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Abstract
Bandwidth is one of the canonical NP-

complete problems. It is NP-hard to approximate
within any constant factor even on restricted
families of trees (Unger).

Feige gave the first polylogarithmic
approximation algorithm. Current best algorithm
is by Vempala (approximation ratio Õ(log3 n)).

Gupta presented a O(log2.5 n)-approximation
algorithm on trees. We improve on Gupta’s
analysis for a restricted family of trees.



Bandwidth: Definition

Bandwidth is a canonical NP-complete problem.

G = (V, E) — an undirected graph.

f : V ↔ {1, . . . , n} — an ordering of V .

Bandwidth of an ordering:

B(f) = max
(x, y)∈E

|f(x) − f(y)|

= max
x6=y

|f(x) − f(y)|
d(x, y)

.

Bandwidth of a graph:

B(G) = min
f

B(f).
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Bandwidth: Examples

Bandwidth of a path is 1:

11 22 33 44 55 66 77 88 99 1010

Bandwidth of a cycle is 2:

11

33
5577

99

1010

88
66 44

22

Another view:

Bandwidth of the full k-ary tree is Θ(n/h)
(Smithline).
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Bandwidth: Complexity Results

Can find whether B ≤ k in time O(nk) (Saxe).

NP-complete on restricted classes of caterpillars
(Monien).

NP-hard to approximate within any constant factor
on restricted classes of caterpillars (Unger).

First polylogarithmic approximation algorithm —
Õ(log3.5 n) (Feige).

Current best approximation algorithms:

• On general graphs — Õ(log3 n) (Vempala).

• On trees — O(log2.5 n) (Gupta).

• On caterpillars — O(log n) (HMM, Gupta).
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Density

T = (V, E, r) — a rooted tree.

N(x, δ) — neighborhood of length δ below x.

N(x, 1)

Note x /∈ N(x, δ).

Density of G is minimum D such that

|N(x, δ)| ≤ δD

for all x ∈ V and δ ≥ 0.

Lemma. B ≥ D/2.
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Caterpillars & Many-caterpillars

Caterpillars — very simple trees.

Composed of spine and hairs.

Spine and hairs are paths, hairs emanate from spine.

Many-caterpillars — combinations of caterpillars.

Formed by identifying roots of several caterpillars.
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Caterpillar decomposition

Caterpillar decomposition of a tree — a
decomposition into edge-disjoint paths.

Decomposition is d-dimensional if every root-to-leaf
route is composed of ≤ d paths.

Caterpillar dimension — minimum dimension of
caterpillar decomposition (denoted κ).

Examples:

• Many-caterpillars are 2-dimensional trees.

• Binary trees have dimension log n.

Dimension is at most log n (Matoušek).
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Gupta’s algorithm

T = (V, E, r) — a rooted tree.

1. Choose an optimal caterpillar decomposition.

2. Stretch each path by a factor between 1 and 2.

3. Order the vertices wrt (stretched) distance from r.

4. Output f(v) = i if v is the ith vertex in the ordering.

Gupta showed:

Theorem. B(f) = O(D log2 n
√

κ) = O(D log2.5 n).

Theorem. T a caterpillar ⇒ B(f) = O(D log n).
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Our research

We conjecture that B(f) = O(D log n).

Proof idea: by induction on caterpillar dimension.

Base: easy (paths).

Step: through construction of (κ + 1)-trees from
κ-trees.

Could only prove step for a certain case.

Also proved base for caterpillars.

Result: conjecture is verified on many-caterpillars.

If proof of step is completed, conjecture will be
verified when caterpillar dimension is bounded.

Further refinement could prove conjecture for
arbitrary trees.
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Approximation algorithm

for many-caterpillars

T = (V, E, r) — a many-caterpillar.

1. T is composed of caterpillars T1, . . . , Td.

hi = height of Ti.

2. For each Ti choose σi ∈R {1, . . . , hi}.
Let si = 1 + σi/hi.

For v ∈ Ti define p(v) = sid(v, r).

3. Order the vertices wrt p(v).

4. Output f(v) = i if v is the ith vertex in the ordering.

Algorithm can be derandomized using method of
conditional expectations.

We show:

Theorem. B(f) = O(D log h).
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Algorithm: analysis overview

The analysis of the algorithm is divided into 3 steps:

• Step 1: show that a certain inequality holds for
caterpillars.

• Step 2: show that the same inequality holds for
many-caterpillars.

• Step 3: deduce that B(f) = O(D log h).
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Algorithm: general analysis

T = (V, E, r) — a many-caterpillar.

[z, z + 1) — unit interval (z integral).

Xz = number of v ∈ V such that

p(v) ∈ [z, z + 1) .

n[z] = number of vertices v ∈ V such that

0 < d(v, r) < z.

Theorem. If for all integers 1 ≤ z ≤ 2h and for
k = log h,

Xk
z ≤ n[z]

z
ckDk−1k! (1)

then the output f of algorithm satisfies

B(f) = O(D log h).
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Algorithm: general analysis (2)

Theorem. If for all integers 1 ≤ z ≤ 2h and for
k = log h,

Xk
z ≤ n[z]

z
ckDk−1k!

then output f of algorithm satisfies

B(f) = O(D log h).

Proof. n[z] ≤ zD by definition of D.

⇒ Xk
z ≤ (cDk)k.

⇒ Xz = O(Dk) = O(D log h) for all z.

Choose an edge (x, y).

