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Abstract17

A pair of sources X, Y over {0, 1}n are k-indistinguishable if their projections to any k coordinates18

are identically distributed. Can some AC0 function distinguish between two such sources when k is19

big, say k = n0.1? Braverman’s theorem (Commun. ACM 2011) implies a negative answer when X20

is uniform, whereas Bogdanov et al. (Crypto 2016) observe that this is not the case in general.21

We initiate a systematic study of this question for natural classes of low-complexity sources,22

including ones that arise in cryptographic applications, obtaining positive results, negative results,23

and barriers. In particular:24

There exist Ω(
√

n)-indistinguishable X, Y , samplable by degree-O(log n) polynomial maps (over25

F2) and by poly(n)-size decision trees, that are Ω(1)-distinguishable by OR.26

There exists a function f such that all f(d, ϵ)-indistinguishable X, Y that are samplable by27

degree-d polynomial maps are ϵ-indistinguishable by OR for all sufficiently large n. Moreover,28

f(1, ϵ) = ⌈log(1/ϵ)⌉ + 1 and f(2, ϵ) = O(log10(1/ϵ)).29

Extending (weaker versions of) the above negative results to AC0 distinguishers would require30

settling a conjecture of Servedio and Viola (ECCC 2012). Concretely, if every pair of n0.9-31

indistinguishable X, Y that are samplable by linear maps is ϵ-indistinguishable by AC0 circuits,32

then the binary inner product function can have at most an ϵ-correlation with AC0 ◦ ⊕ circuits.33

Finally, we motivate the question and our results by presenting applications of positive results to34

low-complexity secret sharing and applications of negative results to leakage-resilient cryptography.35
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1 Introduction54

A pair of sources X,Y over {0, 1}n are k-indistinguishable if their projections to any k55

coordinates are identically distributed. Can some AC0 function distinguish between two such56

sources when k is big, say k = n0.1? Braverman’s theorem [15, 56] implies a negative answer57

when X is uniform, or equivalently when X,Y are k-independent. What about the general58

case?59

The above question was posed by Bogdanov et al. [13], who observed a tight connection1
60

(via LP duality) with the approximate degree of the distinguisher. Using this connection,61

positive answers can be derived from the literature on the approximate degree of AC0
62

functions [44, 45, 53, 7, 1, 51, 17, 18, 19, 20, 21, 22, 52]. In particular, there exist
√
n-63

indistinguishable sources that can be Ω(1)-distinguished by the OR function [43] and n1−δ-64

indistinguishable sources that can be Ω(1)-distinguished by an AC0 function for every65

δ > 0 [22]. On the other hand, upper bounds on approximate degree imply limitations on66

the indistinguishability threshold k. In particular, the
√
n threshold for OR distinguishers is67

known to be asymptotically tight, whereas the n1−δ threshold for AC0 distinguishers is only68

conjectured to be tight.69

The study of the bounded indistinguishability question in [13] was motivated by the70

following “win-win” connection with cryptography. If the answer to the question turns out71

to be positive, namely there exist k-indistinguishable X,Y that can be distinguished in72

AC0, this implies secret-sharing schemes2 where the secret can be reconstructed in AC0.73

This is surprising in light of the fact that standard secret-sharing schemes, such as Shamir’s74

scheme [50], use a linear function to reconstruct the secret. On the flip side, a negative answer75

is motivated by the goal of protecting cryptographic applications against leakage of partial76

information on their internal state. Concretely, in any application that was designed to77

protect against local leakage of k bits, a negative answer implies automatic protection against78

global AC0 leakage. Such applications abound in the vast literature on secure multiparty79

computation (MPC), originating from [66, 34, 9, 23], and leakage-resilient circuits, originating80

from [36]. Braverman’s theorem does not apply here because the process of computing on81

secret-shared data, while respecting k-indistinguishability by design, inevitably creates local82

dependencies. Obtaining provable resilience to AC0 leakage turned out to be a challenging83

task that has led to more intricate constructions and analysis [31, 48, 12].84

On the downside, both kinds of “win” come with a caveat. In the secret-sharing application,85

schemes arising from the approximate degree literature minimize reconstruction complexity86

1 The connection with approximate degree breaks down over non-binary alphabets [13]. Here we restrict
the attention to the binary case, which suffices for our motivating applications.

2 Here we refer to a relaxation of standard threshold secret sharing that allows for a gap between the
secrecy and the reconstruction thresholds and for a small error probability. Bogdanov et al. [13] present
general techniques for narrowing the gap and making the error probability negligible by increasing the
share size, while keeping reconstruction in AC0.
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at the expense of a high sharing complexity, of generating the shares. The question of87

simultaneously minimizing the complexity of sharing and reconstruction remained largely88

open. For the leakage-resilience application, a general protection even against benign leakage89

by an OR function (capturing so-called “selective failure” attacks, discussed below) requires90

k ≫
√
n. Viewing n as the total number of wires in a circuit, existing constructions of91

leakage-resilient circuits (such as [36]) are far from achieving this k-local secrecy threshold,92

rendering the generic “security upgrade” guarantee essentially useless in the context of natural93

applications.94

Towards tackling both of the above challenges, we take a more fine-grained view of95

bounded indistinguishablity, asking the following main question:96

Can some AC0 function distinguish between simple k-indistinguishable sources?97

To make the question precise, we need to specify a class F of samplers that define a98

