The weighted complete intersection theorem

Yuval Filmus*

April 19, 2017

Abstract

The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of a k-uniform t-intersecting family on n points, and describes all optimal families for $t \geq 2$. We extend this theorem to the weighted setting, in which we consider unconstrained families. The goal in this setting is to maximize the μ_{p} measure of the family, where the measure μ_{p} is given by $\mu_{p}(A)=p^{|A|}(1-p)^{n-|A|}$. Our theorem gives the maximum μ_{p} measure of a t-intersecting family on n points, and describes all optimal families for $t \geq 2$.

1 Introduction

The Erdős-Ko-Rado theorem [8, a basic result in extremal combinatorics, states that when $k \leq n / 2$, a k-uniform intersecting family on n points contains at most $\binom{n-1}{k-1}$ sets; and furthermore, when $k<n / 2$ the only families achieving these bounds are stars, consisting of all sets containing some fixed point.

The analog of the Erdős-Ko-Rado theorem for t-intersecting families, in which every two sets must have at least t points in common, was proved by Ahlswede and Khachatrian [3, 5], who gave two different proofs (see also the monograph [1]). When $t \geq 2$, the optimal families are always of the form $\mathcal{F}_{t, r}=\{S:|S \cap[t+2 r]| \geq t+r\}$, as had been conjectured by Frankl 9. They also determined the maximum families under the condition that the intersection of all sets in the family is empty [2], as well as the maximum non-uniform t-intersecting families [6] ("Katona's theorem"). They also proved an analogous theorem for the Hamming scheme 4].

Dinur and Safra [7 considered analogous questions in the weighted setting. They were interested in the maximum μ_{p} measure of a t-intersecting family on n points, where the μ_{p} measure is given by $\mu_{p}(A)=p^{|A|}(1-p)^{n-|A|}$. When $p \leq 1 / 2$, they related this question to the setting of the original Ahlswede-Khachatrian theorem with parameters K, N satisfying $K / N \approx p$. A similar argument appears in work of Ahlswede-Khachatrian [6, 4] in different guise. The μ_{p} setting has since been widely studied, and has been used by Friedgut [10] and by Keller and Lifshitz [12] to prove stability versions of the Ahlswede-Khachatrian theorem.

While not stated explicitly in either work, the methods of Dinur-Safra [7] and Ahlswede-Khachatrian 4] give a proof of an Ahlswede-Khachatrian theorem in the μ_{p} setting for all $p<1 / 2$, without any constraint on the number of points. More explicitly, let $w(n, t, p)$ be the maximum μ_{p}-measure of a t-intersecting family on n points, and let $w(t, p)=\sup _{n} w(n, t, p)$. The techniques of Dinur-Safra and AhlswedeKhachatrian show that when $\frac{r}{t+2 r-1} \leq p \leq \frac{r+1}{t+2 r+1}, w(t, p)=\mu_{p}\left(\mathcal{F}_{t, r}\right)$. This theorem is incomplete, for three different reasons: it describes $w(t, p)$ rather than $w(n, t, p)$, it only works for $p<1 / 2$, and it doesn't describe the optimal families.

Katona 11 solved the case $p=1 / 2$, which became known as "Katona's theorem". Ahlswede and Khachatrian gave a different proof [6], and their technique applies also to the case $p>1 / 2$. We complete the picture by finding $w(n, t, p)$ for all n, t, p and determining all families achieving this bound when $t \geq 2$. We do this by rephrasing the two original proofs [3, 5] of the Ahlswede-Khachatrian theorem in the μ_{p} setting. Curiously, whereas the classical Ahlswede-Khachatrian theorem can be proven using either of the techniques described in [3, 5], our proof needs to use both.

[^0]
2 Preliminaries

We will use $[n]$ for $\{1, \ldots, n\}$, and $\binom{[n]}{k}$ for all subsets of $[n]$ of size k. We also use the somewhat unorthodox notation $\binom{[n]}{\geq k}$ for all subsets of $[n]$ of size at least k. The set of all subsets of a set A will be denoted 2^{A}.

A family on n points is a collection of subsets of $[n]$. A family \mathcal{F} is t-intersecting if any $A, B \in \mathcal{F}$ satisfy $|A \cap B| \geq t$. A family is intersecting if it is 1-intersecting.

For any $p \in(0,1)$ and any n, the product measure μ_{p} is a measure on the set of subsets of $[n]$ given by $\mu_{p}(A)=p^{|A|}(1-p)^{n-|A|}$.

A family \mathcal{F} on n points is monotone if whenever $A \in \mathcal{F}$ and $B \supseteq A$ then $B \in \mathcal{F}$. Given a family \mathcal{F}, its up-set $\langle\mathcal{F}\rangle$ is the smallest monotone family containing \mathcal{F}, consisting of all supersets of sets in \mathcal{F}.

For $n \geq t \geq 1$ and $p \in(0,1)$, the parameter $w(n, t, p)$ is the maximum of $\mu_{p}(\mathcal{F})$ over all t-intersecting families on n points, and the parameter $w(t, p)$ is given by $w(t, p)=\sup _{n} w(n, t, p)$. It is easy to see that we can also define $w(t, p)$ as a limit instead of a supremum.

For $t \geq 1$ and $r \geq 0$, the (t, r)-Frankl family on n points is the t-intersecting family

$$
\mathcal{F}_{t, r}=\{A \subseteq[n]:|A \cap[t+2 r]| \geq t+r\} .
$$

A family \mathcal{F} on n points is equivalent to a (t, r)-Frankl family if there exists a set $S \subseteq[n]$ of size $t+2 r$ such that $\mathcal{F}=\{A \subseteq[n]:|A \cap S| \geq t+r\}$.

The following result is a straightforward calculation.
Lemma 2.1. Let $t \geq 1$ and $r \geq 0$ be parameters, and let $p_{t, r}=\frac{r+1}{t+2 r+1}$. If $p<p_{t, r}$ then $\mu_{p}\left(\mathcal{F}_{t, r}\right)>$ $\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$. If $p=p_{t, r}$ then $\mu_{p}\left(\mathcal{F}_{t, r}\right)=\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$. If $p>p_{t, r}$ then $\mu_{p}\left(\mathcal{F}_{t, r}\right)<\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$.

3 Main results

Our main theorem is an analog of the Ahlswede-Khachatrian theorem in the μ_{p} setting.
Theorem 3.1. Let $n \geq t \geq 1$ and $p \in(0,1)$. If \mathcal{F} is t-intersecting then

$$
\mu_{p}(\mathcal{F}) \leq \max _{r: t+2 r \leq n} \mu_{p}\left(\mathcal{F}_{t, r}\right) .
$$

Moreover, unless $t=1$ and $p \geq 1 / 2$, equality holds only if \mathcal{F} is equivalent to a Frankl family $\mathcal{F}_{t, r}$.
When $t=1$ and $p>1 / 2$, the same holds if $n+t$ is even, and otherwise $\mathcal{F}=\mathcal{G} \cup\left(\begin{array}{c}{[n]} \\ \left.\geq \frac{n+t+1}{2}\right)\end{array}\right.$ where $^{[n]}$ $\mathcal{G} \subseteq\binom{[n]}{\frac{n+t-1}{2}}$ contains exactly $\binom{n-1}{\frac{n+t-1}{2}}$ sets.

When $t=1$ and $p=1 / 2$ there are many optimal families. For example, the families $\mathcal{F}_{1, r}$ all have $\mu_{1 / 2}$-measure $1 / 2$, as does the family $\{S: 1 \in S\} \backslash\{\{1\}\} \cup\{\{2, \ldots, n\}\}$.

Similarly, when $t=1, p>1 / 2$ and $n+1$ is odd there are many optimal families, for example $\binom{[n]}{\geq n / 2+1} \cup\binom{[n]}{n / 2} \cap \mathcal{F}_{1,0}$, and $\binom{[n]}{\geq n / 2+1} \cup\binom{[n]}{n / 2} \backslash \mathcal{F}_{1,0}$.

Our proof implies the following more detailed corollary.
Corollary 3.2. Let $n \geq t \geq 1$. Define r^{*} as the maximal integer satisfying $t+2 r^{*} \leq n$.
If $t=1$ then

$$
w(n, 1, p)= \begin{cases}p & p \leq \frac{1}{2} \\ \mu_{p}\left(\mathcal{F}_{1, r^{*}}\right) & p \geq \frac{1}{2}\end{cases}
$$

Furthermore, if \mathcal{F} is an intersecting family of μ_{p}-measure $w(n, 1, p)$ for $p \in(0,1)$ then:

- If $p<\frac{1}{2}$ then \mathcal{F} is equivalent to $\mathcal{F}_{1,0}$.
- If $p>\frac{1}{2}$ and n is odd then \mathcal{F} is equivalent to $\mathcal{F}_{1, \frac{n-1}{2}}$.
- If $p>\frac{1}{2}$ and n is even then $\mathcal{F}=\mathcal{G} \cup\binom{[n]}{\geq n / 2+1}$, where \mathcal{G} contains half the sets in $\binom{[n]}{n / 2}$: exactly one of each pair $A,[n] \backslash A$.

