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Abstract

Ellis, Friedgut and Pilpel [EFP11] prove that for large enough n, a t-intersecting family of permuta-
tions contains at most (n− t)! permutations. Their main theorem also states that equality holds only for
t-cosets. We show that their proof of the characterization of extremal families is wrong. However, the
characterization follows from a paper of Ellis [Ell11], as mentioned already by Ellis, Friedgut and Pilpel.

1 Introduction

The classical Erdős–Ko–Rado theorem states that when n > 2k, an intersecting family of k-subsets of
[n] := {1, . . . , n} contains at most

(
n−1
k−1

)
sets, and moreover this is achieved only by stars, consisting of all

sets containing a specific point. Wilson [Wil84] extended this result to t-intersecting families: he showed
that when n > (t+ 1)(k − t+ 1), a t-intersecting family of k-subsets of [n] contains at most

(
n−t
k−t
)

sets, and
moreover this is achieved only by t-stars, consisting of all sets containing t specific points.

The Erdős–Ko–Rado theorem has been extended in many different directions, one of them to other
domains. One of the most intriguing domains is that of permutations. We say that two permutations
π, σ ∈ Sn are t-intersecting if there exist t points i1 < · · · < it such that π(i1) = σ(i1), . . . , π(it) = σ(it). A
t-intersecting family of permutations is one in which every two permutations t-intersect.

A simple partitioning argument shows that any 1-intersecting family of permutations contains at most (n−
1)! permutations. This bound is only achieved by cosets Tij = {π ∈ Sn : π(i) = j}, though this is surprisingly
hard to show (different proofs appear in [CK03, LM04, GM09, EFP11]); see also the corresponding stability
result of Ellis [Ell12a].

In a groundbreaking paper, Ellis, Friedgut and Pilpel [EFP11] showed that for any t there exists Ct such
that for all n ≥ Ct, any t-intersecting family of permutations contains at most (n − t)! permutations, and
furthermore this is only achieved by t-cosets Tα1...αt 7→β1...βt = {π ∈ Sn : π(α1) = β1, . . . , π(αt) = βt}.

Unfortunately, the proof in [EFP11] that t-cosets are the only t-intersecting families of permutations of
maximum size is wrong for t > 1, as we indicate below. Fortunately, the main result of Ellis [Ell11] implies
that this theorem is correct; this is mentioned in [EFP11] as an alternative proof of the characterization
of t-intersecting families of maximum size. The same problem affects the characterization of the optimal
families for setwise-t-intersecting families of permutations in Ellis [Ell12b], but according to Ellis (private
communication), the result can be recovered using methods similar to those in [Ell11]. Yet another affected
paper is Wang [Wan13], whose characterization of the optimal t-intersecting families in Bn and Dn relies on
the affected parts of [EFP11].

The remainder of this note is structured as follows. In Section 2 we outline the relevant portion of the
arguments of [EFP11]. In Section 3 and Section 4 we present counterexamples to two results in [EFP11].
We close the note with some final remarks in Section 5.

Acknowledgements I thank David Ellis for several useful discussions, and Nathan Lindzey for bring-
ing [Wan13] to my attention.
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2 The argument of Ellis–Friedgut–Pilpel

Here is the main theorem of [EFP11].

Theorem 3 For any k ∈ N, and any n sufficiently large depending on k, if I ⊂ Sn is k-intersecting, then
|I| ≤ (n− k)!. Equality holds if and only if I is a k-coset of Sn.

This first step toward proving Theorem 3 is the following result, which combines parts of Theorem 5 and
Theorem 6 of [EFP11].

Theorem 5/6 For any k ∈ N and any n sufficiently large depending on k, if I ⊂ Sn is k-intersecting, then
|I| ≤ (n− k)!. Moreover, if I ⊂ Sn is a k-intersecting family of size (n− k)!, then 1I ∈ Vk.

Here 1I is the characteristic function of the family I, and Vk is the linear span of the characteristic
functions of the k-cosets. Given Theorem 5/6, to complete the proof of Theorem 3 we need to show that if
I is a k-intersecting family of size (n− k)!, then I is a k-coset. The authors deduce this from the following
result (called Theorem 8 in the introduction of [EFP11]), in which Ak consists of all ordered k-tuples of
distinct numbers in [n].

