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Abstract

The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum
cardinality of a k-uniform t-intersecting family on n points, and describes all optimal families. In
recent work, we extended this theorem to the weighted setting, giving the maximum µp measure of
a t-intersecting family on n points. In this work, we prove two new complete intersection theorems.
The first gives the supremum µp measure of a t-intersecting family on infinitely many points, and
the second gives the maximum cardinality of a subset of Zn

m in which any two elements x, y have
t positions i1, . . . , it such that xij − yij ∈ {−(s − 1), . . . , s − 1}. In both cases, we determine the
extremal families, whenever possible.

1 Introduction

The complete intersection theorem of Ahlswede and Khachatrian [1, 3] is a generalization of the classical
Erdős–Ko–Rado theorem [10] to the case of t-intersecting families. The theorem states the maximum
cardinality of a t-intersecting k-uniform family on n points, for all values of n, k, t. Moreover, it describes
all extremal families (in all but a few exceptional cases). The extremal families are of the form Ft,r =
{S : |S ∩ [t+ 2r]| ≥ t+ r}, where r depends on k−t+1

n ; the set [t+ 2r] can be replaced by any set of size
t+ 2r.

The complete intersection theorem concerns the setting of k-uniform families. Dinur and Safra [7]
considered the weighted setting, in which the aim is to find the maximum µp measure of a family on n
points without uniformity restrictions, where µp(A) = p|A|(1 − p)n−|A|. They showed that the original
complete intersection theorem implies that when p < 1/2, the maximum µp measure of a t-intersecting
family on an unbounded number of points is wsup(t, r) := maxr µp(Ft,r). Ahlswede and Khachatrian [2]
had considered the case p = 1/m earlier, and their argument (which differs from that of Dinur and
Safra) extends for all p < 1/2 as well. Recently [11] we have extended these results to all values of p,
determining in addition all extremal families; they are all of the form Ft,r, and the maximum µp measure
of a t-intersecting family on n points is w(n, t, r) := maxr≤n−t

2
µp(Ft,r).

It is natural to ask what happens when we allow our families to depend on infinitely many points
rather than on an unbounded number of points. In Section 4 we show that when p < 1/2, the maximum
µp measure of a t-intersecting family on infinitely many points is still maxr µp(Ft,r), and furthermore all
extremal families are of the form Ft,r. We also determine the answer when p ≥ 1/2.

Theorem 1.1. Let t ≥ 1, let p ∈ (0, 1), and let F be a measurable t-intersecting family on infinitely
many points.

(a) If p < 1/2 then µp(F) ≤ wsup(t, p) . Furthermore, if µp(F) = wsup(t, p) then (up to a null set) F
corresponds to an extremal family Ft,r.

(b) If p = 1/2 then µp(F) ≤ 1/2. Furthermore, if µp(F) = 1/2 then t = 1; in this case F need not
correspond to an extremal family Ft,r.

(c) If p > 1/2 then µp(F) ≤ 1, and there is an example of an ℵ0-intersecting family satisfying µp(F) = 1
for all p > 1/2.
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Ahlswede and Khachatrian [2] considered the analog of their complete intersection theorem to the
Hamming scheme, in which the objects of study are subsets of Znm under the uniform measure. Such
a subset is t-agreeing if any two vectors agree on at least t coordinates. They showed that the original
complete intersection theorem implies that the maximum measure of a t-agreeing subset of Znm for
unbounded n is maxr µ1/m(Ft,r). In Section 5 we extend their work to families in which any two vectors
have t coordinates which differ by at most s − 1, showing that the maximum measure in this case is
maxr µs/m(Ft,r). We also determine all extremal families.

Theorem 1.2. Let n,m, t ≥ 1 and s ≤ m/2, and let F be a t-agreeing subset of Znm. The normalized
measure of F is at most w(n, t, s/m). Furthermore, if s < m/2 (or m = 2, s = 1 and t > 1) and the
normalized measure of F is exactly w(n, t, s/m), then F corresponds to an extremal family Ft,r.

The proofs of both results rely on new versions of Katona’s circle argument, described in Section 3.

Acknowledgements We thank the reviewer for useful comments. The author is a Taub Fellow —
supported by the Taub Foundations. The research was funded by ISF grant 1337/16.

2 Preliminaries

We use [n] for {1, . . . , n},
(
[n]
k

)
for all subsets of [n] of size k, and

(
[n]
≥k
)

for all subsets of [n] of size at

least k. We denote by 2A the set of all subsets of A. The binomial distribution with n trials and success
probability p is denoted Bin(n, p).

We will need the following basic definitions.

Definition 2.1. A family on n points is a collection of subsets of [n]. A family F is t-intersecting if any
two sets in F have at least t points in common. Two families F ,G are cross-t-intersecting if any set in
F has at least t points in common with every set in G.

A family F on n points is monotone if whenever A ∈ F and B ⊇ A then B ∈ F . Given a family F ,
its up-set 〈F〉 is the smallest monotone family containing F , which is 〈F〉 = {B ⊇ A : A ∈ F}.

When t = 1, we will drop the parameter t: intersecting family, cross-intersecting families.

Definition 2.2. For any p ∈ (0, 1) and any n, the product measure µp is a measure on the set of subsets
of [n] given by

µp(A) = p|A|(1− p)n−|A|.

For n ≥ t ≥ 1 and p ∈ (0, 1), the parameter w(n, t, p) is the maximum of µp(F) over all t-intersecting
families on n points.

For t ≥ 1 and p ∈ (0, 1), the parameter wsup(t, p) is given by

wsup(t, p) = sup
n
w(n, t, p).

It is not hard to see that we can also define wsup(t, p) as a limit instead of a supremum, since w(n, t, p)
is non-decreasing in n. Indeed, every t-intersecting family on n points can be extended to a t-intersecting
family on n+ 1 points having the same µp measure.

The optimal families in the weighted complete intersection theorem, named after Frankl [12], are
described in the following definition.

Definition 2.3. For t ≥ 1 and r ≥ 0, the (t, r)-Frankl family on n points is the t-intersecting family

Ft,r = {A ⊆ [n] : |A ∩ [t+ 2r]| ≥ t+ r}.

A family F on n points is equivalent to a (t, r)-Frankl family if there exists a set S ⊆ [n] of size t + 2r
such that

F = {A ⊆ [n] : |A ∩ S| ≥ t+ r}.

The following theorem, proved in [11], is the µp version of Ahlswede and Khachatrian’s complete
intersection theorem.
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Theorem 2.1. Let n ≥ t ≥ 1 and p ∈ (0, 1). If F is t-intersecting then

µp(F) ≤ max
r : t+2r≤n

µp(Ft,r).

Moreover, unless t = 1 and p ≥ 1/2, equality holds only if F is equivalent to a Frankl family Ft,r.
When t = 1 and p > 1/2, the same holds if n + t is even, and otherwise F = G ∪

( [n]

≥n+t+1
2

)
where

G ⊆
( [n]

n+t−1
2

)
contains exactly

( n−1
n+t−1

2

)
sets.

Corollary 2.2. We have

wsup(1, p) =

{
p p ≤ 1

2 ,

1 p > 1
2

For t ≥ 2, we have

wsup(t, p) =


µp(Ft,r) r

t+2r−1 ≤ p ≤
r+1

t+2r+1 ,
1
2 p = 1

2 ,

1 p > 1
2 .

In particular, when t > 1 and 0 < p < 1/2, the maximum in Theorem 2.1 is always achieved for
r ≤ p

1−2p (t− 1).

We will also need the following simple result on the µp measure of the Frankl families.

Lemma 2.3. For any t ≥ 1 and r ≥ 0,

µp(Ft,r+1)− µp(Ft,r) =

(
t+ 2r + 1

t+ r

)
pt+r(1− p)r+1

[
p− r + 1

t+ 2r + 1

]
.

In particular, if µp(Ft,r) = wsup(t, r) then r ≤ p
1−2p (t− 1).

Proof. A set A ⊆ [t+2r+2] is in Ft,r+1 but not in Ft,r if |A∩[t+2r]| = t+r−1 and t+2r+1, t+2r+2 ∈ A.
Conversely, A is in Ft,r but not in Ft,r+1 if |A∩ [t+ 2r]| = t+ r and t+ 2r+ 1, t+ 2r+ 2 /∈ A. Therefore

µp(Ft,r+1)− µp(Ft,r) =

(
t+ 2r

t+ r − 1

)
pt+r−1(1− p)r+1p2 −

(
t+ 2r

t+ r

)
pt+r(1− p)r(1− p)2

=

(
t+ 2r

t+ r

)
pt+r(1− p)r+1

[
t+ r

r + 1
p− (1− p)

]
=

(
t+ 2r

t+ r

)
pt+r(1− p)r+1

[
t+ 2r + 1

r + 1
p− 1

]
.

Corollary 2.4. For every t ≥ 1 and p ∈ (0, 1/2) there exists a constant δ(t, p) > 0 such that the following
hold:

(a) If µp(Ft,r) < w(n, t, p) then µp(Ft,r) ≤ w(n, t, p)− δ(t, p).

(b) If w(n, t, p) < wsup(t, p) then w(n, t, p) ≤ wsup(t, p)− δ(t, p).

Proof. Let mr = µp(Ft,r). We will show that there exists δ(t, p) > 0 such that the following holds for
all R, s ≥ 0, where R could be ∞: if ms < maxr≤Rmr then ms ≤ maxr≤R−δ(t, p). The first item then
follows since w(n, t, p) = maxr≤n−t

2
mr, and the second item follows from wsup(t, p) = maxrmr.

