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Abstract

We show that a Boolean degree d function on the slice

[n]
k


is a junta if k ≥ 2d, and that this bound is

sharp. We prove a similar result for A-valued degree d functions for arbitrary finite A, and for functions
on an infinite analog of the slice.

1 Introduction

A classical result of Nisan and Szegedy [NS94] states that a Boolean degree d function on the Boolean cube
{0, 1}n is an O(d2d)-junta. Let us briefly explain the various terms involved:

• A function f on the Boolean cube is Boolean if f(x) ∈ {0, 1} for all x ∈ {0, 1}n.

• A function f on the Boolean cube has degree (at most) d if there is a polynomial P of degree at most
d in n variables such that f(x1, . . . , xn) = P (x1, . . . , xn) for all x1, . . . , xn ∈ {0, 1}.

• A function f is an m-junta if there are m indices 1 ≤ i1, . . . , im ≤ n and a function g : {0, 1}m → R
such that f(x1, . . . , xn) = g(xi1 , . . . , xim).

Chiarelli, Hatami and Saks [CHS20] improved the bound to O(2d), and the hidden constant was further
optimized by Wellens [Wel20].

The slice

[n]
k


, also known as the Johnson scheme J(n, k), consists of all vectors in {0, 1}n of Hamming

weight k. Is it the case that all Boolean degree d functions on the slice

[n]
k


are m(d)-juntas, for some

constant m(d)? Two partial answers to this question appear in [FI19b, FI19a]. First, if f is a Boolean

degree 1 function on

[n]
k


and k, n − k ≥ 2 then f is a 1-junta [FI19b]. Second, there exist constants

C(d) = Θ(2d) such that if f is a Boolean degree d function on

[n]
k


and k, n − k ≥ C(d), then f is an

O(2d)-junta [FI19a].
The reason that both of these results require both k and n − k to be large is that given a function f

on

[n]
k


, we can construct a dual function f̄ on


[n]
n−k


with similar properties by defining f̄(x1, . . . , xn) =

f(1− x1, . . . , 1− xn). For this reason, when we consider the slice

[n]
k


, we typically assume that n ≥ 2k.

One of the open questions in [FI19a] asks for the minimal k for which every Boolean degree d function

on

[n]
k


is a junta, whenever n ≥ 2k. In this paper, we completely resolve this question.

Theorem 1.1. Let d ≥ 1. There exists a constant m(d) such that the following holds.

If k ≥ 2d then for any n ≥ 2k, every Boolean degree d function on

[n]
k


is an m(d)-junta.

Conversely, if 1 ≤ k < 2d then for every m there exist n ≥ 2k and a Boolean degree d function on

[n]
k



which is not an m-junta.

The second part of the theorem follows from functions of the form

ℓ

i=1

e

j=1

x(e−1)i+j , e = min(d, k).

When n ≥ 2ℓe, these functions are not ℓe-juntas.
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A-valued functions We prove Theorem 1.1 in the more general setting of A-valued functions, for any
finite A. These are functions f such that f(x) ∈ A for all x ∈ {0, 1}n. When A = {0, 1, . . . , a − 1} (or
more generally, any arithmetic progression of length a), the junta threshold is ad. The situation gets more
interesting when A is not an arithmetic progression. For example, when A = {0, 1, 3}, the threshold for
d = 1 is k = 2, and the threshold for d = 2 is k = 6. The latter threshold is tight due to the following
example, which is A-valued when k = 5:

3− 2


1≤i≤m

xi +


1≤i<j≤m

xixj .

When A is not an arithmetic progression, the threshold depends on a parameter first studied, in the
special case of A = {0, 1}, by von zur Gathen and Roche [vzGR97]. Let W (A, d) be the minimal value W
such that every degree d polynomial P satisfying P (0), . . . , P (W ) ∈ A is constant.

Theorem 1.2. Let A be a finite set containing at least two elements, and let d ≥ 1. There exists a constant
m(A, d) such that the following holds. Define

k(A, d) = d+ max
1≤s≤d


d

s


(W (A, s)− s)


,

which is equal to |A|d if A is an arithmetic progression.

If k ≥ k(A, d) then for any n ≥ 2k, every A-valued degree d function on

[n]
k


is an m(A, d)-junta.

Conversely, if 1 ≤ k < k(A, d) then for every m there exist n ≥ 2k and an A-valued degree d function on
[n]
k


which is not an m-junta.

When A is an arithmetic progression, the maximum in the definition of k(A, d) is obtained (not necessarily
uniquely) at s = 1. When A = {0, 1, 3} and d = 2, the maximum is obtained uniquely at s = 2.

The infinite slice When 1 ≤ k < 2d, the non-junta example in the Boolean case extends to infinitely
many variables:

∞

i=1

e

j=1

x(e−1)i+j , e = min(d, k).

The same holds for the non-junta example we gave for A = {0, 1, 3} and d = 2. This is a general feature

of our non-junta examples. We can think of such expressions as function on the infinite slice

[∞]
k


, which

consists of all vectors in {0, 1}N of Hamming weight k. Conversely, when k ≥ k(A, d), every A-valued degree d

function on

[∞]
k


is a junta.

Theorem 1.3. Let A be a finite set containing at least two elements, and let d ≥ 1. The following holds for
the parameters m(A, d), k(A, d) defined in Theorem 1.2.

If k ≥ k(A, d) then every A-valued degree d function on

[∞]
k


is an m(A, d)-junta.

Conversely, if 1 ≤ k < k(A, d) then there exists an A-valued degree d function on

[∞]
k


which is not an

m-junta for any finite m.

Structure of the paper After a few preliminaries in Section 2, we prove our main theorems in Section 3.
We conclude the paper with a few remarks in Section 4.
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2 Preliminaries

Slice For integers 0 ≤ k ≤ n, we define the slice

[n]
k


as


[n]

k


=


x ∈ {0, 1}n :

n

i=1

xi = k


.

We think of functions on the slice as accepting as input n bits x1, . . . , xn ∈ {0, 1}, with the promise that
exactly k of them are equal to 1.

A function f on the slice

[n]
k


is A-valued, for some A ⊆ R, if f(x) ∈ A for all x ∈


[n]
k


. A Boolean

function is a {0, 1}-valued function.

Degree For S ⊆ [n] = {1, . . . , n}, we define

xS =


i∈S

xi,

with x∅ = 1. We call xS a degree |S| monomial.

A function on the slice

[n]
k


has degree (at most) d if it can be expressed as a polynomial of degree at

most d over the variables x1, . . . , xn. We will usually omit the words “at most”.

Lemma 2.1. If k ≥ d, then every degree d function on

[n]
k


can be expressed as a linear combination of

degree d monomials.

Proof. Let f be a degree d function on

[n]
k


. By definition, it can be expressed as a polynomial P of degree

at most d. Since x2
i = xi, we can replace each monomial of P by its multilinearization, obtained by replacing

higher powers of each xi by xi, obtaining a multilinear polynomial Q of degree at most d expressing f . Using
the identity

xS =
1


k−|S|
d−|S|




S⊆T⊆[n]
|T |=d

xT ,

which is valid over

[n]
k


, we can convert Q into an equivalent polynomial in which all monomials have degree

exactly d.