“simple” source. We also consider distinguisher classes C that are strict subclasses of AC0, such99

as depth 1 (OR) or depth 2 (DNF) distinguishers. Given F and C, the goal is to understand100

the achievable tradeoff between the threshold k and the distinguishing advantage ϵ.101

Braverman’s theorem resolves the analogous question for k-independent sources. As102

k-independent sources can be sampled both linearly and locally, the fooling ability of such103

sources does not depend on their complexity. In contrast, in this work we demonstrate that104

the fooling power of k-indistinguishable sources is significantly affected by their complexity.105

Useful classes of simple sources. We will be mainly interested in sources that can be106

sampled by low-degree polynomial maps over F2. Beyond the complexity-theoretic interest107

in such sources (see, e.g., [46, 29, 30, 10, 39]), they are also motivated by the two kinds of108

cryptographic applications discussed above. In the context of secret sharing, positive answers109

for degree 1 sources (also referred to as linear or affine sources) would give rise to linear110

secret-sharing schemes with AC0 reconstruction. Linear schemes have the useful feature of111

supporting local addition of shared secrets. Perhaps more surprisingly, degree 2 (quadratic)112

sources are also naturally motivated by cryptographic applications. We observe that many113

existing MPC protocols from the literature (including the most efficient ones [26]) can be114

brought to a form where, for every fixed input, the full transcript is a degree 2 function of the115

randomness. This holds regardless of the complexity of the function being computed. If for116

quadratic sources we can get negative answers for much smaller values of k than for general117

sources, this would enable strong leakage-resilience guarantees for natural applications.118

We also consider the minimal depth and locality required for sampling the sources. A119

positive result from [13] shows that OR can distinguish between a pair of k-indistinguishable120

AC0-samplable sources. However, a direct implementation of this sampler has depth 9. How121

low can the depth be? Considering locality, can AC0 distinguish between NC0-samplable122

sources? Positive answers to the above questions are motivated by the goal of simultaneously123

minimizing the complexity of sharing and reconstructing secrets.124

Useful classes of distinguishers. As random parity-0 and parity-1 strings are (n− 1)-wise125

indistinguishable but samplable by essentially the simplest possible closed-under-projection126

class F of linear 2-local sources,3 it is sensible to restrict attention to distinguisher classes C127

that cannot compute parities, such as AC0 or some subclass of it. The simplest subclasses128

are depth 1 OR distinguishers (disjunction of a subset of the source bits and their negations)129

and depth 2 DNF distinguishers. Positive results for OR give rise to visual secret-sharing130

3 The sampler for parity-b strings of length n is r1, r1 ⊕ r2, . . . , rn−2 ⊕ rn−1, rn−1 ⊕ b.
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schemes [43], where the secret can be reconstructed by overlaying transparencies. Negative131

results for OR and DNF are motivated by securing computations against selective failure132

attacks, where there are multiple events that can trigger failure and only the existence133

of failure is leaked to the attacker. Beyond this direct motivation, OR leakage comes up134

naturally in MPC protocols based on garbled circuits [40, 35]. DNF leakage can capture135

stronger selective failure attacks. See [13, 12] for further discussion.136

1.1 Overview of results137

We now give a detailed account of our main results, for the classes of source samplers F138

and distinguishers C discussed above. The results can be classified into three types: positive139

(distinguishability), negative (indistinguishability), and barriers. They are summarized in140

Table 1.141

Some of our results merely require that one of the sources X,Y be simple and allow the142

other to be of arbitrary complexity. For given parameters k, ϵ, we say that143

F weakly ϵ-fools C if for every k-indistinguishable pair X,Y with X ∈ F and Y ∈ F144

and every C ∈ C, | Pr[C(X) = 1] − Pr[C(Y ) = 1]| ≤ ϵ. We refer to this as MAIN(k, ϵ).145

F strongly ϵ-fools C if for every k-indistinguishable pair X,Y with X ∈ F or Y ∈ F and146

every C ∈ C, | Pr[C(X) = 1] − Pr[C(Y ) = 1]| ≤ ϵ. We refer to this as GENERAL(k, ϵ).147

In this terminology, Braverman’s theorem states that for k = polylog(n), the uniform148

distribution strongly o(1)-fools AC0. We say that C distinguishes F if F does not fool C.149

Source (F) Distinguisher (C) Statement
Result Ref.

