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Abstract

Grimmett and McDiarmid analyzed a simple heuristic for finding stable sets in random graphs
(suggested earlier by Johnson). They showed that the heuristic finds a stable set of size roughly
log2 n probability, on a G(n, 1/2) random graph, with high probability. We determine the asymptotic
distribution of the size of the stable set found by the algorithm.

1 Introduction

Grimmett and McDiarmid [GM75] considered the problem of coloring G(n, 1/2) random graphs. As part
of their solution, they suggested the following simple greedy heuristic for finding a large stable set: scan
the vertices in random order, adding to the stable set any vertex which is not adjacent to the vertices
added so far. They showed that this heuristic algorithm constructs a stable set of size roughly log2 n,
with high probability. In contrast, the maximum stable set in the graph has size roughly 2 log2 n, with
high probability, and is concentrated on one or two values [Mat72, BE76, Mat76]. (This contrasts with
the non-concentration of the chromatic number, shown recently by Heckel [Hec20].)

Karp [Kar76] concluded that the Grimmett–McDiarmid algorithm (which had been suggested inde-
pendently by Johnson [Joh74]) gives a 2-approximation to the maximum stable set problem in G(n, 1/2)
random graphs, with high probability. He asked whether this approximation ratio can be improved to
2 − ε for any ε > 0. Despite some lower order improvements [KS98], the problem remains open. (The
planted clique problem [Jer92, Kuč95], an attempt to mitigate this difficulty, is beyond the scope of this
work.)

Grimmett and McDiarmid showed that for every ε > 0, with high probability their algorithm con-
structs a stable set whose size is between (1 − ε) log2 n and (1 + ε) log2 n. Their bounds were later
improved [McD79, McD84, BT85] in the context of analyzing algorithms for coloring random graphs.
However, to the best of our knowledge, an analysis of the limiting distribution of the size has never been
published.1 This is our goal in this work.

Let us briefly indicate how to analyze the Grimmett–McDiarmid algorithm. Denote byNk the number
of remaining vertices not adjacent to the first k vertices in the stable set constructed by the algorithm, or
zero if the algorithm terminated before choosing k vertices. A simple induction shows that E[Nk] ≤ n/2k,
and so with high probability, the algorithm produces a stable set of size at most log2 n + f(n), where
f(n) is any function satisfying f(n) → ∞.

For the lower bound, let us imagine that there are infinitely many vertices (this idea already appears
in [GM75]), let i0 = 0, and let ik be the index of the k’th chosen vertex in the random order of the
vertices (starting with 1). Then ik+1− ik ∼ G(2−k) (geometric random variable with success probability
2−k), and the size of the clique is the maximal k such that ik ≤ n. It is easy to calculate E[ik] = 2k − 1,
from which it easily follows that with high probability, the algorithm produces a stable set of size at
least log2 n− f(n), where f(n) is any function satisfying f(n) → ∞.

Let k be the size of the stable set produced by the algorithm. The foregoing suggests that k− log2 n
approaches a limiting distribution, but there is a complication: k is always an integer, while the fractional
part of log2 n varies. We will show that if we fix the fractional part {log2 n} then k − log2 n indeed
approaches a limit; and furthermore, the various limits stem from the same continuous distribution.

1In unpublished work, Huang [Hwa08] worked out the asymptotic moment generating function of the deviation of the
size from log2 n.
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Definition 1.1. The random variable H is given by the following sum of exponential distributions:

H =

∞!

i=1

E(2i),

where E(2i) is an exponential random variable with mean 2−i. (This defines a random variable due to
Kolmogorov’s three-series theorem [Fel71, VIII.5,IX.9].)

Theorem 1.2. For a given n, define

pk = Pr[k = k], qk = Pr
" n

2k+1
≤ H <

n

2k

#
.

Then we have
∞!

k=0

|pk − qk| = o(1).

Prodinger [Pro92, Pro93a] mentions that the distribution of k is identical to the distribution of the
Morris approximate counter [Mor78], thoroughly analyzed by Flajolet [Fla85]. In particular, Theorem 1.2
is very similar to [Fla85, Proposition 3].

The existence of a limiting distribution in the sense of Theorem 1.2 also follows from the work of
Janson, Lavault, and Louchard [JLL08] on leader election algorithms; see also [Pro93a, Pro93b, FMS96,
Kne01, LP08].

Background on stable set algorithms The first heuristic algorithms for finding stable sets appear
in early work from the 1960s on scheduling [Col64, WP67], as an ingredient of graph coloring algorithms.
These heuristics (“non-adaptive degree-greedy”) scan the vertices in increasing order of degree, adding
each vertex not adjacent to vertices added so far. Matula [Mat68] and Kučera [Kuč77] suggest an adaptive
version of this heuristic (“adaptive degree-greedy”), which repeatedly adds a feasible vertex of minimal
degree. These heuristics and others were evaluated empirically on random graphs in [MMI72, BT85].
Kučera [Kuč92] analyzed some of these heuristics with a cryptographic application in mind.

