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Abstract

The Friedgut–Kalai–Naor theorem, a basic result in the field of analysis of Boolean functions,
states that if a Boolean function on the Boolean cube t0, 1un is close to a function of the form
c0`

ř

i cixi, then it is close to a dictatorship (a function depending on a single coordinate). We

prove an analogous theorem for functions defined on the slice
`

rns
k

˘

“ tpx1, . . . , xnq P t0, 1u
n :

ř

i xi “ ku.
When k{n is bounded away from 0 and 1, our theorem states that if a function on the slice is

close to a function of the form
ř

i cixi then it is close to a dictatorship. When k{n is close to 0
or to 1, we can only guarantee being close to a junta (a function depending on a small number
of coordinates); this deterioration in the guarantee is unavoidable, since for small p a maximum
of a small number of variables is close to their sum.

Kindler and Safra proved an FKN theorem for the biased Boolean cube, in which the under-
lying measure is the product measure µppxq “ p

ř

i xip1´ pq
ř

ip1´xiq. As a corollary of our FKN
theorem for the slice, we deduce a uniform version of the FKN theorem for the biased Boolean
cube, in which the error bounds depend uniformly on p. Mirroring the situation on the slice,
when p is very close to 0 or to 1, we can only guarantee closeness to a junta.

1 Introduction

Analysis of Boolean functions is a research area at the intersection of combinatorics, probability
theory, functional analysis, and theoretical computer science. It traditionally studies real-valued
functions on the Boolean cube t0, 1un; often these functions are Boolean, that is, t0, 1u-valued.

Recently interest has arisen in generalizing classical results in the area from functions on the
Boolean cube to functions on other domains. While the theory for product domains such as
t1, . . . , kun is similar to the theory for the Boolean cube, non-product domains such as symmetric
groups and slices (defined below) present novel difficulties, the most conspicuous of which being
the absence of a canonical Fourier basis.

˚Research conducted at the Simons Institute for the Theory of Computing during the 2013 fall semester on Real
Analysis in Computer Science, and at the Institute for Advanced Study, Princeton, NJ. This material is based upon
work supported by the National Science Foundation under agreement No. DMS-1128155. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect
the views of the National Science Foundation.
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In this paper, our object of study is slices of the Boolean cube:

ˆ

rns

k

˙

“
 

px1, . . . , xnq :
n
ÿ

i“1

xi “ k
(

.

(Here rns stands for the set t1, . . . , nu.) Slices arise naturally in extremal combinatorics (the Erdős–
Ko–Rado theorem), graph theory (Gpn,Mq graphs), and coding theory (constant-weight codes).
They are also one of the simplest association schemes.

Recently the study of analysis of Boolean functions on the slice has gained traction, as witnessed
by several recent articles [22, 26, 8, 9, 10, 25]. Classical theorems in the area which have been
generalized to the slice include, among else, the Kahn–Kalai–Linial theorem [15, 22], Friedgut’s
junta theorem [11, 26, 8], and the Mossel–O’Donnell–Oleszkiewicz invariance principle [19, 9, 10];
see O’Donnell [21] for a description of these results (in their classical form).

This paper continues the project of generalizing analysis of Boolean functions to functions on
the slice by proving a slice analog of the fundamental structural result of Friedgut, Kalai and
A. Naor [13], which states that if a Boolean function on the Boolean cube t0, 1un is ε-close to an
affine function (a function of the form px1, . . . , xnq ÞÑ c0 `

řn
i“1 cixi) then it is Opεq-close to one

of the functions 0, 1, xi, 1´ xi. (Two functions f, g are ε-close if }f ´ g}2 ď ε, where } ¨ } is the L2

norm.)
Our main theorem states that for 2 ď k ď n ´ 2 and p “ minpk{n, 1 ´ k{nq, if a function

f :
`

rns
k

˘

Ñ t0, 1u is ε-close to an affine function for ε “ Opp2q, then f is Opεq-close to one of the
functions 0, 1, xi, 1 ´ xi. For larger ε, we prove that either f or 1 ´ f is Opεq-close to maxiPS xi
(when k ď n{2) or to miniPS xi (when k ě n{2) for some set S of size |S| “ Op

?
ε{pq.

(The logically inclined reader can read
Ź

iPS xi for maxiPS xi and
Ž

iPS xi for miniPS xi.)

Comparison to other FKN theorems The original FKN theorem [13] states that if a function
f : t0, 1un Ñ t0, 1u is close to an affine function, then it is close to a dictatorship (a function
depending on at most one coordinate). Kindler and Safra [18, 17] extended this theorem to the
µp-setting (the so-called biased Boolean cube), in which the distribution on t0, 1un is not uniform
but is the product measure µp, in which Prrxi “ 1s “ p for i P rns. Their theorem states that for
each p, if f : t0, 1un Ñ R is ε-close to an affine function (with respect to the µp measure), then f
is Opεq-close to a dictatorship; the hidden constant depends on p. (For more results in this vein,
see [14, 20, 23, 24].)

In contrast, our main theorem states that if p ď 1{2 and f :
`

rns
pn

˘

Ñ t0, 1u is ε-close to an affine

function then it is Cε-close to a dictatorship assuming ε “ Opp2q; for larger ε, we only guarantee
that f depends on Op

?
ε{pq inputs. The restriction to ε “ Opp2q is necessary, since the function

maxpx1, x2q is p2-close to the affine function x1`x2. However, for fixed p we can obtain a statement
similar to that of the original FKN theorem by letting the constant C depend on p.

As stated above, the error bound in the FKN theorem of Kindler and Safra depends on p. In
contrast, the error bound in our theorem is uniform over all p, and this is why we cannot guarantee
closeness to a dictatorship. Using our theorem as a black box, we prove a uniform version of the
FKN theorem of Kindler and Safra, whose form is identical to that of our theorem for the slice.

A similar situation occurs in the FKN theorem for permutations [6, 7]. We can think of the

set Sn of permutations on n points as a certain subset of
`

rns2

rns

˘

consisting of those sets whose

projections to the individual coordinates are equal to rns. The density parameter p thus has the
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value p “ n{n2 “ 1{n, and as a result, given a function f : Sn Ñ t0, 1u which is close to an affine
function, we can only guarantee that it is close to a function of the form maxpi,jqPS xij . When f
is balanced (Erf s « 1{2), however, we are able to guarantee that f is close to a “permutation-
dictatorship”; we refer the interested reader to [7].