Po
si

tiv
e Symmetric,

AC0 OR ¬MAIN(Θϵ(
√

n), 1 − ϵ) [13]

Mixture of
IID, Poly-size
decision trees,

Degree
O(log n)

OR ¬MAIN(Θϵ(
√

n), 1 − ϵ) Theorem 3

N
eg

at
iv

e Linear O(1)-local DNF GENERAL(O(log 1
ϵ
), ϵ)

Degree O(1) OR MAIN(Oϵ(1), ϵ)
Quadratic Unambiguous DNF GENERAL(poly(log n

ϵ
), ϵ)

Quadratic OR GENERAL(poly(log 1
ϵ
), ϵ)

Depth 1 Arbitrary MAIN(O(log log(n/ϵ)), ϵ) Theorem 1

B
ar

rie
r Linear AC0 MAIN(n/ log n, ϵ) ⇒ IPAP(ϵ)

Linear
(LDPC) AC0 No NC0 reduction to k-independence

NC0 AC0 MAIN(nΩ(1), 1/3) ⇒ [11, Conjecture 7]
Table 1 Our main results for sources in class F and distinguishers of type C. A positive result

gives a value of k such that there exist F-samplable, k-indistinguishable distributions that are ϵ-
distinguished by C. A negative result gives a value of k for which any F-samplable, k-indistinguishable
distributions ϵ-fool C. A barrier typically shows that proving a (stronger) negative result would
settle a natural conjecture, implying a conditional difficulty to do so. All distinguishers are poly(n)
sized. LDPC refers to uniform distributions over two distinct cosets of a good (linear) low-density
parity-check code. Due to space limitations, only a few results are formally stated. The precise
statements of negative results appear in [11, Section 6] and barriers in [11, Section 4.2, Section 7.2,
Section 8.2].

ITCS 2022



23:4 Bounded Indistinguishability for Simple Sources

Positive results. In [11, Section 5] we show the existence of an Oϵ(
√
n)-indistinguishable150

pair of sources that are (1 − ϵ)-distinguishable by OR and samplable by (a) decision trees of151

size polynomial in n, and (b) polynomials of degree O(logn) (Theorem 3) thereby showing152

that OR ϵ-distinguishes the sources described in (a) as well as in (b). Part (a) improves on the153

aforementioned result of Bogdanov et al., by weakening the circuit class from AC0 to decision154

trees. Moreover, these sources implement an evolving visual secret sharing scheme [38] of155

very low informational and computational complexities (see [11, Section 5.5]).156

Our positive result for degree-O(logn) sources is obtained by applying a suitable ran-157

domized encoding technique [47, 54, 6] to sources sampled by decision trees. In [11, Section158

8] we consider other applications of this technique, showing that a (hypothetical) positive159

result for o(log logn)-local sources implies a positive result for 4-local sources. We also put160

forward a natural conjecture ([11, Conjecture 7]) on the complexity of randomized encoding161

of AC0 functions that may be viewed as a barrier to negative results.162

Negative results. In contrast to Theorem 3, we show that constant-degree sources are163

indistinguishable by OR (see Table 1):164

1. O(log(n/ϵ))-indistinguishable linear sources strongly ϵ-fool polysize unambiguous DNFs165

and ORs of O(1)-local functions. ([11, Lemma 6.2] + [11, Lemma 6.8])166

2. O(log10(n/ϵ))-indistinguishable quadratic sources strongly ϵ-fool polysize unambiguous167

DNFs. (Theorem 4 + [11, Lemma 6.8])168

3. Od,ϵ(1)-indistinguishable degree-d sources weakly ϵ-fool OR. ([11, Corollary 6.15] + [11,169

Corollary 6.6.])170

In applications to leakage-resilient cryptography, it is desirable to make the adversary’s171

advantage ϵ a negligible function of the instance size n. The first two negative results allow172

a low indistinguishability parameter k even when ϵ must vanish exponentially with n. In173

particular, the first result implies that all linear secret-sharing schemes are automatically174

immune to selective failure attacks (see [13, Section 3.3]). The second result implies the same175

kinds of immunity for efficient MPC protocols, as it turns out that the joint view of the176

parties in such protocols can be sampled by quadratic polynomial maps (see [11, Section177

9.1]).178

Degree 1

GENERAL
local DNF

Degree 2

GENERAL
unambiguous DNF

Degree O(1)

MAIN
OR

Degree O(logn)

¬MAIN
OR

Figure 1 Main results in terms of degree for different classes of distinguishers.

As decision trees can be expressed by depth 2 AND/OR formulas (both CNFs and DNFs)179

of the same size, our positive result leaves open the fooling power of depth 1 sources. We180

obtain a strong negative result for such sources (see Figure 2) in Theorem 1 which is as181

follows:182

▶ Theorem 1. If X,Y are two (log log(n/ϵ) + 2)-indistinguishable depth 1 sources then the183

statistical distance between X and Y is at most ϵ.184

This result is optimal not only in terms of the depth, but also in terms of the indistin-185

guishability parameter, at least for constant ϵ (see a matching positive result in [11, Lemma186

6.39]).187
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Depth 1

MAIN
arbitrary

Depth 2

¬MAIN
OR

Figure 2 Main results in terms of depth for different classes of distinguishers.