It turns out that if n− k ≥ d then the representation given by the lemma is unique. For this and more
on the spectral perspective on functions on the slice, consult [Fil16, FM19].

Junta A function f on the slice

[n]
k


is a J-junta, where J ⊆ [n], if there is a function g : {0, 1}J → R such

that f(x) = g(x|J) for all x ∈

[n]
k


; here x|J is the restriction of x to the coordinates in J .

A function is an m-junta if it is a J-junta for some set J of size at most m.
Given x ∈


[n]
k


and i, j ∈ [n], we define x(i j) to be the vector obtained by switching coordinates i and j.

Lemma 2.2. Let f be a function on the slice

[n]
k


. Suppose that I, J are disjoint subsets of [n] such that

for every i ∈ I and j ∈ J there exists x ∈

[n]
k


such that f(x) ∕= f(x(i j)).

If f is an m-junta then m ≥ min(|I|, |J |).

Proof. Suppose that f is an m-junta. Then there is a set K ⊆ [n] of size at most m and a function

g : {0, 1}K → R such that f(x) = g(x|K) for all x ∈

[n]
k


. In particular, if i, j /∈ K then f(x) = f(x(i j)) for

all x ∈

[n]
k


. This shows that either K ⊇ I or K ⊇ J , and so m ≥ |K| ≥ min(|I|, |J |).

The main result of [FI19a] states that Boolean degree d functions on

[n]
k


are juntas for large k.
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Theorem 2.3 ([FI19a]). There exist constants C,K > 0 such that the following holds. If Cd ≤ k ≤ n−Cd

and f is a Boolean degree d function on

[n]
k


, then f is a KCd-junta.

A similar result holds for A-valued functions.

Corollary 2.4. For every finite set A containing at least two elements there exist constants CA,KA > 0
such that the following holds. If Cd

A ≤ k ≤ n − Cd
A and f is an A-valued degree d function on


[n]
k


, then f

is a KAC
d
A-junta.

Proof. For each a ∈ A, define

fa(x) =


b∈A
b ∕=a

f(x)− b

a− b
.

The function fa is a Boolean degree (|A|− 1)d function, and

f(x) =


a∈A

afa(x).

Let CA = C |A|−1 and KA = |A|K. If Cd
A ≤ k ≤ n−Cd

A then the theorem shows that each fa is a KCd
A-junta,

hence f is a KAC
d
A-junta.

Infinite slice For an integer k ≥ 0, we define the infinite slice

[∞]
k


as


[∞]

k


=


x ∈ {0, 1}N :

∞

i=1

xi = k


.

A function f on the infinite slice

[∞]
k


has degree d if it can be expressed as an infinite sum of monomials

of degree at most d:

f(x) =


S⊆N
|S|≤d

c(S)xS .

While the sum is infinite, all but 2k of the monomials are non-zero on any given input, and therefore the
sum on the right defines a real-valued function. Lemma 2.1 extends to this setting.

The definition of junta and Lemma 2.2 extend to this setting as well.

Bipartite Ramsey theorem We assume familiarity with the classical Ramsey theorem. Our proof will
also make use of a bipartite Ramsey theorem, whose simple proof we include for completeness.

Theorem 2.5. Let c, d ∈ N be parameters. For every k ≥ 1 there exists n ≥ 1 such that the following holds.
Suppose that A,B are two disjoint sets of size n. Suppose furthermore that all subsets of A∪B of size d

are colored using one of c colors. Then there exist subsets A′ ⊆ A and B′ ⊆ B of size k and colors c0, . . . , cd
such that every T ⊆ A′ ∪B′ of size d has color c|T∩A|.

Proof. We will prove the theorem under the assumption that A,B are infinite. The finite version then follows
by compactness.

Let m be such that given a set X of size m together with a coloring of all of its subsets of size at most d
using c colors, we can find a subset A′ ⊆ X of size k and colors c0, . . . , cd such that the color of any T ⊆ A′

of size at most d is c|T |. Such an m exists due to Ramsey’s theorem.
Let X be an arbitrary subset of A of size m. Let χ be the c-coloring of the subsets of A ∪ B of size d.

Assign every TB ⊆ B of size at most d the color

TA → χ(TA ∪ TB),
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where TA ranges over all subsets of X of size d − |TB |. That is, the color of TB is one of c(
m

d−|TB |) possible
functions. Applying Ramsey’s theorem, we find an infinite subset B′ ⊆ B and a list of colors cTA

, one for
each TA ⊆ X of size at most d, such that for all TB ⊆ B′ of size d− |TA|, we have χ(TA ∪ TB) = cTA

.
The choice of m guarantees the existence of a subset A′ ⊆ X of size k and colors c0, . . . , cd such that for

every TA ⊆ A′ of size at most d and for every TB ⊆ B′ of size d− |TA|, we have χ(TA∪TB) = cTA
= c|TA|.

When A,B are infinite, the proof above produces a subset A′ ⊆ A of size k and an infinite subset B′ ⊆ B.
It is natural to wonder whether we can ask for both A′ and B′ to be infinite. This is impossible in general.
Indeed, let A,B be two copies of N, and color A × B using two colors as follows: χ(i, j) = 1 if i < j and
χ(i, j) = 0 otherwise. The reader can check that there are no infinite subsets A′, B′ such that χ(i, j) is the
same for all i ∈ A′ and j ∈ B′.

3 Main theorems

In this section we prove Theorems 1.1 to 1.3. Since Theorem 1.1 is a special case of Theorem 1.2, it suffices
to prove Theorems 1.2 and 1.3. These theorems will follow from the following theorem, which is our main
result.

Theorem 3.1. Let A be a finite set containing at least two elements, and let d ≥ 1. There exists a constant
κ(A, d), defined below, such that the following holds.

If k ≥ κ(A, d) then there exists a constant m(A, d, k) such that every A-valued degree d function on

[n]
k



is an m(A, d, k)-junta.
Conversely, if 1 ≤ k < κ(A, d) then for every m ≥ 1 there exist an n and an A-valued degree d function

on

[n]
k


which is not an m-junta. Similarly, there exists an A-valued degree d function on


[∞]
k


which is not

an m-junta for any finite m.

The constant κ(A, d) is the smallest value κ such that all of the following hold:

1. κ > d.

2. For all e ∈ {0, . . . , d−1}: if P is a univariate polynomial of degree at most d−e and P (0), . . . , P (κ−e) ∈
A then P is constant.

3. For all t ≥ 0 and r, s ≥ 1 satisfying t+ rs ≤ d: if P is a univariate polynomial of degree at most s and
P (0), . . . , P (⌊κ−t

r ⌋) ∈ A then P is constant.