The work of Grimmett and McDiarmid [GM75] was the first to analyze any heuristic for stable set
or coloring. While aware of more sophisticated heuristics, they were only able to analyze the “random-
greedy” heuristic which is the focus of this work, suggested independently by Johnson [Joh74]. McDi-
armid [McD84] showed that the adaptive degree-greedy heuristic also produces stable sets of size at least
log2 n, but was unable to improve on that due to “awkward conditioning problems”. To the best of
our knowledge, the suspicion that the adaptive degree-greedy heuristic improves on the random-greedy
heuristic remains unproven.

Other heuristics appear in the literature. For example, Matula et al. [MMI72] and Brockington and
Culberson [BC96] suggested further degree-greedy heuristics, Jerrum [Jer92] suggested the Metropolis
algorithm, and Krivelevich and Vu [KV02] (see also [COT04]) considered running the greedy coloring
algorithm and taking the largest color class. So far the only algorithm which provably improves on the
random-greedy heuristic is due to Krivelevich and Sudakov [KS98], which runs Grimmett–McDiarmid
on half the vertices, and then switches to exhaustive search. This algorithm results in a stable set of size
log2 n+Θ(

√
log n). Consult [BBPP99] for a survey of many heuristics.

Further information on the stable set problem and the related graph coloring problem can be found
in the surveys by Frieze and McDiarmid [FM97], Krivelevich [Kri02], and Kang and McDiarmid [KM15],
as well as in standard textbooks on random graph theory [Pal88, J#LR00, Bol01, FK16].
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grant 1337/16. The author would like to thank the reviewers for their helpful suggestions, and Hsien-Kuei
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Preliminaries The Wasserstein distance W1(X,Y ) between two random variables is the minimum of
E[|X−Y |] over all couplings of X,Y . This formula shows that W1 is subadditive: W1(X1+X2, Y1+Y2) ≤
W1(X1, Y1)+W1(X2, Y2). The Wasserstein distance is also given by the explicit formula [PZ20, Cor. 1.5.3]

W1(X,Y ) =

$ ∞

−∞
|Pr[X < t]− Pr[Y < t]| dt.
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The Kolmogorov–Smirnov distance between X and Y is supt |Pr[X < t]− |Pr[Y < t]|.

Lemma 1.3 ([CR07, Lemma 2]). If Y is a continuous random variable with density bounded by C, then
the Kolmogorov–Smirnov distance between X and Y is bounded by 2

%
CW1(X,Y ).

Proof. We will show that |Pr[X < t] − Pr[Y < t]| holds for every t. Fix an arbitrary point t, and let
ε > 0 be a parameter to be chosen. Define a real-valued function f as follows: f(x) = 1 for x ≤ t,
f(x) = 1− (x− t)/ε for t ≤ x ≤ t+ ε, and f(x) = 0 for x ≥ t+ ε. Clearly Pr[X < t] ≤ E[f(X)]. Since
Y has density bounded by C, we have Pr[Y < t] ≥ Pr[Y < t+ ε]− Cε ≥ E[f(Y )]− Cε. Thus

Pr[X < t]− Pr[Y < t] ≤ E[f(X)− f(Y )] + Cε.

On the other hand, since f is 1/ε-Lipschitz, clearly E[f(X)− f(Y )] ≤ W1(X,Y )/ε, and so

Pr[X < t]− Pr[Y < t] ≤ W1(X,Y )/ε+ Cε.

Choosing ε =
%
W1(X,Y )/C, we get the required upper bound on Pr[X < t]− Pr[Y < t].

The lower bound is proved in a similar way. Define a real-valued function g as follows: g(x) = 1 for
x ≤ t− ε, g(x) = (x− (t− ε))/ε for t− ε ≤ x ≤ t, and g(x) = 0 for x ≥ t. This time Pr[X < t] ≥ E[g(X)]
while Pr[Y < t] ≤ Pr[Y < t− ε] + Cε ≤ E[g(Y )] + Cε. Thus

Pr[Y < t]− Pr[X < t] ≤ E[g(Y )− g(X)] + Cε ≤ W1(X,Y )/ε+ Cε ≤ 2
%
CW1(X,Y ).

2 Proof

Recall that k is the size of the stable set produced by the Grimmett–McDiarmid algorithm. Grimmett
and McDiarmid proved the following result, whose proof was outlined in the introduction.

Lemma 2.1.

Pr[k < k] = Pr[G(1) + G(1/2) + · · ·+G(1/2k−1) > n] = Pr[G(1/2) + · · ·+G(1/2k−1) ≥ n].

