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Abstract

The classical Friedgut–Kalai–Naor theorem describes the structure of linear functions on the Boolean
cube which are almost Boolean. We describe extensions of this theorem to functions on the biased Boolean
cube and on the slice, simplifying earlier work by the author.

1 Introduction

A function f : {0, 1}n → R on the Boolean cube is linear if it can be written in the form

f(x) = c+

n∑
i=1

cixi.

The function f is Boolean if it is {0, 1}-valued. It is easy to check that the Boolean linear functions are

0, 1, x1, 1− x1, . . . , xn, 1− xn.

We call such functions dictators. Our dictators are always Boolean, and we consider constant functions to be
dictators.

Can f be drastically different if it is only approximately Boolean? The answer depends on the notion
of approximation being considered. Motivated by Boolean function analysis [O’D14], we consider L2-
approximation, saying that f is ε-close to Boolean if it satisfies

E
x∼µ

[dist(f(x), {0, 1})2] ≤ ε,

where µ is some probability distribution on the Boolean cube. (In the sequel, we will write the expectation
more succinctly as E[dist(f, {0, 1})2], suppressing the argument x.)

The most natural probability distribution µ to consider is the uniform distribution on the cube. In this
case, the Friedgut–Kalai–Naor (FKN) theorem [FKN02] states that a linear function which is ε-close to
Boolean must be O(ε)-close to a dictator; here two functions f, g : {0, 1}n → R are δ-close if E[(f − g)2] ≤ δ.

There are two other natural distributions which show up in applications:

1. The product distribution µp, in which each coordinate is independently distributed Ber(p). In other
words, µp(x) = p

∑
i xi(1− p)

∑
i(1−xi).

2. The slice distribution νk, which is the uniform distribution over all vectors in {0, 1}n whose Hamming
weight is exactly k.

Roughly speaking, the distributions νk and µk/n have similar behavior.
When p or k/n is balanced (bounded away from 0 and 1), the FKN theorem still holds. More interesting

behavior arises when p or k/n is small. The extreme example is k = 1, in which case all functions have
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degree 1, and nothing at all can be said (however, when 2 ≤ k ≤ n− 2, a simple argument shows that the
only Boolean linear functions are the dictators). A more generic example is

x1 + · · ·+ xm,

for small enough m.
In previous work [Fil16], we extended the FKN theorem to slice distributions νk, and deduced an FKN

theorem for product distributions µp; subsequently we extended the FKN theorem to the multislice, an analog
of the slice for [m]n [Fil20]. In this paper we present a streamlined version of the proof in [Fil16], also slightly
generalizing it to arbitrary product distributions, allowing different biases for different coordinates.

Our work will repeatedly use the “L2
2 triangle inequality”,

(a+ b)2 ≤ 2a2 + 2b2.

2 FKN theorem for the unbiased cube

The FKN theorem has several equivalent formulations. Here is the original one:

Theorem 2.1 ([FKN02]). If f : {0, 1}n → {0, 1} satisfies ‖f>1‖2 ≤ ε then f is O(ε)-close to a dictator.

(Recall that ‖g‖2 = E[g2], and f>1 = f − f≤1, where f≤1 is the orthogonal projection of f onto the space
of linear functions.)

We prefer the following simple corollary:

Corollary 2.2. If a linear function f : {0, 1}n → R satisfies E[dist(f, {0, 1})2] ≤ ε then f is O(ε)-close to a
dictator.

Proof. Let F = round(f, {0, 1}), so that

‖F>1‖2 = E[(F − F≤1)2] ≤ E[(F − f)2] = E[dist(f, {0, 1})2] ≤ ε.

Applying the theorem, we find that F is O(ε)-close to some dictator g. It follows that f is also O(ε)-close to
g, since

E[(f − g)2] ≤ 2E[(f − F )2] + 2E[(F − g)2] = 2E[dist(f, {0, 1})2] +O(ε) = O(ε).

We find it useful to think of the FKN theorem in the following way: if a linear function is close to Boolean,
then the coefficients of its Fourier expansion (given explicitly below) are close to {0,±1}, and moreover, most
of them are close to 0.