On the proof Our proof uses a novel proof method, the random sub-cube method, which allows
us to reduce the FKN theorem for the slice to the FKN theorem for the Boolean cube (see Keller [16]
for a similar reduction from the biased µp measure on the Boolean cube to the uniform measure on
the Boolean cube). The idea is to consider subsets of the slice which are isomorphic to a Boolean
cube of dimension k (assuming k ď n{2):

ta1, b1u ˆ ¨ ¨ ¨ ˆ tak, bku.

We can apply the classical FKN theorem on each of these sub-cubes. Moreover, if we choose
a1, b1, . . . , ak, bk at random, then a uniform point on a uniform sub-cube is just a uniform point on
the slice, and this allows us to deduce our FKN theorem.

Applications Our main theorem has recently been used by Das and Tran [3] to determine the
sharp threshold for the Erdős–Ko–Rado property on a random hypergraph, improving on an earlier
result of Bollobás et al. [2] which used the classical FKN theorem. For further work on the problem,
see Devlin and Kahn [4].

Paper organization After some preliminary definitions appearing in Section 2, we formally
state our main theorem in Section 3, where we also derive the uniform FKN theorem for the biased
Boolean cube. The proof itself appears in Section 4.

Acknowledgements The author thanks Guy Kindler, Elchanan Mossel and Karl Wimmer for
helpful discussions, Manh Tuan Tran for pointing out a mistake in an earlier version, and the
anonymous reviewers for helpful suggestions.

2 Preliminaries

Notations We use the notations rns “ t1, . . . , nu and distpx, Sq “ minyPS |x´ y|.
A Boolean function is a t0, 1u-valued function. An affine function is a function of the form

`px1, . . . , xnq “ c0 `
n
ÿ

i“1

cixi.

Our main theorems involve the maximum and the minimum of a set of Boolean variables. We
adopt the convention that maxH “ 0 and minH “ 1.

For a function f on a finite domain D, the squared L2 norm of f is given by }f}2 “ Erf2s, where
the expectation is with respect to the uniform distribution over D. The squares norm satisfies a
triangle inequality of the form }f ` g}2 ď 2p}f}2 ` }g}2q.

We say that two functions f, g on the same domain are ε-close if }f ´ g}2 ď ε. If f, g are
Boolean then they are ε-close iff Prrf ‰ gs ď ε. If f is Boolean, g is real-value, and G is the
Boolean function closest to g, then }f ´G}2 “ Op}f ´g}2q. Note that G is obtained by “rounding”
G to t0, 1u, that is Gpxq “ argminbPt0,1u |x´ b|.
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Functions on the Boolean cube The Boolean cube is the set t0, 1un. We identify functions on
the Boolean cube with functions on the Boolean-valued variables x1, . . . , xn.

Each function on the Boolean cube has a unique Fourier expansion

fpx1, . . . , xnq “
ÿ

SĎrns

f̂pSqχS , where χS “ p´1q
ř

iPS xi .

Parseval’s identity states that }f}2 “
ř

S f̂pSq
2.

Functions on the slice For integers n ě 2 and 0 ď k ď n, the slice
`

rns
k

˘

is defined as

ˆ

rns

k

˙

“
 

px1, . . . , xnq P t0, 1u
n :

n
ÿ

i“1

xi “ k.
(

Alternatively, we can think of
`

rns
k

˘

as the collection of all subsets of rns of size exactly k, using the
correspondence px1, . . . , xnq ÞÑ ti P rns : xi “ 1u. We use this correspondence freely in the paper.

Every affine function on the slice has a unique representation of the form

`px1, . . . , xnq “
n
ÿ

i“1

cixi.

The FKN theorem The Friedgut–Kalai–Naor theorem (FKN theorem for short) is the following
result.

Theorem 2.1 (Friedgut–Kalai–Naor [13]). Suppose f : t0, 1un Ñ t0, 1u is ε-close to an affine
function. Then f is Opεq-close to one of the functions t0, 1, x1, 1´ x1, . . . , xn, 1´ xnu.

3 Statement of main theorem

Our main theorem is a version of Theorem 2.1 for functions on a slice.

Theorem 3.1. Suppose f :
`

rns
k

˘

Ñ t0, 1u is ε-close to an affine function, where 2 ď k ď n ´ 2.
Define p fi minpk{n, 1´ k{nq. Then either f or 1´ f is Opεq-close to maxiPS xi (when p ď 1{2) or
to miniPS xi (when p ě 1{2) for some set S of size at most maxp1, Op

?
ε{pqq.

(We remind the reader that by convention, if S “ H then maxiPS xi “ 0 and miniPS xi “ 1.)
The statement implies that for some constant C, if ε ă Cp2 then we are guaranteed that |S| ď 1,

and so f can be approximated by a function of one of the forms 0, 1, xi, 1´ xi.
The bound on the size of S is optimal: for ps2 “ op1q, the function maxpx1, . . . , xsq is Opppsq2q-

close to the linear function x1 ` ¨ ¨ ¨ ` xs, but cannot be approximated using a smaller maximum
without incurring an error of Ωppq “ ωpppsq2q.

When k P t0, nu, the theorem is trivially true since every function is constant. When k P
t1, n´ 1u, the theorem is trivially true without the bound on |S| since for k “ 1 every function on
`

rns
1

˘

is affine, and every Boolean function f on
`

rns
1

˘

satisfies f “ maxtxi : fptiuq “ 1u; the case
k “ n´ 1 is similar.
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3.1 Uniform FKN theorem for the Boolean cube

Theorem 3.1 can be used to derive a uniform biased version of Theorem 2.1.

Definition 3.2. For each n, the measure µp is a measure on t0, 1un whose value on the atom
px1, . . . , xnq is p

ř

i xip1´ pq
ř

ip1´xiq.

