AND testing
 Yuval Filmus, Noam Lifshitz, Dor Minzer, Elchanan Mossell

April 12, 2021

Abstract

If a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ satisfies $f(x \wedge y)=f(x) \wedge f(y)$ for all $x, y \in\{0,1\}^{n}$ then either $f=0$ or f is an AND of a subset of coordinates. We show that if $f(x \wedge y)=f(x) \wedge f(y)$ holds with probability $1-\epsilon$ then f is δ-close to 0 or to an AND, where $\delta=1 / \log ^{\Omega(1)}(1 / \epsilon)$. This improves on a result of Nehama (in which δ depends on n) and substantially simplifies a result by the authors.

1 Introduction

Which functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ satisfy $f(x \wedge y)=f(x) \wedge f(y)$ for all $x, y \in\{0,1\}^{n}$ (where $x \wedge y$ is bitwise AND)? It is not hard to show that the set of solutions includes $f=0$ and $f=\bigwedge_{i \in S} x_{i}$ (when $S=\emptyset$, this is just $f=1$). In this note, our goal is to prove a stability version of this result:

Theorem 1. Suppose that $f:\{0,1\}^{n} \rightarrow\{0,1\}$ satisfies

$$
\operatorname{Pr}_{x, y \in\{0,1\}^{n}}[f(x \wedge y)=f(x) \wedge f(y)]=1-\epsilon,
$$

where x, y are chosen uniformly at random from $\{0,1\}^{n}$.
Then f is δ-close to 0 or to an AND of a subset of the coordinates, where $\delta=1 / \log ^{\Omega(1)}(1 / \epsilon)$.
We conjecture that Theorem 1 holds with $\delta=O(\epsilon)$.
Theorem 1 improves on a result of Nehama [Neh13], in which δ depends on n (but has much better dependence on ϵ). Theorem 1 also appears in our work [FLMM20], but the proof here is substantially simpler.

Preliminaries We assume that the reader is familiar with Boolean function analysis. The only deep result we use is Bourgain's theorem, in a form due to Kindler, Kirshner and O'Donnell [KKO18]:
Theorem $2\left(\left[\mathrm{KKO} 18\right.\right.$, Theorem 1.6]). If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ satisfies $\left\|f^{>k}\right\|^{2} \leq \epsilon$ then f is $O(\epsilon \sqrt{k})$-close to a Boolean junta depending on $\epsilon^{-4} 2^{O(k)}$ variables.
(The original version refers to functions from $\{ \pm 1\}^{n}$ to $\{ \pm 1\}$, but this only affects some constants.)

2 Proof

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function that satisfies

$$
\underset{x, y}{\operatorname{Pr}}[f(x y)=f(x) f(y)]=1-\epsilon
$$

(We replaced \wedge with product since they are the same for $\{0,1\}$ variables.)
The general idea of the proof is to show that f is close to a junta, using Theorem 2. The first step is to relate f to a noisy version of itself.

Lemma 3. Let $\mu:=\mathbb{E}[f]$ and

$$
T_{\downarrow} f(x)=\underset{y}{\mathbb{E}}[f(x y)]
$$

We have

$$
\left\|T_{\downarrow} f-\mu f\right\|^{2}=O(\epsilon)
$$

Proof. This follows from

$$
\left\|T_{\downarrow} f-\mu f\right\|^{2}=\underset{x}{\mathbb{E}}\left[(\underset{y}{\mathbb{E}}[f(x y)]-\underset{y}{\mathbb{E}}[f(x) f(y)])^{2}\right] \leq \underset{x, y}{\mathbb{E}}\left[(f(x y)-f(x) f(y))^{2}\right]=O(\epsilon)
$$

This lemma is helpful since $T_{\downarrow} f$ has small Fourier tails. To show this, we give a formula for the Fourier expansion of $T_{\downarrow} f$ in terms of the biased Fourier expansion of f.
Lemma 4. Let the $1 / 4$-biased Fourier expansion of f be

$$
f=\sum_{S \subseteq[n]} c_{S} \omega_{S}, \text { where } \omega_{S}=\prod_{i \in S} \frac{4 x_{i}-1}{\sqrt{3}} .
$$

