The weighted complete intersection theorem

Yuval Filmus*

April 19, 2017

Abstract

The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of a k-uniform t-intersecting family on n points, and describes all optimal families for $t \ge 2$. We extend this theorem to the weighted setting, in which we consider unconstrained families. The goal in this setting is to maximize the μ_p measure of the family, where the measure μ_p is given by $\mu_p(A) = p^{|A|}(1-p)^{n-|A|}$. Our theorem gives the maximum μ_p measure of a t-intersecting family on n points, and describes all optimal families for $t \ge 2$.

1 Introduction

The Erdős–Ko–Rado theorem [8], a basic result in extremal combinatorics, states that when $k \leq n/2$, a k-uniform intersecting family on n points contains at most $\binom{n-1}{k-1}$ sets; and furthermore, when k < n/2 the only families achieving these bounds are *stars*, consisting of all sets containing some fixed point.

The analog of the Erdős–Ko–Rado theorem for t-intersecting families, in which every two sets must have at least t points in common, was proved by Ahlswede and Khachatrian [3, 5], who gave two different proofs (see also the monograph [1]). When $t \ge 2$, the optimal families are always of the form $\mathcal{F}_{t,r} = \{S : |S \cap [t+2r]| \ge t+r\}$, as had been conjectured by Frankl [9]. They also determined the maximum families under the condition that the intersection of all sets in the family is empty [2], as well as the maximum non-uniform t-intersecting families [6] ("Katona's theorem"). They also proved an analogous theorem for the Hamming scheme [4].

Dinur and Safra [7] considered analogous questions in the weighted setting. They were interested in the maximum μ_p measure of a *t*-intersecting family on *n* points, where the μ_p measure is given by $\mu_p(A) = p^{|A|}(1-p)^{n-|A|}$. When $p \leq 1/2$, they related this question to the setting of the original Ahlswede–Khachatrian theorem with parameters K, N satisfying $K/N \approx p$. A similar argument appears in work of Ahlswede–Khachatrian [6, 4] in different guise. The μ_p setting has since been widely studied, and has been used by Friedgut [10] and by Keller and Lifshitz [12] to prove stability versions of the Ahlswede–Khachatrian theorem.

While not stated explicitly in either work, the methods of Dinur–Safra [7] and Ahlswede–Khachatrian [4] give a proof of an Ahlswede–Khachatrian theorem in the μ_p setting for all p < 1/2, without any constraint on the number of points. More explicitly, let w(n,t,p) be the maximum μ_p -measure of a *t*-intersecting family on *n* points, and let $w(t,p) = \sup_n w(n,t,p)$. The techniques of Dinur–Safra and Ahlswede–Khachatrian show that when $\frac{r}{t+2r-1} \leq p \leq \frac{r+1}{t+2r+1}$, $w(t,p) = \mu_p(\mathcal{F}_{t,r})$. This theorem is incomplete, for three different reasons: it describes w(t,p) rather than w(n,t,p), it only works for p < 1/2, and it doesn't describe the optimal families.

Katona [11] solved the case p = 1/2, which became known as "Katona's theorem". Allswede and Khachatrian gave a different proof [6], and their technique applies also to the case p > 1/2. We complete the picture by finding w(n, t, p) for all n, t, p and determining all families achieving this bound when $t \ge 2$. We do this by rephrasing the two original proofs [3, 5] of the Ahlswede–Khachatrian theorem in the μ_p setting. Curiously, whereas the classical Ahlswede–Khachatrian theorem can be proven using either of the techniques described in [3, 5], our proof needs to use both.

^{*}Department of Computer Science, Technion — Israel Institute of Technology, Israel.

$\mathbf{2}$ Preliminaries

We will use [n] for $\{1, \ldots, n\}$, and $\binom{[n]}{k}$ for all subsets of [n] of size k. We also use the somewhat unorthodox notation $\binom{[n]}{k}$ for all subsets of [n] of size at least k. The set of all subsets of a set A will be denoted 2^A .

A family on n points is a collection of subsets of [n]. A family \mathcal{F} is t-intersecting if any $A, B \in \mathcal{F}$ satisfy $|A \cap B| \ge t$. A family is *intersecting* if it is 1-intersecting.

For any $p \in (0,1)$ and any n, the product measure μ_p is a measure on the set of subsets of [n] given by $\mu_p(A) = p^{|A|} (1-p)^{n-|A|}$.