When t = 1, the lemma shows that m0 > m1 > · · · is decreasing, and we define δ(t, p) = m0 −m1.
When t > 1 and r

t+2r−1 < p < r+1
t+2r+1 , the lemma shows that m0 < · · · < mr > mr+1 > · · · is

bitonic, and we define δ(t, p) = min(m1 −m0, . . . ,mr −mr−1,mr −mr+1)
When p = r+1

t+2r+1 , the lemma shows that m0 < · · · < mr = mr+1 > mr+2 > · · · is almost bitonic,
and we define δ(t, p) = min(m1 −m0, . . . ,mr −mr−1,mr+1 −mr+2).
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3 Katona’s circle argument

Katona [16] gave a particularly simple proof of the Erdős–Ko–Rado theorem, using what has become
known as the circle method. The same proof goes through in the µp setting, with much the same proof,
as we show in Section 3.1. We are able to use the same argument to obtain a description of all optimal
families.

The heart of Katona’s argument is the following seemingly trivial observation: if S is a measurable
set on the unit circumference circle in which any two points are at distance at most p < 1/2, then the
length of S is at most p, the optimal sets being intervals. In Section 3.2 we give two versions of this
argument for the case of two sets: one in a discrete setting, and the other in a continuous setting. These
results will be used in the rest of the paper.

3.1 Intersecting families

The Erdős–Ko–Rado theorem, in our setting, states that if F is an intersecting family then µp(F) ≤ p
for all p ≤ 1/2. Katona [16] gave a particularly simple proof of the theorem in its original setting, and
we adapt his proof to our setting.

Lemma 3.1. Let n ≥ 1 and p ∈ (0, 1/2). Then µp(F) ≤ p for all intersecting families F .
Moreover, if F is an intersecting family on n points such that µp(F) = p then F is equivalent to a

(1, 0)-Frankl family. In other words, if µp(F) = p then for some i ∈ [n] we have

F = {A ⊆ [n] : A 3 i}.

Proof. The idea is to come up with a probabilistic model for the distribution µp, and use it to show that
µp(F) ≤ p. Since µp(F1,0) = p, this shows that w(n, 1, p) = p. We will then use the same probabilistic
model to identify all families satisfying µp(F) = p.

Let T be the circle of unit circumference. Choose n points x1, . . . , xn at random on T. Choose another
point t on T at random, and consider the arc (t, t+p) (where t+p is taken modulo 1). The set of indices
of points St which lie inside the arc has distribution µp, and so µp(F) = Pr[St ∈ F ].

We will prove that for each setting of x1, . . . , xn we have Pr[St ∈ F ] ≤ p, the probability taken over
the choice of t. Let I = {t : St ∈ F}, and note that I is a union of intervals. The crucial observation is
that if t1, t2 ∈ I then the corresponding arcs (t1, t1 + p), (t2, t2 + p) must intersect, and so d(t1, t2) < p,
where d(·, ·) is shortest distance on the circumference of the circle. Consider now any t1 ∈ I. All t2 ∈ I
must lie in the interval (t1 − p, t1 + p), and moreover for each s ∈ (0, p), at most one of t1 + s, t1 − p+ s
can be in I (since d(t1 + s, t1 + s− p) = p). It follows that the measure of I is at most p. In other words,
Pr[St ∈ F ] ≤ p, implying that µp(F) ≤ p.

For future use, we also need to identify the cases in which I has measure exactly p. We will show that
I must be an interval of length p. The argument above shows that I is a union of non-empty intervals
of two types, J1, . . . , Ja ⊆ (t1 − p, t1] and K1, . . . ,Kb ⊆ [t1, t1 + p), such that the intervals Ji + p,Kj

together partition [t1, t1 + p). If a = 0 then I = [t1, t1 + p), and if b = 0 then I = (t1 − p, t1]. If there
is a unique interval K1 which is of the form [t1, t1 + s) (or [t1, t1 + s]) then I = [t1 + s − p, t1 + s) (or
(t1 + s− p, t1 + s]). Otherwise, there must be some interval Kj whose left end-point y is larger than t1.
There is a corresponding interval Ji whose right end-point is y − p. However, since p < 1/2, a point on
Ji slightly to the left of y − p has distance larger than p from a point on Kj slightly to the right of y,
contradicting our assumptions. We conclude that I must be an interval of length p.

We proceed to identify the families F which achieve the upper bound, that is, satisfy µp(F) = p.
Clearly any family F equivalent to F1,0 satisfies µp(F) = p. We will show that these are the only such
families. First, notice that if µp(F) = p then F must be monotone (otherwise its upset is an intersecting
family of measure larger than p). Moreover, the set I defined above is an interval of length p almost
surely, with respect to the choice of x1, . . . , xn. In particular, there is a choice of x1, . . . , xn, all distinct
and none at distance exactly p, such that I is an interval of length p, say I = [y, y + p). For small
ε > 0, the arcs (y + ε, y + p+ ε), (y + p− ε, y + 2p− ε) intersect at a small neighborhood of y + p. Since
the corresponding sets Sy+ε, Sy+p−ε intersect, there must be some point xi = y + p. We will show that
{xi} ∈ F , and so monotonicity implies that F = {A ⊆ [n] : A 3 i}.

Let A consist of all points in (y, y + p). Thus A ∪ {xi} ∈ F (since y + ε ∈ I for small ε) while A /∈ F
(since y − ε /∈ I for small ε). Consider now the set of configurations x′1, . . . , x

′
n in which x′j ∈ (x′i − p, x′i)
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for all j ∈ A and x′j /∈ (x′i− p, x′i + p) for all j /∈ A∪{i}. This set of configurations has positive measure,
and so there must exist one whose corresponding set I ′ is an interval of measure p. By construction, I ′

contains all points t just to the right of x′i−p (since the corresponding St is A∪{i}) but not x′i−p (since
the corresponding Sx′i−p is A), and so x′i − p is the left end-point of the interval. The right end-point
is thus x′i itself. By construction, Sx′i−ε = {i} for small enough ε > 0, showing that {i} ∈ F . This
completes the proof.

Other proofs of the upper bound which employ similar arguments appear in Dinur and Friedgut [6]
and in Friedgut [13]. Unfortunately, it seems that Katona’s idea doesn’t extent to t-intersecting families
for t > 1. For a discussion of this, see Howard, Károlyi and Székely [15].

3.2 Cross-intersecting settings

As explained in the introduction to this section, the heart of Katona’s proof is a result on sets in which
any two points are close. The proof of Lemma 3.1 closely follows the original argument. In this section
we give alternative arguments for the cross-intersecting counterparts in both discrete and continuous
settings.

3.2.1 Discrete setting

We start with the easier, discrete setting. First, a few definitions.

Definition 3.1. A set A ⊆ Zm is s-agreeing if every a, b ∈ A satisfy a− b ∈ {−(s− 1), . . . , s− 1}. Two
sets A,B ⊆ Zm are cross-s-agreeing if every a ∈ A and b ∈ B satisfy a− b ∈ {−(s− 1), . . . , s− 1}.

Definition 3.2. A set A ⊆ Zm is an interval if it is of the form {x − `, . . . , x + `} (for 2` + 1 < m) or
{x− `, . . . , x+ `− 1} (for 2` < m). In the first case, x is the center of A, and in the second, x− 1/2 is
the center of A.

The following simple lemma will simplify the argument below.

Lemma 3.2. Let s ≤ m/2. If A ⊆ Zm is cross-s-agreeing with the non-empty interval {x, . . . , y} of
length at most 2s− 1 then A ⊆ {y − (s− 1), . . . , x+ (s− 1)}.

Proof. The proof is by induction on the length of the interval. If y = x then trivially A ⊆ {x − (s −
1), . . . , x+(s−1)}. Suppose now that we have already shown that if A is cross-s-agreeing with {x, . . . , y}
then A ⊆ {y − (s− 1), . . . , x+ (s− 1)}. If A is cross-s-agreeing with {x, . . . , y + 1} then

A ⊆ {y−(s−1), . . . , x+(s−1)}∩{y+1−(s−1), . . . , x+1+(s−1)} = {y+1−(s−1), . . . , x+(s−1)}.

We can now state and prove the result in the discrete setting.

Lemma 3.3. Let m, s ≥ 1 be integers satisfying s < m/2. If A,B ⊆ Zm are non-empty s-agreeing sets
then |A| + |B| ≤ 2s. Moreover, if |A| + |B| = 2s then A,B are intervals centered at the same point or
half-point. In particular, if A is s-agreeing then |A| ≤ s, with equality only when A is an interval.

When s = m/2 it still holds that |A| + |B| ≤ 2s, with equality when B = {x : x + s /∈ A}, and this
holds even without the assumption that A,B be non-empty. In particular, if A is s-agreeing then |A| ≤ s,
with equality only when A contains one point out of each pair x, x+ s.