(The functions ω_{S} form an orthonormal basis with respect to $\mu_{1 / 4}$.) Then

$$
\hat{f}(S)=\left(\frac{1}{\sqrt{3}}\right)^{|S|} c_{S}
$$

(This is the coefficient of the Fourier character $\prod_{i \in S}\left(2 x_{i}-1\right)$.)
Proof. It suffices to consider $T_{\downarrow} \omega$, where $\omega=(4 x-1) / \sqrt{3}$. Direct computation gives

$$
T_{\downarrow} \omega=\frac{1}{2} \cdot \frac{4 x-1}{\sqrt{3}}+\frac{1}{2} \cdot \frac{-1}{\sqrt{3}}=\frac{2 x-1}{\sqrt{3}} .
$$

We can now bound the Fourier tails of f.
Lemma 5. For every k,

$$
\left\|f^{>k}\right\|^{2} \leq O\left(\sqrt{1 / 3}^{k}+\epsilon\right) \mu^{-2}
$$

Proof. Lemma 4 shows that

$$
\left\|\left(T_{\downarrow} f\right)^{>k}\right\|^{2} \leq\left(\frac{1}{\sqrt{3}}\right)^{k} \sum_{|S|>k} c_{S}^{2} \leq\left(\frac{1}{\sqrt{3}}\right)^{k}
$$

since

$$
\sum_{S} c_{S}^{2}=\underset{\mu_{1 / 4}}{\mathbb{E}}\left[f^{2}\right] \leq 1
$$

Lemma 3 now implies that

$$
\begin{array}{r}
\mu^{2}\left\|f^{>k}\right\|^{2}=\left\|(\mu f)^{>k}\right\|^{2} \leq 2\left\|\left(T_{\downarrow} f\right)^{>k}\right\|^{2}+2\left\|\left(T_{\downarrow} f\right)^{>k}-(\mu f)^{>k}\right\|^{2} \leq \\
O\left((1 / \sqrt{3})^{k}\right)+2\left\|T_{\downarrow} f-\mu f\right\|^{2}=O\left((1 / \sqrt{3})^{k}+\epsilon\right) .
\end{array}
$$

Invoking Theorem 2, we approximate f by a junta.
Lemma 6. Suppose that $\mu \geq \sqrt[3]{\epsilon}$. There exists a constant $K>0$ such that for every $N<(1 / \epsilon)^{K}$ there is a junta F, depending on N coordinates, such that

$$
\|f-F\|^{2}=\frac{1}{N^{\Omega(1)}}
$$

Proof. Let k be such that $\sqrt{1 / 3}^{k} \geq \epsilon$. Lemma 5 shows that $\left\|f^{>k}\right\|^{2}=O\left(\sqrt{1 / 3}^{k} \sqrt[3]{\epsilon}\right)=O\left(\rho^{k}\right)$, for some $\rho<1$. According to Theorem 2, f is $O\left(\rho^{k} \sqrt{k}\right)$-close to a junta depending on $2^{O(k)}$ variables. Choosing $k=c \log N$ for an appropriate constant $c>0$ completes the proof.

Let us now see how this helps us.
Lemma 7. Suppose that $\mu \geq \sqrt[3]{\epsilon}$. Let $N<(1 / \epsilon)^{K}$, and let F be the junta promised by Lemma 6. For an assignment α to the non-junta variables, let f_{α} be the corresponding restriction of f.

