Bandwidth Approximation of Many-Caterpillars

Yuval Filmus

September 1, 2009

Abstract

Bandwidth is one of the canonical NPcomplete problems. It is NP-hard to approximate within any constant factor even on restricted families of trees (Unger).

Feige gave the first polylogarithmic approximation algorithm. Current best algorithm is by Vempala (approximation ratio $\tilde{O}\left(\log ^{3} n\right)$).

Gupta presented a $O\left(\log ^{2.5} n\right)$-approximation algorithm on trees. We improve on Gupta's analysis for a restricted family of trees.

Bandwidth: Definition

Bandwidth is a canonical NP-complete problem.
$G=(V, E)$ - an undirected graph.
$f: V \leftrightarrow\{1, \ldots, n\}$ - an ordering of V.
Bandwidth of an ordering:

$$
\begin{aligned}
B(f) & =\max _{(x, y) \in E}|f(x)-f(y)| \\
& =\max _{x \neq y} \frac{|f(x)-f(y)|}{d(x, y)} .
\end{aligned}
$$

Bandwidth of a graph:

$$
B(G)=\min _{f} B(f) .
$$

Bandwidth: Examples

Bandwidth of a path is 1 :

Bandwidth of a cycle is 2 :

Another view:

Bandwidth of the full k-ary tree is $\Theta(n / h)$ (Smithline).

Bandwidth: Complexity Results

Can find whether $B \leq k$ in time $O\left(n^{k}\right)$ (Saxe).
NP-complete on restricted classes of caterpillars (Monien).

NP-hard to approximate within any constant factor on restricted classes of caterpillars (Unger).

First polylogarithmic approximation algorithm $\tilde{O}\left(\log ^{3.5} n\right)$ (Feige).

Current best approximation algorithms:

- On general graphs - $\tilde{O}\left(\log ^{3} n\right)$ (Vempala).
- On trees $-O\left(\log ^{2.5} n\right)$ (Gupta).
- On caterpillars - $O(\log n)(\mathrm{HMM}, \mathrm{Gupta})$.

Density

$T=(V, E, r)-$ a rooted tree.
$N(x, \delta)$ - neighborhood of length δ below x.

$$
N(x, 1)
$$

Note $x \notin N(x, \delta)$.
Density of G is minimum D such that

$$
|N(x, \delta)| \leq \delta D
$$

for all $x \in V$ and $\delta \geq 0$.
Lemma. $\quad B \geq D / 2$.

Caterpillars \& Many-caterpillars

Caterpillars - very simple trees.
Composed of spine and hairs.
Spine and hairs are paths, hairs emanate from spine.

Many-caterpillars - combinations of caterpillars.
Formed by identifying roots of several caterpillars.

Caterpillar decomposition

Caterpillar decomposition of a tree - a decomposition into edge-disjoint paths.

Decomposition is d-dimensional if every root-to-leaf route is composed of $\leq d$ paths.

Caterpillar dimension - minimum dimension of caterpillar decomposition (denoted κ).

Examples:

- Many-caterpillars are 2-dimensional trees.
- Binary trees have dimension $\log n$.

Dimension is at most $\log n$ (Matoušek).

Gupta's algorithm

$$
T=(V, E, r) \text { - a rooted tree. }
$$

1. Choose an optimal caterpillar decomposition.
2. Stretch each path by a factor between 1 and 2 .
3. Order the vertices wrt (stretched) distance from r.
4. Output $f(v)=i$ if v is the i th vertex in the ordering.

Gupta showed:
Theorem. $\quad B(f)=O\left(D \log ^{2} n \sqrt{\kappa}\right)=O\left(D \log ^{2.5} n\right)$.
Theorem. $\quad T$ a caterpillar $\Rightarrow B(f)=O(D \log n)$.

Our research

We conjecture that $B(f)=O(D \log n)$.
Proof idea: by induction on caterpillar dimension.
Base: easy (paths).
Step: through construction of $(\kappa+1)$-trees from κ-trees.

Could only prove step for a certain case.
Also proved base for caterpillars.
Result: conjecture is verified on many-caterpillars.
If proof of step is completed, conjecture will be verified when caterpillar dimension is bounded.

Further refinement could prove conjecture for arbitrary trees.

Approximation algorithm for many-caterpillars

$$
T=(V, E, r) \text { - a many-caterpillar. }
$$

1. T is composed of caterpillars T_{1}, \ldots, T_{d}.
$h_{i}=$ height of T_{i}.
2. For each T_{i} choose $\sigma_{i} \in_{R}\left\{1, \ldots, h_{i}\right\}$.