Lemma 2.3. Let f : {0, 1}n → R be a linear function, given by the formula

f(x) = c+

n∑
i=1

cixi,

and let di = round(ci, {0,±1}).
If f is ε-close to Boolean then

n∑
i=1

(ci − di)2 = O(ε),

and furthermore,
#{i ∈ [n] : di 6= 0} ≤ 1 +O(ε).
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Proof. We have xi = (1− (−1)xi)/2, and conversely, (−1)xi = 1− 2xi. Therefore the Fourier expansion of f
is

f = c′ +

n∑
i=1

−ci
2

(−1)xi ,

for some constant c′.
According to Corollary 2.2, there is a dictator g such that E[(f − g)2] = O(ε). Since the functions

1, (−1)x1 , . . . , (−1)xn are orthonormal, Parseval’s identity implies that

n∑
i=1

(
−ci/2− ĝ({i})

)2
= O(ε),

where ĝ({i}) is the coefficient of (−1)xi in the Fourier expansion of g. This, in turn, implies that

n∑
i=1

(
ci + 2ĝ({i})

)2
= O(ε).

The Fourier expansion of g is given by an expression of one of the following types:

0, 1,
1− (−1)xI

2
,

1 + (−1)xI

2
.

In all cases, ĝ({i}) ∈ {0,±1/2} for all i and so −2ĝ({i}) ∈ {0,±1} for all i. Thus (ci − di)2 ≤ (ci + 2ĝ({i}))2,
and the first statement of the lemma follows.

To see the second statement, notice that ∑
i 6=I

c2i = O(ε),

where we choose I arbitrarily when g ∈ {0, 1}. If di 6= 0 then c2i ≥ 1/4, implying the second statement.

3 FKN theorem for the biased cube

For a vector p ∈ [0, 1]n, let µp be the product distribution on {0, 1}n given by1

µp(x) =
∏

i : xi=1

pi
∏

i : xi=0

(1− pi).

We can assume, without loss of generality, that pi ≤ 1/2 for all i (since we can flip coordinates with pi > 1/2).
Here is the FKN theorem for µp:

Theorem 3.1. Let p ∈ (0, 1/2]n. If f : {0, 1}n → R is a linear function which is ε-close to Boolean with
respect to µp, then f is O(ε)-close to a function of the form

xi1 + · · ·+ xim or 1− xi1 − · · · − xim ,

where all it’s are distinct, and ∑
1≤s<t≤m

pispit = O(ε). (∗)

(If pi = q for all i ∈ [n], then this condition simplifies to m ≤ 1 or m = O(
√
ε/q).)

Conversely, any function of this form is O(ε)-close to Boolean.

1This notation extends the notation µp appearing in the introduction by identifying p with the constant vector (p, . . . , p).
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To see where the condition on the pit comes from, notice that∑
1≤s<t≤m

pispit

is an upper bound on Pr[h ≥ 2], where h = xi1 +· · ·+xim . We can actually say more: E[dist(h, {0, 1})2] = O(ε),
which implies the converse direction of Theorem 3.1. The trick is the easy observation that if z ∈ N then
dist(z, {0, 1})2 ≤ z(z − 1). Indeed, if z ∈ {0, 1} then both sides vanish, and otherwise

dist(z, {0, 1})2 = (z − 1)2 ≤ z(z − 1).

This observation implies that

E[dist(h, {0, 1})2] ≤ E[h2 − h] = E

 ∑
1≤s<t≤m

xisxit

 =
∑

1≤s<t≤m

pispit = O(ε).

We pause to mention that if p1 = · · · = pn = q then (∗) becomes(
m

2

)
q2 ≤ Cε,

for some C > 0, and so either m ≤ 1 or Cε ≥ m(m − 1)q2/2 ≥ (mq/2)2, and so m ≤ 2
√
Cε/q = O(

√
ε/q).

This explains the parenthetical remark in the statement of the theorem.

Before proceeding with the proof of the theorem, let us note the following curious corollary:

Corollary 3.2. Let p ∈ (0, 1/2]n, and let q = max(p1, . . . , pn). If f : {0, 1}n → R is a linear function which
is ε-close to Boolean with respect to µp, then f is O(q +

√
ε+ ε)-close to a constant function (either 0 or 1).

Proof. Suppose without loss of generality that f is O(ε)-close to h = xi1 + · · · + xim , and (∗) holds. The
distance from h to the constant zero function is

E[h2] =

m∑
t=1

E[x2it ] + 2
∑

1≤s<t≤m

E[xisxit ] =

m∑
t=1

pit +
∑

1≤s<t≤m

pispit .