Our main idea is to rewrite this formula as follows:

Pr[k < k] = Pr

&
G(1/2k−1)

n
+

G(1/2k−2)

n
+ · · ·+ G(1/2)

n
≥ 1

'
. (1)

It is known that the distribution G(c/n)/n tends (in an appropriate sense) to an exponential random
variable E(c) [Fel71, Problem XIII.1]. We will show this quantitatively, in terms of the Wasserstein
metric W1.

Lemma 2.2. If p ≤ 1/2 then

W1(G(p)/n,E(pn)) ≤ 2

n
.

Proof. Let X = ⌈E(pn)n⌉. Then for integer t,

Pr[X ≥ t] = Pr[E(pn) > (t− 1)/n] = e−p(t−1).

In contrast,
Pr[G(p) ≥ t] = (1− p)t−1.

By construction, W1(X/n,E(pn)) ≤ 1/n, and so subadditivity of W1 and the explicit formula for W1

show that

W1(G(p)/n,E(pn)) ≤ 1

n
+W1(G(p)/n,X/n) =

1

n
+

$ ∞

0

((Pr[G(p)/n ≥ s]− Pr[X/n ≥ s]
(( ds =

1

n
+

1

n

∞!

r=1

((Pr[G(p) ≥ r]− Pr[X ≥ r]
(( = 1

n
+

1

n

∞!

t=1

|(1− p)t − e−pt|.
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Since p ≤ 1/2, we have −p− p2 ≤ log(1− p) ≤ −p, and so

e−pt−p2t ≤ (1− p)t ≤ e−pt.

Therefore, e−x ≥ 1− x implies that

|(1− p)t − e−pt| = e−pt − (1− p)t ≤ e−pt(1− e−p2t) ≤ p2te−pt.

We can thus bound
∞!

t=1

|(1− p)t − e−pt| ≤ p2
∞!

t=1

t

ept
=

p2ep

(ep − 1)2
≤ 1,

where the last step follows from

pep/2 =

∞!

k=1

pk

2k−1(k − 1)!
≤

∞!

k=1

pk

k!
= ep − 1,

which implies that p2ep ≤ (ep − 1)2 for all p ≥ 0.

Since W1 is subadditive, we immediately conclude the following:

Lemma 2.3. Let G = 1
n ·

)
G(1/2k−1) + G(1/2k−2) + · · ·+G(1/2)

*
. Then for every k ≥ 1,

W1

+ n

2k
G,H

,
≤ k

2k−1
.

When k = 0 (and so G is identically zero), this holds with the bound 1.

Proof. Lemma 2.2 and subadditivity of W1 show that

W1(G,E(n/2k−1) + · · ·+ E(n/2)) ≤ 2(k − 1)

n
,

which implies that

W1

+ n

2k
G,E(2) + · · ·+ E(2k−1)

,
≤ k − 1

2k−1
.

On the other hand,

W1

- ∞!

ℓ=k

E(2ℓ),0

.
= E

/ ∞!

ℓ=k

E(2ℓ)

0
=

1

2k−1
,

where 0 is the constant zero random variable. The lemma follows for k ≥ 1 from another application of
subadditivity of W1. When k = 0, the final step shows that W1(H,0) = 1.

In order to convert this bound to a bound on the Kolmogorov–Smirnov distance using Lemma 1.3,
we need to know that H is continuous and has a bounded density function.

Lemma 2.4. The random variable H is continuous, and has a bounded density function f :

f(x) = 2C−1
∞!

i=1

(−1)i−1e−2ix
i−11

r=1

2

2r − 1
, where C =

∞1

s=1

(1− 2−s) > 0.

(The constant C is the limit of the probability that an n× n matrix over GF (2) is regular.)

Proof. Let H(ℓ) =
2ℓ

i=1 E(2
i). It is well-known [Fel71, Problem I.12] that the density of H(ℓ) is

fℓ(x) =

ℓ!

i=1

2ie−2ixKℓ,i, where Kℓ,i =

ℓ1

j=1
j ∕=i

2j

2j − 2i
.
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Note that

Kℓ,i = (−1)i−1
i−11

j=1

1

2i−j − 1
×

ℓ1

j=i+1

1

1− 2i−j
= (−1)i−1

i−11

r=1

1

2r − 1
×

ℓ−i1

s=1

1

1− 2−s
.

We can therefore write

fℓ(x) =

ℓ!

i=1

2e−2ix × (−1)i−1
i−11

r=1

2

2r − 1
×

ℓ−i1

s=1

1

1− 2−s
.