Theorem 3.3. Suppose f : t0, 1un Ñ t0, 1u is ε-close to an affine function with respect to the µp
measure, for some p P p0, 1q. Then with respect to the µp measure, either f or 1 ´ f is Opεq-
close to maxiPS xi (when p ď 1{2) or to miniPS xi (when p ą 1{2) for some set S of size at most
maxp1, Op

?
ε{minpp, 1´ pqqq.

Proof. Suppose that f is ε-close to the affine function `. Let N be a large integer (we will take the

limit N Ñ 8 later on), let kN “ tpN u, and consider the slice SN “
`

rNs
kN

˘

. It is not hard to check
that if A is chosen randomly from S, then the distribution of AX rns tends (as a function of N) to
the distribution µp. Moreover, if we take pN “ minpkN{N, 1´ kN{Nq then pN Ñ minpp, 1´ pq.

Extend f to a function fN on the slice SN by taking fN px1, . . . , xN q “ fpx1, . . . , xnq, and extend
` to a function `N in a similar way. The remarks above show that }fN ´ `N}

2 ď 2ε for large enough
N . Also, for large enough N , minpkN , N´kN q “ pNN ě 2 (since pN Ñ p). Therefore we can apply
Theorem 3.1 to deduce that for large enough N , either fN or 1 ´ fN is Opεq-close to a maximum
or a minimum of up to maxp1, Op

?
ε{pN qq “ maxp1, Op

?
ε{pqq inputs.

Let gN denote the approximating function (the maximum or minimum of a small number of
coordinates). If gN depends only on the first n coordinates, and g is the corresponding function on
t0, 1un, then f or 1´ f is Opεq-close to g, completing the proof. When gN depends on coordinates
beyond the first n, there exists a substitution σ to these coordinates such that fN |σ or 1 ´ fN |σ
is Opεq-close to gN |σ. Since the number of substituted coordinates doesn’t depend on N , we can
complete the proof as before, noting that gN |σ is either a maximum, a minimum, or a constant.

The proof of Theorem 3.3 is similar to an argument of Ahlswede and Khachatrian [1], in which

the authors derive an Erdős–Ko–Rado theorem on t1, . . . , αun from a similar theorem for
`

rNs
α´1N

˘

.
Another version of the same argument is due to Dinur and Safra [5], who derive an Erdős–Ko–Rado

theorem on the Boolean cube t0, 1un with respect to µp from a similar theorem for
`

rNs
pN

˘

.

Arguments going in the other direction are also known (for example, Friedgut [12]), but are
more complicated and sometimes result in degredation of parameters. This highlights the fact that
Theorem 3.1 is more general than Theorem 3.3, in the sense that the former can be used to derive
the latter, but not vice versa.

On the other hand, while we derived Theorem 3.3 from Theorem 3.1, it is probably easier to
prove it directly. In particular, the estimates on hypergeometric distributions which are necessary
for the proof of Theorem 3.1 (for example, Lemma 4.7 below) would be replaced with similar but
simpler estimates on geometric distributions.

3.2 The case ε “ 0

As a warm-up, we prove that the only Boolean affine functions on the slice are 0, 1, xi, 1´ xi.

Lemma 3.4. Suppose f :
`

rns
k

˘

Ñ t0, 1u is affine, where 2 ď k ď n ´ 2. Then f P t0, 1u or
f P txi, 1´ xiu for some i.
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Proof. Let f “
řn
i“1 cixi. Without loss of generality, suppose that c1 “ minpc1, . . . , cnq. For any

i ‰ 1, let S P
`

rns
k

˘

be some set containing 1 but not i. Since fpS4t1, iuq ´ fpSq “ ci ´ c1 and f is
Boolean, we conclude that ci P tc1, c1 ` 1u. If for all i ‰ 1 we have ci “ c1, then f P t0, 1u. So we
can assume that I0 “ ti P rns : ci “ c1u and I1 “ ti P rns : ci “ c1 ` 1u are both non-empty.

We claim that either |I0| “ 1 or |I1| “ 1. Otherwise, suppose without loss of generality that

1, 2 P I0 and 3, 4 P I1 (here we are using the fact that 2 ď k ď n ´ 2). Let S P
`

rns
k

˘

be some
set containing both 1, 2 but neither 3, 4. Then fpS4t1, 2, 3, 4uq ´ fpSq “ c3 ` c4 ´ c1 ´ c2 “ 2,
contradicting the fact that f is Boolean. This shows that either |I0| “ 1 or |I1| “ 1. If I0 “ t1u
then

f “ c1x1 `
n
ÿ

i“2

pc1 ` 1qxi “ pc1 ` 1q
n
ÿ

i“1

xi ´ x1 “ pc1 ` 1qk ´ x1,

and since f is Boolean, necessarily f “ 1´ x1. Similarly, if I1 “ tiu then we get f “ xi.

4 Proof of main theorem

4.1 Proof overview

Since every function on
`

rns
k

˘

is equivalent to a function on
`

rns
n´k

˘

, and the equivalence preserves
affine functions, it suffices to consider the case k ď n{2.

For the rest of this section, we make the assumption that 2 ď k ď n{2 and fix the following
notation:

• p “ k{n ď 1{2.

• f :
`

rns
k

˘

Ñ t0, 1u is a Boolean function.

• ` “
řn
i“1 cixi is an affine function satisfying }f ´ `}2 ď ε.

We first explain the proof of Theorem 3.1 in the easier case ε ă p{128. Extending Lemma 3.4,
we show that the coefficients c1, . . . , cn are close to two values α, α`1, say most of them close to α.
We define di “ ci or di “ ci´ 1 in such a way that d1, . . . , dn are all close to α, and let r “

ř

i dixi.
Note that h “ `´ r is of the form

ř

iPS xi. Applying the classical Friedgut–Kalai–Naor theorem (in

the form of Lemma 4.2) to a random sub-cube of
`

rns
k

˘

(a subset of
`

rns
k

˘

of the form
Śk

i“1tai, biu,
where a1, b1, . . . , ak, bk are distinct elements of rns), we deduce that

k E
i‰j
pdi ´ djq

2 “ k E
i‰j

distpci ´ cj , t0,˘1uq2 “ Opεq.

A simple calculation shows that V r ď kEi‰jpdi ´ djq
2 “ Opεq, and so, putting m “ E r, we get

that
}f ´ ph`mq}2 ď 2}f ´ `}2 ` 2}r ´m}2 “ Opεq.