All vertices v with f(x) ≤ f(v) ≤ f(y) satisfy

p(v) ∈ [p(x), p(y)].

Since p(y) ≤ p(x) + 2, [p(x), p(y)] spans ≤ 3 unit
intervals. 2
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Derandomization

Need to ensure that for all 1 ≤ z ≤ 2h,

Xk
z ≤ (cDk)k .

We will show the inequality holds in expectation, hence

E[Xk
1 + · · · + Xk

2h] ≤ 2h(cDk)k.

Using method of conditional expectations, can find an
assignment of σi so that

Xk
1 + · · · + Xk

2h ≤ 2h(cDk)k

⇒ Xk
z ≤ 2h(cDk)k

≤ (4cDk)k,

if k = log h.

13



Regularization of caterpillars:

Inventory

T = (V, E, r) — a caterpillar.

Definition. The inventory I(T ) is a multiset
containing no. of vertices at each depth.

Inventory of a caterpillar is a multiset:

I(T ) = {1, 2, 2, 3}

Root is not counted.
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Regularization of caterpillars:

Regularity

Definition. A caterpillar of height h is regular if the
spine and all hairs extend to depth h.

Irregular caterpillar:

Regular caterpillar:
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Regularization of caterpillars:

Overview

Theorem. For each caterpillar T there is a (unique)
regular caterpillar T ∗ satisfying:

• I(T ∗) = I(T ).

• D(T ∗) ≤ D(T ).

Overview of process:

• Spine lengthening is performed until spine extends
to maximal depth.

• Normalization and shifting are performed repeatedly
until caterpillar is regular.

• All operations preserve the inventory.

• All operations do not increase the density.
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Regularization: spine lengthening

Before:

After:

A further step of lengthening is required.
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Regularization: normalization

Normalization is performed on pairs of conflicting
hairs until no such pairs remain.

Before:

After:

18



Regularization: shifting

Shifting presupposes normalization.

Before:

After:
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Regularization: example (1)

A non-regular caterpillar (0):

After normalization (1):
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Regularization: example (2)

After normalization (1):

After shifting (2):
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Regularization: example (3)

After shifting (2):

After normalization (3):
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Regularization: example (summary)

A non-regular caterpillar:

Corresponding regular caterpillar:

Both have density 2.5 and inventory

{2, 2, 3, 3}.
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Consequences

The inventory of a regular caterpillar is easy to
analyze:

Lemma. The inventory contains at most

n

D
2−s

elements which are ≥ 2Ds.

Proof. Let len(k) = length of kth longest hair.

Easy to prove len(k) ≥ 2 len(k + 2D).

⇒ len(2D) ≥ 2s−1 len(2Ds).

⇒ n ≥ 2sD len(2Ds). 2

Corollary. For some constant c and for all k ≥ 1,

∑

x∈I(T )

xk ≤ nckDk−1k! .
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Analysis for caterpillars

T = (V, E, r) — a caterpillar.

Theorem.

E[Xk
z (T )] ≤ 8

z

∑

x∈I(T )

xk.

Proof. Recall Xz is no. of vertices v s.t. ⌊p(v)⌋ = z.

Recall p(v) = sd(v, r) where s = 1 + σ/h and

σ ∈R {1, . . . , h}.

⌊p(v)⌋ = z ⇔ d(v, r) = ⌈z/s⌉.

⌈z/s⌉ takes each of the values z to ⌈z/2⌉ w.p.
O(1/z). 2
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Analysis for caterpillars (2)

T = (V, E, r) — a caterpillar.

Recall n[z] = number of vertices v ∈ V such that

0 < d(v, r) < z.

Corollary. For some constant c and for all k ≥ 1,

E[Xk
z ] ≤ n[z]

z
ckDk−1k! .

Proof.

Only vertices of depth < z can be placed inside
[z, z + 1).

2
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Analysis for many-caterpillars

T = (V, E, r) — a many-caterpillar.

Theorem. For some constant c and for all k ≥ 1,

E[Xk
z (T )] ≤ n[z](T )

z
ckDk−1k! .

Proof. Let T be composed of caterpillars T1, . . . , Td.

Xz(T ) = Xz(T1) + · · · + Xz(Td).

Recall the caterpillar result:

E[Xp
z (Ti)] ≤

n[z](Ti)

z
cpDp−1p!, (p ≥ 1)

where n[z](T1) + · · · + n[z](Td) = n[z](T ).

Using the multinomial theorem yields the result. 2
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Analysis for many-caterpillars (1)

Recall the caterpillar result:

E[Xp
z (Ti)] ≤

n[z](Ti)

z
cpDp−1p! . (p ≥ 1)

Multinomial theorem gives a sum of terms

k!
∏

s factors

E[Xpi
z (Ti)]/pi! ,

where
∑

pi = k.

Worst case is when n[z](Ti) = n[z](T )/d.

Each term is bounded by

k!

(

n[z](T )/d

z

)s

ckDk−s.
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Analysis for many-caterpillars (2)

A term involving s factors is bounded by

k!

(

n[z](T )/d

z

)s

ckDk−s.

There are ≤ 2k(ed/s)s terms involving s factors.

Their sum is at most

(e/s)sk!

(

n[z](T )

z

)s

(2c)kDk−s.

Using n[z](T )/z ≤ D, this sum is at most

(e/s)sk!
n[z](T )

z
(2c)kDk−1.

The result follows since

∑

(e/s)s < ∞.
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