ufl* = Oe).
Proof. This follows from

< E[(f(ay) — f(2)f())*] = O(e). O

T,y

Ty~ sl = E [(Igmwy)} ~Elf@)f )

This lemma is helpful since T} f has small Fourier tails. To show this, we give a formula for the Fourier
expansion of T f in terms of the biased Fourier expansion of f.

Lemma 4. Let the 1/4-biased Fourier expansion of f be

da; — 1
f= Z cswg, where wg = H ! .
SC[n) icS V3

(The functions ws form an orthonormal basis with respect to ji1,4.) Then

A L\I8]
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(This is the coefficient of the Fourier character [[;cq(27; —1).)

Proof. Tt suffices to consider T|w, where w = (4z — 1)//3. Direct computation gives
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We can now bound the Fourier tails of f.

Lemma 5. For every k,
k
IF7HI* < O(V1/3" + ).

Proof. Lemma 4 shows that

1074 < (%)k S < (%)k

since

Lemma 3 now implies that

PAIFZEIP = 1) 7RI < 2T )P+ 2(TL)7F = (nf)7H)? <
O((1/V3)*) +2|T,f — uflI* = O((1/V3)" +¢). D

Invoking Theorem 2, we approximate f by a junta.

Lemma 6. Suppose that i > /e. There exists a constant K > 0 such that for every N < (1/€)¥ there is a
junta F', depending on N coordinates, such that
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Proof. Let k be such that \/1/3k > e. Lemma 5 shows that || f>%||? = O(\/l/Skf/E) = O(p*), for some
p < 1. According to Theorem 2, f is O(pk\/E)-close to a junta depending on 2°() variables. Choosing
k = clog N for an appropriate constant ¢ > 0 completes the proof. O

Let us now see how this helps us.

Lemma 7. Suppose that u > {/e. Let N < (1/€)X, and let F be the junta promised by Lemma 6. For an
assignment a to the non-junta variables, let f, be the corresponding restriction of f.
There exist assignments «, 8 to the non-junta variables such that

Eg[fa(m)fﬁ(y) = fap(2y)] > 1 — ke

for some constant kK > 0, and f,, f3 are N=2M close to F.

Proof. If we choose «, 8 at random then

E [Prlfa(z)fs(y) # fap(zy)]] =€

a,B T,y

Furthermore, 1
E[Pr[F # fol] = Pr[F # f] = Sa0

according to Lemma 6, and similarly for fz. In particular, the probability (over a, () that each of these
probabilities exceeds its expectation by a factor of 4 is at most 1/4. Applying the union bound, there is a
choice of «, 8 for which none of these probabilities exceeds its expectation by more than a factor of 4. [

If we choose N small enough, then the identity fo(z)fs(y) = fas(zy) will always hold. In this case, the
solutions are given by the following easy lemma.

Lemma 8. Suppose that a,b,c: {0,1}™ — {0, 1} satisfy

a(x)b(y) = c(zy)
for all x,y € {0,1}™. Then either a =c=0, or b=c =0, or there exists a set S C [m] such that
a(xz) =b(x) = c(x) = H x;.
€S
Proof. If a =0 or b =0 then clearly ¢ = 0, so we can assume that a,b # 0.
We expand a, b, ¢ in terms of the basis x5 := [[;. g %i:

a(z) = Y a(S)xs,

SC[m]

and similarly for b, c. The condition a(x)b(y) = c(xy) translates to

> a®b(M)zsyr = Y &S)zsys.

S,TC[m) SC[m]

Comparing coeflicients (using the fact that zgyr is a basis for all functions on x,y), we see that if a(S) # 0
then b(T) = 0 for all T # S.

Since a # 0, there must be some S such that a(S) # 0. If a(S’) # 0 for some S’ # S then b = 0,
contradicting our assumption. Thus a and b are both multiples of xg. Since a and b are Boolean, necessarily
a=b=uxg, and so ¢ = xg as well. O

We can now put everything together, proving Theorem 1.

Proof of Theorem 1. If < /€ then f is ¥/e-close to 0, so we can assume that p > ¥e.

We apply Lemma 7 with N = log(1/k¢) — 1, so that 27V < ke; note that N < (1/€)X unless e is larger
than some constant, in which case the theorem trivializes. It follows that fo(2)fs(y) = fap(zy) holds for all
inputs z,y, and so f, is either 0 or an AND, by Lemma 8. The theorem follows since F is 1/NQ(1)—close to
fa (Lemma 7) and f is 1/N®M_close to F' (Lemma 6). O
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