A family \mathcal{F} on *n* points is *monotone* if whenever $A \in \mathcal{F}$ and $B \supseteq A$ then $B \in \mathcal{F}$. Given a family \mathcal{F} , its up-set $\langle \mathcal{F} \rangle$ is the smallest monotone family containing \mathcal{F} , consisting of all supersets of sets in \mathcal{F} .

For $n \ge t \ge 1$ and $p \in (0,1)$, the parameter w(n,t,p) is the maximum of $\mu_p(\mathcal{F})$ over all t-intersecting families on n points, and the parameter w(t,p) is given by $w(t,p) = \sup_n w(n,t,p)$. It is easy to see that we can also define w(t, p) as a limit instead of a supremum.

For $t \ge 1$ and $r \ge 0$, the (t, r)-Frankl family on n points is the t-intersecting family

$$\mathcal{F}_{t,r} = \{A \subseteq [n] : |A \cap [t+2r]| \ge t+r\}.$$

A family \mathcal{F} on n points is equivalent to a (t,r)-Frankl family if there exists a set $S \subseteq [n]$ of size t + 2rsuch that $\mathcal{F} = \{A \subseteq [n] : |A \cap S| \ge t + r\}.$

The following result is a straightforward calculation.

Lemma 2.1. Let $t \ge 1$ and $r \ge 0$ be parameters, and let $p_{t,r} = \frac{r+1}{t+2r+1}$. If $p < p_{t,r}$ then $\mu_p(\mathcal{F}_{t,r}) > \mu_p(\mathcal{F}_{t,r+1})$. If $p = p_{t,r}$ then $\mu_p(\mathcal{F}_{t,r}) = \mu_p(\mathcal{F}_{t,r+1})$. If $p > p_{t,r}$ then $\mu_p(\mathcal{F}_{t,r}) < \mu_p(\mathcal{F}_{t,r+1})$.

3 Main results

Our main theorem is an analog of the Ahlswede–Khachatrian theorem in the μ_p setting.

Theorem 3.1. Let $n \ge t \ge 1$ and $p \in (0, 1)$. If \mathcal{F} is t-intersecting then

$$\mu_p(\mathcal{F}) \le \max_{r: t+2r \le n} \mu_p(\mathcal{F}_{t,r}).$$

Moreover, unless t = 1 and $p \ge 1/2$, equality holds only if \mathcal{F} is equivalent to a Frankl family $\mathcal{F}_{t,r}$. When t = 1 and p > 1/2, the same holds if n + t is even, and otherwise $\mathcal{F} = \mathcal{G} \cup {[n] \choose \geq \frac{n+t+1}{2}}$ where

 $\mathcal{G} \subseteq {\binom{[n]}{n+t-1}}$ contains exactly ${\binom{n-1}{n+t-1}}$ sets.

When t = 1 and p = 1/2 there are many optimal families. For example, the families $\mathcal{F}_{1,r}$ all have $\mu_{1/2}$ -measure 1/2, as does the family $\{S : 1 \in S\} \setminus \{\{1\}\} \cup \{\{2, \dots, n\}\}.$

Similarly, when t = 1, p > 1/2 and n + 1 is odd there are many optimal families, for example $\binom{[n]}{\geq n/2+1} \cup \binom{[n]}{n/2} \cap \mathcal{F}_{1,0}$, and $\binom{[n]}{\geq n/2+1} \cup \binom{[n]}{n/2} \setminus \mathcal{F}_{1,0}$. Our proof implies the following more detailed corollary.

Corollary 3.2. Let $n \ge t \ge 1$. Define r^* as the maximal integer satisfying $t + 2r^* \le n$. If t = 1 then

$$w(n,1,p) = \begin{cases} p & p \le \frac{1}{2}, \\ \mu_p(\mathcal{F}_{1,r^*}) & p \ge \frac{1}{2}. \end{cases}$$

Furthermore, if \mathcal{F} is an intersecting family of μ_p -measure w(n, 1, p) for $p \in (0, 1)$ then:

- If $p < \frac{1}{2}$ then \mathcal{F} is equivalent to $\mathcal{F}_{1,0}$.
- If $p > \frac{1}{2}$ and n is odd then \mathcal{F} is equivalent to $\mathcal{F}_{1,\frac{n-1}{2}}$.
- If $p > \frac{1}{2}$ and n is even then $\mathcal{F} = \mathcal{G} \cup {[n] \choose \geq n/2+1}$, where \mathcal{G} contains half the sets in ${[n] \choose n/2}$: exactly one of each pair $A, [n] \setminus A$.

