Spectral Methods in Extremal Combinatorics

Yuval Filmus

Tuesday, July 2, 2013

A traffic light puzzle

Traffic light is controlled by 3-way switches

When all switches change, light changes

A traffic light puzzle

Traffic light is controlled by 3-way switches

When all switches change, light changesShow that light is controlled by one switch!

Outline of the talk

Solution of the puzzle using Hoffman's bound
 Triangle-intersecting families of graphs
 Structure theorems for functions on Sn
 Applications to theoretical computer science

Solution of the puzzle

R = set of switch settings leading to red
No two x,y∈R differ on <u>all</u> switches
R is an independent set in a graph G=(V,E):
V is set of all switch settings
(x,y)∈E if they differ on all switches

Hoffman's bound

Hoffman [1969]: (similar to Lovász θ function)
 Let A be adjacency matrix of d-regular graph G,
 λ_{min} smallest eigenvalue of A:

 $\alpha(G) \leq -\lambda_{\min}/(d-\lambda_{\min}) |V|$

If $\alpha(G) = -\lambda_{min}/(d-\lambda_{min})$ |V| then: char. func. of any maximum independent set is in linear span of 1 and eigenspace of λ_{min}

Solution of the puzzle

Hoffman's bound: α(G) ≤ -λ_{min}/(d-λ_{min}) |V|
In our case d = 2ⁿ, λ_{min} = -2ⁿ⁻¹, |V| = 3ⁿ, so α(G) ≤ 3ⁿ⁻¹
Since |R|,|Y|,|G| ≤ 3ⁿ⁻¹, |R| = |Y| = |G| = 3ⁿ⁻¹
Equality part of Hoffman's bound implies: Each of R,Y,G depends on only one switch

Outline of the talk

Solution of the puzzle using Hoffman's bound
 Triangle-intersecting families of graphs
 Structure theorems for functions on Sn
 Applications to theoretical computer science

Triangle-intersecting families of graphs

Family of graphs on [n] is <u>triangle-intersecting</u> if intersection of any two graphs contains a triangle
Simonovits and Sós [1976]: How large can family be?
Conjecture: at most 1/8 of all graphs
Chung, Frankl, Graham, Shearer [1986]: at most 1/4
Ellis, F., Friedgut [2012]: verify the conjecture

Weighted Hoffman's bound

Hoffman's bound works on edge-weighted graphs Ø Weighted vertex degree must be constant We construct a weighted graph G=(V,E,w): \oslash V = all graphs on [n] $(x,y) \in E$ if $x \cap y$ is triangle-free o w is engineered to give bound |V|/8

Weighted Hoffman's bound

Hoffman's bound works on edge-weighted graphs Ø Weighted vertex degree must be constant We construct a weighted graph G=(V,E,w): \oslash V = all graphs on [n] $(x,y) \in E$ if $x \Delta y$ is bipartite o w is engineered to give bound |V|/8

Uniqueness & Stability

Oliqueness:

Char. func. of a maximum independent set is linear comb. of functions depending on 3 edges

Implies that any maximum independent set is triangle-junta (all supergraphs of fixed triangle)

Stability:

What about ind. sets of almost maximal size?

Uniqueness & Stability

- What about ind. sets of almost maximal size?
 Suppose F contains (1-ε) |V|/8 graphs
 Hoffman's bound: 1_F close to linear combination of functions depending on 3 edges
 Kindler-Safra [2002]: F close to a family G depending on O(1) edges
- ε small enough $\Rightarrow G$ is triangle-junta

Outline of the talk

Solution of the puzzle using Hoffman's bound
 Triangle-intersecting families of graphs
 Structure theorems for functions on S_n
 Applications to theoretical computer science

Intersecting families of permutations

Family of permutations in S_n is <u>intersecting</u> if any two σ,τ agree on some point: ∃i σ(i) = τ(i)
Easy: size of max. intersecting family = (n-1)!
Hard: maximum intersecting families are T_{ij} = { σ∈S_n : σ(i) = j }
What about families of size (1-ε) (n-1)! ?

Using Hoffman's method

Let G=(V,E) where V = S_n and (σ,τ)∈E if σ,τ differ on all points, i.e. στ⁻¹ is a derangement
Renteln [2007] calculated λ_{min} = -d_n/(n-1)
Hoffman's bound: α(G) ≤ (n-1)! and maximum independent set in linear span of T_{ij}
Implies maximum independent sets are T_{ij}

Stability

Suppose F contains (1-ε) (n-1)! permutations
Hoffman's bound: 1_F close to linear comb. of T_{ij}
Ellis, Friedgut & Pilpel [2011]: Since F is intersecting, F is close to some T_{ij}
Ellis, F., Friedgut [2012]: Similar result without assuming F is intersecting

Our structure theorems

Suppose 1_F is close to linear combination of T_{ij}
 Thm 1: If |F| = c (n−1)! then F is close to a union of T_{ij}'s (works for small c)

Thm 2: If |F| = c n! then F is close to a **disjoint** union of T_{ij} 's (works for c far from 0,1) So F \approx { $\sigma \in S_n : \sigma(i) \in J$ } or F \approx { $\sigma \in S_n : \sigma^{-1}(j) \in I$ }

Thm 1 & Thm 2 have completely different proofs

Outline of the talk

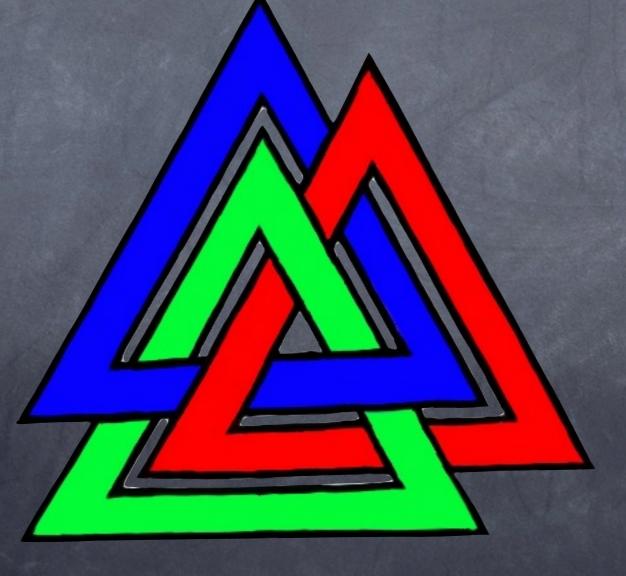
Solution of the puzzle using Hoffman's bound
 Triangle-intersecting families of graphs
 Structure theorems for functions on Sn
 Applications to theoretical computer science

Applications

Our results don't have applications to theoretical computer science yet
Similar results have many applications:

Voting theory (quantitative Arrow's theorem)
Inapproximability (vertex cover)
Property testing (assignment testers)

Any questions?



Tuesday, July 2, 2013