This means that f is close to the function H obtained from rounding h`m to t0, 1u. The proof is
complete by showing that the only way a function of the form h`m is close to a Boolean function
is when H “ maxiPS xi (this includes the case H “ 0) or H “ 1.

When ε ě p{128 we cannot deduce that di ´ dj “ distpci ´ cj , t0,˘1uq2. Instead, we start by
showing that all but an Opεq fraction of the coefficients c1, . . . , cn are concentrated around three
values α ´ 1, α, α ` 1. This allows us to approximate f by a function of the form

ř

iPS`
xi ´

ř

iPS´
xi ` m. Further arguments show that one of the first two summands can be bounded by

Opεq in expectation, and the proof is completed as before.

6



4.2 First steps

4.2.1 Concentration of coefficients

We start by showing that for small ε{p, the coefficients c1, . . . , cn are all concentrated around two
values α, α` 1.

Lemma 4.1. There exist c, d satisfying |c´d| “ 1 and a subset S Ď rns of size |S| ď n{2 such that
for all j P S, |cj ´ c|

2 ď 8ε{p, and for all j R S, |cj ´ d|
2 ď 8ε{p.

Proof. Suppose, without loss of generality, that c1 “ minpc1, . . . , cnq, and fix i ‰ 1. For any

T P
`

rns
k

˘

, define

∆ “ distp`pT q, t0, 1uq2 ` distp`pT4t1, iuq, t0, 1uq2

“ distp`pT q, t0, 1uq2 ` distp`pT q ` ci ´ c1, t0, 1uq
2.

Let r “ `pT q and δ “ ci´ c1 ě 0. Suppose that `pT q is closer to a P t0, 1u and `pT4t1, iuq is closer
to b P t0, 1u, where a ď b. Then

∆ “ pr ´ aq2 ` pr ` δ ´ bq2 ě
pδ ´ b` aq2

2
,

using the inequality α2 ` β2 ě pα ` βq2{2 with α “ a´ r and β “ r ` δ ´ b. Since b´ a P t0, 1u,
we deduce that

distp`pT q, t0, 1uq2 ` distp`pT4t1, iuq, t0, 1uq2 ě 1

2
distpci ´ c1, t0, 1uq

2.

Taking expectation over random T , we conclude that

1

2
distpci ´ c1, t0, 1uq

2 Prr1 P T, i R T s ď 2ε.

Since a random T P
`

rns
k

˘

contains 1 but not i with probability kpn´kq
npn´1q ě pp1´pq ě p{2, we conclude

that distpci ´ c1, t0, 1uq
2 ď 8ε{p.

For α P t0, 1u, let Iα be the set of indices i such that ci ´ c1 is closer to α. The lemma now
follows by either taking S “ I0, c “ c1 and d “ c1 ` 1 or S “ I1, c “ c1 ` 1 and d “ c1.

4.2.2 The random sub-cube argument

Unconditionally, the values ci are on average either close to one another or at distance roughly 1.
We show this by taking a random sub-cube of dimension k, and applying the classical Friedgut–
Kalai–Naor theorem to the restrictions of f and ` to the sub-cube.

First, we need the following consequence of the FKN theorem.

Lemma 4.2. Suppose f : t0, 1un Ñ t0, 1u is ε-close to an affine function ` : t0, 1un Ñ R. Then

n
ÿ

i“1

distp2ˆ̀ptiuq, t0,˘1uq2 “ Opεq.
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Proof. Theorem 2.1 shows that f is Opεq-close to some function g of one of the forms 0, 1, xi, 1´xi.
The Fourier expansions of these functions are, respectively,

0, 1,
1

2
´

1

2
p´1qxi ,

1

2
`

1

2
p´1qxi .

In particular, ĝptiuq P t0,˘1{2u for all i P rns.
The triangle inequality shows that }g´ `}2 ď 2}g´ f}2` 2}f ´ `}2 “ Opεq. On the other hand,

Parseval’s identity shows that

}2pg ´ `q}2 ě
n
ÿ

i“1

r2ĝptiuq ´ 2ˆ̀ptiuqs2 ě
n
ÿ

i“1

distp2ˆ̀ptiuq, t0,˘1uq2.

We can now apply the random sub-cube argument.

Lemma 4.3. We have
k E
i‰j

distpci ´ cj , t0,˘1uq2 “ Opεq.

Proof. Let a1, b1, . . . , ak, bk be 2k distinct random indices taken from rns, and define

D “ ta1, b1u ˆ ¨ ¨ ¨ ˆ tak, bku Ď

ˆ

rns

k

˙

.

Clearly
E
D
}f |D ´ `|D}

2 “ }f ´ `}2 ď ε.

Using the mapping ta1, b1u ˆ ¨ ¨ ¨ ˆ tak, bku « t0, 1u ˆ ¨ ¨ ¨ ˆ t0, 1u “ t0, 1u
k, we can think of D as a

k-dimensional Boolean cube. Under this encoding, f |D is a Boolean function t0, 1uk Ñ t0, 1u, and

`|Dpy1, . . . , ykq “
n
ÿ

i“1

cai `
n
ÿ

i“1

pcbi ´ caiqyi.

Since yi “ p1´ p´1qyiq{2, we see that 2x`|Dptiuq “ cai ´ cbi . Lemma 4.2 therefore shows that

k
ÿ

i“1

distpcbi ´ cai , t0,˘1uq2 “ Op}f |D ´ `|D}
2q.

The lemma now follows by taking the expectation over the choice of D.

4.2.3 A variance formula

An estimate of the type given by Lemma 4.3 is useful since it can potentially bound the variance
of `, as the following lemma shows.

Lemma 4.4. For r “
ř

i dixi we have

V r “
kpn´ kq

2pn´ 2q
E
i‰j
pdi ´ djq

2 ď k E
i‰j
pdi ´ djq

2.
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Proof. By shifting all coefficients di, we can assume without loss of generality that E r “ 0 and so
řn
i“1 di “ 0 (this does not affect the quantities di ´ dj). For every i ‰ j we have Exi “ Ex2i “ p

and Exixj “ k´1
n´1p. Therefore

V r “ E r2 “ p
ÿ

i

d2i `
k ´ 1

n´ 1
p
ÿ

i

di
ÿ

j‰i

dj “ p

ˆ

1´
k ´ 1

n´ 1

˙

ÿ

i

d2i “
kpn´ kq

npn´ 1q

ÿ

i

d2i .