Proof. We start by proving that |A| + |B| ≤ 2s when s < m/2. The idea is to use a shifting argument
to transform A,B into intervals without decreasing |A| + |B|. We construct a sequence of non-empty
s-agreeing sets, starting with (A0, B0) = (A,B). Given (Ai, Bi), note first that Ai 6= Zm, since otherwise
Bi would have to be empty. Therefore there exists a point x ∈ Ai such that x + 1 /∈ Ai. We take
Ai+1 = Ai ∪ {x + 1}. If Ai+1, Bi are not cross-s-agreeing then there must be a point y ∈ Bi such that
x− y ∈ {−(s−1), . . . , s−1} but x+ 1− y /∈ {−(s−1), . . . , s−1}. This can only happen if x− y = s−1,
and so there is at most one such point y = x− (s− 1). We therefore take Bi+1 = Bi \ {x− (s− 1)}. If
Bi+1 = ∅, then we stop the sequence at (Ai, Bi), and otherwise we continue. Note that |Ai+1| = |Ai|+ 1
and |Bi+1| ≥ |Bi| − 1, and so |Ai+1|+ |Bi+1| ≥ |Ai|+ |Bi|.

Since the size of Ai keeps increasing, there must be a last pair in the sequence, say (At, Bt). Our
stopping condition guarantees that |Bt| = 1, say Bt = {y}. This forces At ⊆ {y−(s−1), . . . , y+(s−1)},
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and so |At|+ |Bt| ≤ (2s− 1) + 1 = 2s. Since |A0|+ |B0| ≤ |At|+ |Bt| ≤ 2s, this completes the proof that
|A|+ |B| ≤ 2s.

Next, we show that if |A| + |B| = 2s then A,B are intervals centered at the same point. We do
this by reverse induction on the sequence (A0, B0), . . . , (At, Bt). For the base case, the argument in the
preceding paragraph shows that |At|+ |Bt| = 2s if At = {y− (s− 1), . . . , y+ (s− 1)} and Bt = {y}, and
so both sets are intervals centered at the point y.

Suppose now that (Ai+1, Bi+1) are intervals centered (without loss of generality) at 0 or −1/2,
depending on the parity of |Ai+1|. Suppose first that |Ai+1| is odd. Then for some 0 ≤ ` ≤ s − 1 we
have Ai+1 = {−`, . . . , `} and Bi+1 = {−(s − 1 − `), . . . , s − 1 − `}. By construction, −` ∈ Ai. Suppose
that also ` ∈ Ai, so that Ai = {−`, . . . , x} ∪ {x+ 2, . . . , `}. Lemma 3.2 shows that

Bi ⊆ {x− (s− 1), . . . , s− 1− `} ∩ {−(s− 1− `), . . . , x+ 2 + (s− 1)} ⊆ {−(s− 1− `), . . . , s− 1− `},

and so Bi ⊆ Bi+1, implying that |Ai|+ |Bi| < 2s. We conclude that ` /∈ Ai, and so Ai = {−`, . . . , `− 1},
corresponding to x = `− 1. By construction, Bi = Bi+1 ∪{x− (s− 1)} = {−(s− `), . . . , s− 1− `}. Both
sets are centered at −1/2.

The second case, when |Ai+1| is even, is similar. In this case for some 1 ≤ ` ≤ s − 1 we have
Ai+1 = {−`, . . . , ` − 1} and Bi+1 = {−(s − `), . . . , s − ` − 1}. By construction, −` ∈ Ai. Suppose that
also `− 1 ∈ Ai, so that Ai = {−`, . . . , x} ∪ {x+ 2, . . . , `− 1}. Lemma 3.2 shows that

Bi ⊆ {x− (s− 1), . . . , s− 1− `} ∩ {−(s− `), . . . , x+ 2 + (s− 1)} ⊆ {−(s− `), . . . , s− 1− `},

and so Bi ⊆ Bi+1. As before, this leads to a contradiction, and we conclude that Ai = {−`, . . . , ` − 2}
is centered at −1. Moreover, Bi = Ai ∪ {`− 2− (s− 1)} = {−(s− `)− 1, . . . , s− 1− `} is also centered
at −1. This completes the proof.

It remains to consider the case s = m/2. The s-agreeing condition states that if a ∈ A and b ∈ B
then a− b 6= s. Thus B ⊆ {x : x+ s /∈ A}, which implies |A|+ |B| ≤ m = 2s. This bound is tight only
when B = {x : x+ s /∈ A}.

As an easy corollary, we can derive the classical Erdős–Ko–Rado theorem.

Corollary 3.4. Let n ≥ k ≥ 1 be parameters such that k ≤ n/2. If F ⊆
(
[n]
k

)
is intersecting then

|F| ≤
(
n−1
k−1
)
. Furthermore, if k < n/2 and |F| =

(
n−1
k−1
)

then F consists of all sets containing some
i ∈ [n].

Proof. The proof is very similar to the proof of Lemma 3.1. Let π be a random permutation of [n], and
choose t ∈ [n] at random. Let St = {π(t+ 1), . . . , π(t+ k)}, where indices are taken modulo n. Since St
is a random set from

(
[n]
k

)
, we see that |F|/

(
n
k

)
is the probability that St ∈ F .

For any setting of π, let I = {t ∈ [n] : St ∈ F}. Since F is intersecting, if a, b ∈ I then {π(a +
1), . . . , π(a + k)}, {π(b + 1), . . . , π(b + k)} must intersect, and this implies that I is k-agreeing (in the
sense of Definition 3.1). Lemma 3.3 shows that |I| ≤ k, and so |F|/

(
n
k

)
≤ k/n, or |F| ≤

(
n−1
k−1
)
.

Suppose now that k < n/2 and |F| =
(
n−1
k−1
)
. Lemma 3.3 shows that for every permutation π, the set

I must be an interval of length k. In particular, this is the case for the identity permutation. Suppose
without loss of generality that in this case, I = {1, . . . , k}. Thus {2, . . . , k + 1}, . . . , {k + 1, . . . , 2k} ∈ F
but {1, . . . , k} /∈ F (since 0 /∈ I). Let S ∈

(
[n]
k

)
be any set containing k + 1 but not 1, and write S =

{k+1}∪A∪B, where A ⊆ {2, . . . , k}. Let π be any permutation which starts 1, {2, . . . , k}\A,A, k+1, B.
Since {π(1), . . . , π(k)} = {1, . . . , k} /∈ F whereas {π(2), . . . , π(k + 1)} = {2, . . . , k + 1} ∈ F , the set I
contains 1 but not 0, and so must be {1, . . . , k}. This implies that S ∈ F .

To finish the proof, let T ∈
(
[n]
k

)
be any set not containing k + 1. Let U be k − 1 elements disjoint

from T and not containing 1 or k+ 1; such elements exist since n− (k+ 2) ≥ (2k+ 1)− (k+ 2) = k− 1.
Let π be any permutation starting T, k+1, U , where we put 1 first if 1 ∈ T . The earlier paragraph shows
that I ⊇ {1, . . . , k}, and in particular T /∈ F . Thus all sets in F contain k+ 1, and since |F| =

(
n−1
k−1
)
, it

must contain all such sets. This completes the proof.

3.2.2 Continuous setting

We proceed with a continuous analog of Lemma 3.3. First, the pertinent definitions.
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Definition 3.3. The unit circle T consists of the interval [0, 1] with its two end-points pasted. The
distance between two points x, y ∈ T is their distance on the unit circle. We denote the Lebesgue
measure on T by µ.

Let p ≤ 1/2. Two measurable sets A,B ⊆ T are p-agreeing if any a ∈ A and b ∈ B are at distance
less than p.

We now state and prove the analog of Lemma 3.3. We only state and prove the upper bound part,
leaving the identification of optimal sets to the reader.

Lemma 3.5. Let p < 1/2. If two non-empty measurable sets A,B ⊆ T are p-agreeing then µ(A)+µ(B) ≤
2p.

Proof. The proof uses an approximation argument. Let ε > 0 be a parameter satisfying p + ε < 1/2.
Since A is measurable, there is a sequence Ai of intervals of total length smaller than µ(A) + ε such that
A ⊆

⋃
iAi. Note that every point in

⋃
iAi is at distance at most ε/2 from a point in A, since otherwise

µ(
⋃
iAi \A) ≥ ε. Similarly, there is a sequence Bj of intervals of total length at most µ(B) + ε such that

B ⊆
⋃
j Bj , and any point in

⋃
j Bj is at distance at most ε/2 from a point in B. Thus

⋃
iAi and

⋃
j Bj

are cross-(p+ ε)-agreeing.

Choose I so that
∑
i>I µ(Ai) < ε, and set A∗ =

⋃I
i=1Ai. Similarly, choose J so that

∑
j>J µ(Bj) < ε,

and set B∗ =
⋃J
j=1Bj . Thus A∗, B∗ are cross-(p + ε)-agreeing, and each is a union of finitely many

intervals.
Let M be a large integer, and define A∗M =

⋃M−1
x=0 {[x/M, (x+ 1)/M ] : [x/M, (x+ 1)/M ] ⊆ A∗}. Note

that µ(A∗M ) ≥ µ(A∗) − 2I/M . Define B∗M similarly. We can view A∗M , B
∗
M as subsets of ZM . These

subsets are cross-b(p + ε)Mc-agreeing: if [a/M, (a + 1)/M ] ∈ A∗M and [b/M, (b + 1)/M ] ∈ B∗M then
a/M, (b+ 1)/M are at distance less than p+ ε. Lemma 3.3 thus shows that µ(A∗M ) + µ(B∗M ) ≤ 2(p+ ε).
On the other hand, µ(A∗M ) + µ(B∗M ) ≥ µ(A∗) + µ(B∗) − 2(I + J)/M . Taking the limit M → ∞, we
deduce that µ(A∗) + µ(B∗) ≤ 2(p + ε). Since µ(A∗) + µ(B∗) ≥ µ(A) + µ(B) − 2ε, we conclude that
µ(A) + µ(B) ≤ 2p+ 4ε. Taking the limit ε→ 0, we deduce the lemma.