Theorem 27 Let f ∈ Vk be nonnegative. Then there exist nonnegative coefficients (bα,β)α,β∈Ak such that
f =

∑
bα,β1Tα7→β

. Furthermore, if f is Boolean, then f is the characteristic function of a disjoint union of
k-cosets.

Unfortunately, this theorem is wrong, as we show in Section 3. However, the special case k = 1, proved
in [EFP11] separately as Theorem 28, is correct.

The proof of Theorem 27 relies on two theorems, Theorem 29 and Theorem 30. Of these, Theorem 29 is
incorrect, as we show in Section 4, in which we also indicate the mistake in the proof.

3 Counterexample to Theorem 27

From now on we denote the characteristic function of a set S by JSK instead of 1S , to increase legibility.
Let n ≥ 6, and consider the following function:

f(π) = Jπ({1, 2, 3}) = {1, 2, 3} or π({1, 2, 3}) ∩ {1, 2, 3} = ∅K.

This is clearly a Boolean function. We claim that it belongs to V2. Indeed, we can rewrite it in the following
form, which makes it clear that it belongs to V2:

f(π) = 1− Jπ(1) ∈ {1, 2, 3}K− Jπ(2) ∈ {1, 2, 3}K− Jπ(3) ∈ {1, 2, 3}K
+Jπ({1, 2}) ⊂ {1, 2, 3}K + Jπ({1, 3}) ⊂ {1, 2, 3}K + Jπ({2, 3}) ⊂ {1, 2, 3}K.

If Theorem 27 were true, then the support of f would be the disjoint union of 2-cosets. In particular, it
would contain some 2-coset. However, it cannot contain any 2-coset, since knowing the image of any two
points in a permutation π is not enough to certify that f(π) = 1. (We leave it to the reader to perform the
necessary case analysis.)

This counterexample can be generalized to any even k ≥ 2 and n ≥ 2(k + 1):

Jπ({1, . . . , k + 1}) = {1, . . . , k + 1} or π({1, . . . , k + 1}) ∩ {1, . . . , k + 1} = ∅K =∑
S({1,...,k+1}

(−1)|S|Jπ(S) ⊂ {1, . . . , k + 1}K.

This is a function in Vk whose support contains no k-coset.
We describe other counterexamples in Section 5.
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4 Counterexample to Theorem 29

The proof of Theorem 27 relies on a claimed generalization of Birkhoff’s theorem attributed to Benabbas,
Friedgut, and Pilpel. Birkhoff’s theorem states that every bistochastic matrix is a convex combination of
permutation matrices. Theorem 29 of [EFP11] purports to generalize Birkhoff’s theorem to k dimensions.
Since our counterexample is two-dimensional, we will concentrate on the case k = 2.

A 2-bistochastic matrix M is an n(n−1)×n(n−1) matrix whose rows and columns are indexed by pairs
of indices, such that the following two properties hold:

(S1) There exist an n × n bistochastic matrix R = (ri,j) and n2 bistochastic matrices Mi,j of dimension
(n − 1) × (n − 1) whose rows and vertices are indexed by [n] \ {i}, [n] \ {j} (respectively) such that
M((i, i′), (j, j′)) = ri,jMi,j(i

′, j′).

(S2) There exist an n× n bistochastic matrix R′ = (ri′,j′) and n2 bistochastic matrices M ′i′,j′ of dimension
(n − 1) × (n − 1) whose rows and vertices are indexed by [n] \ {i′}, [n] \ {j′} (respectively) such that
M((i, i′), (j, j′)) = ri′,j′Mi′,j′(i, j).

Every permutation π ∈ Sn gives rise to a 2-bistochastic matrix Mπ given by Mπ((i, i′), (j, j′)) = Jπ(i) =
j and π(i′) = j′K. We can now state Theorem 29 in the special case k = 2.

Theorem 29 An n(n − 1) × n(n − 1) matrix M is 2-bistochastic if and only if it is a convex combination
of n(n− 1)× n(n− 1) matrices induced by permutations of [n].