We show in Section 3.5 that κ(A, d) exists, that is, some κ satisfies all these constraints.
Since κ > d, if the polynomial P in Item 2 is not constant then the sequence P (0), . . . , P (κ − e) is

not constant. For the same reason, if the polynomial P in Item 3 is not constant then the sequence
P (0), . . . , P (⌊k−t

r ⌋) is not constant.
Let us explain this definition by way of proving the converse part of Theorem 3.1.

Proof of converse part of Theorem 3.1. Let a, b be two distinct elements of A. For each k such that 1 ≤ k <
κ(A, d) and each m′ ≥ k, we will construct n and an A-valued degree d function on the slice


[n]
k


which is

not an m′-junta. In order to prove that the function is not a junta, we will appeal to Lemma 2.2, employing
sets I, J such that min(|I|, |J |) ≥ m := m′ + 1.

Suppose first that 1 ≤ k ≤ d. Let n = 2km, and consider the function

f(x) = a+ (b− a)

m

i=1

x{(i−1)k+1,...,ik}.

By construction, f has degree at most k. The sum is always at most 1, and so this function is A-valued.
Let I = {1, . . . , km} and J = {km+ 1, . . . , 2km}. For each i′ = (i− 1)k + ℓ ∈ I and j ∈ J , let x ∈


[n]
k


be
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given by x(i−1)k+1 = · · · = xik = 1, and all other coordinates are zero. Then f(x) = b and f(x(i′ j)) = a.
Applying Lemma 2.2, we see that f is not an m′-junta.

From now on, we assume that k > d.
Suppose next that e ∈ {0, . . . , d− 1} and there exists a univariate polynomial P of degree at most d− e

such that P (0), . . . , P (k − e) ∈ A and P is non-constant. Since k ≥ d, the list P (0), . . . , P (k − e) cannot be
constant, and so P (w) ∕= P (w − 1) for some w ∈ {1, . . . , k − e}. Let n = e + 2m, where m ≥ k − e, and
consider the function

f(x) = a(1− x{1,...,e}) + x{1,...,e}P


m

i=1

xe+i


.

By construction, f has degree at most e + (d − e) = d. If x{1,...,e} = 0 then f(x) = a, and otherwise, the
input to P is at most k−e, and so f is A-valued. Let I = {e+1, . . . , e+m} and J = {e+m+1, . . . , e+2m}.
For each i′ = i+e ∈ I and j ∈ J , let x ∈


[n]
k


be any input such that x1 = · · · = xe = 1; xe+h = 1 for exactly

w many h ∈ {1, . . . ,m}; and xj = 0. This requires e+ w ≤ k inputs to be 1 and m− w + 1 ≤ m inputs to
be 0. Since n − k ≥ m, such an input exists. The input x satisfies f(x) = P (w) and f(x(i j)) = P (w − 1).
Applying Lemma 2.2, we see that f is not an m′-junta.

Finally, suppose that t ≥ 0 and r, s ≥ 1 satisfy t+ rs ≤ d, and that there exists a univariate polynomial
P of degree at most s ≤ ⌊d−t

r ⌋ such that P (0), . . . , P (⌊k−t
r ⌋) ∈ A and P is non-constant. Since k ≥ d,

the list P (0), . . . , P (⌊k−t
r ⌋) cannot be constant, and so P (w) ∕= P (w − 1) for some w ∈ {1, . . . , ⌊k−t

r ⌋}. Let
n = t+ 2rm, where m ≥ k − t, and consider the function

f(x) = a(1− x{1,...,t}) + x{1,...,t}P


m

i=1

x{t+(i−1)r+1,...,t+ir}


.

By construction, f has degree at most t+rs ≤ d. If x{1,...,t} = 0 then f(x) = a, and otherwise, the input to P

is at most k−t
r , and so f is A-valued. Let I = {t+1, . . . , t+rm} and J = {t+rm+1, . . . , t+2rm}. For each

i′ = t+ (i− 1)r+ ℓ and j ∈ J , let x ∈

[n]
k


be given by x1 = · · · = xt = 1; xt+(h−1)r+1 = · · · = xt+hr = 1 for

exactly w many h ∈ {1, . . . ,m}; and xj = 0. This requires t+rw ≤ k inputs to be 1 and m−w+1 ≤ m inputs
to be 0. Since n− k ≥ m, such an input exists. The input x satisfies f(x) = P (w) and f(x(i j)) = P (w− 1).
Applying Lemma 2.2, we see that f is not an m′-junta.

Taking m = ∞ and allowing for infinitely many more input coordinates, in all cases listed above we
obtain A-valued degree d functions on


[∞]
k


which are not m-juntas for any finite m. For example, when

1 ≤ k ≤ d we can consider the function

f(x) = a+ (b− a)

∞

i=1

x{2(i−1)k+2,...,2ik}.

For any m, we can take I = {x2, x4, . . . , x2m} and J = {x1, x3, . . . , x2m−1} and conclude, via Lemma 2.2,
that f is not an (m− 1)-junta.

The proof of Theorem 3.1 occupies Sections 3.1 to 3.4. In order to complete the proof of Theorems 1.2
and 1.3, we need the following lemma, proved in Section 3.4.

Lemma 3.2. Let A be a finite set containing at least two elements, and let d ≥ 1. The parameters κ(A, d)
and k(A, d), defined in Theorems 1.2 and 3.1, are equal.

Furthermore, if A is an arithmetic progression then k(A, d) = |A|d.

We can now prove our main theorems.

Proof of Theorem 1.2. Given Lemma 3.2, the converse direction follows from Theorem 3.1. These two results
also imply that for every k ≥ k(A, d) there is a constant m(A, d, k) such that for any n ≥ 2k, any A-valued
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degree d function on

[n]
k


is an m(A, d, k)-junta. Corollary 2.4 shows that if k ≥ Cd

A, n ≥ 2k, and f is an

A-valued degree d function on

[n]
k


, then f is a KAC

d
A-junta. Therefore the theorem holds for

m(A, d) = max

{m(A, d, k) : k ≤ k(A, d) < Cd

A} ∪ {KAC
d
A}


.

Proof of Theorem 1.3. Given Lemma 3.2, the converse direction follows from Theorem 3.1. Suppose now
that k ≥ k(A, d) and that f is an A-valued degree d function on


[∞]
k


.

We first show that f is an m-junta for m = 2m(A, d). Suppose that this is not the case. We construct
a sequence i1, j1, . . . , im(A,d)+1, jm(A,d)+1 as follows. Given i1, j1, . . . , it, jt for t ≤ m(A, d), since f is not a

Kt-junta for Kt = {i1, j1, . . . , it, jt}, we can find an input vt+1 ∈

[∞]
k


and indices it+1, jt+1 /∈ Kt such that

f(vt+1) ∕= f(v
(it+1 jt+1)
t+1 ).

Let St be the set of 1-indices of vt, and let f ′ be the restriction of f to a finite slice obtained by zeroing
out all coordinates other than the ones in

m(A,d)+1

t=1

(St ∪ {it, jt}).