Figure 1: The function $w(20, t, p)$ for $1 \leq t \leq 5$ (left) and the function $w(t, p)$ for $1 \leq t \leq 5$ (right). In both cases, larger functions correspond to smaller t. The colors switch at each of the breakpoints $\frac{r}{t+2 r-1}$ for $r \leq r^{*}$ (left) or for each r (right).

If $t \geq 2$ then

$$
w(n, t, p)= \begin{cases}\mu_{p}\left(\mathcal{F}_{t, r}\right) & \frac{r}{t+2 r-1} \leq p \leq \frac{r+1}{t+2 r+1} \text { for some } r<r^{*} \\ \mu_{p}\left(\mathcal{F}_{t, r^{*}}\right) & \frac{r^{*}}{t+2 r^{*}-1} \leq p\end{cases}
$$

Furthermore, if \mathcal{F} is a t-intersecting family of μ_{p}-measure $w(n, t, p)$ for $p \in(0,1)$ then:

- If $\frac{r}{t+2 r-1}<p<\frac{r+1}{t+2 r+1}$ for some $r<r^{*}$ then \mathcal{F} is equivalent to $\mathcal{F}_{t, r}$.
- If $\frac{r^{*}}{t+2 r^{*}-1}<p$ then \mathcal{F} is equivalent to $\mathcal{F}_{t, r^{*}}$.
- If $p=\frac{r+1}{t+2 r+1}$ for some $r<r^{*}$ then \mathcal{F} is equivalent to $\mathcal{F}_{t, r}$ or to $\mathcal{F}_{t, r-1}$.

As a corollary, we can compute $w(t, p)$. We leave the straightforward calculations to the reader.
Corollary 3.3. We have

$$
w(1, p)= \begin{cases}p & p \leq \frac{1}{2} \\ 1 & p>\frac{1}{2}\end{cases}
$$

For $t \geq 2$, we have

$$
w(t, p)= \begin{cases}\mu_{p}\left(\mathcal{F}_{t, r}\right) & \frac{r}{t+2 r-1} \leq p \leq \frac{r+1}{t+2 r+1} \\ \frac{1}{2} & p=\frac{1}{2} \\ 1 & p>\frac{1}{2}\end{cases}
$$

Figure 1 illustrates Corollary 3.2 and Corollary 3.3 . The proof of Theorem 3.1 occupies the rest of the paper.

4 Shifting and symmetrization

4.1 Shifting

We use the classical technique of shifting to obtain families which are easier to analyze.
Let \mathcal{F} be a family on n points and let $i, j \in[n]$ be two different indices. The shift operator $\mathbb{S}_{i, j}$ acts on \mathcal{F} as follows. Let $\mathcal{F}_{i, j}$ consist of all sets in \mathcal{F} containing i but not j. Then

$$
\begin{aligned}
\mathbb{S}_{i, j}(\mathcal{F})=\left(\mathcal{F} \backslash \mathcal{F}_{i, j}\right) & \cup\left\{A: A \in \mathcal{F}_{i, j} \text { and }(A \backslash\{i\}) \cup\{j\} \in \mathcal{F}\right\} \\
& \cup\left\{(A \backslash\{i\}) \cup\{j\}: A \in \mathcal{F}_{i, j} \text { and }(A \backslash\{i\}) \cup\{j\} \notin \mathcal{F}\right\} .
\end{aligned}
$$

In words, we try to "shift" each set $A \in \mathcal{F}_{i, j}$ by replacing it with $A^{\prime}=(A \backslash\{i\}) \cup\{j\}$. If $A^{\prime} \notin \mathcal{F}$ then we replace A with A^{\prime}, and otherwise we don't change A.

The following lemmas state several well-known properties of shifting.

Lemma 4.1. For any family \mathcal{F} and indices i, j and for all $p \in(0,1), \mu_{p}(\mathcal{F})=\mu_{p}\left(\mathbb{S}_{i, j}(\mathcal{F})\right)$.
Lemma 4.2. If \mathcal{F} is t-intersecting then so is $\mathbb{S}_{i, j}(\mathcal{F})$ for any i, j.
By shifting \mathcal{F} repeatedly we can obtain a left-compressed family. A family \mathcal{F} on n points is leftcompressed if whenever $A \in \mathcal{F}, i \in A, j \notin A$, and $j<i$, then $(A \backslash\{i\}) \cup\{j\} \in \mathcal{F}$. (Informally, we can shift i to j.)
Lemma 4.3. Let \mathcal{F} be a t-intersecting family on n points. There is a left-compressed t-intersecting family \mathcal{G} on n points with the same μ_{p}-measure for all $p \in(0,1)$. Furthermore, \mathcal{G} can be obtained from \mathcal{F} by applying a sequence of shift operators.

Lemma 4.3 shows that in order to determine $w(n, t, p)$ it is enough to focus on left-compressed families. Moreover, since the up-set of a t-intersecting family is also t-intersecting, we will assume in most of what follows that \mathcal{F} is a monotone left-compressed t-intersecting family. We will show that except for the case $p \geq 1 / 2$ and $t=1$, such a family can only have maximum μ_{p} measure if it is a Frankl family with the correct parameters. We will deduce that general t-intersecting families of measure $w(n, t, p)$ are equivalent to a Frankl family using the following lemma, whose proof closely follows the argument of Ahlswede and Khachatrian [3].
Lemma 4.4. Let \mathcal{F} be a monotone t-intersecting family on n points, and let $i, j \in[n]$. If $\mathbb{S}_{i, j}(\mathcal{F})$ is equivalent to $\mathcal{F}_{t, r}$ then so is \mathcal{F}.
Proof. Let $S \subseteq[n]$ be the set of size $t+2 r$ such that $\mathbb{S}_{i, j}(\mathcal{F})=\{A \subseteq[n]:|A \cap S| \geq t+r\}$.
Suppose first that $i, j \in S$ or $i, j \notin S$. If $A \in \mathbb{S}_{i, j}(\mathcal{F})$ then $A \in \mathcal{F}$, since otherwise A would have originated from $A^{\prime}=(A \backslash\{j\}) \cup\{i\}$, but that is impossible since $A^{\prime} \in \mathbb{S}_{i, j}(\mathcal{F})$. It follows that $\mathbb{S}_{i, j}(\mathcal{F}) \subseteq \mathcal{F}$ and so $\mathbb{S}_{i, j}(\mathcal{F})=\mathcal{F}$, since shifting preserves cardinality. Therefore the lemma trivially holds.

The case $i \in S$ and $j \notin S$ cannot happen. Indeed, consider some set $A \subseteq S$ containing i but not j of size $t+r$. Then $A \in \mathbb{S}_{i, j}(\mathcal{F})$ and so, by definition of the shift, $A^{\prime}=(A \backslash\{i\}) \cup\{j\} \in \mathbb{S}_{i, j}(\mathcal{F})$. However, $\left|A^{\prime} \cap S\right|=t+r-1$, and so $A^{\prime} \notin \mathbb{S}_{i, j}(\mathcal{F})$, and we reach a contradiction.

It remains to consider the case $i \notin S$ and $j \in S$. Suppose first that $r=0$. Then $S \in \mathbb{S}_{i, j}(\mathcal{F})$, and so either $S \in \mathcal{F}$ or $S^{\prime}=(S \backslash\{j\}) \cup\{i\} \in \mathcal{F}$. In both cases, since \mathcal{F} is monotone, it contains all supersets of S or of S^{\prime}. Since shifting preserves cardinality, \mathcal{F} must consist exactly of all supersets of S or of S^{\prime}, and thus is equivalent to a $(t, 0)$-Frankl family.

Suppose next that $r>0$. Let V be the collection of all subsets of $S \backslash\{j\}$ of size exactly $t+r-1$. For each $A \in V$ we have $A \cup\{j\} \in \mathbb{S}_{i, j}(\mathcal{F})$, and so either $A \cup\{j\} \in \mathcal{F}$ or $A \cup\{i\} \in \mathcal{F}$.

If \mathcal{F} contains $A \cup\{j\}$ for all $A \in V$ then \mathcal{F} contains all subsets of S of size $t+r$ (since other subsets are not affected by the shift). Monotonicity forces \mathcal{F} to contain all of $\mathbb{S}_{i, j}(\mathcal{F})$, and thus $\mathcal{F}=\mathbb{S}_{i, j}(\mathcal{F})$ as before.

If \mathcal{F} contains $A \cup\{i\}$ for all $A \in V$, then in a similar way we deduce that \mathcal{F} is equivalent to the (t, r)-Frankl family based on $(S \backslash\{j\}) \cup\{i\}$.

It remains to consider the case in which \mathcal{F} contains $A \cup\{i\}$ for some $A \in V$, and $B \cup\{j\}$ for some other $B \in V$. We will show that in this case, \mathcal{F} is not t-intersecting. Consider the graph on V in which two vertices are connected if their intersection has the minimal size $t-1$. This graph is a generalized Johnson graph, and we show below that it is connected. This implies that there must be two sets A, B satisfying $|A \cap B|=t-1$ such that $A \cup\{i\}, B \cup\{j\} \in \mathcal{F}$. Since $|A \cap B|=t-1$, we have reached a contradiction.