The following matrix is a counterexample to this theorem, for n = 4 (the theorem holds for smaller n):

12 13 14 21 23 24 31 32 34 41 42 43
12 0 1/4 0 0 0 0 0 0 1/4 1/4 1/4 0
13 0 0 1/4 0 0 0 1/4 0 0 0 1/4 1/4
14 1/4 0 0 0 0 0 0 1/4 0 1/4 0 1/4
21 0 0 1/4 1/4 0 0 0 0 1/4 0 0 1/4
23 0 1/4 0 0 0 1/4 0 1/4 0 1/4 0 0
24 1/4 0 0 0 1/4 0 1/4 0 0 0 1/4 0
31 0 0 1/4 0 1/4 0 0 0 1/4 1/4 0 0
32 1/4 0 0 0 0 1/4 1/4 0 0 0 0 1/4
34 0 1/4 0 1/4 0 0 0 1/4 0 0 1/4 0
41 0 1/4 0 0 0 1/2 1/4 0 0 0 0 0
41 0 0 1/4 1/4 1/4 0 0 1/4 0 0 0 0
43 1/4 0 0 1/4 1/4 0 0 0 1/4 0 0 0

21 31 41 12 32 42 13 23 43 14 24 34
21 1/4 0 0 0 0 0 0 0 1/4 1/4 0 1/4
31 0 0 1/4 0 0 0 0 1/4 0 1/4 0 1/4
41 0 1/4 0 0 0 0 1/4 0 0 0 1/2 0
12 0 0 1/4 0 0 1/4 1/4 0 0 0 0 1/4
32 0 1/4 0 1/4 0 0 0 0 1/4 0 1/4 0
42 1/4 0 0 0 1/4 0 0 1/4 0 1/4 0 0
13 0 1/4 0 0 0 1/4 0 0 1/4 1/4 0 0
23 0 0 1/4 0 1/4 0 1/4 0 0 0 1/4 0
43 1/4 0 0 1/4 0 0 0 1/4 0 0 0 1/4
14 0 0 1/4 1/4 1/4 0 0 0 1/4 0 0 0
24 0 1/4 0 1/4 0 1/4 0 1/4 0 0 0 0
34 1/4 0 0 0 1/4 1/4 1/4 0 0 0 0 0
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The reader can check that this matrix (given in two different orderings of the rows and columns) is
2-bistochastic. According to Theorem 29, it should be a convex combination of matrices induced by permu-
tations. However, its support does not contain the support of any matrix induced by a permutation.

We go on to pinpoint the mistake in the proof of Theorem 29; what follows uses the same notation as
the original proof. Let M be a 2-bistochastic matrix. According to condition (S1), there are bistochastic
matrices R = (ri,j) and Mi,j such that M((i, i′), (j, j′)) = ri,jMi,j(i

′, j′). Since R is bistochastic, according
to Birkhoff’s theorem it is a convex combination of permutation matrices. If P is one of these permutation
matrices, then we can write R = sP + (1 − s)T for some s ∈ (0, 1]. The proof then considers the modified
matrix M̃ (my notation) defined by M̃((i, i′), (j, j′)) = P (i, j)Mi,j(i

′, j′). Under the (tacit) assumption

that M̃ is 2-bistochastic, the proof goes on to show that M̃ is the matrix induced by the permutation
corresponding to P . However, while M̃ certainly satisfies (S1), it need not satisfy (S2). For a concrete
example, consider the matrix M above. The corresponding matrix R is

1/4 0 1/4 1/2
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/2 1/4 0

 =
1

4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+
1

4


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

+
1

4


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

+
1

4


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 .