According to Theorem 1.2, f ′ is a K-junta for some K of size at most m(A, d). By construction, the inputs

v1, . . . , vm(A,d)+1 restrict to inputs on the domain of f ′ which satisfy f ′(vt) ∕= f ′(v
(it jt)
t ). This means that

K intersects {it, jt} for all t ∈ [m(A, d) + 1], and so |K| > m(A, d). This contradiction shows that f must

be an m-junta. Therefore we can identify f with an A-valued degree d function on

[m]
d


, which according

to Theorem 1.2 is an m(A, d)-junta.

3.1 Quantization

Let f be an A-valued degree d function on

[n]
k


, where k ≥ d. According to Lemma 2.1, we can represent f

as a linear combination of degree d monomials. In this part of the proof we show that the coefficients are
quantized, in the sense that they belong to a set C depending only on A, d, k.

Lemma 3.3. For any k ≥ d ≥ 1 and finite A ⊆ R there exists a finite set C ⊆ R such that the following
holds.

Let f be an A-valued degree d function on

[n]
k


, where n ≥ k + d, and suppose that

f(x) =


S⊆[n]
|S|=d

c(S)xS .

Then all coefficients c(S) belong to C.

Proof. Let S ⊆ [n] be an arbitrary subset of size d, and let I ⊆ [n] be an arbitrary subset of size k disjoint
from S. For every e ∈ {0, . . . , d}, define

h(e) =


S′⊆S
|S′|=e



I′⊆I
|I′|=k−e

f(S′ ∪ I ′).

Each h(e) is a sum of at most 2d+k many elements from A, and so belongs to some finite set.
In order to express h(e) in terms of the coefficients c(T ), for e ∈ {0, . . . , d} define

γ(e) =


S′⊆S
|S′|=e



I′⊆I
|I′|=d−e

c(S′ ∪ I ′).
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Simple combinatorics shows that

h(e) =

e

e′=0


d− e′

d− e


k − d+ e′

e


γ(e′).

Each h(e) is a linear combination of γ(0), . . . , γ(e) whose coefficients depend only on d, k, in which
the coefficient of γ(e) is non-zero. Therefore we can express each γ(e) as a similar linear combination of
h(0), . . . , h(e). In particular, c(S) = γ(d) is some linear combination of h(0), . . . , h(d), and so belongs to
some finite set.

The condition n− k ≥ d is necessary: if n− k < d then

C

d

i=1

(1− xi)

is a degree d polynomial which represents the zero function for any C ∈ R.
As an aside, Lemma 3.3 implies that the representation of Lemma 2.1 is unique. Indeed, if f =

S c1(S)xS =


S c2(S)xS are two such representations, then f =


S(θc1(S) + (1 − θ)c2(S))xS is an-
other such representation for any real θ. If c1(S) ∕= c2(S), then {θc1(S) + (1 − θ)c2(S) : θ ∈ R} = R,
contradicting Lemma 3.3 when applied to the finite set A which is the range of f .

3.2 Bunching of coefficients

Suppose that f is a degree d junta. Lemma 3.3 shows that its degree d expansion is quantized. Yet it is not
necessarily the case that the degree d expansion is sparse. For example, the degree d expansion of x{1,...,d−1}
is

1

k − d+ 1

n

i=d

x{1,...,d−1,i}.

In the following steps of the proof, we gradually convert this kind of expansion into an expansion which
mentions a bounded number of variables. The first step shows that the coefficients c(S) in the degree d
expansion are “bunched” in the following sense.

Lemma 3.4. For finite A ⊆ R containing at least two elements, d ≥ 1, and k ≥ κ(A, d), there is a constant
N for which the following holds.

Let f be an A-valued degree d function on

[n]
k


, where n ≥ k + d, and suppose that

f(x) =


S⊆[n]
|S|=d

c(S)xS

is the expansion whose existence is guaranteed by Lemma 2.1.
We can assign each subset T ⊆ [n] of size smaller than d a value c(T ) ∈ C (where C is the set promised

by Lemma 3.3) such that c(T ∪ {i}) = c(T ) for all but N many i ∈ [n] \ T .

The proof of Lemma 3.4 proceeds by backwards induction on the size of the set T . The bulk of the work
lies in the basis of the induction.

Proof of Lemma 3.4, base case. Under the assumptions of Lemma 3.4, we assign for each subset T ⊆ [n] of
size d− 1 a value c(T ) ∈ C such that c(T ∪ {i}) = c(T ) for all but Nd−1 many i ∈ [n] \ T , where Nd−1 is a
constant depending only on A, d, k.

Fix a subset T ⊆ [n] of size d− 1. We partition [n] \ T into |C| sets Xγ as follows: Xγ contains all i /∈ T
such that c(T ∪ {i}) = γ. For every γ1 ∕= γ2, we color all non-empty subsets S ⊆ Xγ1 ∪Xγ2 of size at most
d as follows: the color assigned to S is

T ′ → c(T ′ ∪ S),
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where T ′ ranges over all subsets of T of size d − |S|. According to Lemma 3.3, the color of S is one of

|C|(
d−1

d−|S|) possible functions. Applying Theorem 2.5 repeatedly, there is a constant M , depending only on
A, d, k, such that if |Xγ1 |, |Xγ2 | ≥ M then there exist subsets X ′

γ1
⊆ Xγ1 and X ′

γ2
⊆ Xγ2 of size k and colors

cT ′,e ∈ C, for all T ′ ⊆ T and e ≤ d− |T ′|, such that if S ⊆ T ∪X ′
γ1

∪X ′
γ2

has size d then c(S) = cS∩T,|S∩Xγ1 |.
We now prove that for every T ′ ⊆ T there exists a color cT ′ ∈ C such that cT ′,e = cT ′ for all e ≤ d− |T ′|.

The proof is by induction on |T ′|. Suppose that the claim holds for all proper subsets of some T ′ ⊆ T . We
prove it for T ′.

Let w ≤ k − |T ′|. The value of f on an input consisting of T ′ together with w elements from X ′
γ1

and
k − |T ′|− w elements from X ′

γ2
is



T ′′⊊T ′


k − |T ′′|
d− |T ′′|


cT ′′ +

d−|T ′|

e=0


w

e


k − |T ′|− w

d− |T ′|− e


cT ′,e.

This is a polynomial P (w) of degree at most d − |T ′| such that P (0), . . . , P (k − |T ′|) ∈ A, and so since
k ≥ κ(A, d), P is constant.

Since P (e) only depends on cT ′,0, . . . , cT ′,e, it follows that for every w ∈ {1, . . . , d− |T ′|} we have

P (w)− P (w − 1) =


k − |T ′|− w

d− |T ′|− w


cT ′,w −

w−1

e=0

ρw,ecT ′,e,

for some ρw,0, . . . , ρw,w−1. If cT ′,0 = cT ′,1 = · · · = cT ′,w = cT ′ then P (w) = P (w − 1) since both are equal

to


T ′′⊆T ′


k−|T ′′|
d−|T ′′|


cT ′′ . This shows that


e ρw,e =


k−|T ′|−w
d−|T ′|−w


.