To complete the proof, we prove that the graph is connected. For reasons of symmetry, it is enough to give a path connecting $x=\{1, \ldots, t+r-1\}$ and $y=\{2, \ldots, t+r\}$. Indeed, the vertex $\{2, \ldots, t, t+$ $r+1, \ldots, t+2 r\}$ is connected to both x and y.

The preceding lemmas allow us to reduce the proof of Theorem 3.1 to the left-compressed case.

4.2 Generating sets

The goal of the first part of the proof, which follows [3], is to show that any monotone left-compressed t-intersecting family of maximum μ_{p}-measure has to depend on a small number of points. We will use a representation of monotone families in which this property has a simple manifestation. Our definition is simpler than the original one, due to the different setting.

A family \mathcal{F} on n points is non-trivial if $\mathcal{F} \notin\left\{\emptyset, 2^{[n]}\right\}$. Let \mathcal{F} be a non-trivial monotone family. A generating set is an inclusion-minimal set $S \in \mathcal{F}$. The generating family of \mathcal{F} consists of all generating sets of \mathcal{F}. The extent of \mathcal{F} is the maximal index appearing in a generating set of \mathcal{F}. The boundary generating family of \mathcal{F} consists of all generating sets of \mathcal{F} containing its extent.

If \mathcal{G} is the generating family of \mathcal{F} then we use the notation \mathcal{G}^{*} for the boundary generating family of \mathcal{F}. For each integer a, we use the notation \mathcal{G}_{a}^{*} for the subset of \mathcal{G}^{*} consisting of sets of size a.

Generating sets are also known as minterms. If \mathcal{G} is the generating family of \mathcal{F} then \mathcal{G} is an antichain and \mathcal{F} is the up-set of \mathcal{G} (and this gives an alternative definition of \mathcal{G}). If \mathcal{F} has extent m then \mathcal{F} depends only on the first m coordinates: $S \in \mathcal{F}$ iff $S \triangle\{i\} \in \mathcal{F}$ for all $i>m$. For this reason, for the rest of the section we treat a family having extent m as a family on m points.

One reason to focus on the boundary generating family of \mathcal{F} is the following simple observations.
Lemma 4.5. Let \mathcal{F} be a non-trivial monotone left-compressed family of extent m with generating family \mathcal{G} and boundary generating family \mathcal{G}^{*}. For any subset $G \subseteq \mathcal{G}^{*},\langle\mathcal{G} \backslash G\rangle=\mathcal{F} \backslash G$.
Proof. Since \mathcal{G} is an antichain, no $A \in G$ is a superset of any other set in \mathcal{G}. For this reason, $\langle\mathcal{G} \backslash G\rangle \subseteq$ $\mathcal{F} \backslash G$.

On the other hand, let $S \in \mathcal{F} \backslash G$. If S is not a superset of any $A \in G$ then clearly $S \in\langle\mathcal{G} \backslash G\rangle$. If $S \supseteq A$ for some $A \in G$ then since $S \neq A$, there is an element $i \in S \backslash A$. The set $S^{\prime}=S \backslash\{m\}$ is a superset of $(A \backslash\{m\}) \cup\{i\}$, and so $S^{\prime} \in \mathcal{F}$. Thus S^{\prime} is a superset of some $B \in \mathcal{G}$. Since $m \notin S^{\prime}$, necessarily $B \notin G$. As $S \supseteq B$, we conclude that $S \in\langle\mathcal{G} \backslash G\rangle$.
Lemma 4.6. Let \mathcal{F} be a non-trivial monotone left-compressed family of extent m with generating family \mathcal{G} and boundary generating family \mathcal{G}^{*}. For any subset $G \subseteq \mathcal{G}^{*}$,

$$
\langle(\mathcal{G} \backslash G) \cup\{A \backslash\{m\}: A \in G\}\rangle=\mathcal{F} \cup\{A \backslash\{m\}: A \in G\}
$$

Proof. Denote by \mathcal{F}^{\prime} the left-hand side. Clearly $\mathcal{F}^{\prime} \supseteq \mathcal{F} \cup\{A \backslash\{m\}: A \in G\}$.
On the other hand, suppose that $S \in \mathcal{F}^{\prime} \backslash \mathcal{F}$. Then for some $A \in G$, S is a superset of $A \backslash\{m\}$ but not of A. In particular, $m \notin S$. We claim that $S=A \backslash\{m\}$. Otherwise, there exists an element $i \in S \backslash(A \backslash\{m\})$. Since \mathcal{F} is left-compressed, $A^{\prime}=(A \backslash\{m\}) \cup\{i\} \in \mathcal{F}$. Since \mathcal{F} is monotone and $S \supseteq A^{\prime}$, we conclude that $S \in \mathcal{F}$, contradicting our assumption. Thus $\mathcal{F}^{\prime} \backslash \mathcal{F}=\{A \backslash\{m\}: A \in G\}$.

The following crucial observation drives the entire approach, and explains why we want to classify the sets in the boundary generating family according to their size.
Lemma 4.7. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family with extent m and boundary generating family \mathcal{G}^{*}. If $A, B \in \mathcal{G}^{*}$ intersect in exactly t elements then $|A|+|B|=m+t$.
Proof. We will show that $A \cup B=[m]$. It follows that $|A|+|B|=|A \cup B|+|A \cap B|=m+t$.
Since $A \cup B \subseteq[m]$ and $m \in A \cap B$ by definition, we have to show that every element $i<m$ belongs to either A or B. Suppose that some element i belongs to neither. Since \mathcal{F} is left-compressed, the set $B^{\prime}=(B \backslash\{m\}) \cup\{i\}$ also belongs to \mathcal{F}. However, $\left|A \cap B^{\prime}\right|=|A \cap B|-1=t-1$, contradicting the assumption that \mathcal{F} is t-intersecting.

Our goal now is to show that if m is too large then we can remove the dependency on m while keeping the family t-intersecting and increasing its μ_{p}-measure, for appropriate values of p. The idea is to remove m from sets in the boundary generating family. The only obstructions for doing so are sets A, B in the boundary generating family whose intersection contains exactly t elements, and here we use Lemma 4.7 to guide us: this can only happen if $|A|+|B|=m+t$. Accordingly, our modification will involve generating sets in \mathcal{G}_{a}^{*} and \mathcal{G}_{b}^{*} for $a+b=m+t$. There are two cases to consider: $a \neq b$ and $a=b$. The first case is simpler.

Lemma 4.8. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family with extent m, generating family \mathcal{G}, and boundary generating family \mathcal{G}^{*}. Let $a \neq b$ be parameters such that $a+b=m+t$ and $\mathcal{G}_{a}^{*}, \mathcal{G}_{b}^{*}$ are not both empty. Consider the families $\mathcal{F}_{1}=\left\langle\mathcal{G}_{1}\right\rangle$ and $\mathcal{F}_{2}=\left\langle\mathcal{G}_{2}\right\rangle$, where

$$
\mathcal{G}_{1}=\left(\mathcal{G} \backslash\left(\mathcal{G}_{a}^{*} \cup \mathcal{G}_{b}^{*}\right)\right) \cup\left\{S \backslash\{m\}: S \in \mathcal{G}_{b}^{*}\right\}, \quad \mathcal{G}_{2}=\left(\mathcal{G} \backslash\left(\mathcal{G}_{a}^{*} \cup \mathcal{G}_{b}^{*}\right)\right) \cup\left\{S \backslash\{m\}: S \in \mathcal{G}_{a}^{*}\right\}
$$

Both families $\mathcal{F}_{1}, \mathcal{F}_{2}$ are t-intersecting. Moreover, if $p<1 / 2$ then $\max \left(\mu_{p}\left(\mathcal{F}_{1}\right), \mu_{p}\left(\mathcal{F}_{2}\right)\right)>\mu_{p}(\mathcal{F})$; and if $p=1 / 2, \max \left(\mu_{p}\left(\mathcal{F}_{1}\right), \mu_{p}\left(\mathcal{F}_{2}\right)\right) \geq \mu_{p}(\mathcal{F})$, with equality only if $\mu_{p}\left(\mathcal{F}_{1}\right)=\mu_{p}\left(\mathcal{F}_{2}\right)=\mu_{p}(\mathcal{F})$.

Proof. We start by showing that \mathcal{F}_{1} (and so \mathcal{F}_{2}) is t-intersecting. Clearly, it is enough to show that its generating family \mathcal{G}_{1} is t-intersecting. Suppose that $S, T \in \mathcal{G}_{1}$. We consider several cases.

If $S, T \in \mathcal{G}$ then $|S \cap T| \geq t$ since \mathcal{G} is t-intersecting.
If $S \in \mathcal{G}$ and $T \notin \mathcal{G}$ then $T^{\prime}=T \cup\{m\} \in \mathcal{G}$ and so $\left|T^{\prime}\right|=b$. If $m \notin S$ then $|S \cap T|=\left|S \cap T^{\prime}\right| \geq t$. If $m \in S$ then by construction $|S| \neq a$, and so $|S \cap T|=\left|S \cap T^{\prime}\right|-1 \geq t$, using Lemma 4.7.