This allows us to bound

|fℓ(x)| ≤ 2C−1e−2x
ℓ!

i=1

i−11

r=1

2

2r − 1
,

where C is the constant in the statement of the lemma. Bounding the sum by a geometric series, we
conclude that |fℓ(x)| = O(e−2x), where the bound is independent of ℓ. Applying dominated convergence,
we obtain the formula in the statement of the lemma.

Armed with this information, we can finally estimate Pr[k < k].

Lemma 2.5. The following holds for every k ≥ 1:

Pr[k < k] = Pr
"
H ≥ n

2k

#
±O

-3
k

2k

.
.

Proof. Since H has bounded density by Lemma 2.4, we can apply Lemma 1.3 to bound the Kolmogorov–
Smirnov distance between n

2k
G and H by O(

%
W1(

n
2k
G,H)) = O(

%
k/2k), using Lemma 2.3. It follows

that

Pr[k < k] = Pr
" n

2k
G ≥ n

2k

#
= Pr

"
H ≥ n

2k

#
±O

-3
k,

2k

.
.

Theorem 1.2 now easily follows:

Proof of Theorem 1.2. Lemma 2.5 shows that for each k ≥ 1,

Pr[k = k] = Pr[k < k + 1]− Pr[k < k] = Pr
" n

2k+1
≤ H <

n

2k

#
±O

-3
k

2k

.
.

This implies that for ℓ ≥ 1,

∞!

k=ℓ

(((Pr[k = k]− Pr
" n

2k+1
≤ H <

n

2k

#((( = O

-3
ℓ

2ℓ

.
.

Lemma 2.1 and Markov’s inequality show that

Pr[k < ℓ] = Pr[G(1/2) + · · ·+G(1/2ℓ−1) ≥ n] ≤ E[G(1/2) + · · ·+G(1/2ℓ−1)]

n
<

2ℓ

n
,

and so choosing ℓ := 2
3 log2 n, we have

Pr[k < ℓ] ≤ 1

n1/3
.

Since
%
ℓ/2ℓ = O(

√
log n/n1/3), Lemma 2.5 shows that

Pr
"
H ≥ n

2ℓ

#
= O

4√
log n

n1/3

5
,
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Figure 1: Density of log2(1/H)

and so

ℓ−1!

k=0

(((Pr[k = k]− Pr
" n

2k+1
≤ H <

n

2k

#((( ≤
ℓ−1!

k=0

+
Pr[k = k] + Pr

" n

2k+1
≤ H <

n

2k

#,
= O

4√
log n

n1/3

5
.

In total, we conclude that

∞!

k=0

(((Pr[k = k]− Pr
" n

2k+1
≤ H <

n

2k

#((( = O

4√
log n

n1/3

5
.

We can also express Theorem 1.2 in terms of the variation distance between k and an appropriate
random variable.

Let θ = {log2 n} = log2 n−⌊log2 n⌋, and let k = ⌊log2 n⌋+ c. Then n/2k = 2θ−c, and so the quantity
qk in Theorem 1.2 is

Pr[2−(c+1) ≤ 2−θH < 2−c] = Pr[2−(c+1) < 2−θH ≤ 2−c] = Pr[⌊log2(1/H) + θ⌋ = c].

Therefore we obtain the following corollary:

Corollary 2.6. For a given n, let θ = {log2 n} and define

h = ⌊log2(1/H) + θ⌋.

The variation distance between k and h is at most Õ(1/n1/3).

The random variable log2(1/H) has density

g(y) = (2C−1 ln 2)2−y
∞!

i=1

(−1)i−1e−2i−y
i−11

r=1

2

2r − 1
,

and is plotted in Fig. 1.

3 Applications

Integrating the formula given in Lemma 2.4, we obtain the following estimate via Lemma 2.5:

Pr[k = k] ≈ C−1
∞!

i=1

(−1)i−1
+
e−n2i−k−1

− e−n2i−k
, i−11

r=1

1

2r − 1
,
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where the error is O(k/2k). If k = log2 n+ c, then this becomes

Pr[k = log2 n+ c] ≈ C−1
∞!

i=1

(−1)i−1
+
e−2i−c−1

− e−2i−c
, i−11

r=1

1

2r − 1
.

Using this, we can calculate the limiting distribution of k, fixing {log2 n}. For example, if n is a
power of 2 then we obtain the following limiting distribution:

c limPr[k = log2 n+ c]
−4 0.000000389680708123307
−3 0.00116084271918975
−2 0.0610996920580558
−1 0.343335642221465
0 0.420730421531672
1 0.153255882765631
2 0.0194547690538043
3 0.000943671851018291
4 0.0000185343323798604
5 0.000000153237063593714

In this case, the expected deviation of k from log2 n is −0.273947769982407, and the standard devi-
ation of k is 0.763009254799132.
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[BT85] Béla Bollobás and Andrew Thomason. Random graphs of small order. In Random graphs
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