As a corollary, we obtain the following useful result.

Corollary 3.6. Let F ,G be cross-intersecting families on n points. For any p ≤ 1/2, µp(F)+µp(G) ≤ 1.

Proof. We first settle the case p = 1/2. If F ,G are cross-intersecting then G is disjoint from {A : A ∈ F}.
Since the latter set has measure µp(F), we conclude that µp(F) + µp(G) ≤ 1.

Suppose now that p < 1/2. We will follow the argument of Lemma 3.1. We choose n points x1, . . . , xn
at random on T, and two starting points tF , tG ∈ T at random. Let St be the set of points that lie inside
the interval (t, t + p), let IF be the set of indices tF such that StF ∈ F , and define IG analogously.
Thus µp(F) + µp(G) = E[µ(IF ) + µ(IG)]. Since F ,G are cross-intersecting, we see that IF , IG are
cross-p-agreeing. The lemma shows that µ(IF ) + µ(IG) ≤ 2p ≤ 1 if neither IF nor IG are empty, and
µ(IF ) + µ(IG) ≤ 1 trivially holds if one of the sets is empty. The corollary follows.

We comment that the corollary remains holding if the families in question are on infinitely many
points, in the sense of Section 4, with the same proof; the only difference is that we choose infinitely
many points rather than just n.

4 Infinite families

Theorem 2.1 and its corollary determine the quantities w(n, t, p) and wsup(t, p) which are, respectively,
the maximum µp-measure of a t-intersecting family on n points, and the supremum µp-measure of a
t-intersecting family on any number of points. In this section we consider what happens when we allow
families on infinitely many points.

Definition 4.1. The infinite product measure µp on F ⊆ 2N is the infinite product measure extending
the finite µp measures. It corresponds to tossing a p-biased coin infinitely many times.

Given p ∈ (0, 1), A family on infinitely many points is a subset F ⊆ 2N which is measurable with
respect to µp. The family is t-intersecting if any two sets A,B ∈ F have at least t points in common;
here t can also be ℵ0.
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A family F is finitely determined if it is the extension of some family G on n points: F = {A :
A ∩ [n] ∈ G}. Given p ∈ (0, 1), the family F is essentially finitely determined if it differs from a finitely
determined family by a µp-null set.

Definition 4.2. For t ≥ 1 and p ∈ (0, 1), the parameter w∞(t, p) is the supremum of µp(F) over all
t-intersecting families on infinitely many points.

The following theorem summarizes the results proved in this section.

Theorem 4.1. Let t ≥ 1 and p ∈ (0, 1).
If p < 1/2 then w∞(t, p) = wsup(t, p). Furthermore, if F is a t-intersecting family on infinitely many

points satisfying µp(F) = w∞(t, p) then F is essentially finitely determined.
If p = 1/2 then w∞(t, p) = 1/2. Furthermore, if t > 1 then no t-intersecting family on infinitely

many points has measure 1/2.
If p > 1/2 then w∞(t, p) = 1. In fact, there is an ℵ0-intersecting family F on infinitely many points

which satisfies µp(F) = 1 for all p > 1/2.

Note that there are many intersecting families with µ1/2-measure 1/2, for example F1,r for every r.
There are also families which are not essentially finitely determined. One example is the family of sets
S such that for some n ≥ 0,

(a) S contains exactly one of {2m+ 1, 2m+ 2} for all m < n.

(b) S contains both {2n+ 1, 2n+ 2}.

We prove the different cases in the theorem one by one, starting with the case p < 1/2. We start
with the following technical proposition, which follows from the definition of µp.

Proposition 4.2. Let F be a family on infinitely many points. For every p ∈ (0, 1) and for every ε > 0
there is a finitely determined family G such that µp(F 4G) < ε.

Our proof will need a stability version of Theorem 2.1, due to Ellis, Keller and Lifshitz [8, Theo-
rem 1.10].

Proposition 4.3. For any t ≥ 1 and any ζ > 0, there exists C = C(t, ζ) > 0 such that the following
holds. Let p ∈ [ζ, 12 − ζ], and let ε > 0. If F is a t-intersecting family on n points of measure at least
(1− ε)w(n, t, p) then there exists a family G equivalent to some (t, r)-Frankl family on n points such that
µp(F \ G) ≤ Cεlog1−p p.

Corollary 4.4. Fix p ∈ (0, 1/2) and t ≥ 1. There exists ε0(t, p) > 0 such that the following holds. If F
is a t-intersecting family on n points of measure (1− ε)w(n, t, p), where ε < ε0(t, p), then there exists a
t-intersecting Frankl family G on n points of measure w(n, t, p) such that µp(F 4G) = O(ε). Here the
hidden constant depends on t, p but not on n.

Proof. Since p is fixed, we can apply the proposition with ζ = min(p, 12 −p). The proposition states that
there exists a t-intersecting family G on n points, equivalent to a Frankl family, such that µp(F \ G) =
O(εlog1−p p) = O(ε). In particular,

(1− ε)w(n, t, p) ≤ µp(F) ≤ µp(G) +O(ε) =⇒ µp(G) ≥ w(n, t, p)−O(ε).

Corollary 2.4 shows that we can ensure µp(G) = w(n, t, p) by choosing ε0(t, p) appropriately.
Summarizing, so far we know that µp(G) = w(n, t, p) and µp(F \G) = O(ε). The latter bound implies

that µp(F ∩ G) = µp(F)− µp(F \ G) = w(n, t, p)−O(ε), and so µp(G \ F) = µp(G)− µp(G ∩ F) = O(ε).
We conclude that µp(F 4G) = O(ε).

This allows us to settle the case p < 1/2.

Lemma 4.5. Let t ≥ 1 and p ∈ (0, 1/2). Then w∞(t, p) = wsup(t, p). Furthermore, if F is a t-
intersecting family on infinitely many points satisfying µp(F) = w∞(t, p) then F is essentially finitely
determined.
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Proof. Clearly w∞(t, p) ≥ wsup(t, p). For the other direction, let F be a t-intersecting family on infinitely
many points. Let ε ∈ (0, 1/4) be a parameter. Proposition 4.2 shows that there is a family X depending
on N points such that µp(F 4X ) < ε. We can assume that X depends on the first N points. For
S ⊆ [N ], let FS = {A ∈ 2N\[N ] : S ∪A ∈ F}.

Let dist(x, {0, 1}) = min(|x|, |x− 1|), and notice that

E
S∼µp([N ])

[dist(µp(FS), {0, 1})] ≤ E
S∼µp([N ])

[µp(FS4XS)] = µp(F 4X ) < ε.

Thus with probability at least 1−
√
ε, dist(µp(FS), {0, 1}) <

√
ε.

Define now F ′ = {A ∈ F : µp(FA∩[N ]) > 1 −
√
ε}. In words, F ′ is the subset of F obtained by

removing all fibers FS whose µp-measure is at most 1 −
√
ε. In particular, we remove all fibers whose

µp-measure is less than
√
ε, and all fibers whose measure is between

√
ε and 1 −

√
ε. The former have

measure at most
√
ε, and the latter also have measure at most

√
ε due to the preceding paragraph. Thus

µp(F \ F ′) ≤ 2
√
ε.

If S, T ⊆ [N ] are such that µp(FS), µp(FT ) > 1−
√
ε > 1/2 then FS ,FT cannot be cross-intersecting,

due to Corollary 3.6 (while we stated the corollary for finite families, it holds for infinite families with
exactly the same proof). It follows that |S ∩ T | ≥ t, and so the family G = {A : µp(FA∩[N ]) > 1 −

√
ε}

containing F ′ is t-intersecting. Since F ′ is contained in a t-intersecting family depending on N points,
µp(F ′) ≤ wsup(t, p), and so µp(F) ≤ wsup(t, p) + 2

√
ε. Taking the limit ε→ 0, we deduce that µp(F) ≤

wsup(t, p), and so w∞(t, p) = wsup(t, p).

Suppose now that µp(F) = wsup(t, p). For every ε > 0, we have constructed above a t-intersecting
family F ′ε ⊆ F which is contained in a t-intersecting family Gε depending on Nε points and satisfies
µp(F ′ε) ≥ µp(F) − 2

√
ε. In particular, µp(Gε) ≥ µp(F ′ε) ≥ µp(F) − 2

√
ε ≥ wsup(t, p) − 2

√
ε. Since

µp(Gε) ≤ w(Nε, t, p), Corollary 2.4 shows that for small enough ε > 0 this can only happen if w(Nε, t, p) =
wsup(t, p). Furthermore, Corollary 4.4 shows (for small enough ε > 0) that µp(Gε4Hε) = O(ε) for some
t-intersecting Frankl family Hε on Nε points of µp-measure wsup(t, p). Lemma 2.3 (via its bound on r)
shows that Hε depends on a constant number of coordinates (depending on t, p).

Notice that µp(Gε \ F ′ε) ≤
√
ε (since each fiber we retained had µp-measure at least 1 −

√
ε), and so

µp(Gε ∩ F) ≥ µp(Gε ∩ F ′ε) ≥ wsup(t, p) − 3
√
ε. Therefore µp(F \ Gε) ≤ 3

√
ε, and so µp(Gε4F) ≤ 6

√
ε.

Thus µp(F 4Hε) = O(
√
ε). In particular, if ε1, ε2 ≤ ε we get µp(Hε14Hε2) = O(

√
ε). Since Hε1 4Hε2

depends on a constant number of coordinates, for small enough ε > 0 this forces Hε1 = Hε2 . There is
therefore a Frankl family H satisfying µp(F 4H) = O(

√
ε) for all small enough ε > 0. Taking the limit

ε→ 0 concludes the proof.