If $S, T \notin \mathcal{G}$ then $S^{\prime}=S \cup\{m\} \in \mathcal{G}$ and $T^{\prime}=T \cup\{m\} \in \mathcal{G}$, and so $\left|S^{\prime}\right|=\left|T^{\prime}\right|=b$. As in the preceding case, $|S \cap T|=\left|S^{\prime} \cap T^{\prime}\right|-1 \geq t$ due to Lemma 4.7.

Lemma 4.5 and Lemma 4.6 show that $\mathcal{F}_{1}=\left(\mathcal{F} \backslash \mathcal{G}_{a}^{*}\right) \cup\left\{S \backslash\{m\}: S \in \mathcal{G}_{b}^{*}\right\}$. Since $\mu_{p}(S \backslash\{m\})=$ $\frac{1-p}{p} \mu_{p}(S)$ whenever $m \in S, \mu_{p}\left(\mathcal{F}_{1}\right)=\mu_{p}(\mathcal{F})-\mu_{p}\left(\mathcal{G}_{a}^{*}\right)+\frac{1-p}{p} \mu_{p}\left(\mathcal{G}_{b}^{*}\right)$. Similarly, $\mu_{p}\left(\mathcal{F}_{2}\right)=\mu_{p}(\mathcal{F})-\mu_{p}\left(\mathcal{G}_{b}^{*}\right)+$ $\frac{1-p}{p} \mu_{p}\left(\mathcal{G}_{a}^{*}\right)$. Taking the average of both estimates, we obtain

$$
\frac{\mu_{p}\left(\mathcal{F}_{1}\right)+\mu_{p}\left(\mathcal{F}_{2}\right)}{2}=\mu_{p}(\mathcal{F})+\frac{1}{2}\left(\frac{1-p}{p}-1\right)\left(\mu_{p}\left(\mathcal{G}_{a}^{*}\right)+\mu_{p}\left(\mathcal{G}_{b}^{*}\right)\right)
$$

When $p<1 / 2$, the second term is positive, and so $\max \left(\mu_{p}\left(\mathcal{F}_{1}\right), \mu_{p}\left(\mathcal{F}_{2}\right)\right)>\mu_{p}(\mathcal{F})$. When $p=1 / 2$ it vanishes, and so $\max \left(\mu_{p}\left(\mathcal{F}_{1}\right), \mu_{p}\left(\mathcal{F}_{2}\right)\right) \geq \mu_{p}(\mathcal{F})$.

When $a=b$ the construction in Lemma 4.8 cannot be executed, and we need a more complicated construction. The new construction will only work for small enough p, mirroring the fact that the optimal families for larger p depend on more points.

Lemma 4.9. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family with extent $m>1$, generating family \mathcal{G}, and boundary generating family \mathcal{G}^{*}. Suppose that $a=\frac{m+t}{2}$ is an integer and that \mathcal{G}_{a}^{*} is non-empty. For each $i \in[m-1]$, let $\mathcal{G}_{a, i}^{*}=\left\{S \in \mathcal{G}_{a}^{*}: i \in S\right\}$, and define

$$
\mathcal{G}_{i}=\left(\mathcal{G} \backslash \mathcal{G}_{a}^{*}\right) \cup\left\{S \backslash\{m\}: S \in \mathcal{G}_{a}^{*} \backslash \mathcal{G}_{a, i}^{*}\right\}
$$

All families $\mathcal{F}_{i}=\left\langle\mathcal{G}_{i}\right\rangle$ are t-intersecting. Moreover, if $p<\frac{m-t}{2(m-1)}$ then $\mu_{p}\left(\mathcal{F}_{i}\right)>\mu_{p}(\mathcal{F})$ for some $i \in[m-1]$.

Proof. We start by showing that the families \mathcal{F}_{i} are t-intersecting. Clearly, it is enough to show that \mathcal{G}_{i} is t-intersecting. Let $S, T \in \mathcal{G}_{i}$. We consider several cases.

If $S, T \in \mathcal{G}$ then $|S \cap T| \geq t$ since \mathcal{G} is t-intersecting.
If $S \in \mathcal{G}$ and $T \notin \mathcal{G}$ then $T^{\prime}=T \cup\{m\} \in \mathcal{G}_{a}^{*}$ and $i \notin S$. If $m \notin S$ then $|S \cap T|=\left|S \cap T^{\prime}\right| \geq t$. If $m \in S$ and $S \notin \mathcal{G}_{a}^{*}$ then $|S \cap T| \geq\left|S \cap T^{\prime}\right|-1 \geq t$, according to Lemma 4.7. If $m \in S$ and $S \in \mathcal{G}_{a}^{*}$ then by construction $i \notin S$. Since \mathcal{F} is left-compressed, $S^{\prime}=(S \backslash\{m\}) \cup\{i\} \in \mathcal{F}$. Therefore $|S \cap T|=\left|S^{\prime} \cap T^{\prime}\right| \geq t$.

If $S, T \notin \mathcal{G}$ then $S^{\prime}=S \cup\{m\}$ and $T^{\prime}=T \cup\{m\}$ both belong to \mathcal{G}_{a}^{*}, and i belongs to neither. Since \mathcal{F} is left-compressed, $T^{\prime \prime}=T \cup\{i\} \in \mathcal{F}$, and so $|S \cap T|=\left|S^{\prime} \cap T^{\prime \prime}\right| \geq t$.

Lemma 4.5 and Lemma 4.6 show that $\mathcal{F}_{i}=\left(\mathcal{F} \backslash \mathcal{G}_{a, i}^{*}\right) \cup\left\{S \backslash\{m\}: S \in \mathcal{G}_{a}^{*} \backslash \mathcal{G}_{a, i}^{*}\right\}$. Since $\mu_{p}(S \backslash\{m\})=$ $\frac{1-p}{p} \mu_{p}(S)$ whenever $m \in S$,

$$
\mu_{p}\left(\mathcal{F}_{i}\right)=\mu_{p}(\mathcal{F})-\mu_{p}\left(\mathcal{G}_{a, i}^{*}\right)+\frac{1-p}{p}\left(\mu_{p}\left(\mathcal{G}_{a}^{*}\right)-\mu_{p}\left(\mathcal{G}_{a, i}^{*}\right)\right)=\mu_{p}(\mathcal{F})+\frac{1-p}{p} \mu_{p}\left(\mathcal{G}_{a}^{*}\right)-\frac{1}{p} \mu_{p}\left(\mathcal{G}_{a, i}^{*}\right)
$$

Averaging over all $i \in[m-1]$, we obtain

$$
\frac{1}{m-1} \sum_{i=1}^{m-1} \mu_{p}\left(\mathcal{F}_{i}\right)=\mu_{p}(\mathcal{F})+\frac{1-p}{p} \mu_{p}\left(\mathcal{G}_{a}^{*}\right)-\frac{1}{p(m-1)} \sum_{i=1}^{m-1} \mu_{p}\left(\mathcal{G}_{a, i}^{*}\right)
$$

Since the sets in \mathcal{G}_{a}^{*} contain exactly a elements, each set is counted $a-1$ times in $\sum_{i=1}^{m-1} \mu_{p}\left(\mathcal{G}_{a, i}^{*}\right)$, and so

$$
\frac{1}{m-1} \sum_{i=1}^{m-1} \mu_{p}\left(\mathcal{F}_{i}\right)=\mu_{p}(\mathcal{F})+\left(\frac{1-p}{p}-\frac{a-1}{p(m-1)}\right) \mu_{p}\left(\mathcal{G}_{a}^{*}\right)
$$

When $1-p>\frac{a-1}{m-1}=\frac{m+t-2}{2(m-1)}$, the bracketed quantity is positive, and so $\max _{i} \mu_{p}\left(\mathcal{F}_{i}\right)>\mu_{p}(\mathcal{F})$.

4.3 Pushing-pulling

The goal of the second part of the proof, which follows [5], is to show that any monotone left-compressed t-intersecting family of maximum μ_{p}-measure is symmetric within its extent, or in other words, of the form $\mathcal{F}_{t, r}$.

The analog of extent in this part is the symmetric extent. Let \mathcal{F} be a left-compressed family on n points. Its symmetric extent is the largest integer ℓ such that $\mathbb{S}_{i j}(\mathcal{F})=\mathcal{F}$ for $i, j \leq \ell$.

If $\ell<n$ then the boundary of \mathcal{F} is the collection

$$
\mathcal{X}=\{A \in \mathcal{F}: \ell+1 \notin A \text { and }(A \backslash\{i\}) \cup\{\ell+1\} \text { for some } i \in A \cap[\ell]\} .
$$

In other words, \mathcal{X} consists of those sets in \mathcal{F} preventing it from having larger symmetric extent.
The definition of symmetric extension guarantees that \mathcal{X} can be decomposed as $\mathcal{X}=\sum_{a=0}^{\ell}\binom{[\ell]}{a} \times \mathcal{X}_{a}$, where \mathcal{X}_{a} is a collection of subsets of $[n] \backslash[\ell+1]$, a notation we use below.