On the other hand,

E
i‰j
pdi ´ djq

2 “
2

n

ÿ

i

d2i ´
2

npn´ 1q

ÿ

i

di
ÿ

j‰i

dj “

ˆ

1´
1

n´ 1

˙

2

n

ÿ

i

d2i “
2pn´ 2q

npn´ 1q

ÿ

i

d2i .

We conclude that

V r “
kpn´ kq

npn´ 1q

ÿ

i

d2i “
kpn´ kq

2pn´ 2q
E
i‰j
pdi ´ djq

2.

As a corollary, we obtain the following criterion for approximating f by an affine function.

Corollary 4.5. Suppose d1, . . . , dn are coefficients satisfying kEi‰jpdi ´ djq
2 “ Opεq, and define

g “
ř

ipci ´ diqxi. Then for some m, }f ´ pg `mq}2 “ Opεq.

Proof. Define r “ `´ g “
ř

i dixi. Lemma 4.4 shows that V r “ Opεq, and so

}f ´ pg ` E rq}2 ď 2}f ´ `}2 ` 2}r ´ E r}2 “ Opεq.

4.3 The case ε ă p{128

As an application of the corollary, we show that when ε ă p{128, the function f can be approximated
by a function of the form ˘

ř

iPS xi ` m. The condition ε ă p{128 ensures that the estimate of
Lemma 4.1 is strong enough to deduce |di ´ dj | “ distpci ´ cj , t0,˘1uq for appropriate di chosen
according to the lemma.

Lemma 4.6. If ε ă p{128 then there exist δ P t˘1u, real m, and a subset S Ď rns of size at most
n{2, such that }f ´ pδ

ř

iPS xi `mq}
2 “ Opεq.

Proof. Lemma 4.1 shows that for some c, d satisfying |c´d| “ 1 there exists a subset S Ď rns of size
at most n{2 such that for i P S, |ci´c|

2 ď 8ε{p, and for i R S, |ci´d|
2 ă 8ε{p. Let δ “ d´c P t˘1u,

and define r “ ``δ
ř

iPS xi. Note that r “
ř

i dixi, where di “ ci`δ for i P S and di “ ci for i R S.
In both cases, |di ´ d| ď

a

8ε{p ă 1{4, and so |di ´ dj | ă 1{2 for all i, j. Since di ´ dj “ ci ´ cj ` κ
for some κ P t0,˘1u, this shows that distpci ´ cj , t0,˘1uq “ |di ´ dj |, and so Lemma 4.3 implies
that

k E
i‰j
pdi ´ djq

2 “ Opεq,

The lemma now follows from Corollary 4.5.

The next step is to determine when a function of the form ˘
ř

iPS xi ` m can be close to
Boolean. The idea is to analyze the hypergeometric random variable

ř

iPS xi using the following
lemma, whose somewhat technical proof appears in Section 4.5.
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Lemma 4.7. There exists a constant γ0 ą 0 such that the following holds, for all k ď n{2. Consider
the random variable X “

ř

iPrts xi. If t ď n{2 and PrrX P tm,m ` 1us ě 1 ´ γ0 for some m then

PrrX “ 0s “ Ωp1q and t ď p3{2qp´1.

The lemma (and a few of its consequences) doesn’t use the condition k ě 2, and we will need
this fact in the following section.

We can now determine which functions of the form ˘
ř

iPS xi `m are close to Boolean. It is
enough to consider the case

ř

iPS xi`m, the other case following by considering the function 1´ f
instead.

Lemma 4.8. There exists a constant γ1 ą 0 such that the following holds, for all k ď n{2. If
γ fi }f´p

ř

iPS xi`mq}
2 ď γ1, where |S| ď n{2, then for some µ P t0, 1u, }f´p

ř

iPS xi`µq}
2 “ Opγq.

Furthermore, |S| ď p3{2qp´1 and |m´ µ| “ Op
?
γq.

Proof. Let X “
ř

iPS xi, and define µ to be the integer closest to m. Since PrrX R t´µ, 1´ µus ď
4}f ´ p

ř

iPS xi ` mq}2 ď 4γ1, Lemma 4.7 shows (assuming 4γ1 ď γ0) that PrrX “ 0s “ Ωp1q
and |S| ď p3{2qp´1. This implies that µ P t0, 1u, since otherwise γ “ ΩpPrrX “ 0sq “ Ωp1q.
Furthermore, γ “ Ωp|m ´ µ|2q and so |m ´ µ| “ Op

?
γq. For any non-zero integer z, we have

|z ´ µ| ď |z ´ m| ` |m ´ µ| ď 2|z ´ m|, since µ is the integer closest to m. This shows that
}f ´ p

ř

iPS xi ` µq}
2 ď 4γ.

Corollary 4.9. Let γ1 be the constant in Lemma 4.8. For all k ď n{2, the following holds. If
γ fi }f´p

ř

iPS xi`mq}
2 ď γ1, where |S| ě n{2, then for some µ P t´k, 1´ku, }f´p

ř

iPS xi`µq}
2 “

Opγq. Furthermore, |S| ě n´ p3{2qp´1 and |m´ µ| “ Op
?
γq.

Proof. Suppose that |S| ą n{2. Since
ř

iPS xi “ k ´
ř

iRS xi we have

p1´ fq ´ p
ÿ

iRS

xi ` 1´ k ´mq “ ´rf ´ p
ÿ

iPS

xi `mqs.

Therefore Lemma 4.8, applied to f 1 fi 1 ´ f (a Boolean function), S1 fi S, and m1 fi 1 ´ k ´m,
shows that for some µ1 P t0, 1u,

}p1´ fq ´ p
ÿ

iRS

xi ` µ
1q}2 “ Opγq.

Taking µ “ 1´k´µ1, we deduce that }f´p
ř

iPS xi`µq}
2 “ Opγq. Furthermore, n´|S| ď p3{2qp´1

and |m´ µ| “ |m1 ´ µ1| “ Op
?
γq.