We now consider the case p = 1/2. We thank Shay Moran for help with the proof of the following
lemma.

Lemma 4.6. For all t ≥ 1, w∞(t, 1/2) = 1/2. Furthermore, if t ≥ 2 then no t-intersecting family on
infinitely many points has µp-measure 1/2.

Proof. If F is an intersecting family on infinitely many points then F is disjoint from {A : A ∈ F}. Since
both families have the same measure, it follows that µp(F) ≤ 1/2. Thus w∞(t, 1/2) ≤ 1/2. On the other
hand, clearly w∞(t, 1/2) ≥ wsup(t, 1/2), and so w∞(t, 1/2) = 1/2 due to Corollary 2.2.

Suppose now that t ≥ 2 and that F is a t-intersecting family on infinitely many points of µ1/2-measure

1/2. By possibly taking the up-set of F , we can assume that F is monotone. Let F− = {A ∈ 2N\{1} :
A ∈ F} and F+ = {A ∈ 2N\{1} : A ∪ {1} ∈ F}. Since F is monotone, F− ⊆ F+. Since t ≥ 2, F+

is intersecting, and so µ1/2(F+) ≤ 1/2. It follows that µ1/2(F+) = µ1/2(F−) = 1/2 as well, and so

F1 = {A ∈ 2N : A ∩ (N \ {1}) ∈ F−} also has µ1/2-measure 1/2. Note that F1 does not depend on 1.
Note also that F1 ⊆ F and that F1 is t-intersecting (since F− is).

Starting with F1 but working with the element 2 instead of 1, construct a t-intersecting family
F2 ⊆ F1 of µ1/2-measure 1/2, and note that F2 depends on neither 1 nor 2. Continuing in this way, we
construct a sequence of families Fn such that Fn ⊆ Fn−1 is a t-intersecting family of µ1/2-measure 1/2
that does not depend on 1, . . . , n. Thus F ′ =

⋂
n∈N Fn is a t-intersecting family of µ1/2-measure 1/2

which represents a tail event. However, such a family must have measure 0 or 1 due to Kolmogorov’s
zero-one law. This contradiction shows that the original family F could not have existed.

Finally, we dispense of the case p > 1/2.
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Lemma 4.7. There exists a family F on infinitely many points which is ℵ0-intersecting and satisfies
µp(F) = 1 for all p ∈ (1/2, 1).

Proof. Let f(r) be any integer function which is ω(1) and o(r), for example b
√
rc. We define F to consist

of all sets A such that |A∩ [2r+ f(r)]| ≥ r+ f(r) for all large enough r. For any A,B ∈ F it holds that
for large enough r, |A∩B ∩ [2r+ f(r)]| ≥ 2(r+ f(r))− (2r+ f(r)) = f(r), and so the intersection A∩B
is infinite.

Hoeffding’s bound states (in one version) that Pr[Bin(n, p) ≤ qn] ≤ e−2n(p−q)2 . This implies that for
A ∼ µp,

Pr[|A ∩ [2r + f(r)]| < r + f(r)] ≤ exp

[
−2(2r + f(r))

(
p− r + f(r)

2r + f(r)

)2
]
.

Since (r + f(r))/(2r + f(r)) → 1/2, there exists ε > 0 such that for large enough r we have Pr[|A ∩
[2r + f(r)]| < r + f(r)] ≤ e−4rε

2

. This shows that
∑
r Pr[|A ∩ [2r + f(r)]| < r + f(r)] converges. The

Borell–Cantelli lemma thus shows that almost surely, only finitely many of these “bad events” happen,
and so µp(F) = 1.

5 Agreeing families

Chung, Frankl, Graham, and Shearer [5] considered the difference between intersecting and agreeing
families. Let us say that a family F on n points is G-intersecting if any A,B ∈ F satisfy A ∩ B ∈
G, where G is some monotone family on n points. Thus t-intersecting families are G-intersecting for
G = {S ⊆ [n] : |S| ≥ t}. A family F is G-agreeing if any A,B ∈ F satisfy A4B ∈ G. Since
A4B = (A ∩ B) ∪ (A ∩ B), every G-intersecting family is a fortiori G-agreeing, but the converse does
not hold in general. Nevertheless, Chung et al. showed that the maximum µ1/2-measure of a G-agreeing
family is the same as the maximum µ1/2-measure of a G-intersecting family, using a simple shifting
argument. This explains why many arguments, such as ones using Shearer’s lemma, seem to work not
only for G-intersecting families but also for G-agreeing families. The latter are easier to work with since
the definition is more symmetric, and this is taken to full advantage in [9], for example.

Ahlswede and Khachatrian [2], motivated by the geometry of Hamming spaces, considered a more
general question: what is the largest subset of Znm of diameter n− t with respect to Hamming distance?
Two vectors x, y ∈ Znm have Hamming distance n − t if they agree on exactly t coordinates. Thus a
subset of diameter n − t is the same as a collection of vectors, every two of which agree on at least t
coordinates. They showed that this corresponds (roughly) to µp for p = 1/m (though they stated this
in a different language).

Motivated by the recent success of Fourier-analytic techniques to analyze questions in extremal com-
binatorics, Alon, Dinur, Friedgut and Sudakov [4] studied independent sets in graph products, and in
particular rederived the results of [2] for the case t = 1. Shinkar [19] extended this to general t and
m ≥ t + 1, using methods of Friedgut [14]. Unfortunately, these spectral techniques cannot at the
moment yield all results of [2].

Any bound on t-agreeing families of vectors in Znm readily yields matching results on the µ1/m-measure
of t-intersecting families on n points. Indeed, given a family F ⊆ {0, 1}n, let G ⊆ Znm consist of all vectors
obtained by taking each binary vector in F and replacing each 0 coordinate with one of the m− 1 values
{2, . . . ,m}. The resulting family is t-agreeing, and |G| = mnµ1/m(F). Therefore a bound on |G| yields
a bound on µ1/m(F). In other words, t-agreeing families give a discrete model for µ1/m.

We extend these results in Section 5.1, by giving a discrete model for µs/m for any integers s,m
satisfying s/m < 1/2. Extending the work of [2], we prove a complete intersection theorem in this
setting. Section 5.2 describes a similar continuous model for µp for any p < 1/2, and proves a complete
intersection theorem in that setting.

5.1 Discrete setting

We start by defining the new discrete model.

Definition 5.1. A family on Znm is a subset of Znm. For s ≤ m/2, a family F on Znm is t-agreeing up to s
if every x, y ∈ F have t coordinates i1, . . . , it such that xij − yij ∈ {−(s− 1), . . . , s− 1} for 1 ≤ j ≤ t.
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The uniform measure on Zm is denoted by νm, and the uniform measure on Znm by νnm.
The maximum measure of a t-agreeing up to s family on Znm is denoted w(Znm, t, s).

Our goal is to show that w(Znm, t, s) = w(n, t, s/m) whenever s/m ≤ 1/2, and to identify the optimal
families when possible. Our candidate optimal families are obtained in the following way.

Definition 5.2. Fix n,m ≥ 1 and s ≤ m/2. For y ∈ Znm, the mapping σy : Znm → 2[n] is given by
σy(x) = {i ∈ [n] : 1 ≤ xi − yi ≤ s}.

If F is a family on Znm and G is a family on n points then F ≈ G (or, F is equivalent to G) if
F = σ−1y (G) for some vector y ∈ Znm. In words, F arises from G by going through all sets S ∈ F ,
replacing each i ∈ S by all values in {y1 + 1, . . . , y1 + s}, and each i /∈ S by all other values.

We say that F is equivalent to a (t, r)-Frankl family if F ≈ G for some family G equivalent to a
(t, r)-Frankl family (see Definition 2.3).

We will prove the following theorem.

Theorem 5.1. Let n,m, t ≥ 1 and s ≤ m/2. Then w(Znm, t, s) = w(n, t, s/m). Furthermore, if s < m/2
and F is a family on Znm of measure w(n, t, s/m) then F is equivalent to a t-intersecting family on n
points of µs/m-measure w(n, t, s/m). The same holds if m = 2, s = 1 and t > 1.

When s = m/2 and s > 1 there can be exotic families of maximum measure. For example, when
s = 2 and m = 4 the family {00, 01, 12, 13, 20, 21, 32, 33} is intersecting up to 2 but doesn’t arise from
any family on two points. Adding another coordinate ranging over {0, 1}, we get a 2-intersecting up to 2
family which doesn’t arise from any family on three points.

When m = 2, s = 1 and t = 1, a maximum measure family is one which contains exactly one vector
of each pair of complementary vectors.

On the way toward proving the theorem, we will need to consider hybrid families in which some of
the coordinates come from Zm, and others from {0, 1}.

Definition 5.3. A family on Znm × {0, 1}` is a subset of Znm × {0, 1}`. Such a family F is t-agreeing
up to s if every x, y ∈ F have t coordinates i1, . . . , it such that xij −yij ∈ {−(s−1), . . . , s−1} (if ij ≤ n)
or xij = yij = 1 (if ij > n) for 1 ≤ j ≤ t.

More generally, two vectors x, y ∈ Znm × {0, 1}` s-agree on a coordinate i ≤ n if xi − yi ∈ {−(s −
1), . . . , s − 1}, and they s-agree on a coordinate i > n if xi = yi = 1. Thus a family on Znm × {0, 1}` is
t-agreeing up to s if every x, y ∈ F s-agree on at least t coordinates.