Denote the first permutation matrix by P . If we replace R by P then we get the following matrix:

12 13 14 21 23 24 31 32 34 41 42 43
12 0 0 0 0 0 0 0 0 0 1/2 1/2 0
13 0 0 0 0 0 0 0 0 0 0 1/2 1/2
14 0 0 0 0 0 0 0 0 0 1/2 0 1/2
21 0 0 0 0 0 0 0 0 1 0 0 0
23 0 0 0 0 0 0 0 1 0 0 0 0
24 0 0 0 0 0 0 1 0 0 0 0 0
31 0 0 0 0 0 0 0 1 0 0 0 0
32 0 0 0 0 0 0 0 0 1 0 0 0
34 0 0 0 1 0 0 0 0 0 0 0 0
41 0 1 0 0 0 0 0 0 0 0 0 0
42 0 0 1 0 0 0 0 0 0 0 0 0
43 1 0 0 0 0 0 0 0 0 0 0 0

21 31 41 12 32 42 13 23 43 14 24 34
21 0 0 0 0 0 0 0 0 0 0 0 1
31 0 0 0 0 0 0 0 1 0 0 0 0
41 0 0 0 0 0 0 1 0 0 0 0 0
12 0 0 1/2 0 0 1/2 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 1 0
42 0 0 0 0 0 0 0 0 0 1 0 0
13 0 0 0 0 0 1/2 0 0 1/2 0 0 0
23 0 0 0 0 1 0 0 0 0 0 0 0
43 0 0 0 1 0 0 0 0 0 0 0 0
14 0 0 1/2 0 0 0 0 0 1/2 0 0 0
24 0 1 0 0 0 0 0 0 0 0 0 0
34 1 0 0 0 0 0 0 0 0 0 0 0

As can be seen, this matrix satisfies (S1) but not (S2).
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5 Final remarks

The counterexample described to Theorem 27 arose while trying to prove a similar theorem on the slice
J(n, k) = {x ∈ {0, 1}n :

∑
i xi = k}. Specifically, we were interested in understanding the structure of

Boolean functions of degree d (the degree of a function on J(n, k) is the minimal degree of a polynomial
defining it). Every Boolean function f on the slice J(n, k) can be lifted to a Boolean function F on Sn using
the formula

F (π) = f(π({1, . . . , k})).

Moreover, if f has degree d then F ∈ Vd. It is then a simple exercise to deduce the following theorem from
Theorem 27:

Theorem 27J If f is a nonnegative function on J(n, k) of degree d then f can be written as a nonnegative
combination of degree-d monomials in the variables x1, . . . , xn, 1−x1, . . . , 1−xn. Moreover, if f is a Boolean
function on J(n, k) of degree d then f can be written as a sum of degree-d monomials (in the same variables),
which are necessarily “disjoint” in the sense that no two can evluate to 1 at the same time.

This theorem fails for the following function, which is where our counterexample to Theorem 27 comes
from:

f = Jx1 = x2 = x3K = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3.

Curiously, it does hold for the negation of f :

1− f = x1(1− x2) + x2(1− x3) + x3(1− x1).

As noticed by David Ellis, this example can be extended to any even degree.
It is natural to ask whether Theorem 27 or Theorem 27J can be corrected. Here are two possible ways

to correct Theorem 27J, in the special case of Boolean functions:

1. For every d there is a constant sd such that every Boolean function on J(n, k) of degree d can be
written as a sum monomials of degree sd.

2. For every d there is a constant rd such that for every Boolean function f on J(n, k) of degree d, either
f or 1− f can be written as a sum of monomials of degree rd.

For a Boolean function f on {0, 1}n, the minimal s such that f can be written as a sum of monomials
of degree s is known as its one-sided unambiguous certificate complexity, which is known to be polynomially
related to the degree [Göö15, BD17]. The analog of the parameter r is known as the two-sided unambiguous
certificate complexity, and is also polynomial related to the degree [Göö15, BD17]. Therefore for the Boolean
cube we know that sd, rd = dΘ(1).

A classical example showing that r2 > 2 (on both the Boolean cube and J(n, k) for appropriate n, k) is
the 4-sortedness function

f(x1, x2, x3, x4) = Jx1 ≤ x2 ≤ x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4K.

While not apparent from this definition, f has degree 2. It is not hard to check that the unambiguous
certificate complexity of both f and 1−f is larger than 2. By iterating this function, we get the lower bound
rd = dΩ(1).

Finally, let us mention, that an approximate version of Theorem 27 does hold for sparse Boolean functions,
namely the main result of [EFF15a]. Roughly speaking, this result states that if f is a Boolean function
close to Vd (in L2) and E[f ] = O(1/nd) then f is close to a union of d-cosets. For similar results in the case
d = 1, see [EFF15b, EFF15c].
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