There exist assignments α, β to the non-junta variables such that

$$
\operatorname{Pr}_{x, y}\left[f_{\alpha}(x) f_{\beta}(y)=f_{\alpha \beta}(x y)\right] \geq 1-\kappa \epsilon
$$

for some constant $\kappa>0$, and f_{α}, f_{β} are $N^{-\Omega(1)}$ close to F.
Proof. If we choose α, β at random then

$$
\underset{\alpha, \beta}{\mathbb{E}}\left[\operatorname{Pr}\left[f_{x, y}(x) f_{\beta}(y) \neq f_{\alpha \beta}(x y)\right]\right]=\epsilon
$$

Furthermore,

$$
\underset{\alpha}{\mathbb{E}}\left[\operatorname{Pr}\left[F \neq f_{\alpha}\right]\right]=\operatorname{Pr}[F \neq f]=\frac{1}{N^{\Omega(1)}}
$$

according to Lemma 6 , and similarly for f_{β}. In particular, the probability (over α, β) that each of these probabilities exceeds its expectation by a factor of 4 is at most $1 / 4$. Applying the union bound, there is a choice of α, β for which none of these probabilities exceeds its expectation by more than a factor of 4 .

If we choose N small enough, then the identity $f_{\alpha}(x) f_{\beta}(y)=f_{\alpha \beta}(x y)$ will always hold. In this case, the solutions are given by the following easy lemma.
Lemma 8. Suppose that $a, b, c:\{0,1\}^{m} \rightarrow\{0,1\}$ satisfy

$$
a(x) b(y)=c(x y)
$$

for all $x, y \in\{0,1\}^{m}$. Then either $a=c=0$, or $b=c=0$, or there exists a set $S \subseteq[m]$ such that

$$
a(x)=b(x)=c(x)=\prod_{i \in S} x_{i} .
$$

Proof. If $a=0$ or $b=0$ then clearly $c=0$, so we can assume that $a, b \neq 0$.
We expand a, b, c in terms of the basis $x_{S}:=\prod_{i \in S} x_{i}$:

$$
a(x)=\sum_{S \subseteq[m]} \tilde{a}(S) x_{S},
$$

and similarly for b, c. The condition $a(x) b(y)=c(x y)$ translates to

$$
\sum_{S, T \subseteq[m]} \tilde{a}(S) \tilde{b}(T) x_{S} y_{T}=\sum_{S \subseteq[m]} \tilde{c}(S) x_{S} y_{S}
$$

Comparing coefficients (using the fact that $x_{S} y_{T}$ is a basis for all functions on x, y), we see that if $\tilde{a}(S) \neq 0$ then $\tilde{b}(T)=0$ for all $T \neq S$.

Since $a \neq 0$, there must be some S such that $\tilde{a}(S) \neq 0$. If $\tilde{a}\left(S^{\prime}\right) \neq 0$ for some $S^{\prime} \neq S$ then $b=0$, contradicting our assumption. Thus a and b are both multiples of x_{S}. Since a and b are Boolean, necessarily $a=b=x_{S}$, and so $c=x_{S}$ as well.

We can now put everything together, proving Theorem 1.
Proof of Theorem 1. If $\mu<\sqrt[3]{\epsilon}$ then f is $\sqrt[3]{\epsilon}$-close to 0 , so we can assume that $\mu \geq \sqrt[3]{\epsilon}$.
We apply Lemma 7 with $N=\log (1 / \kappa \epsilon)-1$, so that $2^{-N}<\kappa \epsilon$; note that $N<(1 / \epsilon)^{K}$ unless ϵ is larger than some constant, in which case the theorem trivializes. It follows that $f_{\alpha}(x) f_{\beta}(y)=f_{\alpha \beta}(x y)$ holds for all inputs x, y, and so f_{α} is either 0 or an AND, by Lemma 8. The theorem follows since F is $1 / N^{\Omega(1)}$-close to f_{α} (Lemma 7) and f is $1 / N^{\Omega(1)}$-close to F (Lemma 6).

References

[FLMM20] Yuval Filmus, Noam Lifshitz, Dor Minzer, and Elchanan Mossel. AND testing and robust judgement aggregation. In 52nd ACM Symposium on Theory of Computing (STOC'20), 2020.
[KKO18] Guy Kindler, Naomi Kirshner, and Ryan O'Donnell. Gaussian noise sensitivity and Fourier tails. Israel J. Math., 225(1):71-109, 2018.
[Neh13] Ilan Nehama. Approximately classic judgement aggregation. Ann. Math. Artif. Intell., 68(1-3):91-134, 2013.

