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Abstract

We give a simplified exposition of the algorithm of Filmus and Ward (2014) for
maximizing a submodular function subject to a matroid constraint.

1 Introduction

Monotone submodular functions abound in combinatorial optimization. The greedy algo-
rithm gives the optimal approximation ratio, 1−1/e, for optimizing a monotone submod-
ular function over a cardinality constraint. However, over a general matroid constraint,
and even over a partition matroid constraint, it only gives a 1/2 approximation. The
continuous greedy algorithm, due to Calienscu et al. [CCPV11] (see also [FNS11]), gives
an optimal 1 − 1/e approximation, but it is based on continuous methods. Filmus and
Ward [FW14] gave a purely combinatorial algorithm, based on the paradigm of non-
oblivious local search.

The conference version of Filmus and Ward [FW12] was simplified considerably in the
journal version [FW14]. Here we present a further simplification, due to the first author.

2 Preliminaries

We assume familiarity with the basic definitions, but repeat them here to fix notation.

Basic notation For a set A and an element x, A+ x = A ∪ {x} and A− x = A \ {x}.
A set function is a function f : 2U → R, where U is some finite universe.
For a set S ⊆ U , we denote its indicator function (from U to {0, 1}) by 1S.

Submodular functions A monotone submodular function is a set function f : 2U → R
satisfying the following axioms:

(a) Normalization: f(∅) = 0.

(b) Monotonicity: if A ⊆ B ⊆ U then f(A) ≤ f(B).

(c) Submodularity: for all A,B ⊆ U we have f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).
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Multilinear extension Given a function f : 2U → R, we define its multilinear exten-
sion F : [0, 1]U → R as follows: F (x) = E[f(S)], where S is a random set chosen so
that i ∈ S with probability xi, independently. We can expand this definition to obtain
a multilinear polynomial in the inputs. Note that F (1S) = f(S), and in this sense F
extends f .

Marginals If f is a set function then we define

f(A|B) = f(A ∪B)− f(B).

Similarly, for its multilinear extension F we define

F (x|y) = F (x ∨ y)− F (y),

where ∨ denotes elementwise maximum.

Matroids A matroid M is a non-empty collection of subsets of a finite universe U
satisfying the following axioms:

(a) Downward closure: if M contains a set A ⊆ U then it contains all its subsets.

(b) Exchange: if A,B ∈ M and |A| < |B| then there exists x ∈ B \ A such that
A+ x ∈M.

We call the sets in M independent sets, and the inclusion-maximal independent sets we
call bases. It turns out that all bases in a matroid have the same size, known as the rank
of the matroid.

Brualdi’s lemma [Bru69] shows that if A,B are any two bases then there exists a
bijection π from A to B, fixing A ∩B, such that A− x+ π(x) ∈M for all x ∈ A.

3 Algorithm

For the rest of this note, let f be a monotone submodular function, F its multilinear
extension, and M a matroid. Our goal is to find S ∈ M which maximizes f(S). We
define below a related monotone submodular function g. The non-oblivious local search
algorithm uses non-oblivious local search to find a non-oblivious local optimum:

Definition 3.1. A set S ∈ M is a local optimum (with respect to g) if for any x ∈ S
and y /∈ S such that S − x + y ∈ M, we have g(S) ≥ g(S − x + y), or equivalently
g(x|S − x) ≥ g(y|S − x).

In reality a local optimum cannot be found efficiently, and instead the algorithm finds
an approximate local optimum, in which we are only guaranteed that g(S) ≥ (1− ε)g(S−
x+ y). We refer the reader to the original paper [FW14] for the details; the analysis here
is only slightly affected, and we leave the necessary changes to the reader.

The function g is defined as follows:

g(A) =

∫ 1

0

ep−1

p
F (p · 1A) dp. (∗)
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The reader might be worried that this isn’t well-defined, since ep−1

p
blows up as p→ 0.

Fortunately, this is not the case, essentially since f is normalized:

Lemma 3.1. The function g is well-defined.

Proof. Recall that F (p · 1A) = E[f(S)], where S is a random subset of A in which each
element is found with probability p. In particular, Pr[S 6= ∅] ≤ |A|p. Since f(∅) = 0, we
deduce that F (p · 1A) ≤ p|A|f(A). Therefore∫ 1

0

ep−1

p
F (p · 1A) dp ≤

∫ 1

0

ep−1|A|f(A) dp ≤ (1− 1/e)|A|f(A).

It follows that g(A) is well-defined.

The marginals of g have a particularly simple formula:

Lemma 3.2. Suppose that x /∈ A. Then

g(x|A) =

∫ 1

0

ep−1F (1x|p · 1A) dp.