We measure families on Znm × {0, 1}` using the product measures µn,`s,m = νnm × µ`s/m.

For y ∈ Znm, the mapping σy : Znm × {0, 1}` → 2[n+`] is the product of σy and the identity mapping.
If F is a family on Znm×{0, 1}` and G is a family on n+ ` points then F ≈ G if F = σ−1y (G) for some

vector y ∈ Znm. In words, F arises from G by going through all sets S ∈ F , and for each i ≤ n, replacing
each i ∈ S by all values in {y1 + 1, . . . , y1 + s}, and each i /∈ S by all other values.

We start by proving w(Znm, t, s) = w(n, t, s/m). The identification of optimal families will require
further refining the proof, but we present the two proofs separately for clarity. We start with a technical
result about the stable set polytope.

Proposition 5.2. Let G = (V,E) be a graph, and let α : V → R be a set of weights. Consider the
program

max
∑
x∈V αxvx

s.t. 0 ≤ vx ≤ 1 for all x ∈ V
vx + vy ≤ 1 for all (x, y) ∈ E

The maximum of the program is attained (not necessarily uniquely) at some half-integral point (a point
in which all entries are {0, 1/2, 1}).

Moreover, if there is a unique half-integral point at which the objective is maximized, then this point
is the unique maximum.

Proof. The stable set polytope of G is defined as the set of all V -indexed vectors which satisfy the
constraints stated in the program. Every linear functional over the polytope is maximized at some
vertex. Moreover, if there is a unique vertex at which the maximum is attained then this vertex is the
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unique maximum. Therefore the proposition follows from the fact that each vertex of the polytope is
half-integral. This classical fact is due to Nemhauser and Trotter [17]. We briefly sketch the proof below,
following Schrijver [18, Theorem 64.7].

Let v be a vertex of the stable set polytope. Let I = {x : 0 < vx < 1/2} and J = {y : 1/2 < vy < 1}.
For small enough ε > 0, both v + ε(1I − 1J) and v − ε(1I − 1J) are in the stable set polytope (where 1I
is the characteristic function of I), and so v can only be a vertex if I = J = ∅.

The heart of the proof of w(Znm, t, s) = w(n, t, s/m) is the following lemma.

Lemma 5.3. Let F be a family on Znm × {0, 1}` which is t-agreeing up to s, where s ≤ m/2 and n ≥ 1
(but possibly ` = 0). There is a family H on Zn−1m × {0, 1}`+1 which is t-agreeing up to s and satisfies
µn−1,`+1
s,m (H) ≥ µn,`s,m(F).

Before giving the proof, let us briefly discuss the ideas behind it. The first step is to decompose F
according to the values of all coordinates but the n’th one:

F =
⋃

x=(x1,x2)∈Zn−1
m ×{0,1}`

{x1} × Fx × {x2}.

Consider any two values x, y ∈ Zn−1m × {0, 1}`. If x, y are not t-agreeing up to s then |Fx| + |Fy| ≤ 2s,
according to Lemma 3.3. We now partition the fibers x into three different categories:

1. Fx = ∅. We can replace this fiber with the fiber ∅ ⊆ {0, 1} with the same measure.

2. Fx 6= ∅, but Fy = ∅ whenever x, y are not t-agreeing. We can replace this fiber with the fiber
{0, 1}, with the same or larger measure.

3. All other fibers. If it were the case that |Fx| = s for all such fibers, then we could replace all of
them with {1} ⊆ {0, 1}, which has the same measure and will ensure that the resulting family H
is t-agreeing.

While it is not necessarily the case that all fibers of the third kind have size exactly s, Proposition 5.2
shows that this case maximizes the measure of F , and so we can assume that it happens without loss of
generality, thus concluding the proof.

Proof. The first step is to decompose F according to the values of all coordinates but the n’th one:

F =
⋃

x1∈Zn−1
m

⋃
x2∈{0,1}`

{x1} × Fx1,x2
× {x2}.

It will be convenient to refer to the pair x1, x2 as a single vector x = (x1, x2) ∈ Zn−1m × {0, 1}`.
We now construct a graph G = (V,E) as follows. The vertices are V = {x ∈ Zn−1m ×{0, 1}` : Fx 6= ∅}.

We connect two vertices x, y (possibly x = y) if {x, y} is not t-agreeing up to s; in other words, if the
vectors x, y s-agree on exactly t − 1 coordinates. If (x, y) ∈ E then the sets Fx,Fy ⊆ Zm must be
s-agreeing, in the terminology of Definition 3.1.

There are now two cases to consider: the degenerate case n + ` = t, and the non-degenerate case
n+ ` > t. In the degenerate case the graph G consists of isolated vertices with self-loops, since the only
way that vectors x, y of length t− 1 can s-agree on t− 1 coordinates is if x = y. Thus each set Fx must
be s-agreeing, and so |Fx| ≤ s by Lemma 3.3. We form the new family H as follows:

H =
⋃

x1∈Zn−1
m

⋃
x2∈{0,1}`

{x1} ×Hx1,x2
× {x2}, Hx =

{
{1} if Fx 6= ∅,
∅ otherwise.

By construction, µ1,0
s,m(Fx) ≤ µ0,1

s,m(Hx): either both sets are empty, or Fx has measure at most s/m,

while Hx has measure s/m. Thus µn,`s,m(F) ≤ µn−1,`+1
s,m (H). Moreover, it is not hard to verify that H is

t-agreeing up to s. This completes the proof in the degenerate case.
The proof in the non-degenerate case is more complicated. First, notice that we no longer have

self-loops, since every x ∈ V agrees with itself on n − 1 + ` ≥ t coordinates. If (x, y) ∈ E then the
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non-empty sets Fx,Fy are s-agreeing, and so |Fx|+ |Fy| ≤ 2s by Lemma 3.3. In particular, if |Fx| ≥ 2s
then x must be an isolated vertex. This suggests pruning the graph by removing all isolated vertices.
We denote the resulting graph by G′ = (V ′, E′); note that V ′ could be empty. All vertices x ∈ V ′ now
satisfy 0 < |Fx| < 2s.

Let vx = |Fx|/(2s). Then 0 ≤ vx ≤ 1, vx + vy ≤ 1 for all edges, and

µn,`s,m(F) =
∑

x∈V \V ′
µn−1,`s,m (x)νm(Fx) +

2s

m

∑
x∈V ′

µn−1,`s,m (x)vx.

Proposition 5.2 states that there exists a {0, 1/2, 1}-valued vector w which satisfies 0 ≤ wx ≤ 1, wx+wy ≤
1 for all edges, and

∑
x∈V ′ µ

n−1,`
s,m (x)vx ≤

∑
x∈V ′ µ

n−1,`
s,m (x)wx. We will construct H according to this

vector:

H =
⋃

x1∈Zn−1
m

⋃
x2∈{0,1}`

{x1} ×Hx1,x2 × {x2}, Hx =



{0, 1} if x ∈ V \ V ′,
{0, 1} if x ∈ V ′ and wx = 1,

{1} if x ∈ V ′ and wx = 1/2,

∅ if x ∈ V ′ and wx = 0,

∅ if x /∈ V ′.

Note that the support of H, which is the set of x ∈ Zn−1m × {0, 1}` such that Hx 6= ∅, is a subset of the
support of F .

We start by showing that H is t-agreeing up to s. Let (x1, α, x2), (y1, β, y2) ∈ H, where x1, y1 ∈
Zn−1m , α, β ∈ {0, 1}, and x2, y2 ∈ {0, 1}`. If there is no edge between (x1, x2) and (y1, y2) then clearly
(x1, α, x2), (y1, β, y2) s-agree on at least t coordinates. If there does exist an edge then x = (x1, x2) and
y = (y1, y2) agree on t − 1 coordinates, and so it suffices to show that α = β = 1. By construction,
0 ∈ Hx if either x ∈ V \ V ′ or wx = 1. In the former case, since the support of H is contained in the
support of F , x is isolated, and so there cannot be an edge (x, y). In the latter case, wy = 0 (since
wx+wy ≤ 1 for all edges), and so y is not in the support of H. We conclude that H is t-agreeing up to s.

We proceed by comparing the measures of F and H:

µn−1,`+1
s,m (H) =

∑
x∈Zn−1

m ×{0,1}`
µn−1,`s,m (x)µs/m(Hx)

=
∑

x∈V \V ′
µn−1,`s,m (x) +

∑
x∈V ′
wx=1

µn−1,`s,m (x) +
s

m

∑
x∈V ′
wx=1/2

µn−1,`s,m (x).

The first term is at least as large as
∑
x∈V \V ′ µ

n−1,`
s,m (x)µm(Fx), and the other two terms are at least

(2s/m)
∑
x∈V ′ µ

n−1,`
s,m (x)wx. Therefore

µn−1,`+1
s,m (H) ≥

∑
x∈V \V ′

µn−1,`s,m (x)νm(Fx) +
2s

m

∑
x∈V ′

∑
x∈V ′

µn−1,`s,m (x)wx

≥
∑

x∈V \V ′
µn−1,`s,m (x)νm(Fx) +

2s

m

∑
x∈V ′

∑
x∈V ′

µn−1,`s,m (x)vx

= µn−1,`+1
s,m (F).

This completes the proof.
We note that when (s,m) = (1, 2), necessarily vx = 1/2 for all x ∈ V ′ (since 0 < 2vx < 2 is an

integer), and so we can use w = v.