Putting Lemma 4.6 and Lemma 4.8 together, we get that f or 1 ´ f is Opεq-approximated by
a function of the form maxiPS xi, where |S| “ Opp´1q. (When µ “ 1, f is close to a constant.) In
order to improve the bound on |S|, we estimate the probability that

ř

iPS xi ě 2.

Lemma 4.10. Let S be a subset of rns of size t fi |S| ď p3{2qp´1. If t ě 2 then

Pr

«

ÿ

iPS

xi ě 2

ff

“ Ωppptq2q.
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Proof. Let p1 “ k´1
n´1 ě p{2 (using k ě 2) and p2 “ k´2

n´2 ď p. The inclusion-exclusion principle
shows that

Pr

«

ÿ

iPS

xi ě 2

ff

ě

ˆ

t

2

˙

Prrx1 “ x2 “ 1s ´

ˆ

t

3

˙

Prrx1 “ x2 “ x3 “ 1s

“

ˆ

t

2

˙

pp1
ˆ

1´
tp2

3

˙

ě
t2

2

p2

2

1

2
“
ptpq2

8
.

We can now prove Theorem 3.1 when ε ă p{128.

Lemma 4.11. Suppose f :
`

rns
k

˘

Ñ t0, 1u is ε-close to an affine function, and let p “ minpk{n, 1´
k{nq. If 2 ď k ď n ´ 2 and ε ă p{128 then either f or 1 ´ f is Opεq-close to maxiPS xi for some
set S of size at most maxp1,

?
ε{pq.

Proof. Lemma 4.6 shows that for some real m and set S of size at most n{2 we have }f´pδ
ř

iPS xi`
mq}2 “ Opεq. For simplicity, assume that δ “ 1 (when δ “ ´1, consider 1 ´ f instead of f).
Lemma 4.8 then implies that }f ´ p

ř

iPS xi ` µq }
2 “ Opεq for some µ P t0, 1u, assuming ε is small

enough (otherwise the lemma is trivially true, since every Boolean function is 1-close to the constant
0 function), and moreover |S| ď p3{2qp´1.

Suppose first that µ “ 0. In this case, if |S| ě 2 then Lemma 4.10 implies that pp|S|q2 “ Opεq
and so |S| “ Op

?
ε{pq. The function g “ maxiPS xi results from rounding h fi

ř

iPS xi to Boolean,
and so }f ´ g}2 “ Op}f ´ h}2q “ Opεq. When µ “ 1, we similarly get }f ´ 1}2 “ Opεq.

4.4 The case ε “ Ωppq

We move on to the case ε “ Ωppq. In this case the analog of Lemma 4.6 states that f can be
approximated by a function of the form

ř

iPS`
xi ´

ř

iPS´
xi `m, where at least one of S`, S´ is

small.

Lemma 4.12. There exist real m and two subsets S`, S´ Ď rns satisfying |S`|
n
|S´|
n “ Opε{kq such

that }f ´ p
ř

iPS`
xi ´

ř

iPS´
xi `mq}

2 “ Opεq.

Proof. Lemma 4.3 shows that kEj‰i distpci ´ cj , t0,˘1uq2 “ Opεq. This implies that for some
i0 P rns,

k E
j‰i0

distpci0 ´ cj , t0,˘1uq2 “ Opεq.

We partition the coordinates in rns into four sets. For δ P t0,˘1u, we let Sδ “ tj P rns : |cj ´ ci0 ´
δ| ă 1{4u, and we put the rest of the coordinates in a set R. Since Ej‰i0 distpci0 ´ cj , t0,˘1uq2 “

Ωp |R|n q, we conclude that |R|
n “ Opε{kq. Since Ei‰jpci ´ cjq

2 “ Ωp |S´1|

n
|S`1|

n q, we conclude that
|S´1|

n
|S`1|

n “ Opε{kq.
Define now di “ ci ´ 1 for i P S`1, di “ ci ` 1 for i P S´1, and di “ ci otherwise. When

i, j P S0 Y S`1 or i, j P S0 Y S´1, we get |di ´ dj | ă 1{2, and since di ´ dj “ ci ´ cj ` κ
for some κ P t0,˘1u, we conclude that distpci ´ cj , t0,˘1uq “ |di ´ dj |. For all i, j we claim that
pdi´djq

2 ď 7 distpci´cj , t0,˘1uq2`16. Indeed, for some κ P t0,˘1,˘2u we have di´dj “ ci´cj`κ.
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If |ci´cj | ď 2 then pdi´djq
2 ď 16, whereas if |ci´cj | ě 2, say ci´cj ě 2, then ci´cj´1 ď pci´cj´1q2

and so

pdi ´ djq
2 “ ppci ´ cj ´ 1q ` pκ` 1qq2

“ distpci ´ cj , t0,˘1uq2 ` 2pci ´ cj ´ 1qpκ` 1q ` pκ` 1q2

ď 7 distpci ´ cj , t0,˘1uq2 ` 9.

Call a pair of indices i, j good if i, j P S0YS`1 or i, j P S0YS´1, and note that the probability

that i, j is bad (not good) is at most 2 |R|n ` 2 |S`1|

n
|S´1|

n “ Opε{kq. This shows that

k E
i‰j
pdi ´ djq

2 ď 7k E
i‰j

distpci ´ cj , t0,˘1uq2 ` 16kPrri, j bads “ Opεq.

Corollary 4.5 now completes the proof.

An argument similar to the one in Lemma 4.11 completes the proof of the theorem.

Proof of Theorem 3.1. If ε ď p{128 then the result follows from Lemma 4.11, so we can assume
that ε ą p{128, and in particular we can assume that p ď 1{5, since otherwise ε ą 1{640 and so the
result is trivial (since every Boolean function is 1-close to the constant 0 function). In several other
places in the proof we also assume that ε is small enough (smaller than some universal constant
independent of p); otherwise the result is trivial.

Lemma 4.12 shows that for some real m and sets S`, S´ it holds that }f´p
ř

iPS`
xi´

ř

iPS´
xi`

mq}2 “ Opεq. By possibly replacing f by 1 ´ f , we can assume that |S´| ď |S`|. In particular,
|S´| ď n{2, and so k{pn´ |S´|q ď 2p ă 1{2. Note that S´ could be empty.