Proof. Since F is multilinear, we have F (p·1A+x)−F (p·1A) = p(F (p·1A+1x)−F (p·1A)).
Therefore

g(x|A) = g(A+ x)− g(A) =

∫ 1

0

ep−1

p
(F (p · 1A+x)− F (p · 1A)) dp

=

∫ 1

0

ep−1(F (p · 1A + 1x)− F (p · 1A)) dp

=

∫ 1

0

ep−1F (1x|p · 1A) dp.

Incidentally, this formula gives another proof of Lemma 3.1.
As promised, the function g is also monotone submodular:

Lemma 3.3. The function g is monotone submodular.

Proof. The formula directly implies that g(∅) = 0, and Lemma 3.2 implies that g is
monotone. To show submodularity, it suffices to show that g(x|A) ≥ g(x|B) whenever
A ⊆ B and x /∈ B. This follows from Lemma 3.2 together with the inequality F (1x|p ·
1A) ≥ F (1x|p · 1B), which follows from the submodularity of f .

4 Analysis

Let S be a local optimum, and let O be a global optimum, that is, an optimal solution
for the optimization problem (in fact the analysis works for any set O ∈ M). Our goal
is to bound f(S)/f(O) from below. Brualdi’s lemma (mentioned in the preliminaries)
shows that there is a mapping π : S → O which fixes S ∩O and satisfies S− x+ π(x) for
all x ∈ S. The local optimality constraints imply, in particular, that for all x ∈ S:

g(x|S − x) ≥ g(π(x)|S − x). (†)

The proof now proceeds by giving a lower bound and an upper bound on
∑

x∈S g(x|S−x).
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Lemma 4.1 (Lower bound). We have

∑
x∈S

g(x|S − x) ≥
(

1− 1

e

)
f(O)−

∫ 1

0

ep−1F (p · 1S) dp.

Proof. Let x ∈ S. When x /∈ O, submodularity of g and Lemma 3.2 imply that

g(x|S − x) ≥ g(π(x)|S − x) ≥ g(π(x)|S) =

∫ 1

0

ep−1F (1π(x)|p · 1S) dp.

We can reach the same conclusion when x ∈ O, with a bit more work: Lemma 3.2,
the multilinearity of F , and monotonicity of f imply that

g(x|S − x) =

∫ 1

0

ep−1F (1x|p · 1S−x) dp

=

∫ 1

0

ep−1
F (1x|p · 1S)

1− p
dp ≥

∫ 1

0

ep−1F (1x|p · 1S) dp.

This is indeed the same inequality as in the preceding case, since x = π(x).
Summing the inequality for all x ∈ S, we obtain∑

x∈S

g(x|S − x) ≥
∫ 1

0

ep−1
∑
x∈S

F (1π(x)|p · 1S) dp ≥
∫ 1

0

ep−1F (1O|p · 1S) dp,

using submodularity of f . Monotonicity of f implies that F (1O|p ·1S) ≥ f(O)−F (p ·1S),
hence ∑

x∈S

g(x|S − x) ≥
∫ 1

0

ep−1(f(O)− F (p · 1S)) dp.

This implies the stated formula, since
∫ 1

0
ep−1 dp = ep−1|10 = 1− 1/e.

Lemma 4.2 (Upper bound). We have

∑
x∈S

g(x|S − x) ≤ f(S)−
∫ 1

0

ep−1F (p · 1S) dp.

Proof. Let x ∈ S. Lemma 3.2 and multilinearity of g imply that

g(x|S − x) =

∫ 1

0

ep−1F (1x|p · 1S−x) dp =

∫ 1

0

ep−1∂xF (p · 1S) dp,

where ∂x denotes partial derivative with respect to the coordinate corresponding to x.
Summing this over all x ∈ S, we obtain∑

x∈S

g(x|S − x) =

∫ 1

0

ep−1〈∇F (p · 1S), 1S〉 dp,

where ∇F denotes the gradient of F .
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We now use integration by parts, in the form∫ 1

0

a(p)b′(p) dp = a(1)b(1)− a(0)b(0)−
∫ 1

0

a′(p)b(p) dp.

In our application, a(p) = ep−1 and b′(p) = 〈∇F (p · 1S), 1S〉, so that a′(p) = ep−1 and

b(p) =

∫ p

0

b′(q) dq =

∫ p

0

〈∇F (q · 1S), 1S〉 dq = F (p · 1S),

using the normalization of F .
Since a(0)b(0) = 0 and a(1)b(1) = f(S), integration by parts yields

∑
x∈S

g(x|S − x) = f(S)−
∫ 1

0

ep−1F (p · 1S) dp.

Combining both bounds, we obtain our main theorem.

Theorem 4.3. We have

f(S) ≥
(

1− 1

e

)
f(O).
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