Barriers for linear sources. The basic building block of MPC protocols and other crypto-188

graphic applications is linear secret sharing. It is thus especially important to understand189

the consequences of bounded indistinguishability for linear sources. We believe that it is190

plausible to conjecture the following:191

▶ Conjecture 2. k-indistinguishable linear pairs of sources on n bits o(1)-fool AC0 when192

k = polylog(n).193

When one of the sources is uniform, this is implied by Braverman’s theorem [15, 56].194

When the distinguisher is the OR function, it follows from our first negative result. In [11,195

Section 4.2] we show, however, that proving Conjecture 2 for any k = o(n/ logn) requires196

first proving the “IPAP conjecture” (Inner Product by AC0 over Parities) of Servedio and197

Viola [49], which states that the binary inner product function on n inputs (IP) cannot be198

computed by AC0 ◦ ⊕ circuits, i.e. bounded-depth AND/OR circuits with a bottom layer199

of PARITY gates. While a number of partial results have been obtained in support of200

IPAP [25, 24, 16], it currently remains out of reach.201

While IP is known not to be computable by the subclass DNF ◦ ⊕ of AC0 ◦ ⊕ [49, 2], its202

approximability on a constant fraction of inputs remains open [25]. Proving even the special203

case of Conjecture 2 when the class of distinguishers is restricted to DNFs requires resolving204

this problem.205

One possible approach for making progress on Conjecture 2 (and therefore also IPAP)206

is to find, for every pair of k-indistinguishable linear sources, an AC0 reduction that maps207

them to some pair of k′-independent sources. In [11, Section 7.2], we rule out the existence208

of NC0 reductions of this type in general. However, in [11, Section 7.1] we give examples209

of linear NC0 reductions to bounded independence for specific k-indistinguishable pairs of210

sources that describe the views of MPC protocols. The results of [12] are also proved via211

reductions of this type.212

The examples in [11, Section 7.1] are related to the study of the complexity of distribu-213

tions [5, 33, 59, 41, 8, 28, 60, 61, 62, 63, 64], intimately related to the study of extractors [58].214

However, this line of study focuses on the complexity of sampling distributions given uniform215

sources, whereas we allow arbitrary k-independent sources.216

On the gap between IPAP and Conjecture 2: predicting parity from parities.217

While a positive resolution of the IPAP conjecture is necessary to prove Conjecture 2, it218

is unclear if it is sufficient. Towards bridging this gap, in [11, Section 4.2] we show that219

Conjecture 2 is implied by PREDICTION⊕(AC0,Ω(1/n)), where PREDICTION⊕(C, ϵ) is the220

following statement (see [11, Conjecture 5]):221

A class-C circuit on n inputs that is given as advice some set S of linear functions of222

its inputs, under the constraint that no polylog(n) of the functions in S XOR to the223

parity of all inputs, cannot predict parity on a (1 + ϵ)/2 fraction of inputs.224

ITCS 2022
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In the other direction, PREDICTION⊕(AC0,Ω(1)) implies the average-case IPAP con-225

jecture (see Figure 3). As additional evidence towards Conjecture 2, we prove that226

PREDICTION⊕(size-s DNF, 1 − Ω(1/s)) holds for s = poly(n), thereby strengthening a result227

of Cohen and Shinkar [25] (see [11, Corollary 4.6]).228

To give a bit more intuition on the distinction between Conjecture 2 and the IPAP229

conjecture: Refuting Conjecture 2 is equivalent to showing that some (polynomial-length)230

F2-linear encoding of n input bits can be used by an AC0 circuit to nontrivially predict the231

parity of some subset of these bits. (Here “nontrivially” means that the target parity is not232

spanned by polylogarithmically many outputs of the encoding.) In contrast, refuting the233

IPAP conjecture requires proving the existence of a single encoding as above that enables AC0
234

circuits to predict the parity of every subset. The equivalence between the two conjectures is235

open even if we replace “predict” by “exactly compute.”236

GENERAL MAIN PREDICTION IPAP
linear

linear

Figure 3 Relations between indistinguishability, prediction, and the IPAP conjecture.

Applications to leakage-resilient cryptography. We already discussed applications to237

low-complexity secret sharing. In [11, Section 9] we consider applications to leakage-resilient238

circuit compilers (LRCC) [36], which protect sensitive computations against leakage from239

the internal wires of the computation. More concretely, an LRCC transforms a circuit C into240

a randomized circuit Ĉ mapping an encoded input to an encoded output, such that revealing241

the output of a leakage function applied to wires of Ĉ reveals essentially nothing about the242

input. Much of the work in this area focuses on obtaining efficient constructions for local243

leakage, confined to a small subset of k wires. Following [42], Faust et al. [31] considered244

the global leakage model where the leakage function acts on all the wires but is restricted245

to a low complexity class such as AC0. LRCC constructions in this model, such as those246

of Rothblum [48] and Bogdanov et al. [12], are complex to analyze and incur a significant247

overhead, compiling a circuit C to Ĉ of size Õ(λ2|C|) for a security error parameter 2−λ. In248

contrast, the best known LRCC constructions in the local leakage model based on efficient249

MPC protocols [27, 26] can be quite efficient and only incur a polylogarithmic overhead in250

the local leakage parameter k. A natural question is whether this gap is inherent.251

We show that one can bridge the efficiency gap between the local leakage and the global252

leakage models assuming our main conjecture holds for quadratic sources. Specifically,253

assuming this conjecture, we give a construction of LRCC against AC0 circuits with |Ĉ| =254

|C| · polylog(λ) (plus additive terms that only depend on the depth of C). As an additional255

application, we use the same conjecture for linear sources to show that a construction of256