We now consider two different cases: |S`| ď pn´ |S´|q{2 and |S`| ě pn´ |S´|q{2.

Case 1: |S`| ď pn´ |S´|q{2. Consider some setting of the variables in S´ which sets w of them

to 1. This setting reduces the original slice to a slice Z isomorphic to
`

rn1s
k1

˘

, where n1 “ n ´ |S´|

and k1 “ k ´ w. The corresponding p1 “ k1

n1 satisfies p1 ď k
n´|S´|

ă 1{2. Lemma 4.8 applied with

m fi m´
ř

iPS´
xi shows that for each such setting, either }f ´p

ř

iPS`
xi´

ř

iPS´
xi`mq}

2
Z “ Ωp1q

or distpm´
ř

iPS´
xi, t0, 1uq ď 1{4 (note that the lemma works even if k1 ă 2). In the latter case,

we say that w is good.
If no w is good then ε “ Ωp1q, so by assuming that ε is small enough we can guarantee that

some w is good. On the other hand, the condition on m shows that at most two values w0, w0 ` 1
are good. This implies that Prr

ř

iPS´
xi P tw0, w0 ` 1us ě 1 ´ Opεq, and so for small enough ε,

Lemma 4.7 shows that Prr
ř

iPS´
xi “ 0s “ Ωp1q. Therefore we can assume that w0 “ 0.

Let } ¨ }w“W denote the norm restricted to inputs in which
ř

iPS´
xi “ W (we similarly use

Prw“wr¨s). Since Prr
ř

iPS´
xi “ 0s “ Ωp1q, we must have }f ´ p

ř

iPS`
xi ` mq}2w“0 “ Opεq.

Lemma 4.8 shows that for some µ P t0, 1u, also }f ´ p
ř

iPS`
xi ` µq}2w“0 “ Opεq, and moreover

|m ´ µ| ď 1{4 and |S`| ď p3{2qp1´1, where p1 “ k{n1 ě p. Lemma 4.10 implies that in fact
pp1|S`|q

2 “ Opεq, and so |S`| “ Op
?
ε{p1q “ Op

?
ε{pq.

We now consider two subcases: µ “ 0 and µ “ 1.
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Case 1(a): µ “ 0. Since g fi maxiPS` xi is the result of rounding
ř

iPS`
xi`µ to Boolean, we

conclude that }f ´ g}2w“0 “ Opεq. Since |m| ď 1{4, it cannot be the case that distpm´ 1, t0, 1uq ď
1{4, and so 1 is not good. In other words, Prr

ř

iPS´
xi “ 0s ě 1 ´ Opεq. This implies that

}f ´ g}2 “ Opεq, completing the proof in this case.

Case 1(b): µ “ 1. In this case Prw“0r
ř

iPS`
xi “ 0s ě 1´Opεq, since |

ř

iPS`
xi`µ´fpxq| ě

ř

iPS`
xi. This implies that Prr

ř

iPS`
xi “ 0s ě 1 ´ Opεq, since the assumption

ř

iPS´
xi “ 0 only

makes it harder for
ř

iPS`
xi to vanish. Since |S`| ě |S´|, this implies that Prr

ř

iPS´
xi “ 0s ě

1´Opεq, for similar reasons. We conclude that h fi
ř

iPS`
xi ´

ř

iPS´
xi vanishes with probability

1´Opεq. Since }f´ph`mq}2 “ Opεq, it follows that Prrf “ νs “ 1´Opεq, where ν is the rounding
of m to t0, 1u. Thus }f ´ ν}2 “ Opεq, completing the proof in this case.

Case 2: |S`| ě pn ´ |S´|q{2. In the setup of the first case, applying Corollary 4.9 instead
of Lemma 4.8 allows us to conclude that either }f ´ p

ř

iPS`
xi ´

ř

iPS´
xi ` mq}2Z “ Ωp1q or

distpm ´
ř

iPS´
xi ` k1, t0, 1uq ď 1{4. Since k1 “ k ´

ř

iPS´
xi, we can rewrite the latter condition

as distpm´ 2
ř

iPS´
xi ` k, t0, 1uq ď 1{4. As before, in the latter case we say that w “

ř

iPS´
xi is

good.
In contrast to the situation in Case 1, here at most one (and so exactly one) w can be good.

Lemma 4.7 implies that w “ 0, and so Prr
ř

iPS´
xi “ 0s ě 1 ´ Opεq. This implies that }f ´

p
ř

iP|S`|
xi`mq}

2
w“0 “ Opεq. Corollary 4.9 implies that for some µ P t0, 1u we have }f´p

ř

iPS`
xi´

k ` µq}2w“0 “ Opεq, and moreover |S`| ě n1 ´ p3{2qp1´1.
Let T “ S` Y S´, so that |T | ď p3{2qp1´1. The foregoing shows that }f´p´

ř

iPT xi`µq}
2
w“0 “

Opεq and so }p1 ´ fq ´ p
ř

iPT xi ` 1 ´ µq}2w“0 “ Opεq. As in Case 1, Lemma 4.10 implies that in
fact |T | “ Op

?
ε{pq.

If µ “ 0 then let g fi 1, and if µ “ 1 let g fi maxiPT xi. In both cases g is the Boolean rounding
of

ř

iPT xi`1´µ, and so }p1´fq´g}2w“0 “ Opεq. It follows that }p1´fq´g}2 “ Opεq, completing
the proof.

4.5 Hypergeometric estimate

To complete the proof of Theorem 3.1, we present the rather technical proof of Lemma 4.7.

Proof of Lemma 4.7. The distribution of X is given by

PrrX “ ss “

`

t
s

˘`

n´t
k´s

˘

`

n
k

˘ .

If t ď 3 then PrrX “ 0s “ Ωtpp1´ pq
tq “ Ωtp1q and t ď p3{2q2 ď p3{2qp´1. Similarly, if k ď 3 then

PrrX “ 0s “ Ωkpp1 ´ t{nqkq “ Ωkp1q and t ď n{2 ď 3 ď p3{2qp´1. We can therefore assume that
t, k ě 4.