The second sum is O(ε) by assumption. In order to bound the first sum, which we denote by P , we consider
its square:

P 2 =

m∑
t=1

p2it + 2
∑

1≤s<t≤m

pispit ≤ qP +O(ε).

Writing the left-hand side as P 2/2 + P 2/2, we see that either P 2 ≤ 2qP or P 2 = O(ε). In the first case,
P ≤ 2q, and in the second case, P = O(

√
ε). In both cases, we conclude that E[h2] = O(q +

√
ε+ ε).

Finally, let us note that the theorem is trivial if ε is large, say at least some constant ε0 > 0. Indeed, in
this case the distance from f to the constant zero function is

E[f2] ≤ 2E[(f − round(f, {0, 1}))2] + 2E[round(f, {0, 1})2] ≤ 2E[dist(f, {0, 1})2] + 2 ≤ 2(ε+ 1) ≤
2(1 + 1/ε0)ε = O(ε).

Therefore, in the proof we can assume that ε is “small enough”, that is, smaller than some unspecified positive
constant ε0.
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3.1 The proof

The main idea of the proof is a two-step process for sampling a point according to µp. First, we sample
a subset S ⊆ [n] by putting i into S with probability 2pi independently (this is why we need pi ≤ 1/2), a
distribution we denote by µ2p([n]) (identifying Boolean vectors and subsets). We fix coordinates outside of S
to zero, leaving us with a copy of {0, 1}S , within which we sample a uniformly random point. This results in
a µp-distributed point, since the probability that xi = 1 is precisely 2pi · 12 = pi.

The starting point is the given linear function

f = c+

n∑
i=1

cixi,

which is ε-close to Boolean.
Given S ⊆ [n], let f |S be the restriction of f to {0, 1}S obtained by zeroing out coordinates outside S.

Thus
f |S = c+

∑
i∈S

cixi.

If we denote εS = Eµ1/2
[dist(f |S , {0, 1})2], then

E
S∼µ2p([n])

[εS ] = E
S∼µ2p([n])

x∼µ1/2({0,1}S)

[dist(f(x), {0, 1})2] = E
x∼µp({0,1}n)

[dist(f(x), {0, 1})2] = ε.

In other words, on average f |S is close to Boolean.
Defining di = round(ci, {0,±1}) and applying Lemma 2.3, we obtain

E
S∼µ2p([n])

[∑
i∈S

(ci − di)2
]

= O(ε), (3.1)

as well as
E

S∼µ2p([n]
[#{i ∈ S : di 6= 0}] ≤ 1 +O(ε). (3.2)

If S ∼ µ2p([n]) then every i belongs to S with probability 2pi. Consequently, (3.1) implies that

n∑
i=1

pi(ci − di)2 = O(ε). (3.3)

Similarly, since

E
S∼µ2p([n]

[#{i ∈ S : di 6= 0}] = E
S∼µ2p([n]

[
n∑
i=1

1i∈S and di 6=0

]
=

∑
i : di=0

2pi,

Equation (3.2) implies that ∑
i : di 6=0

pi ≤
1

2
+O(ε) ≤ 3

4
, (3.4)

assuming that ε is small enough.
The idea now is to replace each ci with the corresponding di, capitalizing on (3.3). If we want the resulting

function to be close to f , we have to do it carefully, rewriting f as

f = c′ +

n∑
i=1

σici
xi − pi
σi

,
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where σi =
√
pi(1− pi) and c′ is some constant. This expresses f as a linear combination of orthonormal

functions. Consequently, if we define

g′ = c′ +

n∑
i=1

σidi
xi − pi
σi

= d′ +

n∑
i=1

dixi,

where d′ is some constant, then

E[(f − g′)2] =

n∑
i=1

σ2
i (ci − di)2 ≤

n∑
i=1

pi(ci − di)2 = O(ε),

and so E[dist(g′, {0, 1})2] = O(ε) by the L2
2 triangle inequality.

Equation (3.4) implies that Pr[g′ = d′] ≥ 1/4, and so dist(d′, {0, 1})2 = O(ε). Consequently, if we define
d = round(d, {0, 1}) and

g = d+

n∑
i=1

dixi,

then E[(g′ − g)2] = O(ε), which implies that E[(f − g)2] = O(ε) and so E[dist(g, {0, 1})2] = O(ε).

We are almost there: the major remaining step is showing that if d = 0 then most non-zero di’s are equal
to 1, and if d = 1 then most of them are equal to −1.