We can now prove inductively that cT ′,w = cT ′,0 for w ∈ {1, . . . , d − |T ′|}. Suppose that this holds for

w′ < w. Then 0 = P (w)−P (w− 1) =

k−|T ′|−w
d−|T ′|−w


(cT ′,w − cT ′,0), and so cT ′,w = cT ′,0. We can therefore take

cT ′ = cT ′,0.

Any i1 ∈ X ′
γ1

satisfies γ1 = c(T ∪ {i1}) = cT,1. Similarly, any i2 ∈ X ′
γ2

satisfies γ2 = c(T ∪ {i2}) = cT,0.
Since γ1 ∕= γ2 whereas cT,0 = cT,1, we reach a contradiction. It follows that at most one of the sets Xγ

can satisfy |Xγ | ≥ M . Choosing c(T ′) to be the value γ which maximizes |Xγ |, the base case follows, with
Nd−1 = |C|M .

The inductive step is more elementary.

Proof of Lemma 3.4, inductive step. Let e ≤ d−2. Suppose that each subset T ⊆ [n] of size e+1 is assigned
a value c(T ) ∈ C such that c(T ∪ {i}) = c(T ) for all but Ne+1 many i ∈ [n] \ T . We assign for each subset
T ⊆ [n] of size e a value c(T ) ∈ C such that c(T ∪ {i}) = c(T ) for all but Ne many i ∈ [n] \ T , where
Ne = |C|(N2

e+1 +Ne+1 + 1).
Fix a subset T ⊆ [n] of size e. For γ ∈ C, let Xγ consist of all i ∈ [n] \ T such that c(T ∪ {i}) = γ. In

order to prove the inductive step, it suffices to show that at most one γ ∈ C satisfies |Xγ | ≥ N2
e+1+Ne+1+1.

Suppose, for the sake of contradiction, that |Xγ1
|, |Xγ2

| ≥ N2
e+1 + Ne+1 + 1 for some γ1 ∕= γ2. Choose

Ne+1+1 arbitrary elements i1, . . . , iNe+1+1 ∈ Xγ1 . By assumption, for each is there is an exceptional set Es

of size at most Ne+1 such that if j ∈ [n]\ (T ∪{is}∪Es) then c(T ∪{is, j}) = c(T ∪{is}) = γ1. Since |Xγ2
| >

(Ne+1 +1)Ne+1, there exists j ∈ Xγ2
which does not belong to any Es, and consequently c(T ∪ {j, is}) = γ1

for all s ∈ {1, . . . , Ne+1 + 1}. However, this contradicts the promise that c(T ∪ {j, i}) = c(T ∪ {j}) = γ2 for
all but Ne+1 many i ∈ [n] \ (T ∪ {j}).

Lemma 3.4 follows by taking N = max(N0, . . . , Nd−1).

3.3 Sparsification

If c(S) ∕= 0 for some S of size d− 1, then we can sparsify the expansion of f by introducing the appropriate
product of xS . In this way, we can recover x{1,...,d−1} from its degree d expansion. The following lemma
carries out this procedure for all sets of size smaller than d.
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Lemma 3.5. For finite A ⊆ R containing at least two elements, d ≥ 1, and k ≥ κ(A, d), there is a constant
M and a finite subset D for which the following holds.

Let f be an A-valued degree d function on

[n]
k


, where n ≥ k + d. Then f has an expression of the form

f(x) =


S⊆[n]
|S|≤d

C(S)xS ,

where C(S) ∈ D, and for every T ⊆ [n] of size less than d, we have C(T ∪ {i}) = 0 for all but at most M
many i ∈ [n] \ T .

Proof. The transformation proceeds in several stages, and accordingly, for each e ≤ d we will construct a
constant Me, a finite subset De (both depending only on A, d, k), and coefficients ce(S) ∈ De for all sets
S ⊆ [n] of size at most d, such that

f(x) =


S⊆[n]
|S|<e or |S|=d


k − |S|
d− |S|


ce(S)xS

and the following properties hold:

(a) For every T ⊆ [n] of size less than e, we have ce(T ∪ {i}) = 0 for all but at most Me many i ∈ [n] \ T .

(b) For every T ⊆ [n] of size between e and d− 1, we have ce(T ∪ {i}) = ce(T ) for all but at most Me many
i ∈ [n] \ T .

Once we prove that, taking M = Md, D = Dd and C(S) =

k−|S|
d−|S|


cd(S) will prove the lemma.

When e = 0, Lemma 3.4 shows that we can take M0 = N , D0 = C, and c0 = c.
Now suppose that we have constructed Me,De, ce, where e < d. We define ce+1(S) = ce(S) if |S| ≤ e,

and
ce+1(S) = ce(S)−



T⊆S
|T |=e

ce(T )

if |S| > e. Since the sum on the right contains at most 2d terms, we can construct the finite subset De+1

from the finite subset De. Next, let us check that the new coefficients represent f :



S⊆[n]
|S|≤e or |S|=d


k − |S|
d− |S|


ce+1(S)xS =



S⊆[n]
|S|<e


k − |S|
d− |S|


ce(S)xS +



T⊆[n]
|T |=e


k − e

d− e


ce(T )xT +



S⊆[n]
|S|=d



ce(S)−


T⊆S
|T |=e

ce(T )



xS =



S⊆[n]
|S|<e


k − |S|
d− |S|


ce(S)xS +



T⊆[n]
|T |=e

ce(T )


T⊆S⊆[n]
|S|=d

xS +


S⊆[n]
|S|=d



ce(S)−


T⊆S
|T |=e

ce(T )



xS =



S⊆[n]
|S|<e


k − |S|
d− |S|


ce(S)xS +



S⊆[n]
|S|=d

ce(S)xS = f(x).
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It remains to prove properties (a) and (b). Property (a) follows for sets of size less than e by induction.
If T ⊆ [n] has size e and ce+1(T ∪ {i}) ∕= 0 for some i ∈ [n] \ T then since

ce+1(T ∪ {i}) = ce(T ∪ {i})− ce(T )−


R⊆T
|R|=e−1

ce(R ∪ {i}),

either ce(T ∪ {i}) ∕= ce(T ) or ce(R ∪ {i}) ∕= 0 for some subset R ⊆ T of size e− 1. Property (b) of ce shows
that there are at most Me many i /∈ T such that ce(T ∪ {i}) ∕= ce(T ). For each R, property (a) of ce shows
that there are at most Me many i /∈ T such that ce(R∪ {i}) ∕= 0. In total, we deduce that ce+1(T ∪ {i}) = 0
for all but at most (e+ 1)Me indices i /∈ T .