As a corollary, we can deduce the part w(Znm, t, s) = w(n, t, s/m) of Theorem 5.1.

Lemma 5.4. Let n ≥ t ≥ 1, m ≥ 2 and s ≤ m/2. Then w(Znm, t, s) = w(n, t, s/m).

Proof. Let F be a family on Znm which is t-intersecting up to s. Applying Lemma 5.3 n times, we
obtain a t-intersecting family H on {0, 1}n satisfying νm(F) ≤ µs/m(H) ≤ w(n, t, s/m). This shows that
w(Znm, t, s) ≤ w(n, t, s/m).
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For the other direction, let H by a t-intersecting family on n points satisfying µs,m(H) = w(n, t, s/m).
Define F = σ−10 (H), where 0 is the zero vector. It is straightforward to verify that F is t-agreeing up to s
and that νm(F) = µs/m(H) = w(n, t, s/m). It follows that w(Znm, t, s) ≥ w(n, t, s/m).

We proceed with the characterization of families achieving the bound w(Znm, t, s). We start with the
case s/m < 1/2. The idea is to prove a stronger version of Lemma 5.3 which states that if F and H
have the same measure and H is equivalent to a Frankl family then so is F . This suggests analyzing the
graph G = (V,E) constructed in the proof of Lemma 5.3 in the case of a family equivalent to a Frankl
family.

Lemma 5.5. Let n, t ≥ 1 and `, s,m be given, and suppose that s < m/2. Let F be a family on
Znm × {0, 1}` which is equivalent to some (t, r)-Frankl family, for some r ≥ 0. The graph G′ = (V ′, E′)
constructed in the proof of Lemma 5.3 is either empty (has no vertices) or is connected and non-bipartite.

The same holds when s = 1 and m = 2.

Proof. Fix m, t, r. We first consider the case s < m/2.
We will first prove the lemma for n = 1 and ` = t + 2r − 1. Then we will prove it for n = 1 and

arbitrary `. Finally, we will tackle the general case.
Recall that the graph G′ was constructed by first constructing a larger graph G = (V,E) and then

removing all isolated vertices (vertices having no edges). We will assume throughout that F depends on
the nth coordinate (that is, the underlying Frankl family has n in its support), since otherwise G has no
edges and so G′ is empty.

We will prove one more property of G′, which we call property Z. This property states that if x ∈ V ′
and xi = 0 for i > n − 1 (that is, i is a coordinate taking values in {0, 1}) then x is connected to some
y ∈ V ′ with yi = 1.

We start with the case (n, `) = (1, t+ 2r− 1). If r = 0 then G consists of a single vertex [t− 1] with a
self-loop (we identify zero-one vectors with sets), and so it is connected and non-bipartite. If r > 0 then

V =
(
[t+2r−1]
≥t+r−1

)
. If A ∈

(
[t+2r−1]
≥t+r−1

)
and B ∈

(
[t+2r−1]
≥t+r

)
then |A∩B| ≥ (t+ r− 1) + (t+ r)− (t+ 2r− 1) = t,

and so V ′ ⊆
(
[t+2r−1]
t+r−1

)
; symmetry dictates that V ′ =

(
[t+2r−1]
t+r−1

)
. Moreover, the sequence

{1, . . . , t− 1, t, . . . , t+ r − 1}, {1, . . . , t− 1, t+ r, . . . , t+ 2r − 1}, {2, . . . , t− 1, t, . . . , t+ r}

corresponds to a path connecting {1, . . . , t+ r− 1} and {2, . . . , t+ r}. This shows that G′ is connected.
Since the path has even length, we conclude that there is a path of even length connecting any two
vertices. In particular, there is a path of even length connecting {1, . . . , t − 1, t, . . . , t + r − 1} and
{1, . . . , t − 1, t + r, . . . , t + 2r − 1}, and together with the corresponding edge, we obtain an odd cycle.
This shows that G′ is non-bipartite.

To prove property Z, we consider two cases. When r = 0, property Z holds vacuously, since the
only vertex contains no zero coordinates. When r > 0, we can assume without loss of generality that
x = {2, . . . , t+ r} and i = 1. In that case, x is connected to y = {1, . . . , t− 1, t+ r, . . . , t+ 2r − 1}.

We now prove by induction the case n = 1 and ` ≥ t+2r−1. Let G`, G
′
` be the graphs corresponding

to a particular value of `, where we assume without loss of generality that F depends on the first
t + 2r points (we can make this assumption since F has to depend on the first point). Suppose that
we have shown that G′` is connected and non-bipartite. Notice that V`+1 = V × {0, 1} and E`+1 =
{((x, i), (y, j)) : (x, y) ∈ E`, (i, j) 6= (1, 1)}. This shows that V ′`+1 = V ′` × {0, 1}. Since G′ is connected
and non-bipartite, there is an even-length path connecting any two x, y ∈ V ′, which lifts to even-length
paths connecting (x, 0), (y, 0) and (x, 1), (y, 1) (flipping the extra coordinate at each step); and an odd-
length path connecting x, y ∈ V ′ which lifts to paths connecting (x, 0), (y, 1) and (x, 1), (y, 0). This shows
that G′`+1 is connected. An odd-length path from x to itself lifts to an odd-length path from (x, 0) to
itself (flipping the extra coordinate at each step but the first), showing that G′ is non-bipartite.

To prove property Z, let x ∈ V ′`+1 have xi = 0. If i < `+1 then property Z for G` implies the existence
of a neighbor y with yi = 1. If i = `+ 1 then x is connected to some y (since x is not isolated), and since
V ′`+1 is independent of the last coordinate, we can assume that yi = 1 (the value of this coordinate does
not change the number of coordinates on which x and y agree).

Suppose now that the lemma holds for families on Znm×{0, 1}`. We will show that it holds for families
on Zn+1

m ×{0, 1}`−1 as well. We denote the relevant graphsGn, G
′
n andGn+1, G

′
n+1, respectively. Without
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loss of generality we can assume that

Vn+1 =
⋃

x1∈Zn−1
m

⋃
x2∈{0,1}`−1

{x1} × σ−10 ({x′ : (x1, x
′, x2) ∈ Vn})× {x2}.

In words, Vn+1 is obtained by applying σ−10 to the n’th coordinate.
We claim that V ′n+1 is obtained from V ′n in the same way, showing that property Z holds for Gn+1.

Indeed, suppose that (x1, x
′, x2) ∈ V ′n is not isolated, say it is connected to (y1, y

′, y2) ∈ V ′n, and let
x′′ ∈ σ−10 (x′). If x′ = y′ = 1 then (x1, x

′′, x2) is connected to (y1, x
′′, y2). If x′ = 1 and y′ = 0 then

(x1, x
′′, x2) is connected to (y1, x

′′ + s, y2) (note s+ 1 ≤ x′′ + s ≤ 2s). If x′ = 0 then property Z allows
us to assume that y′ = 1, and so (x1, x

′′, x2) is connected to (y1, y
′′, y2) for some 1 ≤ y′′ ≤ s; indeed,

Lemma 3.2 shows that the only elements s-agreeing with all of 1, . . . , s are 1, . . . , s.
Toward showing that V ′n+1 is connected, we prove first that (x1, a, x2) ∈ V ′n+1 is connected to

(x1, b, x2) ∈ V ′n+1, by an even-length path, whenever σ0(a) = σ0(b). Suppose first that σ0(a) = σ0(b) = 1.
Let (y1, y

′, y2) ∈ V ′n be a neighbor of (x1, 1, x2) in G′n. If σ0(y′) = 1 then (x1, a, x2), (y1, a, y2), (x1, b, x2)
is a path in G′n+1. If σ0(y) = 0 then consider the following path in G′n+1:

(x1, 1, x2), (y1, s+ 2, y2), (x1, 2, x2), (y1, s+ 3, y2), . . . , (x1, s− 1, x2), (y1, 2s, y2), (x1, s, x2).

This contains a sub-path connecting (x1, a, x2) and (x1, b, x2).
Suppose next that σ0(a) = σ0(b) = 0. Property Z shows that (x1, 0, x2) ∈ V ′n has a neighbor

(y1, 1, y2) ∈ V ′n in G′n. Consider the following path in G′n+1:

(x1, s+ 1, x+ 2), (y1, 1, y2), (x1, s+ 2, x2), (y1, 2, y2), . . . , (y1, s− 1, y2), (x1, 2s, x2), (y1, s, y2).

This path shows that (x1, a, x2) and (x1, b, x2) are connected whenever s+1 ≤ a, b ≤ 2s. Since (y1, s, y2)
neighbors (x1, c, x2) for all 2s ≤ c ≤ m, we deduce that (x1, a, x2) and (x1, b, x2) are connected for all
s+ 1 ≤ a, b ≤ m.

Consider now any two vertices (x1, x, x2), (y1, y, y2) ∈ V ′n+1 such that (x1, σ0(x), x2) ∈ V ′n neighbors
(y1, σ0(y), y2) ∈ V ′n in G′n. We will show that (x1, x, x2) and (y1, y, y2) are connected in V ′n+1 by an
odd-length path by showing that (x1, X, x2) and (y1, Y, y2) are connected for some X,Y ∈ Zm satisfying
σ0(x) = σ0(X) and σ0(y) = σ0(Y ). Such X,Y are given by the following table:

σ0(x), σ0(y) 0, 0 0, 1 1, 0 1, 1
X,Y s+ 1, 2s+ 1 s+ 1, 1 1, s+ 1 1, 1

This shows that V ′n+1 is connected. Moreover, any odd-length cycle in V ′n lifts to an odd-length cycle in
V ′n+1, showing that G′n+1 is non-bipartite.