LRCC from [36, 12] for the class of circuits that only contain XOR gates satisfies a stronger257

security property. Namely, we show that security against AC0 leakage is retained even when258

the output decoder is not implemented by a trusted hardware. We also show how to improve259

the efficiency of this construction by relying on a high-rate variant of Shamir’s secret-sharing260

scheme [32].261

Summary of unconditional applications. While several of the cryptographic applications262

presented in this work depend on unproven conjectures, others can be based on theorems we263

prove unconditionally. For convenience, we summarize applications of the latter kind below.264

Low-complexity secret sharing. Our positive results imply secret-sharing schemes265
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with secrecy threshold k = Ω(
√
n), reconstruction by OR4 (with small constant error266

probability), and sharing by (depth-2) polynomial-size decision trees or degree-O(logn)267

F2-polynomials ([11, Section 5.2] and [11, Section 5.3] respectively). This improves over268

similar results in [13] in which sharing is done by higher depth AC0 circuits. We show269

that our schemes are depth-optimal by ruling out similar schemes with depth-1 sharing.270

Concretely, we show that the highest achievable secrecy threshold for schemes with271

depth-1 sharing is k = Θ(log logn) (see [11, Section 6.5]). Finally, our results imply the272

first evolving visual secret-sharing scheme in the sense of [38] (see [11, Section 5.5]).273

Leakage-resilient cryptography. Our negative results imply that k-indistinguishability274

of degree-1 or degree-2 sources with k ≥ polylog(n) suffices for protecting against low-275

depth leakage classes, including depth-1 AC0 and unambiguous DNF. The latter capture276

natural kinds of selective failure attacks. We further show that degree-2 sources suffice277

in the context of efficient leakage-resilient circuit compilers. In particular, all of the278

applications discussed above and in [11, Section 9] apply unconditionally to leakage by279

depth-1 AC0 and unambiguous DNF.280

1.2 Open questions281

Our results suggest many open questions. We would like to single out the following.282

▶ Open Question 1. What is the smallest possible degree d for which there are Θ(
√
n)-283

indistinguishable degree d sources which OR can Ω(1)-distinguish?284

Our results show that d = ω(1) and d = O(logn).285

▶ Open Question 2. Are the GENERAL and MAIN conjectures equivalent? Is the PRE-286

DICTION conjecture for linear sources implied by IPAP?287

We are mainly interested in the case of AC0 distinguishers. GENERAL trivially implies288

MAIN, and PREDICTION for linear sources implies IPAP, so the open question is asking for289

the converse directions. We are able to show that MAIN and PREDICTION are equivalent290

for linear sources (for general sources, we only know that MAIN implies PREDICTION). A291

positive answer to the latter question roughly amounts to showing that if linear preprocessing292

can help AC0 circuits nontrivially predict some parity of n bits then there is universal293

linear preprocessing that helps predict all parities. This implication is open even for exact294

computation.295

▶ Open Question 3. Is there a pair of nΩ(1)-indistinguishable sources, samplable in NC0,296

which can be Ω(1)-distinguished in AC0?297

A positive answer would imply an extreme form of low-complexity secret sharing, where298

secrets are shared by NC0 circuits and reconstructed by AC0 circuits. Our positive results299

imply weaker secret-sharing schemes with sharing by polynomial-size decision trees. In [11,300

Section 8] we show that a negative answer to the question would imply a natural conjecture301

on low-complexity randomized encodings of functions. Another reason why settling Open302

Question 3 in the negative may be challenging is the difficulty of ruling out local sampling303

(up to a small statistical error) even for some simple and explicit distributions [63].304

4 Alternatively, allowing AC0 reconstruction, an amplification technique from [13] can be used to obtain
near-threshold schemes with negligible reconstruction error and the same sharing complexity.

ITCS 2022
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2 Technical Overview of Our Results305

In this section we outline the proofs of some of our main results. For a detailed discussion, see306

the full version [11]. In Section 2.1 we describe our construction of Ω(
√
n)-indistinguishable307

sources that are samplable by sources of degree O(logn) and are Ω(1)-distinguished by OR.308

In Section 2.2 we describe our various indistinguishability results. Finally, in Section 2.3 we309

outline the proof of the equivalence of MAIN and PREDICTION for linear sources, and the310

proof that LDPC sources cannot be reduced to bounded independence using local maps.311

2.1 OR can distinguish logarithmic degree sources312

Bogdanov et al. [13] showed that there exists a pair X,Y of
√
n-indistinguishable sources313

over {0, 1}n which OR distinguishes, by appealing to LP duality. Explicit constructions314

appear in other works, for example Špalek [55] and Bun and Thaler [17]. However, except315

for a construction of AC0-sampleable sources from [13], the corresponding distributions do316

not satisfy natural notions of computational simplicity. As our first result, we show how to317

reduce X,Y to sources samplable by polynomial size decision trees, as well as to sources of318

degree Oϵ(logn), proving the following.319

▶ Theorem 3. (a) For any ϵ > 0 there exists a pair X,Y of Θϵ(
√
n)-indistinguishable320

sources over {0, 1}n samplable by decision trees of size Oϵ(n3 log2 n) that the OR function321

OR(x) = x1 ∨ · · · ∨ xn can (1 − ϵ)-distinguish. (b) For any ϵ > 0 there exists a pair X,Y322

of Θϵ(
√
n)-indistinguishable sources over {0, 1}n of degree Oϵ(logn) that the OR function323