Let $s_{i}=1+\sigma_{i} / h_{i}$.
For $v \in T_{i}$ define $p(v)=s_{i} d(v, r)$.
3. Order the vertices wrt $p(v)$.
4. Output $f(v)=i$ if v is the i th vertex in the ordering.

Algorithm can be derandomized using method of conditional expectations.

We show:
Theorem. $\quad B(f)=O(D \log h)$.

Algorithm: analysis overview

The analysis of the algorithm is divided into 3 steps:

- Step 1: show that a certain inequality holds for caterpillars.
- Step 2: show that the same inequality holds for many-caterpillars.
- Step 3: deduce that $B(f)=O(D \log h)$.

Algorithm: general analysis

$$
\begin{aligned}
& T=(V, E, r) \text { - a many-caterpillar. } \\
& {[z, z+1) \text { - unit interval (} z \text { integral). }} \\
& X_{z}=\text { number of } v \in V \text { such that } \\
& \qquad p(v) \in[z, z+1) .
\end{aligned}
$$

$n^{[z]}=$ number of vertices $v \in V$ such that

$$
0<d(v, r)<z .
$$

Theorem. If for all integers $1 \leq z \leq 2 h$ and for $k=\log h$,

$$
\begin{equation*}
X_{z}^{k} \leq \frac{n^{[z]}}{z} c^{k} D^{k-1} k! \tag{1}
\end{equation*}
$$

then the output f of algorithm satisfies

$$
B(f)=O(D \log h) .
$$

Algorithm: general analysis (2)

Theorem. If for all integers $1 \leq z \leq 2 h$ and for $k=\log h$,

$$
X_{z}^{k} \leq \frac{n^{[z]}}{z} c^{k} D^{k-1} k!
$$

then output f of algorithm satisfies

$$
B(f)=O(D \log h) .
$$

Proof. $n^{[z]} \leq z D$ by definition of D.

$$
\begin{aligned}
& \Rightarrow X_{z}^{k} \leq(c D k)^{k} \\
& \Rightarrow X_{z}=O(D k)=O(D \log h) \text { for all } z .
\end{aligned}
$$

Choose an edge (x, y).
All vertices v with $f(x) \leq f(v) \leq f(y)$ satisfy

$$
p(v) \in[p(x), p(y)] .
$$

Since $p(y) \leq p(x)+2,[p(x), p(y)]$ spans ≤ 3 unit intervals.

Derandomization

Need to ensure that for all $1 \leq z \leq 2 h$,

$$
X_{z}^{k} \leq(c D k)^{k}
$$

We will show the inequality holds in expectation, hence

$$
E\left[X_{1}^{k}+\cdots+X_{2 h}^{k}\right] \leq 2 h(c D k)^{k}
$$

Using method of conditional expectations, can find an assignment of σ_{i} so that

$$
\begin{aligned}
X_{1}^{k}+\cdots+X_{2 h}^{k} & \leq 2 h(c D k)^{k} \\
\Rightarrow X_{z}^{k} & \leq 2 h(c D k)^{k} \\
& \leq(4 c D k)^{k}
\end{aligned}
$$

if $k=\log h$.

Regularization of caterpillars: Inventory

$$
T=(V, E, r) \text { - a caterpillar. }
$$

Definition. The inventory $I(T)$ is a multiset containing no. of vertices at each depth.

Inventory of a caterpillar is a multiset:

Root is not counted.

Regularization of caterpillars: Regularity

Definition. A caterpillar of height h is regular if the spine and all hairs extend to depth h.

Irregular caterpillar:

Regular caterpillar:

Regularization of caterpillars:
 Overview

Theorem. For each caterpillar T there is a (unique) regular caterpillar T^{*} satisfying:

- $I\left(T^{*}\right)=I(T)$.
- $D\left(T^{*}\right) \leq D(T)$.

Overview of process:

- Spine lengthening is performed until spine extends to maximal depth.
- Normalization and shifting are performed repeatedly until caterpillar is regular.
- All operations preserve the inventory.
- All operations do not increase the density.

Regularization: spine lengthening

Before:

After:

A further step of lengthening is required.

Regularization: normalization

Normalization is performed on pairs of conflicting hairs until no such pairs remain.

Before:

After:

Regularization: shifting

Shifting presupposes normalization.
Before:

After:

Regularization: example (1)

A non-regular caterpillar (0):

After normalization (1):

Regularization: example (2)

After normalization (1):

After shifting (2):

Regularization: example (3)

After shifting (2):

After normalization (3):

Regularization: example (summary)

A non-regular caterpillar:

Corresponding regular caterpillar:

Both have density 2.5 and inventory
$\{2,2,3,3\}$.