The proof of property (b) is similar. If T ⊆ [n] has size at least e+ 1 and ce+1(T ∪ {i}) ∕= ce+1(T ) then
since

ce+1(T ∪ {i})− ce+1(T ) = ce(T ∪ {i})− ce(T ) +


R⊆T
|R|=e−1

ce(R ∪ {i}),

either ce(T ∪ {i}) ∕= ce(T ) or ce(R ∪ {i}) ∕= 0 for some R ⊆ T of size e− 1 not including i. Property (b) of
ce shows that there are at most Me many i /∈ T such that ce(T ∪ {i}) ∕= ce(T ). For each R, property (a)
of ce shows that there are at most Me many i /∈ T such that ce(R ∪ {i}) ∕= 0. In total, we deduce that
ce+1(T ∪ {i}) = ce+1(T ) for all but at most 2dMe indices i /∈ T .

We complete the proof of the inductive step by taking Me+1 = 2dMe.

3.4 Junta conclusion

Lemma 3.5 gives us an expression for f in which the coefficients C(S) are locally sparse: for each T , only
a bounded number of coefficients C(T ∪ {i}) are non-zero. We would like to extend this to global sparsity:
only a bounded number of coefficients C(S) are non-zero. We do so in steps, proving the following lemma
inductively.

Lemma 3.6. For any finite A ⊆ R containing at least two elements, d ≥ 1, and k ≥ κ(A, d), and any
t+ r ≤ d, there exist constants N(t, r) ≥ k + d and L(t, r) such that the following holds.

Let f be an A-valued degree d function on

[n]
k


, where n ≥ N(t, r). Let C(S) be the coefficients of the

expression in Lemma 3.5. For any subset T ⊆ [n] of size t, there are at most L(t, r) many subsets R ⊆ [n]\T
of size r such that C(T ∪R) ∕= 0.

Before proving the lemma, let us briefly show how it implies the main part of Theorem 3.1 (we proved
the converse part at the beginning of Section 3).

Proof of main part of Theorem 3.1. We prove the theorem with

m(A, d, k) = max


N(0, 1), . . . , N(0, d),

d

r=1

rL(0, r)


.

Let f be an A-valued degree d function on

[n]
k


, where k ≥ κ(A, d). If n < N(0, r) for some r ∈ {1, . . . , d},

then f is trivially an n-junta, and so an m(A, d, k)-junta. Otherwise, consider the expression promised by
Lemma 3.5:

f(x) =


S⊆[n]
|S|≤d

C(S)xS .

According to Lemma 3.6, for all r ∈ {1, . . . , d}, at most L(0, r) many sets S ⊆ [n] of size r satisfy C(S) ∕= 0.
If we take the union of all these sets for all r, we obtain a set J of size at most m(A, d, k) such that f is a
J-junta, completing the proof.

We now turn to the proof of Lemma 3.6.
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Proof of Lemma 3.6. When r = 0, the lemma trivially holds, for N(t, 0) = k + d and L(t, 0) = 1. When
r = 1, the lemma follows directly from Lemma 3.5, taking N(t, 1) = k + d and L(t, 1) = M . Therefore we
can assume that r ≥ 2.

We prove the lemma for all other parameters by induction: first on r, then on t. This means that given
t, r, we assume that the lemma holds for all (t′, r′) such that r′ < r and for all (t′, r) such that t′ < t, and
prove it for (t, r).

Let us be given t, r such that t + r ≤ d and r ≥ 2, and let T ⊆ [n] be a set of size t. We want to
bound the size of the collection R consisting of all subsets of [n] of size r which are disjoint from T and
satisfy C(T ∪R) ∕= 0. We will show that for the correct choice of N(t, r) ≥ t+ r and L(t, r), the assumption
|R| ≥ L(t, r) leads to a contradiction. It follows that |R| < L(t, r).

Starting with R, we will extract subcollections R ⊇ R1 ⊇ R2 ⊇ R3 ⊇ R4 which are more and more
structured:

• All R ∈ R1 are good : C(S) = 0 for all subsets S ⊆ T ∪R intersecting R other than T ∪R itself.

• The sets in R2 are disjoint.

• If R1, . . . , Rs ∈ R3 are such that C(S) ∕= 0 for some subset S ⊆ T ∪R1∪ · · ·∪Rs intersecting R1, . . . , Rs

and different from T ∪Ri then |S ∩ T |+ rs ≤ d.

• For all T ′ ⊆ T and all R1, . . . , Rs ∈ R4, the sum of C(T ′ ∪ S) over all subsets S ⊆ R1 ∪ · · · ∪ Rs

intersecting R1, . . . , Rs only depends on T ′ and s.

Choosing L(t, r) large enough, we will be able to guarantee that |R4| ≥ k. Choosing N(t, r) large enough,
we will be able to find k many points P outside of T,R4 such that C(S) = 0 for any S ⊆ T ∪


R4 ∪ P

intersecting P , and this will enable us to reach a contradiction.

We now proceed with the details. Rephrasing the above definition, a set R ∈ R is good if C(T ′ ∪R′) = 0
for all T ′ ⊆ T and non-empty R′ ⊆ R, other than T ′ = T and R′ = R. In order to show that many sets are
good, we bound the number of sets which are bad.

Let T ′ ⊊ T be a set of size t′ < t. According to the induction hypothesis, the number of R′ ⊆ [n] of
size r′ ∈ {1, . . . , r} disjoint from T ′ such that C(T ′ ∪ R′) ∕= 0 is at most L(t′, r′). Applying the induction
hypothesis again, for each such R′, the number of sets R′′ ⊆ [n] of size r − r′ disjoint from T ∪R′ such that
C(T ∪R′ ∪R′′) ∕= 0 is at most L(t+ r′, r − r′). Every set R ∈ R which is bad due to T ′ ∕= T is of the form
R′ ∪R′′, and so for each T ′, there are at most L(t′, r′)L(t+ r′, r − r′) such sets.

If T ′ = T then the same argument works as long as r′ < r. It follows that the number of bad sets is at
most

Λ′ =

t−1

t′=0


t

t′

 r

r′=1

L(t′, r′)L(t+ r′, r − r′) +

r−1

r′=1

L(t, r′)L(t+ r′, r − r′).

Accordingly, if we define R1 to consist of all good R ∈ R, then |R1| ≥ Λ1 := L(t, r)− Λ′.

The next step is constructing R2. To that end, consider a graph whose vertices are the sets in R1, and in
which two vertices R1, R2 are connected if they are not disjoint. We will show that the graph has bounded
degree, and so a large independent set.

If R1, R2 ∈ R1 are not disjoint then there is some i ∈ R1 such that i ∈ R2. Given i ∈ R1, the induction
hypothesis shows that the number of possible R2 is L(t + 1, r − 1), since R2 \ {i} is a subset of [n] of size
r− 1, disjoint from T ∪ {i}, such that C(T ∪ {i}∪ (R2 \ {i})) ∕= 0. Since there are r choices for i, this shows
that the degree of every vertex in the graph is at most rL(t+ 1, r − 1).

A simple greedy algorithm now constructs a subset R2 ⊆ R1 of size at least Λ2 := Λ1/(rL(t+1, r−1)+1).