OR(x) = x1 ∨ · · · ∨ xn can (1 − ϵ)-distinguish.324

We convert an arbitrary pair of
√
n-indistinguishable distributions which OR can distin-325

guish into a similar pair samplable by simple sources using a sequence of reductions:326

Arbitrary sources ====⇒ Mixtures of iid ====⇒ Decision trees ====⇒ O(logn) degree327

Each of these reductions preserves indistinguishability (possibly modifying n) while having328

only a small effect on the distinguishing advantage of OR.329

Mixtures of i.i.d. A distribution on {0, 1}n is a mixture of iid if we can sample it using a330

two-step process:331

1. Sample a bias p ∈ [0, 1] according to some distribution on [0, 1].332

2. Sample n iid bits with bias p.333

Given an arbitrary source X0 over {0, 1}m, we construct a mixture of iid X1 using erase-334

all-subscripts symmetrization [21]: Sample x ∼ X0, and then sample n uniform bits chosen335

from x.336

If X0,Y 0 are k-indistinguishable and we construct X1,Y 1 in this fashion, then X1,Y 1337

are still k-indistinguishable. If X0,Y 0 are ϵ-distinguished by OR then this means that338

| Pr[X0 = 0] − Pr[Y 0 = 0]| ≥ ϵ. Since339

Pr[X0 = 0] ≤ Pr[X1 = 0] ≤ Pr[X0 = 0] +
(

1 − 1
m

)n

,340

if we choose n = Θ(m log(1/ϵ)) then X1,Y 1 are Ω(ϵ)-distinguished by OR. We can choose341

X0,Y 0 to be k-indistinguishable for k = Θ(
√
m) = Θ(

√
n).342

Decision trees The next step is to show that we can approximately sample X1,Y 1 using343

decision trees whose randomness derives from a supply of unbiased random bits. If we344



A. Bogdanov and K. Dinesh and Y. Filmus and Y. Ishai and A. Kaplan and A. Srinivasan 23:9

had access to biased random bits, then this would be immediate, and we can simulate345

biased random bits using unbiased random bits with some small failure probability. In346

order to maintain k-indistinguishability, in case of failure we output the constant vector 0.347

In this way we construct a pair of sources X2,Y 2 which are k-indistinguishable and are348

Ω(ϵ)-distinguished by OR.349

How large are the decision trees used to sample X2,Y 2? This depends both on the350

failure probability and on the complexity of X1,Y 1, as measured in the bit complexity of351

the probabilities used to define these mixtures of iid. Taking a close look at the construction352

of Bun and Thaler [17], we show that if we use it as our starting point X0,Y 0 then the353

resulting X1,Y 1 are low complexity, and so X2,Y 2 are samplable using polynomial size354

decision trees for any constant failure probability.355

Logarithmic degree The final step is converting X2,Y 2 to a pair of distributions X3,Y 3356

samplable by sources of degree O(logn). The idea is to used a randomized encoding inspired357

by the Razborov–Smolensky [47, 54] lower bound technique. (See [11, Section 8] for a more358

general perspective using the randomized encoding framework of [6].)359

Razborov and Smolensky approximate the AND function on ℓ bits to error 2−d using the360

degree-d F2 polynomial361

d∏
i=1

1 +
ℓ∑

j=1
ri,j(1 + xj)

 .362

Here x1, . . . , xℓ are the inputs, and ri,j are random bits. When x1 = · · · = xℓ = 1, this363

expression always equals 1, and otherwise each factor is a random bit, and so the expression364

equals 0 with probability 1 − 2−d.365

A decision tree can be written as an “unambiguous” sum of conjunctions, that is, at most366

one conjunction can be true. For example, the decision tree367

x1

x2

0 1

x3

1 0

0 1

0 1 0 1

368

can be expressed as369

(1 − x1)(1 − x3) + x1x2.370

We have one conjunction per leaf labeled 1, and the conjunction corresponds to the path371

leading to the leaf.372

We convert the decision tree into a polynomial by replacing each conjunction with its373

Razborov–Smolensky encoding. If the decision tree has size s then we need the error to be374

O(ϵ/s), and so the resulting degree is log(s/ϵ). When s is polynomial, this is O(log(n/ϵ)).375

We note that when attempting to apply the Razborov–Smolensky encoding to a general376

AC0 circuit, rather than a decision tree or an unambiguous DNF, not only does the degree377

of the encoding grow to polylog(n), but there is also an encoding privacy error. The latter378

results in an approximate notion of k-indistinguishability in which the k-projections have379

2−polylog(n) statistical distance. This relaxed notion, studied in [14], is qualitatively weaker380

than the perfect notion we consider in this work. In particular, it may totally break down381

when the projection set is chosen in an adaptive fashion. See [11, Section 8] for more details.382
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2.2 Fooling OR and DNFs383

In this section we describe our various negative results, as described in Table 1. Most of384

these results are proved via the notion of predictability, which we first explain. We then385

briefly outline the proofs of the remaining negative results.386

2.2.1 Predictability387

Let X be a source over {0, 1}n. We say that a subset S of coordinates ϵ-predicts X if388