Assume for concreteness that d = 0, let A = {i ∈ [n] : di 6= 0} be the indices of non-zero di, and let
B = {i ∈ [n] : di = −1} be the indices of “bad” di. We would like to show that g is O(ε)-close to the function
obtained by removing the indices in B, namely,

h =
∑
i/∈B

dixi =
∑
i∈A\B

xi.

Applying (3.4), for each i ∈ B we have

Pr[xi = 1 and xj = 0 for all j ∈ A \ {i}] ≥ pi
4
.

If this event happens then g(x) = −1, and so dist(g(x), {0, 1})2 = 1. Since these events are disjoint for
different i ∈ B, it immediately follows that ∑

i∈B
pi = O(ε).

Therefore

E[(g − h)2] = E

(∑
i∈B

xi

)2
 =

∑
i∈B

pi +
∑
i,j∈B
i 6=j

pipj ≤

∑
i∈B

pi +
∑
i,j∈B

pipj =
∑
i∈B

pi +

(∑
i∈B

pi

)2

= O(ε+ ε2) = O(ε).

It follows that E[(f − h)2] = O(ε) and so E[dist(h, {0, 1})2] = O(ε).
It remains to show that (∗) holds. Let A \B = {i1, . . . , im′}. Applying (3.4), if 1 ≤ s < t ≤ m′ then

Pr[xis = xit = 1 and xir = 0 for all r 6= s, t] ≥ pispit
4

.

If this event happens then h(x) = 2 and so dist(h(x), {0, 1})2 = 1. These events are disjoint, and so
E[dist(h, {0, 1})2] = O(ε) directly implies (∗).
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4 FKN theorem for the slice

The slice
(
[n]
k

)
is the subset of {0, 1}n consisting of all vectors containing exactly k many 1s. We denote the

uniform distribution over the slice variously by νn,k, νk, ν, depending on the context.
In many respects, the distribution νn,k is similar to the distribution µp, for p = k/n. For example, the

two distributions have the same marginals:

Pr
x∼νn,k

[xi = 1] = Pr
x∼µp

[xi = 1] = p.

When looking at several coordinates at once, differences arise, though they are slight unless k is very extreme
(either very close to 0 or very close to n). For example, whereas the probability that xi = xj = 1 under µp is
p2, under νn,k this probability is

k(k − 1)

n(n− 1)
=

(
1− n− k

k(n− 1)

)
p2, (4.1)

which is Θ(p2) unless k ≤ 1.
Accordingly, the FKN theorem for νn,k is very similar to its counterpart for µp, where once again we

assume, without loss of generality, that k/n ≤ 1/2:

Theorem 4.1. Let 2 ≤ k ≤ n/2, and define p = k/n. If f :
(
[n]
k

)
→ R is a linear function which is ε-close to

Boolean with respect to the uniform distribution ν, then f is O(ε)-close to a function of the form

xi1 + · · ·+ xim or 1− xi1 − · · · − xim ,

where all it’s are distinct, and either m ≤ 1 or m = O(
√
ε/p).

Conversely, any function of this form is O(ε)-close to Boolean.

We should mention at this point that while it is possible to define linear functions on the slice exactly the
same as on the Boolean cube, it is sometimes more convenient to define them as functions of the form

n∑
i=1

cixi.

There is no need for the constant coefficient since it can be expressed via the identity
∑n
i=1 xi = k, which

holds for all points on the slice. As a bonus, this representation is unique.
Why do we ask that k ≥ 2? We want to rule out k = 0 since then p = 0. When k = 1, every function

is linear, and so the theorem isn’t true: for example, the function x1 + · · ·+ xbn/2c is Boolean but is not a
dictator.

Before proceeding with the proof, let us explain in brief how to prove the converse part of the theorem, as
well as the following counterpart of Corollary 3.2:

Corollary 4.2. Let 2 ≤ k ≤ n/2, and define p = k/n. If f :
(
[n]
k

)
→ R is a linear function which is ε-close

to Boolean with respect to the uniform distribution ν, then f is O(p+
√
ε+ ε)-close to a constant function

(either 0 or 1).

The proofs of both the converse part of the theorem and of the corollary closely follow their counterparts
in Section 3, using the estimate E[xixj ] ≤ p2 following from (4.1). Also, just as in Section 3, for the proof of
the main part of Theorem 4.1, we can assume that ε is small enough.