In view of showing that the mode of X, given by the classical formula s0 “ t
pk`1qpt`1q

n`2 u, is
attained at zero, assume that s0 ě 1. Note that s0 ` 2 ď k since otherwise s0 ě k ´ 1 and so
pk ` 1qpt` 1q ě pk ´ 1qpn` 2q, implying t` 1 ě p3{5qpn` 2q ě p6{5qpt` 1q, which is impossible.
Similarly, s0 ` 2 ď t.
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A simple calculation shows that ρs fi
PrrX“s`1s
PrrX“ss “

pt´sqpk´sq
ps`1qpn´t´k`s`1q . Therefore

ρs`1
ρs

“
t´ s´ 1

t´ s

k ´ s´ 1

k ´ s

s` 1

s` 2

n´ t´ k ` s` 1

n´ t´ k ` s` 2

“

ˆ

1´
1

t´ s

˙ˆ

1´
1

k ´ s

˙ˆ

1´
1

s` 2

˙ˆ

1´
1

n´ t´ k ` s` 2

˙

.

Since t´ s0 ě 2, k ´ s0 ě 2, s0 ` 2 ě 2 and n´ t´ k ` s0 ` 2 ě 2 (using t, k ď n{2), we conclude

that ρs0`1{ρs0 ě 1{16. This shows that PrrX “ s0 ` 2s “ ρs0`1ρs0 PrrX “ s0s ě
ρ2s0
16 PrrX “ s0s.

If PrrX “ s0s ď 1{3 then PrrX P tm,m` 1us ď 2{3 and so γ ě 1{3. We can therefore assume
that PrrX “ s0s ě 1{3, and so PrrX “ s0 ` 2s ě pρ2s0{16qp1{3q “ Ωpρ2s0q. Since tm,m` 1u cannot
contain both s0 and s0`2, this shows that γ0 “ Ωpρ2s0q, implying that we can assume that ρs0 ă τ0
for some small τ0.

Suppose now that s0 ě 1. Then s0 ą
pk`1qpt`1q

n`2 ´ 1, and so

ρs0 ě
pt´ pk`1qpt`1q

n`2 qpk ´ pk`1qpt`1q
n`2 q

pk`1qpt`1q
n`2 pn´ t´ k ` pk`1qpt`1q

n`2 q

ě Ωp1q
pt` 1qp1´ k`1

n`2qpk ` 1qp1´ t`1
n`2q

pk`1qpt`1q
n`2 ¨Opnq

“ Ωp1q.

By choosing τ0 (and so γ0) appropriately, we can conclude that s0 “ 0, which shows that 1 ą
pk`1qpt`1q

n`2 ą pt, and so t ă p´1. Moreover, PrrX “ 0s “ PrrX “ s0s ě 1{3.
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[5] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover. Ann.
Math., 162(1):439–485, 2005.

[6] David Ellis, Yuval Filmus, and Ehud Friedgut. A quasi-stability result for dictatorships in Sn.
Combinatorica, 35(5):573–618, 2015.

[7] David Ellis, Yuval Filmus, and Ehud Friedgut. A stability result for balanced dictatorships in
Sn. Random Structures and Algorithms, 46(3):494–530, 2015.

[8] Yuval Filmus. An orthogonal basis for functions over a slice of the Boolean cube. Electronic
Journal of Combinatorics, 23(1):P1.23, 2016.

14



[9] Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer. Invariance principle on the
slice. In Computational Complexity Conference (CCC’16), 2016.

[10] Yuval Filmus and Elchanan Mossel. Harmonicity and invariance on slices of the Boolean cube.
In Computational Complexity Conference (CCC’16), 2016.

[11] Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates.
Combinatorica, 18(1):27–36, 1998.

[12] Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. Combina-
torica, 28(5):503–528, 2008.

[13] Ehud Friedgut, Gil Kalai, and Assaf Naor. Boolean functions whose Fourier transform is
concentrated on the first two levels. Advances in Applied Mathematics, 29(3):427–437, 2002.

[14] Jacek Jendrej, Krzysztof Oleszkiewicz, and Jakub Onufry Wojtaszczyk. On some extensions
of the FKN theorem. 11:445–469, 2015.

[15] Jeff Kahn, Gil Kalai, and Nati Linial. The influence of variables on Boolean functions. In
Proceedings of the 29th Symposium on the Foundations of Computer Science, pages 68–80,
White Plains, 1988.

[16] Nathan Keller. A simple reduction from a biased measure on the discrete cube to the uniform
measure. European Journal of Combinatorics, 33(8):1943–1957, 2012.

[17] Guy Kindler. Property testing, PCP and Juntas. PhD thesis, Tel-Aviv University, 2002.

[18] Guy Kindler and Shmuel Safra. Noise-resistant Boolean functions are juntas. Manuscript.

[19] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: Invariance and optimality. Annals of Mathematics, 171:295–341, 2010.

[20] Piotr Nayar. FKN theorem on the biased cube. Colloquium Mathematicum, 137(2):253–261,
2014.

[21] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[22] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal–Katona, and monotone nets. In Proceedings
of the 50th Symposium on the Foundations of Computer Science, pages 725–734.

[23] Aviad Rubinstein. Boolean functions whose Fourier transform is concentrated on pair-wise
disjoint subsets of the inputs, 2012.

[24] Aviad Rubinstein and Muli Safra. Boolean functions whose Fourier transform is concentrated
on pairwise disjoint subsets of the inputs. Manuscript, 2015.

[25] Murali K. Srinivasan. Symmetric chains, Gelfand–Tsetlin chains, and the Terwilliger algebra
of the binary Hamming scheme. J. Algebr. Comb., 34(2):301–322, 2011.

[26] Karl Wimmer. Low influence functions over slices of the Boolean hypercube depend on few
coordinates. In Computational Complexity Conference (CCC’14), 2014.

15


	Introduction
	Preliminaries
	Statement of main theorem
	Uniform FKN theorem for the Boolean cube
	The case epsilon = 0

	Proof of main theorem
	Proof overview
	First steps
	Concentration of coefficients
	The random sub-cube argument
	A variance formula

	The case epsilon < p/128
	The case epsilon = Omega(p)
	Hypergeometric estimate