In order to construct R3, we consider a hypergraph on the vertex set R2. For each T ′ ⊆ T and s ≤ d
such that |T ′|+rs > d, we add a hyperedge {R1, . . . , Rs} (where all Ri are different) if there exist non-empty
R′

i ⊆ Ri such that C(T ′ ∪R′
1 ∪ · · · ∪R′

s) ∕= 0 (we define C(S) = 0 if |S| > d). We will show that this graph
contains few hyperedges, specifically at most Kt,r|R2|s−1 hyperedges of uniformity s.
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Let T ′ ⊆ T have size t′ and let s ≤ d be such that t′ + rs > d. We want to bound the number of sets
{R1, . . . , Rs} (where all Ri are different) such that C(T ′ ∪R′

1 ∪ · · · ∪R′
s) ∕= 0 for some non-empty R′

i ⊆ Ri.
If R′

i = Ri for all i then |T ′ ∪ R′
1 ∪ · · · ∪ R′

s| = t′ + rs > d, and so C(T ′ ∪ R′
1 ∪ · · · ∪ R′

s) = 0. Therefore
R′

i ∕= Ri for some i. By rearranging the indices, we can assume that R′
s ∕= Rs.

There are at most |R2|s−1 many choices for R1, . . . , Rs−1. For each choice of distinct R1, . . . , Rs−1, there
are at most 2sr many choices of non-empty R′

1, . . . , R
′
s−1. Given R′

1, . . . , R
′
s−1 of combined size u and given

r′ ∈ {1, . . . , r − 1}, the induction hypothesis shows that there are at most L(t′ + u, r′) many sets R′
s ⊆ [n]

of size r′, disjoint from T ′ ∪ R′
1 ∪ · · · ∪ R′

s−1, such that C(T ′ ∪ R′
1 ∪ · · · ∪ R′

s) ∕= 0. For each such R′
s, the

induction hypothesis shows that there are at most L(t+ r′, r − r′) many sets R′′
s ⊆ [n] disjoint from T ∪R′

s

such that C(T ∪R′
s ∪R′′

s ) ∕= 0. Altogether, the number of hyperedges of uniformity s is at most

t

t′=0


t

t′


|R2|s−12sr

d

u=0

r−1

r′=1

L(t′ + u, r′)L(t+ r′, r − r′),

where L(t′, r′) = 0 if t′+ r′ > d. Hence we can find a constant Kt,r (depending on known L(t′, r′)) such that
for every s ≤ d, the number of hyperedges of uniformity s is at most Kt,r|R2|s−1.

Suppose now that we sample a subset of R2 by including each R ∈ R2 with probability p = |R2|−(1−1/d),
and then removing all R which are incident to any surviving hyperedge. The expected number of surviving
R is at least

p|R2|−
d

s=1

spsKt,r|R2|s−1 = |R2|1/d −Kt,r

d

s=1

s|R2|s/d−1 ≥ |R2|1/d −Kt,rd
2.

In particular, we can find a subset R3 of size at least Λ3 := Λ
1/d
2 −Kt,rd

2 which spans no hyperedges. That
is, if R1, . . . , Rs ∈ R3 and C(S) ∕= 0 for some S ⊆ T ∪ R1 ∪ · · · ∪ Rs intersecting all of R1, . . . , Rs, then
|S ∩ T |+ rs > d.

We construct R4 by applying Ramsey’s theorem. For every s such that rs ≤ d, we color every subset
{R1, . . . , Rs} ⊆ R3 of size s by the function

T ′ →


R′
1⊆R1,...,R

′
s⊆Rs

R′
1,...,R

′
s ∕=∅

C(T ′ ∪R′
1 ∪ · · · ∪R′

s).

where T ′ ranges over all subsets of T (recall that we defined C(S) = 0 when |S| > d). According to
Lemma 3.3, all summands belong to a finite set D, and so the sum attains one of at most |D|2rs possible

values. Consequently, the number of colors is at most (|D|2rs)2t . If R3 is large enough then we can apply
Ramsey’s theorem to obtain a subset R4 ⊆ R3 of size k, and values Γ(T ′, s) for all T ′ ⊆ T and s ≤ ⌊d/r⌋,
such that all distinct R1, . . . , Rs ∈ R4 satisfy



R′
1⊆R1,...,R

′
s⊆Rs

R′
1,...,R

′
s ∕=∅

C(T ′ ∪R′
1 ∪ · · · ∪R′

s) = Γ(T ′, s).

We can extend the definition of Γ to larger s. The construction of R3 guarantees that Γ(T ′, s) = 0 if
|T ′|+ rs > d. Moreover, since all R ∈ R4 are good, we know that Γ(T ′, 1) = 0 if T ′ ∕= T and Γ(T, 1) ∕= 0.

At this point, we can explain how to choose L(t, r). We choose L(t, r) so that the condition |R3| ≥ Λ3 is
strong enough in order for the application of Ramsey’s theorem detailed above to go through.

Let V consist of the union of all sets in R4. The next step is to choose a set P = {p1, . . . , pk} ⊆ [n] of
size k such that C(S) = 0 for any subset S ⊆ T ∪ V ∪ P intersecting P . This will be possible assuming that
n is large enough.
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We choose P in k steps. In the i’th step, given the choice of p1, . . . , pi−1, we choose pi. For any e < d
and any subset S′ ⊆ T ∪ V ∪ {p1, . . . , pi−1} of size e, there are at most L(e, 1) many p /∈ S′ such that
C(S′ ∪ {p}) ∕= 0. Therefore we can find a suitable pi as long as

n > Ni(t, r) := t+ kr + i− 1 +

d−1

e=0


t+ kr + i− 1

e


L(e, 1).

Accordingly, we choose N(t, r) = max(k + d,Nk−1(t, r) + 1). This ensures that we can choose the set P .

Let T ′ be an inclusion-minimal subset of T such that Γ(T ′, s) ∕= 0 for some s > 0, and let t′ = |T ′|. This
means that Γ(T ′′, s) = 0 for all T ′′ ⊊ T ′ and s > 0. Such a choice is possible since Γ(T, 1) ∕= 0. Also, let
s′ > 0 be the minimal value such that Γ(T ′, s′) ∕= 0.

Let w be such that t′ + rw ≤ k. The value of f on an input consisting of T ′ together with the union of
w sets from R4 and k − t′ − rw elements from P is



T ′′⊆T ′

d

s=0


w

s


Γ(T ′′, s) =



T ′′⊆T ′

Γ(T ′′, 0) +

⌊ d−t′
r ⌋

s=s′


w

s


Γ(T ′, s).

This is a polynomial Q(w) of degree at most ⌊d−t′

r ⌋ such that Q(0), . . . , Q(⌊k−t′

r ⌋) ∈ A, and so since k ≥
κ(A, d), Q is constant. However, by construction, Q(s′) − Q(s′ − 1) = Γ(T ′, s′) ∕= 0. We have reached the
required contradiction, completing the proof.