4.1 The proof

As in the proof of Theorem 4.1, the idea is to use a two-step process for sampling a point according to νn,k.
This time the reduction is a bit different. First, we choose a random permutation a = a1, . . . , an of 1, . . . , n.
Consider the subset Da of the slice which consists of all vectors satisfying

xa1 + xa2 = xa3 + xa4 = · · · = xa2k−1
+ xa2k = 1,
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the rest of the coordinates necessarily vanishing. We identify this subset with a copy of {0, 1}k as follows: we
map y ∈ {0, 1}k to the point x ∈ Da given by

xa1 = y1, xa3 = y2, . . . , xa2k−1
= yk,

xa2 = 1− y1, xa4 = 1− y2, . . . , xa2k = 1− yk,

the remaining coordinates being set to zero.
The starting point is the given linear function

f =

n∑
i=1

cixi,

which is ε-close to Boolean.
The restriction of f to Da takes the form

f |Da
= ca1y1 + ca2(1− y1) + · · ·+ ca2k−1

yk + ca2k(1− yk)

= c+ (ca1 − ca2)y1 + · · ·+ (ca2k−1
− ca2k)yk,

for some constant c. Choosing a at random and applying Lemma 2.3, we obtain

E
a

[
k∑
`=1

(ca2`−1
− ca2` − da2`−1,a2`)

2

]
= O(ε), (4.2)

as well as
E
a

[
#{` ∈ [k] : da2`−1,a2` 6= 0}

]
≤ 1 +O(ε), (4.3)

where di,j = round(ci − cj , {0,±1}).
If i 6= j are both in [n], then the probability that (a2`−1, a2`) = (i, j) for some ` ∈ [k] is k

n(n−1) . Therefore

k E
i 6=j

(ci − cj − di,j)2 = O(ε) (4.4)

and
k Pr
i6=j

[di,j 6= 0] ≤ 1 +O(ε). (4.5)

In both cases, the expectation and probability go over all n(n− 1) unordered pairs i, j ∈ [n] such that i 6= j.
At this point of the proof, we need a new idea, which will allow us to convert the information we get on

pairs of coefficients to information on single coefficients. The trick is very simple. If we choose j at random,
then (3.3) still holds, where now only i varies. In particular, with probability at least 2/3 over the choice of j,
(3.3) holds with a hidden constant three times as big. Similarly, with probability at least 2/3 over the choice
of j, (3.4) holds with the right-hand side replaced by 3 +O(ε). Both of these bounds hold with probability at
least 1/3, and in particular, for some choice j = J we have

k E
i6=J

(ci − cJ − di,J)2 = O(ε) (4.6)

and (for small enough ε)
k Pr
i 6=J

[di,J 6= 0] ≤ 3 +O(ε) ≤ 4, (4.7)

For brevity, let us write di = di,J , and define dJ = 0.
This suggests replacing ci with cJ + di. As in Section 3.1, we have to do it carefully: first we write

f = c+

n∑
i=1

ci(xi − p)
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for some constant c, recalling that p = k/n, and then we take

g′ = c+

n∑
i=1

(cJ + di)(xi − p) = d′ +

n∑
i=1

dixi;

we swallowed
∑n
i=1 cJxi = cJk inside the constant d′.

While the functions xi − p are not orthogonal, they are almost orthogonal: if i 6= j then

E[(xi − p)(xj − p)] = E[xixj ]− p2 = − k(n− k)

n2(n− 1)
,

using (4.1). Since E[(xi − p)2] = p(1− p) (just as for µp), we have

E[(f − g′)2] = p(1− p)
n∑
i=1

(ci − cJ − di)2 −
k(n− k)

n2(n− 1)

∑
i 6=j

(ci − cJ − di)(cj − cJ − dj). (4.8)

The first term in (4.8) is at most

k

n

n∑
i=1

(ci − cJ − di)2 ≤ k E
i 6=J

(ci − cJ − di)2 = O(ε),

since ci = cJ + di when i = J .
In order to bound the second term in (4.8), we use the inequality |zw| ≤ z2+w2

2 :

− k(n− k)

n2(n− 1)

∑
i 6=j

(ci − cJ − di)(cj − cJ − dj) ≤
k

n(n− 1)

∑
i 6=j

(ci − cJ − di)2 + (cj − cJ − dj)2

2
=

k

n(n− 1)

∑
i

∑
j 6=i

(ci − cJ − di)2

2
+

k

n(n− 1)

∑
j

∑
i 6=j

(cj − cJ − dj)2

2
=
k

n

n∑
i=1

(ci − cJ − di)2 = O(ε),

using the bound on the first term. Over all, this shows that E[(f − g′)2] = O(ε) and so E[dist(g′, {0, 1})2] =
O(ε).