Pr[X|S = 0 and X ̸= 0] ≤ ϵ.389

Roughly speaking, this means that in order to know the value of OR on X, it suffices to390

peek at the coordinates in S.391

If X,Y are each ϵ-predicted by a subset of k coordinates, then the union of the two392

subsets ϵ-predicts both sources. Hence if X,Y are 2k-indistinguishable, then they ϵ-fool OR.393

A more surprising observation is that if Y is ϵ/n-predicted by a subset S of k coordinates394

and X,Y are (k + 1)-indistinguishable, then S also ϵ-predicts X; this is because for any395

coordinate i /∈ S,396

Pr[Y |S = 0 and Y i ̸= 0] ≤ ϵ

n
.397

Accordingly, we define two notions of predictability for classes of sources:398

F is weakly predictable if for every ϵ > 0, any source from F is ϵ-predicted by a subset of399

C(ϵ) coordinates.400

F is strongly predictable if for every ϵ > 0, any source from F is ϵ-predicted by a subset401

of polylog(1/ϵ) coordinates.402

Strongly predictable sources in fact fool not only OR, but also unambiguous DNFs. An403

unambiguous DNF is a disjunction of conjunctions, with the promise that no two conjunctions404

can be satisfied simultaneously. As explained in Section 2.1, a decision tree of size s can be405

converted to an unambiguous disjunction of at most s conjunctions. Writing the unambiguous406

DNF as a sum of ANDs (over the reals!), it suffices to (ϵ/s)-fool each AND in order to ϵ-fool407

the entire DNF. Consequently (since fooling ANDs and ORs is the same), polylog(ns/ϵ)-408

indistinguishable sources ϵ-fool unambiguous DNFs as long as one of the sources belongs to a409

strongly predictable class of sources which is closed under input negation.410

2.2.2 Applying predictability411

Our main results are:412

Constant degree sources are weakly predictable. This also includes sources of constant413

locality.414

Quadratic sources (i.e., degree 2 sources) are strongly predictable.415

We also show that linear sources fool local DNFs, which are disjunctions of local functions.416

The proof is very similar to the proof that local sources fool OR, and so we do not describe417

it here.418

Linear sources. We prove predictability using the structure vs randomness paradigm.419

As an example, consider the class of linear sources, in which each output bit is an affine420

combination of input bits. For ease of exposition, we consider the special case in which each421
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output bit is a linear combination of inputs bits (i.e., we disallow x1 = r1 ⊕ r2 ⊕ 1). We will422

show that every linear source X is ϵ-predicted by a subset of log(1/ϵ) coordinates.423

The source X is pseudorandom if it has rank at least log(1/ϵ). In this case, any subset S424

of log(1/ϵ) linearly independent coordinates ϵ-predicts X, since Pr[X|S = 0] ≤ ϵ.425

The source X is structured if it has rank at most log(1/ϵ). In this case, we choose a426

subset S such that {Xi}i∈S spans X1, . . . ,Xn. This subset 0-predicts X since if X|S = 0427

then X = 0.428

Local sources. A more sophisticated example is that of s-local sources, that is, sources429

where every output bit Xi depends on at most s input bits, forming a set Ji. Suppose that430

we are given such a source X.431

The source X is pseudorandom if we can find 2s log(1/ϵ) coordinates which depend432

on disjoint sets of inputs. A short calculation shows that the probability that all these433

coordinates equal zero is at most ϵ.434

Otherwise, the source X is structured: we can find a “hitting set” T of size s2s log(1/ϵ)435

for J1, . . . , Jn. For each setting of the input bits in T , the source simplifies to an (s− 1)-local436

source, and we can find an ϵ-predicting set by induction. Putting all of these sets together,437

we obtain an ϵ-predicting set for the original source.438

A very similar argument appears in work of Trevisan [57], in the context of deterministic439

approximate counting of solutions to k-CNFs, and in recent work of Akmal and Williams [3],440

in the context of threshold counting of solutions to k-CNFs. See Williams [65] for deterministic441

approximate counting of solutions to systems of polynomial equations, a topic related to our442

next example, constant degree sources.443

Constant-degree sources. We handle degree d sources using a similar argument. We need444

to find a pseudorandomness condition for a set S of coordinates which will guarantee that445

Pr[X|S = 0] ≤ ϵ. Such a condition is supplied by higher-order Fourier analysis: if all linear446

combinations of {Xi}i∈S have high rank (a notion we explain below) and S is large enough,447

then Pr[X|S = 0] ≤ ϵ (pseudorandom case).448

Otherwise (structured case), we choose a maximal set T such that all linear combinations449

of {Xi}i∈T have high rank. By the definition of rank, this implies that each i /∈ T simplifies,450

modulo {Xi}i∈T , to a function depending on a bounded number of degree d− 1 polynomials,451

and we can complete the proof by induction.452

Quadratic sources. The arguments for local sources and for constant degree sources453

result in a very bad dependence between ϵ and the size C(ϵ) of the ϵ-fooling subset of454

coordinates. In the case of quadratic sources, we are able to use Dickson’s structure theorem455

for quadratic polynomials, via a series of careful reductions, to obtain the much better456

dependence C(ϵ) = O(log10(1/ϵ)).457

▶ Theorem 4. The class of quadratic sources is (O(log10(1/ϵ)), ϵ)-predictable.458