The symmetric extent of a family is always bounded by its extent, apart from one trivial case.
Lemma 4.10. Let \mathcal{F} be a non-trivial monotone family on n points having extent m and symmetric extent ℓ. Then $\ell \leq m$.
Proof. The family \mathcal{F} has the general form $\mathcal{F}=\bigcup_{i=0}^{\ell}\binom{[\ell]}{i} \times \mathcal{F}_{i}$, where $\mathcal{F}_{1}, \ldots, \mathcal{F}_{\ell}$ are collections of subsets of $[n] \backslash[\ell]$. We claim that if $m<\ell$ then all \mathcal{F}_{i} are equal. Indeed, let $i<\ell$. For each $A \in \mathcal{F}_{i}$, we have $[i] \cup A \in \mathcal{F}$. Since the extent of \mathcal{F} is smaller than $\ell,[i] \cup\{\ell\} \cup A \in \mathcal{F}$, implying $A \in \mathcal{F}_{i+1}$. Similarly, for each $A \in \mathcal{F}_{i+1}$ we have $[i] \cup\{\ell\} \cup A \in \mathcal{F}$, and so $[i] \cup\{\ell\} \in \mathcal{F}$, implying $A \in \mathcal{F}_{i}$.

We have shown that $\mathcal{F}=2^{[\ell]} \times \mathcal{F}_{0}$. Since the extent of m is at most ℓ, necessarily $\mathcal{F}=2^{[n]}$.
The following crucial observation is the counterpart of Lemma 4.7.
Lemma 4.11. Let \mathcal{F} be a left-compressed t-intersecting family of symmetric extent ℓ and boundary \mathcal{X}. If $|A \cap B|=t$ for some $A, B \in \mathcal{X}$ then $|A \cap[\ell]|+|B \cap[\ell]|=\ell+t$.

Proof. We start by showing that $A \cap B \subseteq[\ell]$. Indeed, suppose that $i \in A \cap B$ for some $i>\ell$. Since neither of A, B contains $\ell+1$, in fact $i>\ell+1$. Since \mathcal{F} is left-compressed, $A^{\prime}=(A \backslash\{i\}) \cup\{\ell+1\} \in \mathcal{F}$. However, $\left|A^{\prime} \cap B\right|=|A \cap B|-1=t-1$, contradicting the assumption that \mathcal{F} is t-intersecting.

Next, we show that $A \cup B \supseteq[\ell]$. Indeed, suppose that $i \notin A \cup B$ for some $i \in \ell$. By definition of \mathcal{X}, the set A must contain some element $j \in[\ell]$. By definition of symmetric extent (if $j<i$) or by the fact that \mathcal{F} is left-compressed (if $j>i), A^{\prime}=(A \backslash\{j\}) \cup\{i\} \in \mathcal{F}$. However, $\left|A^{\prime} \cap B\right|=|A \cap B|-1=t-1$, contradicting the assumption that \mathcal{F} is t-intersecting.

Finally, let $A^{\prime}=A \cap[\ell]$ and $B^{\prime}=B \cap[\ell]$. Since $A^{\prime} \cap B^{\prime}=A \cap B$ and $A^{\prime} \cup B^{\prime}=[\ell]$, we deduce that $\left|A^{\prime}\right|+\left|B^{\prime}\right|=\left|A^{\prime} \cup B^{\prime}\right|+\left|A^{\prime} \cap B^{\prime}\right|=\ell+t .$.

Our goal now is to try to eliminate \mathcal{X}, thus increasing the symmetric extent. We do this by trying to add $\binom{[\ell]}{a-1} \times\{\ell+1\} \times \mathcal{X}_{a}$ to \mathcal{F}. The obstructions are described by Lemma 4.11 . which explains why we decompose \mathcal{X} according to the size of the intersection with $[\ell]$. Accordingly, our modification will act on the sets in $\mathcal{X}_{a}, \mathcal{X}_{b}$ for $a+b=\ell+t$. As in the preceding section, we have to consider two cases, $a \neq b$ and $a=b$, and the first case is simpler.

Lemma 4.12. Let \mathcal{F} be a left-compressed t-intersecting family on n points of symmetric extent $\ell<n$. Let $a \neq b$ be parameters such that $a+b=\ell+t$ and $\mathcal{X}_{a}, \mathcal{X}_{b}$ are not both empty. Consider the two families
$\mathcal{F}_{1}=\left(\mathcal{F} \backslash\binom{[\ell]}{b} \times \mathcal{X}_{b}\right) \cup\binom{[\ell]}{a-1} \times\{\ell+1\} \times \mathcal{X}_{a}, \quad \mathcal{F}_{2}=\left(\mathcal{F} \backslash\binom{[\ell]}{a} \times \mathcal{X}_{a}\right) \cup\binom{[\ell]}{b-1} \times\{\ell+1\} \times \mathcal{X}_{b}$.
Both families $\mathcal{F}_{1}, \mathcal{F}_{2}$ are t-intersecting. Moreover, if $t>1$ then for all $p \in(0,1), \max \left(\mu_{p}\left(\mathcal{F}_{1}\right), \mu_{p}\left(\mathcal{F}_{2}\right)\right)>$ $\mu_{p}(\mathcal{F})$.
Proof. We start by showing that \mathcal{F}_{1} (and so \mathcal{F}_{2}) is t-intersecting. Suppose that $S, T \in \mathcal{F}_{1}$. We consider several cases.

If $S, T \in \mathcal{F}$ then $|S \cap T| \geq t$ since \mathcal{F} is t-intersecting.
If $S \in \mathcal{F}$ and $T \notin \mathcal{F}$ then $T \in\binom{[\ell]}{a-1} \times\{\ell+1\} \times \mathcal{X}_{a}$. Choose $i \in[\ell] \backslash T$ arbitrarily, and notice that $T^{\prime}=(T \backslash\{\ell+1\}) \cup\{i\} \in\binom{[\ell]}{a} \times \mathcal{X}_{a}$, and so $T^{\prime} \in \mathcal{F}$. If $i \notin S$ or $\ell+1 \in S$ then $|S \cap T| \geq\left|S \cap T^{\prime}\right| \geq t$.

Suppose therefore that $i \in S$ and $\ell+1 \notin S$. If $S^{\prime}=(S \backslash\{i\}) \cup\{\ell+1\} \in \mathcal{F}$ then $|S \cap T|=\left|S^{\prime} \cap T^{\prime}\right| \geq t$. Otherwise, by definition of $\mathcal{X}, S \in \mathcal{X}$. By definition of $\mathcal{F}_{1},|S \cap[\ell]| \neq b$, and so Lemma 4.11 shows that $|S \cap T| \geq\left|S \cap T^{\prime}\right|-1 \geq t$.

If $S, T \notin \mathcal{F}$ then $S, T \in\binom{[\ell]}{a-1} \times\{\ell+1\} \times \mathcal{X}_{a}$. Choose $i \in[\ell] \backslash S$ and $j \in[\ell] \backslash T$ arbitrarily, and define $S^{\prime}=(S \backslash\{\ell+1\}) \cup\{i\}$ and $T^{\prime}=(T \backslash\{\ell+1\}) \cup\{j\}$. As before, $S^{\prime}, T^{\prime} \in \mathcal{X}$, and so Lemma 4.11 shows that $\left|S^{\prime} \cap T^{\prime}\right| \geq t+1$. Since $S \cap T \supseteq\left(\left(S^{\prime} \cap T^{\prime}\right) \backslash\{i, j\}\right) \cup\{\ell+1\}$, we see that $|S \cap T| \geq \mid S^{\prime} \cap \overline{T^{\prime} \mid}-1 \geq t$.

We calculate the measures of \mathcal{F}_{1} and \mathcal{F}_{2} in terms of the quantities $\left.m_{a}=\mu_{p}\binom{[\ell]}{a} \times \mathcal{X}_{a}\right)$ and $m_{b}=$ $\mu_{p}\left(\binom{[\ell]}{b} \times \mathcal{X}_{b}\right):$

$$
\begin{aligned}
& \mu_{p}\left(\mathcal{F}_{1}\right)=\mu_{p}(\mathcal{F})-m_{b}+\frac{\binom{\ell}{a-1}}{\binom{\ell}{a}} m_{a}=\mu_{p}(\mathcal{F})-m_{b}+\frac{a}{\ell-a+1} m_{a} \\
& \mu_{p}\left(\mathcal{F}_{2}\right)=\mu_{p}(\mathcal{F})-m_{a}+\frac{\binom{\ell}{b-1}}{\binom{\ell}{b}} m_{b}=\mu_{p}(\mathcal{F})-m_{a}+\frac{b}{\ell-b+1} m_{b}
\end{aligned}
$$

Multiply the first inequality by $\frac{\ell-a+1}{\ell-t+2}$, the second inequality by $\frac{\ell-b+1}{\ell-t+2}$, and add; note that $\ell-t+2=$ $(\ell-a+1)+(\ell-b+1)>0$. The result is

$$
\begin{aligned}
\frac{\ell-a+1}{\ell-t+2} \mu_{p}\left(\mathcal{F}_{1}\right)+\frac{\ell-b+1}{\ell-t+2} \mu_{p}\left(\mathcal{F}_{2}\right) & =\mu_{p}(\mathcal{F})+\left[\frac{a}{\ell-t+2}-\frac{\ell-b+1}{\ell-t+2}\right] m_{a}+\left[\frac{b}{\ell-t+2}-\frac{\ell-a+1}{\ell-t+2}\right] m_{b} \\
& =\mu_{p}(\mathcal{F})+\frac{t-1}{\ell-t+2}\left(m_{a}+m_{b}\right)
\end{aligned}
$$

using $a+b=\ell+t$. We conclude that when $t>1, \max \left(\mu_{p}\left(\mathcal{F}_{1}\right), \mu_{p}\left(\mathcal{F}_{2}\right)\right)>\mu_{p}(\mathcal{F})$.
When $a=b$, the construction increases the extent m (defined in the preceding section), and works only for large enough p.