At this point in the proof of Theorem 3.1, we appealed to the bound
∑
i : di 6=0 pi ≤ 3/4, which implies

that Pr[g′ = d′] ≥ 1/4. Here a similar bound holds, unless k is very small; we handle that case separately
later. Let us start by observing that (4.7) implies that

m := #{i : di 6= 0} ≤ 4
n− 1

k
≤ 4

p
.

Now suppose that k ≥ 9. Then m ≤ 4
9n, and so

Pr[xi = 0 whenever di 6= 0] =

(
1− k

n

)
· · ·
(

1− k

n−m+ 1

)
≥
(

1− k

n−m+ 1

)m
.

Now, n−m+ 1 ≥ 5
9n, and so k

n−m+1 ≤
k
n ·

9
5 ≤

9
10 , hence 1− k

n−m+1 = exp−Θ( k
n−m+1 ), and so

Pr[xi = 0 whenever di 6= 0] ≥ exp−O
(

km

n−m

)
= exp−O(pm) = Ω(1).

This implies that Pr[g′ = d′] = Ω(1), and so dist(d′, {0, 1})2 = O(ε). Defining d = round(d′, {0, 1}) and

g = d+

n∑
i=1

dixi,
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we have E[(g′ − g)2] = O(ε), implying that E[(f − g)2] = O(ε) and so E[dist(g, {0, 1})2 = O(ε).

The rest of the proof (assuming k ≥ 9) is very similar to the proof in Section 3.1. Assume, without loss of
generality, that d = 0. Let A be the indices of non-zero di, let B the indices where di = −1, and define

h =
∑
i/∈B

dixi =
∑
i∈A\B

xi.

For each i ∈ B, we have

Pr[xi = 1 and xj = 0 for all j ∈ A \ {i}] = p

(
1− k − 1

n− 1

)
· · ·
(

1− k − 1

n−m+ 1

)
= Ω(p).

In each such event, g(x) = −1 and so dist(g(x), {0, 1})2 = 1. Since the events are disjoint, we immediately
get |B| = O(ε/p). Therefore as in Section 3.1,

E[(g − h)2] = E

(∑
i∈B

xi

)2
 ≤ p|B|+ p2|B|2 = O(ε),

which implies that E[(f − h)2] = O(ε) and E[dist(h, {0, 1})2] = O(ε).
It remains to bound the size of A \B. If i, j ∈ A \B are different then

Pr[xi = xj = 1 and x` = 0 for all ` ∈ A \ (B ∪ {i, j})] = Ω(p2)

(
1− k − 2

n− 2

)
· · ·
(

1− k − 2

n−m+ 1

)
= Ω(p2),

using (4.1). In each such event, h(x) = 2 and so dist(h(x), {0, 1})2 = 1. These events are disjoint, and so
E[dist(h, {0, 1})2] = O(ε) implies that the number of pairs of elements in A \ B is O(ε/p2). Hence either
|A \B| ≤ 1 or |A \B| = O(

√
ε/p).

Now let us take care of the case 2 ≤ k ≤ 8. Let ∆ ∈ {0,±1} be the most common value of d1, . . . , dn, so
that at least n/3 many of the di are equal to ∆. Then

g′ = d′′ +

n∑
i=1

(di −∆)xi

for some constant d′′, using
∑n
i=1 xi = k. Denote the number of indices such that di 6= ∆ by M ≤ 2n/3. If

n/3 ≥ 2k then

Pr[xi = 0 whenever di 6= ∆] =

(
1− k

n

)
· · ·
(

1− k

n−M + 1

)
≥ exp−O

(
Mk

n−M

)
= Ω(1),

and so we can repeat the previous proof, with one difference: the coefficients di −∆ are no longer guaranteed
to belong to {0,±1}, but they do belong to {0,±1,±2}, and this suffices for the proof.

If n/3 ≤ 2k then n ≤ 6k < 50. In this case, if g′ is not a dictator that it is not Boolean and so
E[dist(g′, {0, 1})2] = Ω(1), since n is bounded. Assuming that ε is small enough, we can rule out this case,
and so g′ is a dictator, completing the proof.
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