When s = 1 and m = 2, notice that the general case differs from the case n = 1 only by a translation
of the coordinates. Since the proof of the case n = 1 did not use the bound s < m/2, we conclude that
the lemma holds even when s = 1 and m = 2.

Now we can prove the strengthening of Lemma 5.3.

Lemma 5.6. Let n, t ≥ 1 and `, s,m be given, and suppose that s < m/2. Let F be a family on
Znm × {0, 1}` which is t-agreeing up to s, and let H be the family on Zn−1m × {0, 1}`+1 constructed in
Lemma 5.3. If µn−1,`+1

s,m (H) = µn,`s,m(F) and H is equivalent to a (t, r)-Frankl family then F is also
equivalent to a (t, r)-Frankl family.

The same holds for (s,m) = (1, 2), assuming that in the proof of Lemma 5.3 we use wx = 1/2 (see
comment at the end of the proof).

Proof. As in the proof of Lemma 5.3, we consider separately the degenerate case n + ` = t and the
non-degenerate case n+ ` > t.

When n+ ` = t, H must be equivalent to the family {[t]}. Without loss of generality, we can assume
that H = [s]n−1×{1}`+1 (this corresponds to the choice y = 0 in the definition of equivalence). Thus F
has the form

F =
⋃

x1∈[s]n−1

⋃
x2={1}`

{x1} × Fx1,x2
× {x2},
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where each Fx1,x2
is s-agreeing. We remind the reader that the support of F is the set of pairs (x1, x2)

such that Fx1,x2
6= ∅; the support H is defined in the same way.

Since µn−1,`+1
s,m (H) = µn,`s,m(F), moreover |Fx1,x2

| = s, and so Lemma 3.3 shows that Fx1,x2
is an

interval (when s = 1 this is trivial). If (x1, x2), (y1, y2) are in the support of F then Fx1,x2
,Fy1,y2 are

cross-s-agreeing, and so Lemma 3.3 shows that they are equal (again, when s = 1 this is trivial). This
shows that F is equivalent to {[t]} as well.

Consider now the non-degenerate case n+` > t. Recall that in the proof of Lemma 5.3 we constructed
two graphs, G = (V,E) and G′ = (V ′, E′), and a vector w : V ′ → R, and defined H in terms of this data.
When computing the measure of H, we used the estimate∑

x∈V \V ′
µm−1,`s,m (x) ≥

∑
x∈V \V ′

µm−1,`s,m (x)νm(Fx).

This estimate can only be tight if Fx = Zm for x ∈ V \ V ′. We also used the estimate∑
x∈V ′
wx=1

µn−1,`s,m (x) +
s

m

∑
x∈V ′
wx=1/2

µn−1,`s,m (x) ≥ 2s

m

∑
x∈V ′

µn−1,`s,m (x)wx.

If 2s < m, this can only be tight if it is never the case that wx = 1. Recall that wx was a {0, 1/2, 1}-valued
vector maximizing

∑
x∈V ′ µ

n−1,`
s,m (x)wx under the constraints 0 ≤ wx ≤ 1 and wx + wy ≤ 1 whenever

(x, y) ∈ E′. Since wx ≤ 1/2 for all x ∈ V ′, we see that in fact wx = 1/2 for all V ′ (since the constant 1/2
vector is always feasible). This shows that H and F have the same support.

Moreover (still assuming 2s < m), if there were a different {0, 1/2, 1}-valued vector maximizing∑
x∈V ′ µ

n−1,`
s,m (x)wx then the construction of Lemma 5.3 would have shown that F does not have max-

imum measure. We conclude that wx is the unique {0, 1/2, 1}-valued maximizer, and so the unique
maximizer according to Proposition 5.2.

When (s,m) = (1, 2), wx = 1/2 for all V ′ by assumption, and so H and F have the same support;
the property proved in the preceding paragraph won’t be needed in this case.

Lemma 5.5 shows that G′ is either empty or connected. Recall that vx = |Fx|/(2s). When computing
the measure of H, we used the estimate

∑
x∈V ′ µ

n−1,`
s,m (x)wx ≥

∑
x∈V ′ µ

n−1,`
s,m (x)vx. When s < m/2, w is

the unique maximizer, and so vx = 1/2 for all x ∈ V , that is, |Fx| = s for all x ∈ V ′; when (s,m) = (1, 2),
the same trivially holds. For any two vertices x, y ∈ V ′ connected by an edge, the sets Fx,Fy must be
s-agreeing, and so Lemma 3.3 shows that Fx = Fy (when s = 1 this is trivial). Since G is connected, we
see that all Fx are equal. It follows that for some a ∈ Zm, Fx = σ−1a (Hx) for all x ∈ V . Therefore F is
equivalent to the same (t, r)-Frankl family as H.

Finally, we can determine the maximum measure families.

Lemma 5.7. Fix n ≥ t ≥ 1, m ≥ 2, and either s < m/2 or both (s,m) = (1, 2) and t > 1. If F is a
family on Znm which is t-intersecting up to s and has measure w(Znm, t, s) then F is equivalent to a family
on n points whose µs/m-measure is w(n, t, s/m).

Proof. Let F0 = F ,F1, . . . ,Fn be the sequence of families constructed by applying Lemma 5.3, so that F`
is a family on Zn−`m ×{0, 1}`. The lemma states that µn−`,`s,m (F`) ≤ µn−`−1,`+1

s,m (F`+1). Since µs/m(Fn) ≤
w(n, t, s/m) = w(Znm, t, s), we conclude that µn−`,`s,m (F`) = µn−`−1,`+1

s,m (F`+1) for all 0 ≤ ` < n. Also,
Theorem 2.1 shows that Fn is equivalent to a (t, r)-Frankl family for some r ≥ 0. Applying Lemma 5.6,
we conclude that the same holds for F0.

This completes the proof of Theorem 5.1.

5.2 Continuous setting

The continuous analog of the setting of Section 5.1 is given by the following definitions.

Definition 5.4. A continuous family on n points is a measurable subset of Tn (recall that T is the unit
circumference circle). For p ≤ 1/2, a continuous family F on n points is t-agreeing up to p if any two
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vectors x, y ∈ F have t coordinates i1, . . . , it such that the distance between xij and yij is less than p for
all 1 ≤ j ≤ t.

We denote the measure of a continuous family F by µ(F).
The maximum measure of a continuous family on n points which is t-agreeing up to p is denoted

w(Tn, t, p).

We will prove the following theorem.

Theorem 5.8. Let n,m, t ≥ 1 and p < 1/2. Then w(Tn, t, p) = w(n, t, p).

The proof uses a reduction to Theorem 5.1 which is very similar to the one used to deduce Lemma 3.5
from Lemma 3.3.

Proof. We start with the easy direction: w(Tn, t, p) ≥ w(n, t, p). Let F be a t-intersecting family on n
points with µp(F) = w(n, t, p). Define a mapping τ(T)→ {0, 1} by τ([0, p)) = 1 and τ([p, 1)) = 0. It is
not hard to check that τ−1(F) is a continuous family on n points which is t-agreeing up to p and has
measure w(n, t, p). Thus w(Tn, t, p) ≥ w(n, t, p).

For the other direction, let F be a continuous family on n points which is t-agreeing up to p. Let ε > 0
be a parameter satisfying p + ε1/n < 1/2. Since F is measurable, there is a sequence Fi of cylindrical
sets of total measure at most µ(F) + ε which covers F . Since an L∞ ball of radius δ around any point
has volume (2δ)n, it follows that any point in

⋃
i Fi is at L∞-distance ε1/n/2 from F . This implies that⋃

i Fi is t-agreeing up to p+ ε1/n.
Choose I so that

∑
i>I µ(Fi) < ε, and let F∗ =

⋃
i≤I Fi. Let M be a large integer, and partition Tn

into Mn cubes of side length 1/M . Let F∗M consist of the union of all cubes contained entirely inside F∗.
Thus µ(F∗M ) ≥ µ(F∗)−O(I/M) ≥ µ(F)− ε−O(I/M). We can view F∗M as a family on ZnM , and this
family is t-agreeing up to b(p+ε1/n)Mc. Theorem 5.1 thus shows that µ(F∗M ) ≤ w(n, t, b(p+ε1/n)Mc/M).
Therefore

µ(F) ≤ w(n, t, b(p+ ε1/n)Mc/M) + ε+O

(
I

M

)
.

Since w(n, t, q) is continuous for q ≤ 1/2, taking the limit M → ∞ we deduce that µ(F) ≤ w(n, t, p +
ε1/n) + ε. Taking the limit ε→ 0, we conclude that µ(F) ≤ w(n, t, p), and so w(Tn, t, p) ≤ w(n, t, p).

It is tempting to try and prove Theorem 5.8 directly, along the lines of Theorem 5.1. Besides requiring
a stronger version of Lemma 3.5, one would also need a version of Proposition 5.2 for infinite polytopes,
which we doubt holds. For similar reasons, we are not able to identify the extremal families, leaving the
following question open:

Open Question 1. Identify (up to measure zero) the continuous families on n points which are t-
agreeing up to p and have measure w(n, t, p).
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[9] David C. Ellis, Yuval Filmus, and Ehud Friedgut. Triangle-intersecting families of graphs. Journal
of the European Mathematical Society, 14(3):841–885, 2012.
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