Lemma 4.13. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family on n points of extent $m<n$ and symmetric extent ℓ, and let $s \in[n]$ be an index satisfying $s>m$ and $s \neq \ell+1$ (such an element exists if $\ell<m$ or if $m \leq n-2)$. Suppose that $a=\frac{\ell+t}{2}$ is an integer and that \mathcal{X}_{a} is non-empty. Let $\mathcal{X}_{a}^{\prime}=\left\{S \in \mathcal{X}_{a}: s \in S\right\}$ and define

$$
\mathcal{F}^{\prime}=\left(\mathcal{F} \backslash\binom{[\ell]}{a} \times \mathcal{X}_{a}\right) \cup\binom{[\ell+1]}{a} \times \mathcal{X}_{a}^{\prime}
$$

The family \mathcal{F}^{\prime} is t-intersecting. Moreover, if $p>\frac{\ell-t+2}{2(\ell+1)}$ then $\mu_{p}\left(\mathcal{F}^{\prime}\right)>\mu_{p}(\mathcal{F})$.
Proof. We start by showing that \mathcal{F}^{\prime} is t-intersecting. Suppose that $S, T \in \mathcal{F}^{\prime}$. We consider several cases. If $S, T \in \mathcal{F}$ then $|S \cap T| \geq t$ since \mathcal{F} is t-intersecting.
If $S \in \mathcal{F}$ and $T \notin \mathcal{F}$ then $T \in\binom{[\ell+1]}{a} \times \mathcal{X}_{a}^{\prime}$ and $\ell+1, s \in T$. Choose $i \in[\ell] \backslash T$ arbitrarily, and notice that $T^{\prime}=(T \backslash\{\ell+1\}) \cup\{i\} \in\binom{[\ell]}{a} \times \mathcal{X}_{a} \in \mathcal{F}$. If $i \notin S$ or $\ell+1 \in S$ then $|S \cap T| \geq\left|S \cap T^{\prime}\right| \geq t$. Suppose therefore that $i \in S$ and $\ell+1 \notin S$. If $S^{\prime}=(S \backslash\{i\}) \cup\{\ell+1\} \in \mathcal{F}$ then $|S \cap T|=\left|S^{\prime} \cap T^{\prime}\right| \geq t$. Otherwise, $S \in \mathcal{X}$. If $|S \cap[\ell]| \neq a$ then Lemma 4.11 shows that $|S \cap T| \geq\left|S \cap T^{\prime}\right|-1 \geq t$. If $|S \cap[\ell]|=a$ then by construction, $s \in S$. Since the extent of \mathcal{F} is $m<s$, also $S^{\prime}=S \backslash\{s\} \in \mathcal{F}$. Therefore $|S \cap T| \geq\left|S^{\prime} \cap T^{\prime}\right| \geq t$, since $s \in S \cap T$ but $s \notin S^{\prime}$.

If $S, T \notin \mathcal{F}$ then $S, T \in\binom{[\ell+1]}{a} \times \mathcal{X}_{a}^{\prime}$ and $\ell+1, s \in S, T$. Choose $i \in[\ell] \backslash S$ and $j \in[\ell] \backslash T$, so that $S^{\prime}=(S \backslash\{\ell+1\}) \cup\{i\}$ and $T^{\prime}=(T \backslash\{\ell+1\}) \cup\{j\}$ are both in \mathcal{F}. By construction, s belongs to S and T and so to S^{\prime} and T^{\prime}. Since the extent of \mathcal{F} is $m<s, S^{\prime \prime}=S \backslash\{s\}$ and $T^{\prime \prime}=T \backslash\{s\}$ also belong to \mathcal{F}. Observe that $S \cap T \subseteq\left(\left(S^{\prime \prime} \cap T^{\prime \prime}\right) \backslash\{i, j\}\right) \cup\{\ell+1, s\}$, and so $|S \cap T| \geq\left|S^{\prime \prime} \cap T^{\prime \prime}\right| \geq t$.

We calculate the measure of \mathcal{F}^{\prime} in terms of the quantity $m_{a}=\mu_{p}\left(\binom{[\ell]}{a} \times \mathcal{X}_{a}\right)$:

$$
\mu_{p}\left(\mathcal{F}^{\prime}\right)=\mu_{p}(\mathcal{F})-m_{a}+p \frac{\binom{\ell+1}{a}}{\binom{\ell}{a}} m_{a}=\mu_{p}(\mathcal{F})-m_{a}+p \frac{\ell+1}{\ell+1-a} m_{a}=\mu_{p}(\mathcal{F})+\frac{a-(1-p)(\ell+1)}{\ell+1-a} m_{a}
$$

Thus $\mu_{p}\left(\mathcal{F}^{\prime}\right)>\mu_{p}(\mathcal{F})$ as long as $1-p<\frac{a}{\ell+1}=\frac{\ell+t}{2(\ell+1)}$.

Lemma 4.13 cannot be applied when $m=n$. However, if n has the correct parity, we can combine Lemma 4.13 with Lemma 4.8 to handle this issue.

Lemma 4.14. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family on n points of extent m and symmetric extent ℓ, where either $\ell<m$ or $m<n$. If $n+t$ is even and $\frac{\ell-t+2}{2(\ell+1)}<p \leq \frac{1}{2}$ then there exists a t-intersecting family on n points with larger μ_{p}-measure.

Proof. Consider first the case $\ell<m$. If $m<n$ then the statement follows from Lemma 4.12 and Lemma 4.13, so suppose that $m=n$. Let $\mathcal{F}^{\prime}=\mathcal{F} \cup \mathcal{F} \times\{n+1\}$, and note that this is a non-trivial monotone left-compressed t-intersecting family on $n+1$ points. We can apply Lemma 4.13 to obtain a non-trivial monotone left-compressed t-intersecting family \mathcal{G} on $n+1$ points satisfying $\mu_{p}(\mathcal{G})>\mu_{p}\left(\mathcal{F}^{\prime}\right)=\mu_{p}(\mathcal{F})$. Since $n+1+t$ is odd, we can apply Lemma 4.8 repeatedly to obtain a non-trivial monotone t-intersecting family \mathcal{H} on $n+1$ points and extent n which satisfies $\mu_{p}(\mathcal{H}) \geq \mu_{p}(\mathcal{G})>\mu_{p}(\mathcal{F})$. Since \mathcal{H} has extent n, there is a t-intersecting family on n points having the same μ_{p}-measure.

Consider next the case $\ell=m<n$. If $m \leq n-2$ then the statement follows from Lemma 4.12 and Lemma 4.13, so suppose that $m=n-1$. In this case $m+t$ is odd, and so the statement follows from Lemma 4.8 .

5 Proof of main theorem

5.1 The case $p<1 / 2$

In this section we prove Theorem 3.1 in the case $p<1 / 2$. In view of the results of Section 4.1, it suffices to consider monotone left-compressed families. We first settle the case $t=1$, which corresponds to the classical Erdős-Ko-Rado theorem.

Lemma 5.1. Let \mathcal{F} be a monotone left-compressed intersecting family on n points of maximum $\mu_{p^{-}}$ measure, for some $p \in(0,1 / 2)$. Then $\mathcal{F}=\mathcal{F}_{1,0}$.

Proof. Let m be the extent of \mathcal{F}. Since $\frac{m-t}{2(m-1)}=1 / 2$, Lemma 4.8 and Lemma 4.9 together show that $m=1$, and so $\mathcal{F}=\mathcal{F}_{1,0}$.

The case $t \geq 2$ requires more work.
Lemma 5.2. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points of maximum $\mu_{p^{-}}$ measure, for some $p \in(0,1 / 2)$ and $t>1$. Let r be the maximal integer satisfying $p \geq \frac{r}{t+2 r-1}$ and $t+2 r \leq n$. If $p \neq \frac{r}{t+2 r-1}$ then $\mathcal{F}=\mathcal{F}_{t, r}$, and if $p=\frac{r}{t+2 r-1}$ then $\mathcal{F} \in\left\{\mathcal{F}_{t, r}, \mathcal{F}_{t, r-1}\right\}$.