2.2.3 Other negative results459

We prove two other negative results: the prediction variant holds for linear sources and DNF460

distinguishers, and depth 1 sources fool arbitrary distinguishers.461

PREDICTION holds for linear sources and DNF distinguishers. Given a DNF ϕ and462

a linear source X, our goal is to show that if no k coordinates of X span some target parity463

π, then ϕ cannot compute π, even with a small error.464
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If T is any term of ϕ, then the probability that T is satisfied is 2− rank(T ), where the rank465

of T is the rank of the span of the corresponding coordinates of X. If T has large rank then466

it is unlikely to be satisfied, so we can drop all of these terms, obtaining a narrow DNF ψ.467

We now apply Jackson’s lemma [37], according to which ψ must correlate with some468

Fourier character χS , where S is a subset of the set of variables appearing in some term of ψ.469

Since all terms in ψ are narrow and ψ computes π (with small error), this implies that π has470

nontrivial correlation with, and so is equal to, a linear combination of a small number of471

coordinates in X, which contradicts our initial assumption.472

Depth 1 sources fool arbitrary distinguishers. Let X,Y be k-indistinguishable depth 1473

sources, that is, each coordinate is an AND or OR of literals. Since we allow arbitrary474

distinguishers, we can assume that each coordinate is an AND of literals.475

Wide conjunctive coordinates are hardly ever 1, so allowing for a small error, we can476

replace them with constant 0 coordinates. We are left with only narrow coordinates, say of477

width at most log(n/ϵ). Applying a result of Amano et al. [4], if k = log log(n/ϵ) + 2 then478

the two truncated sources are identically distributed, completing the proof.479

2.3 Other results480

MAIN and PREDICTION are equivalent for linear sources. To prove the equival-481

ence between [11, Conjecture 9] (MAIN⊕(AC0)) and PREDICTION⊕(AC0), we consider an482

equivalent formulation of PREDICTION⊕(AC0), which we call COSET⊕(AC0). This is the483

special case of MAIN⊕(AC0) in which the two k-indistinguishable sources arise from a single484

source by fixing the first bit of the seed. The resulting sources are uniformly distributed485

on two cosets of the same linear subspace, hence the name. The equivalence of the two486

formulations is a simple exercise (see [11, Section 4]).487

Two linear sources are k-indistinguishable if they satisfy the same affine constraints of488

width k or less. This suggests the following strategy for proving MAIN⊕ (with parameters k, ϵ)489

given COSET⊕ (with parameters k, δ): Given two k-indistinguishable linear sources X,Y ,490

construct the “free k-indistinguishable source” Z given by all affine constraints of width at491

most k satisfied by X. This is the most general linear source which is k-indistinguishable492

from X. Moreover, we obtain exactly the same source if we apply the same construction to493

Y . Therefore it suffices to show that X,Z fool C.494

The idea is to construct a sequence of hybrids Z0, . . . ,Zt, where Z0 = Z, Zt = X, and495

Zi+1 is obtained from Zi by imposing one more affine constraint. We can also define W i+1496

in the same way, by imposing the opposite constraint (for example, x1 ⊕ x2 = 1 rather than497

x1 ⊕x2 = 0). By construction, Zi+1,W i+1 are cosets, and so COSET⊕(AC0) shows that they498

δ-fool C. On the other hand, Zi is a 1
2 - 1

2 mixture of Zi+1,W i+1, and so Zi,Zi+1 δ/2-fool C.499

In total, X,Z tδ/2-fool C, and so X,Y tδ-fool C. Clearly t ≤ n, and so it suffices to take500

δ = ϵ/n.501

LDPC codes cannot be reduced to bounded independence using local maps. An502

LDPC code is a code whose parity-check matrix is sparse: every message bit appears in503

exactly D parity checks (this is one of several common definitions). If we choose a θn× n504

parity-check matrix at random, then the bipartite graph corresponding to the parity-check505

matrix will be an expander, and so the corresponding code will have linear minimum distance,506

say at least γn.507

A simple sensitivity argument shows that for large n, such a code C cannot be generated508

using B-local maps from the uniform distribution over m bits: The n × m binary matrix509

describing which input bits each output bit depends on contains at most Bn ones, and so510
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there must be some input bit affecting at most Bn/m output bits. Flipping this bit results511

in flipping at most Bn/m input bits. Since the minimum distance of C is at least γn, this512

shows that m ≤ B/γ. On the other hand, m must be at least the rate (1 − θ)n of the code,513

and we obtain a contradiction for n > B/γ(1 − θ).514

Does the picture change if we are allowed to reduce to an arbitrary k-independent515

distribution z? Let P be the parity-check matrix of C, and let F denote the B-local516

reduction. Thus PF (z) = 0 for all z in the support of z. Since every column of P contains517

D many ones, the average row of P contains D/θ many ones, and so the typical entry of518

PF (z) depends on at most BD/θ many bits of z. If BD/θ ≪ k then the projection of z to519

these coordinates will have full support due to k-independence, and so PF (z) = 0 for all520

z. Thus F also works as a reduction to the uniform distribution, allowing us to apply the521

earlier lower bound.522
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