3.5 The parameter k(A, d)

In this subsection we show that k(A, d) = κ(A, d), and prove that k(A, d) = |A|d when A is an arithmetic
progression, thus proving Lemma 3.2. We start by giving an alternative formula for κ(A, d) in terms of
the parameter W (A, d) introduced in Section 1, which is the minimal value W such that every degree d
polynomial P satisfying P (0), . . . , P (W ) ∈ A is constant.

Before giving the formula for κ(A, d) in terms of W (A, d), let us show that W (A, d) is indeed well-defined.

Lemma 3.7. If A ⊆ R is a set containing at least two elements and d ≥ 1 then d < W (A, d) ≤ |A|d.

Proof. Suppose that P is a degree d polynomial. We will show that if P (0), . . . , P (W ) ∈ A for W = |A|d
then P is constant, and so W (A, d) ≤ |A|d. According to the pigeonhole principle, there is a ∈ A such that
P (i) = a for at least d+ 1 many i ∈ {0, . . . ,W}. Since every non-constant degree d polynomial has at most
d roots, we conclude that P is constant.

In order to show that W (A, d) > d, we will exhibit a non-constant degree d polynomial P satisfying
P (0), . . . , P (d) ∈ A. Let a, b ∈ A be two distinct elements of A. We define

P (x) = a+ (b− a)

d−1

i=0

x− i

d− i
.

By construction, P (0) = · · · = P (d− 1) = a and P (d) = b.

Here is the formula for κ(A, d) in terms of W (A, d). It is the minimal κ which satisfies the following
conditions:

1. κ ≥ d+ 1.

2. κ− e ≥ W (A, d− e) for all e ∈ {0, . . . , d− 1}.

3. ⌊κ−t
r ⌋ ≥ W (A, s) whenever r, s ≥ 1 and t+ rs ≤ d.

This results in the following formula, whose proof is immediate.
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Lemma 3.8. If A ⊆ R is a finite set containing at least two elements and d ≥ 1 then

κ(A, d) = max



d+ 1, max
0≤e≤d−1

e+W (A, d− e), max
1≤s≤d

1≤r≤⌊d/s⌋

d− rs+ rW (A, s)



 .

Using this formula, we can prove Lemma 3.2.

Proof of Lemma 3.2. Lemma 3.7 shows that W (A, d) ≥ d+ 1. Consequently, 0 +W (A, d− 0) ≥ d+ 1, and
so we can drop the first term in the formula in Lemma 3.8. Taking s = d − e and r = 1, the third term
recovers the second term. Therefore

κ(A, d) = max
1≤s≤d

1≤r≤⌊d/s⌋

d+ r(W (A, s)− s) = max
1≤s≤d

d+


d

s


(W (A, s)− s),

since W (A, s) ≥ s + 1 according to Lemma 3.7. The expression on the right-hand side coincides with the
formula for k(A, d) in the statement of Theorem 1.2.

Suppose now that A is an arithmetic progression, say A = {a, a + b, . . . , a + (m − 1)b}, where m = |A|.
The polynomial P (x) = a+ bx shows that W (A, 1) > |A|−1, and so W (A, 1) = |A| according to Lemma 3.7.
Taking s = 1 in the formula for k(A, d), this shows that k(A, d) ≥ d+ d(|A|− 1) = |A|d. On the other hand,
for every s ∈ {1, . . . , d} we have

d+


d

s


(W (A, s)− s) ≤ d+

d

s
(s|A|− s) = |A|d,

using Lemma 3.7. Therefore k(A, d) = |A|d.

When A is not an arithmetic progression, it is not necessarily the case that k(A, d) = |A|d. For example,
k(A, 1) = W (A, 1) is the length of the longest arithmetic progression contained in A.

Here are the values of W (A, d), k(A, d) for several choices of A:

A
W (A, d) k(A, d)

1 2 3 4 5 1 2 3 4 5
{0, 1} 2 4 4 6 6 2 [1] 4 [1, 2] 6 [1] 8 [1, 2] 10 [1]
{0, 1, 3} 2 6 6 7 8 2 [1] 6 [2] 7 [2] 12 [2] 13 [2]

{0, 1, 4, 5, 20} 2 5 7 8 8 2 [1] 5 [2] 7 [3] 10 [2] 11 [2]
{0, 1, 27, 126, 370} 2 4 4 10 10 2 [1] 4 [1, 2] 6 [1] 10 [4] 11 [4]

The numbers in squares indicate that values of s for which k(A, d) is attained.

4 Final remarks

Another threshold Theorem 2.3, proved in [FI19a], states that if Cd ≤ k ≤ n − Cd and f is a Boolean

degree d function on

[n]
k


, then f is a KCd-junta. The result proved in [FI19a] is in fact stronger: under

the same assumptions, there is a Boolean degree d function g on the Boolean cube {0, 1}n such that f is the
restriction of g to the slice. This implies the junta conclusion since every Boolean degree d function on the
Boolean cube is an O(2d)-junta [NS94, CHS20, Wel20].

In this paper, we answer one open question raised in [FI19a]: we find the minimal k = k(d) such that

every Boolean degree d function on

[n]
k


, where n ≥ 2k, is a junta. Another open question in [FI19a] asks

for the minimal ℓ = ℓ(d) such that every Boolean degree d function on

[n]
ℓ


, where n ≥ 2ℓ, is the restriction

of a Boolean degree d function on {0, 1}n. Clearly, ℓ(d) ≥ k(d). Is it the case that ℓ(d) = k(d)? When d = 1,
this follows from [FI19b].
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More generally, we can define ℓ(A, d) for any finite A. It is not always the case that ℓ(A, d) = k(A, d).
For example, if A = {0, 5, 7, 8, 12, 13, 15} then k(A, 1) = 2 whereas ℓ(A, 1) = 3. Indeed, the function

5x1 + 7x2 + 8x3 is A-valued on

[n]
2


for any n ≥ 4, but is not the restriction of any A-valued degree 1

function on {0, 1}n.

Multislice The multislice is the generalization of the slice to functions on {0, . . . ,m− 1} for arbitrary m.
Given a partition n = λ0+ · · ·+λm−1, the corresponding multislice consists of all vectors in {0, . . . ,m− 1}n
containing exactly λi coordinates whose value is i. Given another partition k = k1 + · · · + km−1, we can
consider the family of multislices with λ0 ≥ k and λ1 = k1, . . . ,λm−1 = km−1. We conjecture that all of our
results extend to this setting.
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[NS94] Noam Nisan and Márió Szegedy. On the degree of Boolean functions as real polynomials. Comput.
Complexity, 4(4):301–313, 1994. Special issue on circuit complexity (Barbados, 1992).

[vzGR97] Joachim von zur Gathen and James R. Roche. Polynomials with two values. Combinatorica,
17(3):345–362, 1997.

[Wel20] Jake Wellens. Relationships between the number of inputs and other complexity measures of
Boolean functions. arXiv, abs/2005.00566, 2020.

16