Proof. Our definition of r guarantees that one of the following two alternatives holds: either $p<\frac{r+1}{t+2 r-1}$, or $n \leq t+2 r+1$.

Let m be the extent of \mathcal{F}. We claim that $m \leq t+2 r$. If $n \leq t+2 r+1$ then Lemma 4.8 shows that $m+t$ is even, and so $m \leq t+2 r$. Suppose therefore that $p<\frac{r+1}{t+2 r-1}$ and $m>t+2 r$. Lemma 4.8 shows that in fact $m \geq t+2 r+2$, and so

$$
\frac{m-t}{2(m-1)}=\frac{1}{2}-\frac{t-1}{2(m-1)} \geq \frac{1}{2}-\frac{t-1}{2(t+2 r+1)}=\frac{r+1}{t+2 r+1} .
$$

Therefore Lemma 4.8 and Lemma 4.9 contradict the assumption that \mathcal{F} has maximum μ_{p}-measure.
We now turn to consider the symmetric extent ℓ of \mathcal{F}. We first consider the case in which $p>\frac{r}{t+2 r-1}$. We claim that in this case $\ell=m$. If $\ell<m$ then Lemma 4.8 and Lemma 4.12 show that both $m+t$ and $\ell+t$ are even, and so $\ell \leq m-2 \leq t+2 r-2$. This implies that

$$
\frac{\ell-t+2}{2(\ell+1)}=\frac{1}{2}-\frac{t-1}{2(\ell+1)} \leq \frac{1}{2}-\frac{t-1}{2(t+2 r-1)}=\frac{r}{t+2 r-1} .
$$

Therefore Lemma 4.12 and Lemma 4.14 contradict the assumption that \mathcal{F} has maximum μ_{p}-measure.
We have shown that if $p>\frac{r}{t+2 r-1}$ then $\ell=m \leq t+2 r$, and moreover $m+t$ is even. Thus $\ell=m=t+2 s$ for some $s \leq r$. Since \mathcal{F} is t-intersecting, $\mathcal{F} \subseteq \mathcal{F}_{t, s}$ for some $s \leq r$. The fact that \mathcal{F} has maximum μ_{p}-measure forces $\mathcal{F}=\mathcal{F}_{t, s}$. In view of Lemma 2.1. necessarily $s=r$.

The case $p=\frac{r}{t+2 r-1}$ is slightly more complicated. Suppose first that $\ell=m$. In that case, as before, $\mathcal{F}=\mathcal{F}_{t, s}$ for some $s \leq r$. This time Lemma 2.1 shows that $s \in\{r, r-1\}$.

Suppose next that $\ell<m$. The same argument as before shows that $\ell \geq m-2$. Lemma 4.8 and Lemma 4.12 show that both $\ell+t$ and $m+t$ are even, and so $\ell=m-2$ in this case. In the remainder of the proof, we show that this leads to a contradiction. To simplify notation, we will assume that $m=n$. As $m+t$ is even, we can write $m=t+2 s$ for some $s \leq r$.

Since \mathcal{F} is monotone and has symmetric extent $m-2$, it can be decomposed as follows:

$$
\begin{gathered}
\mathcal{F}=\binom{[t+2 s-2]}{\geq a} \cup\binom{[t+2 s-2]}{\geq b} \times\{t+2 s+1\} \cup \\
\binom{[t+2 s-2]}{\geq c} \times\{t+2 s\} \cup\binom{[t+2 s-2]}{\geq d} \times\{t+2 s-1, t+2 s\}
\end{gathered}
$$

Since the family is t-intersecting, we must have $2 d-(t+2 s-2)+2 \geq t$, and so $d \geq t+s-2$. If $d \geq t+s-1$ then monotonicity implies that $a, b, c \geq d \geq t+s-1$, and so $\mathcal{F} \subseteq \mathcal{F}_{t, s-1}$. Since \mathcal{F} has maximum μ_{p}-measure, necessarily $\mathcal{F}=\mathcal{F}_{t, s-1}$, in which case the extent is $t+2 s-2$, contrary to assumption.

We conclude that $d=t+s-2$. The fact that \mathcal{F} is t-intersecting implies that $c+d-(t+2 s-2)+1 \geq t$, and so $c \geq t+s-1$. Similarly $b \geq t+s-1$, and moreover $a+d-(t+2 s-2) \geq t$, implying $a \geq t+s$. Thus $\mathcal{F} \subseteq \mathcal{F}_{t, s}$. Since \mathcal{F} has maximum μ_{p}-measure, necessarily $\mathcal{F}=\mathcal{F}_{t, s}$, in which case the symmetric extent is $t+2 s$, contrary to assumption.

5.2 The case $p=1 / 2$

In this section we prove Theorem 3.1 in the case $p=1 / 2$. This case is known as Katona's theorem, after Katona's paper [11, and we reprove it here using the techniques of Section 4. The case $t=1$ is trivial, so we only prove the case $t \geq 2$. Once again, it suffices to consider monotone left-compressed families.

Lemma 5.3. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points of maximum $\mu_{1 / 2^{-}}$ measure, for some $t>1$. If $n \in\{t+2 r, t+2 r+1\}$ then $\mathcal{F}=\mathcal{F}_{t, r}$.

Proof. Let m be the extent of \mathcal{F}, and ℓ be its symmetric extent.
Suppose first that $n=t+2 r$. Lemma 4.14 shows that $\ell=m=n$, which easily implies $\mathcal{F}=\mathcal{F}_{t, r}$.
Suppose next that $n=t+2 r+1$. If $m \leq t+2 r$ then the previous case $n=t+2 r$ shows that $\mathcal{F}=\mathcal{F}_{t, r}$, so suppose that $m=n$. Since $m+t$ is odd, Lemma 4.8 shows that there is a family \mathcal{H} of extent at most $m-1=t+2 r$ such that $\mu_{p}(\mathcal{H}) \geq \mu_{p}(\mathcal{F})$. In view of the preceding case, this shows that $\mathcal{H}=\mathcal{F}_{t, r}$, and so $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)$. It remains to show that $\mathcal{F}=\mathcal{F}_{t, r}$ when $\mu_{p}(\mathcal{F})=\mu_{p}\left(\mathcal{F}_{t, r}\right)$.

The family \mathcal{H} is constructed by repeatedly applying the following operation, where \mathcal{G}^{*} is the boundary generating family of \mathcal{F}, and $a+b=n+t$: remove \mathcal{G}_{a}^{*} and \mathcal{G}_{b}^{*}, and add either $\left\{S \backslash\{m\}: S \in \mathcal{G}_{a}^{*}\right\}$ or $\left\{S \backslash\{m\}: S \in \mathcal{G}_{b}^{*}\right\}$. All options must lead eventually to the same family $\mathcal{F}_{t, r}$, and this can only happen if $\mathcal{G}_{a}^{*}=\mathcal{G}_{b}^{*}=\emptyset$ for all a, b. However, in that case the extent of \mathcal{F} is in fact $n-1$, contradicting our assumption.

5.3 The case $p>1 / 2$

In this section we prove Theorem 3.1 in the case $p>1 / 2$. The proof in this case differs from that of the other cases: it uses a different shifting argument, also due to Ahlswede and Khachatrian [6], who used it for the case $p=1 / 2$.

The idea is to use a different kind of shifting. Let \mathcal{F} be a family on n points. For two disjoint sets $A, B \subseteq[n]$, the shift operator $\mathbb{S}_{A, B}$ acts on \mathcal{F} as follows. Let $\mathcal{F}_{A, B}$ consist of all sets in S containing A and disjoint from B. Then

$$
\begin{aligned}
\mathbb{S}_{A, B}(\mathcal{F})=\left(F \backslash \mathcal{F}_{A, B}\right) & \cup\left\{S: S \in \mathcal{F}_{A, B} \text { and }(S \backslash A) \cup B \in \mathcal{F}\right\} \\
& \cup\left\{(S \backslash A) \cup B: S \in \mathcal{F}_{A, B} \text { and }(S \backslash A) \cup B \notin \mathcal{F}\right\} .
\end{aligned}
$$

(This is a generalization of the original shifting operator: $\mathbb{S}_{i, j}$ is the same as $\mathbb{S}_{\{i\},\{j\}}$.)
This kind of shift is useful when $p>1 / 2$ due to the following obvious property.

Lemma 5.4. If $|B|>|A|$ then $\mu_{p}\left(\mathbb{S}_{A, B}(\mathcal{F})\right) \geq \mu_{p}(\mathcal{F})$ for any $p \in(1 / 2,1)$, with equality if only if $\mathbb{S}_{A, B}(\mathcal{F})=\mathcal{F}$.

When done correctly, $\mathbb{S}_{A, B}$ preserves the property of being t-intersecting, as the following lemma from [6], whose lengthy proof we omit, shows.

Lemma 5.5. Let \mathcal{F} be a t-intersecting family on n points, and let $A, B \subseteq[n]$ be disjoint sets of cardinalities $|A|=s$ and $|B|=s+1$. If \mathcal{F} is $(r, r+1)$-stable for all $r<s$ then $\mathbb{S}_{A, B}(\mathcal{F})$ is t-intersecting as well.