Consequences

The inventory of a regular caterpillar is easy to analyze:

Lemma. The inventory contains at most

$$
\frac{n}{D} 2^{-s}
$$

elements which are $\geq 2 D$ s.
Proof. Let len $(k)=$ length of k th longest hair.
Easy to prove len $(k) \geq 2 \operatorname{len}(k+2 D)$.

$$
\begin{aligned}
& \Rightarrow \operatorname{len}(2 D) \geq 2^{s-1} \operatorname{len}(2 D s) . \\
& \Rightarrow n \geq 2^{s} D \operatorname{len}(2 D s) .
\end{aligned}
$$

Corollary. For some constant c and for all $k \geq 1$,

$$
\sum_{x \in I(T)} x^{k} \leq n c^{k} D^{k-1} k!
$$

Analysis for caterpillars

$$
T=(V, E, r) \text { - a caterpillar. }
$$

Theorem.

$$
E\left[X_{z}^{k}(T)\right] \leq \frac{8}{z} \sum_{x \in I(T)} x^{k}
$$

Proof. Recall X_{z} is no. of vertices v s.t. $\lfloor p(v)\rfloor=z$.
Recall $p(v)=s d(v, r)$ where $s=1+\sigma / h$ and

$$
\begin{array}{r}
\sigma \in_{R}\{1, \ldots, h\} . \\
\lfloor p(v)\rfloor=z \Leftrightarrow d(v, r)=\lceil z / s\rceil .
\end{array}
$$

$\lceil z / s\rceil$ takes each of the values z to $\lceil z / 2\rceil$ w.p. $O(1 / z)$. \square

Analysis for caterpillars (2)

$T=(V, E, r)$ - a caterpillar.
Recall $n^{[z]}=$ number of vertices $v \in V$ such that

$$
0<d(v, r)<z .
$$

Corollary. For some constant c and for all $k \geq 1$,

$$
E\left[X_{z}^{k}\right] \leq \frac{n^{[z]}}{z} c^{k} D^{k-1} k!
$$

Proof.

Only vertices of depth $<z$ can be placed inside $[z, z+1)$.

Analysis for many-caterpillars

$$
T=(V, E, r) \text { - a many-caterpillar. }
$$

Theorem. For some constant c and for all $k \geq 1$,

$$
E\left[X_{z}^{k}(T)\right] \leq \frac{n^{[z]}(T)}{z} c^{k} D^{k-1} k!.
$$

Proof. Let T be composed of caterpillars T_{1}, \ldots, T_{d}.

$$
X_{z}(T)=X_{z}\left(T_{1}\right)+\cdots+X_{z}\left(T_{d}\right) .
$$

Recall the caterpillar result:

$$
E\left[X_{z}^{p}\left(T_{i}\right)\right] \leq \frac{n^{[z]}\left(T_{i}\right)}{z} c^{p} D^{p-1} p!, \quad(p \geq 1)
$$

where $n^{[z]}\left(T_{1}\right)+\cdots+n^{[z]}\left(T_{d}\right)=n^{[z]}(T)$.
Using the multinomial theorem yields the result.

Analysis for many-caterpillars (1)

Recall the caterpillar result:

$$
E\left[X_{z}^{p}\left(T_{i}\right)\right] \leq \frac{n^{[z]}\left(T_{i}\right)}{z} c^{p} D^{p-1} p!. \quad(p \geq 1)
$$

Multinomial theorem gives a sum of terms

$$
k!\prod_{s \text { factors }} E\left[X_{z}^{p_{i}}\left(T_{i}\right)\right] / p_{i}!,
$$

where $\sum p_{i}=k$.
Worst case is when $n^{[z]}\left(T_{i}\right)=n^{[z]}(T) / d$.
Each term is bounded by

$$
k!\left(\frac{n^{[z]}(T) / d}{z}\right)^{s} c^{k} D^{k-s} .
$$

Analysis for many-caterpillars (2)

A term involving s factors is bounded by

$$
k!\left(\frac{n^{[z]}(T) / d}{z}\right)^{s} c^{k} D^{k-s} .
$$

There are $\leq 2^{k}(e d / s)^{s}$ terms involving s factors.
Their sum is at most

$$
(e / s)^{s} k!\left(\frac{n^{[z]}(T)}{z}\right)^{s}(2 c)^{k} D^{k-s} .
$$

Using $n^{[z]}(T) / z \leq D$, this sum is at most

$$
(e / s)^{s} k!\frac{n^{[z]}(T)}{z}(2 c)^{k} D^{k-1} .
$$

The result follows since

$$
\sum(e / s)^{s}<\infty .
$$

