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A traffic light puzzle

Traffic light is controlled by 3-way switches

When all switches change, light changes

Tuesday, July 2, 2013



A traffic light puzzle

Traffic light is controlled by 3-way switches

When all switches change, light changes
Show that light is controlled by one switch!
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Solution of the puzzle

R = set of switch settings leading to red

No two x,y∈R differ on all switches

R is an independent set in a graph G=(V,E):

V is set of all switch settings

(x,y)∈E if they differ on all switches
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Hoffman’s bound

Hoffman [1969]: (similar to Lovász θ function)
Let A be adjacency matrix of d-regular graph G,
λmin smallest eigenvalue of A:

α(G) ≤ –λmin/(d–λmin) |V|

If α(G) = –λmin/(d–λmin) |V| then:
char. func. of any maximum independent set is 
in linear span of 1 and eigenspace of λmin

Tuesday, July 2, 2013



Solution of the puzzle

Hoffman’s bound: α(G) ≤ –λmin/(d–λmin) |V|

In our case d = 2n, λmin = –2n–1, |V| = 3n,
so α(G) ≤ 3n–1

Since |R|,|Y|,|G| ≤ 3n–1, |R| = |Y| = |G| = 3n–1

Equality part of Hoffman’s bound implies:
Each of R,Y,G depends on only one switch
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Triangle-intersecting
families of graphs

Family of graphs on [n] is triangle-intersecting if 
intersection of any two graphs contains a triangle

Simonovits and Sós [1976]: How large can family be?

Conjecture: at most 1/8 of all graphs

Chung, Frankl, Graham, Shearer [1986]: at most 1/4

Ellis, F., Friedgut [2012]: verify the conjecture
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Weighted Hoffman’s bound

Hoffman’s bound works on edge-weighted graphs

Weighted vertex degree must be constant

We construct a weighted graph G=(V,E,w):

V = all graphs on [n]

(x,y)∈E if x∩y is triangle-free

w is engineered to give bound |V|/8
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Weighted Hoffman’s bound

Hoffman’s bound works on edge-weighted graphs

Weighted vertex degree must be constant

We construct a weighted graph G=(V,E,w):

V = all graphs on [n]

(x,y)∈E if xΔy is bipartite

w is engineered to give bound |V|/8
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Uniqueness & Stability

Uniqueness:

Char. func. of a maximum independent set is
linear comb. of functions depending on 3 edges

Implies that any maximum independent set is 
triangle-junta (all supergraphs of fixed triangle)

Stability:

What about ind. sets of almost maximal size?
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Uniqueness & Stability

What about ind. sets of almost maximal size?

Suppose F contains (1–ε) |V|/8 graphs

Hoffman’s bound: 1F close to linear combination 
of functions depending on 3 edges

Kindler-Safra [2002]: F close to a family G 
depending on O(1) edges

ε small enough ⇒ G is triangle-junta
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Intersecting families
of permutations

Family of permutations in Sn is intersecting if 
any two σ,τ agree on some point: ∃i σ(i) = τ(i)

Easy: size of max. intersecting family = (n–1)!

Hard: maximum intersecting families are
              Tij = { σ∈Sn : σ(i) = j }

What about families of size (1–ε) (n–1)! ?
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Using Hoffman’s method

Let G=(V,E) where V = Sn and (σ,τ)∈E if σ,τ 
differ on all points, i.e. στ–1 is a derangement

Renteln [2007] calculated λmin = –dn/(n–1)

Hoffman’s bound: α(G) ≤ (n–1)! and
maximum independent set in linear span of Tij

Implies maximum independent sets are Tij
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Stability

Suppose F contains (1–ε) (n–1)! permutations

Hoffman’s bound: 1F close to linear comb. of Tij

Ellis, Friedgut & Pilpel [2011]:
Since F is intersecting, F is close to some Tij

Ellis, F., Friedgut [2012]:
Similar result without assuming F is intersecting
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Our structure theorems

Suppose 1F is close to linear combination of Tij

Thm 1: If |F| = c (n–1)! then F is close to a 
union of Tij’s (works for small c)

Thm 2: If |F| = c n! then F is close to a 
disjoint union of Tij’s (works for c far from 0,1)
So F ≈ {σ∈Sn : σ(i)∈J} or F ≈ {σ∈Sn : σ–1(j)∈I} 

Thm 1 & Thm 2 have completely different proofs
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Applications

Our results don’t have applications to 
theoretical computer science yet

Similar results have many applications:

Voting theory (quantitative Arrow’s theorem)

Inapproximability (vertex cover)

Property testing (assignment testers)
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Any questions?
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