A family is $(s, s+1)$-stable if $\mathbb{S}_{A, B}(\mathcal{F})=\mathcal{F}$ for any disjoint sets A, B of cardinalities $|A|=s$ and $|B|=s+1$. As in the case of the simpler shifting operator $\mathbb{S}_{i, j}$, we can convert any family to a stable family while maintaining its being t-intersecting, by repeatedly applying a shifting operation on sets A, B with minimal $|A|$, implying the following lemma.

Lemma 5.6. Let $p \in(1 / 2,1)$. If \mathcal{F} is a t-intersecting family on n points having maximum μ_{p}-measure then \mathcal{F} is $(s, s+1)$-stable for all s.

The importance of stable families is the following simple observation from 6].
Lemma 5.7. If a t-intersecting family \mathcal{F} on n points is $(s, s+1)$-stable for all s then every $A, B \in \mathcal{F}$ satisfy $|A|+|B| \geq n+t-1$.
Proof. Let $A, B \in \mathcal{F}$. If $A \cup B=[n]$ then $|A|+|B|=|A \cup B|+|A \cap B| \geq n+t$, so suppose $|A \cup B|<n$.
Define $s=\min (|A \cap B|, n-|A \cup B|-1) \geq 0$, and choose a subset $C \subseteq A \cap B$ of size s and a subset $D \subseteq[n] \backslash(A \cup B)$ of size $s+1$. Since \mathcal{F} is $(s, s+1)$-stable, $A^{\prime}=(A \backslash C) \cup D \in \mathcal{F}$. We have $\left|A^{\prime} \cap B\right|=|A \cap B|-|C|=|A \cap B|-s$, showing that $|A \cap B| \geq s+t$. In particular, $s=n-|A \cup B|-1$, and so

$$
|A|+|B|=|A \cup B|+|A \cap B| \geq(n-s-1)+(s+t)=n+t-1
$$

The bound $n+t-1$ is tight: when $n=t+2 r+1$, the family $\mathcal{F}_{t, r}$ is $(s, s+1)$-stable for all s, and two sets A, B of size $t+r$ satisfy $|A|+|B|=n+r-1$.

We need one more lemma, on uniform families, which also follows from the classical AhlswedeKhachatrian theorem; the proof appearing below only relies on the Erdős-Ko-Rado theorem.
Lemma 5.8. Let $\mathcal{F} \subseteq\binom{[t+2 r+1]}{t+r}$ be a t-intersecting family of maximum size, and define a family $\mathcal{F}_{t, r}^{\prime}$, the uniform analog of $\mathcal{F}_{t, r}$, as follows:

$$
\mathcal{F}_{t, r}^{\prime}=\left\{S \in\binom{[t+2 r+1]}{t+r}:|S \cap[t+2 r]|=t+r\right\} .
$$

If $t \geq 2$ then \mathcal{F} is equivalent to $\mathcal{F}_{t, r}^{\prime}$ (that is, equals a similar family with $[t+2 r]$ possibly replaced by some other subset of $[t+2 r+1]$ of size $t+2 r)$, and if $t=1$ then $|\mathcal{F}| \leq\left|\mathcal{F}_{t, r}^{\prime}\right|$.

Proof. Define $\mathcal{G}=\{\bar{A}: A \in \mathcal{F}\}$ (where $\bar{A}=[t+2 r+1] \backslash A$), so that $\mathcal{G} \subseteq\binom{[t+2 r+1]}{r+1}$. Since

$$
|\bar{A} \cap \bar{B}|=|\overline{A \cup B}|=t+2 r+1-|A \cup B|=t+2 r+1-|A|-|B|+|A \cap B|=|A \cap B|-(t-1)
$$

we see that the condition that \mathcal{F} is t-intersecting is equivalent to the condition that \mathcal{G} is intersecting.
Since $r+1 \leq \frac{t+2 r+1}{2}$ (with equality only for $t=1$), the Erdős-Ko-Rado theorem shows that $|\mathcal{G}| \leq$ $\binom{t+2 r}{r}=\binom{t+2 r}{t+r}$. Moreover, when $t \geq 2$, equality holds only when $\mathcal{G}=\left\{S \in\binom{[t+2 r+1]}{r+1}: i \in S\right\}$ for some $i \in[t+2 r+1]$. In that case, $\mathcal{F}=\left\{S \in\binom{[t+2 r+1]}{t+r}: i \notin S\right\}$, and so \mathcal{F} is equivalent to $\mathcal{F}_{t, r}^{\prime}$ (in the family $\mathcal{F}_{t, r}$ itself, $i=t+2 r+1$).

We can now prove Theorem 3.1 in the case $p>1 / 2$.
Lemma 5.9. Let \mathcal{F} be a t-intersecting family on n points of maximum μ_{p}-measure, for some $p \in(1 / 2,1)$. Suppose that $n \in\{t+2 r, t+2 r+1\}$. If $t \geq 2$ or $n=t+2 r$ then \mathcal{F} is equivalent to $\mathcal{F}_{t, r}$. If $t=1$ and $n=t+2 r+1$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)$ and $\mathcal{F}=\mathcal{G} \cup\binom{[t+2 r+1]}{\geq t+r+1}$, where $\mathcal{G} \subseteq\binom{[t+2 r+1]}{t+r}$ contains exactly $\binom{t+2 r}{t+r}$ sets.

Proof. Lemma 5.6 shows that \mathcal{F} is $(s, s+1)$-stable for all s, and so Lemma 5.7 shows that any $A, B \in \mathcal{F}$ satisfy $|A|+|B| \geq n+t-1$. In particular, any set A has cardinality at least $\frac{n+t-1}{2}$. We now consider two cases, according to the parity of $n+t$.

Suppose first that $n=t+2 r$. Then $\frac{n+t-1}{2}=t+r-\frac{1}{2}$, and so all sets in \mathcal{F} have cardinality at least $t+r$. In other words, $\mathcal{F} \subseteq \mathcal{F}_{t, r}$. Since \mathcal{F} has maximum μ_{p}-measure, $\mathcal{F}=\mathcal{F}_{t, r}$.

Suppose next that $n=t+2 r+1$. Then $\frac{n+t-1}{2}=t+r$, and so all sets in \mathcal{F} have cardinality at least $t+r$. If $|A| \geq t+r$ and $|B| \geq t+r+1$ then $|A \cap B| \geq|A|+|B|-n=t$, and so the fact that \mathcal{F} has maximum μ_{p}-measure shows that $\mathcal{F}=\mathcal{G} \cup(\underset{\geq t+r+1}{[n]})$, where $\mathcal{G} \subseteq\binom{[n]}{t+r}$ is t-intersecting.

We can now complete the proof using Lemma 5.8. If $t \geq 2$ then \mathcal{G} is equivalent to $\mathcal{F}_{t, r}^{\prime}$, say

$$
\mathcal{G}=\left\{S \in\binom{[t+2 r+1]}{t+r}:|S \cap X|=t+r\right\}
$$

where $|X|=t+2 r$. Since any set of size at least $t+r+1$ intersects X in at least $t+r$ points, $\mathcal{F}=\{S \subseteq[n]:|S \cap X| \geq t+r\}$, and so \mathcal{F} is equivalent to $\mathcal{F}_{t, r}$.

When $t=1$, Lemma 5.8 shows that $|\mathcal{G}| \leq\left|\mathcal{F}_{t, r}^{\prime}\right|$, and so the same reasoning shows that $\mu_{p}(\mathcal{F}) \leq$ $\mu_{p}\left(\mathcal{F}_{t, r}\right)$.

References

[1] Rudolf Ahlswede and Valdimir Blinovsky. Lectures on Advances in Combinatorics. Springer, 2008.
[2] Rudolf Ahlswede and Levon H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Comb. Theory A, 76(1):121-138, 1996.
[3] Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem for systems of finite sets. Eur. J. Comb., 18(2):125-136, 1997.
[4] Rudolf Ahlswede and Levon H. Khachatrian. The diametric theorem in Hamming spaces-optimal anticodes. Adv. Appl. Math., 20:429-449, 1998.
[5] Rudolf Ahlswede and Levon H. Khachatrian. A pushing-pulling method: New proofs of intersection theorems. Combinatorica, 19(1):1-15, 1999.
[6] Rudolf Ahlswede and Levon H. Khachatrian. Katona's intersection theorem: Four proofs. Combinatorica, 25(1):105-110, 2005.
[7] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover. Ann. Math., 162(1):439-485, 2005.
[8] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
[9] Péter Frankl. The Erdős-Ko-Rado theorem is true for $n=c k t$. In Combinatorics, Proceedings of the Fifth Hungarian Colloquium on Combinatorics, Keszthely, pages 365-375, Amsterdam, 1978. North-Holland.
[10] Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. Combinatorica, 28(5):503-528, 2008.
[11] Gyula O. H. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hungar., 15:329-337, 1964.
[12] Natan Keller and Noam Lifshitz. A tight stability version of the complete intersection theorem. CoRR, abs/1604.06135, 2016.

[^0]: *Department of Computer Science, Technion - Israel Institute of Technology, Israel.