Figure 1: The function w(20, t, p) for $1 \le t \le 5$ (left) and the function w(t, p) for $1 \le t \le 5$ (right). In both cases, larger functions correspond to smaller t. The colors switch at each of the breakpoints $\frac{r}{t+2r-1}$ for $r \le r^*$ (left) or for each r (right).

If $t \geq 2$ then

$$w(n,t,p) = \begin{cases} \mu_p(\mathcal{F}_{t,r}) & \frac{r}{t+2r-1} \le p \le \frac{r+1}{t+2r+1} \text{ for some } r < r^*, \\ \mu_p(\mathcal{F}_{t,r^*}) & \frac{r^*}{t+2r^*-1} \le p. \end{cases}$$

Furthermore, if \mathcal{F} is a t-intersecting family of μ_p -measure w(n,t,p) for $p \in (0,1)$ then:

- If $\frac{r}{t+2r-1} for some <math>r < r^*$ then \mathcal{F} is equivalent to $\mathcal{F}_{t,r}$.
- If $\frac{r^*}{t+2r^*-1} < p$ then \mathcal{F} is equivalent to \mathcal{F}_{t,r^*} .
- If $p = \frac{r+1}{t+2r+1}$ for some $r < r^*$ then \mathcal{F} is equivalent to $\mathcal{F}_{t,r}$ or to $\mathcal{F}_{t,r-1}$.

As a corollary, we can compute w(t, p). We leave the straightforward calculations to the reader. Corollary 3.3. We have

$$w(1,p) = \begin{cases} p & p \le \frac{1}{2}, \\ 1 & p > \frac{1}{2} \end{cases}$$

For $t \geq 2$, we have

$$w(t,p) = \begin{cases} \mu_p(\mathcal{F}_{t,r}) & \frac{r}{t+2r-1} \le p \le \frac{r+1}{t+2r+1}, \\ \frac{1}{2} & p = \frac{1}{2}, \\ 1 & p > \frac{1}{2}. \end{cases}$$

Figure 1 illustrates Corollary 3.2 and Corollary 3.3. The proof of Theorem 3.1 occupies the rest of the paper.

4 Shifting and symmetrization

4.1 Shifting

We use the classical technique of *shifting* to obtain families which are easier to analyze.

Let \mathcal{F} be a family on n points and let $i, j \in [n]$ be two different indices. The shift operator $\mathbb{S}_{i,j}$ acts on \mathcal{F} as follows. Let $\mathcal{F}_{i,j}$ consist of all sets in \mathcal{F} containing i but not j. Then

$$\mathbb{S}_{i,j}(\mathcal{F}) = (\mathcal{F} \setminus \mathcal{F}_{i,j}) \cup \{A : A \in \mathcal{F}_{i,j} \text{ and } (A \setminus \{i\}) \cup \{j\} \in \mathcal{F}\} \cup \{(A \setminus \{i\}) \cup \{j\} : A \in \mathcal{F}_{i,j} \text{ and } (A \setminus \{i\}) \cup \{j\} \notin \mathcal{F}\}.$$

In words, we try to "shift" each set $A \in \mathcal{F}_{i,j}$ by replacing it with $A' = (A \setminus \{i\}) \cup \{j\}$. If $A' \notin \mathcal{F}$ then we replace A with A', and otherwise we don't change A.

The following lemmas state several well-known properties of shifting.

Lemma 4.1. For any family \mathcal{F} and indices i, j and for all $p \in (0, 1)$, $\mu_p(\mathcal{F}) = \mu_p(\mathbb{S}_{i,j}(\mathcal{F}))$.

Lemma 4.2. If \mathcal{F} is t-intersecting then so is $\mathbb{S}_{i,j}(\mathcal{F})$ for any i, j.

By shifting \mathcal{F} repeatedly we can obtain a left-compressed family. A family \mathcal{F} on n points is *left-compressed* if whenever $A \in \mathcal{F}$, $i \in A$, $j \notin A$, and j < i, then $(A \setminus \{i\}) \cup \{j\} \in \mathcal{F}$. (Informally, we can *shift* i to j.)

Lemma 4.3. Let \mathcal{F} be a t-intersecting family on n points. There is a left-compressed t-intersecting family \mathcal{G} on n points with the same μ_p -measure for all $p \in (0,1)$. Furthermore, \mathcal{G} can be obtained from \mathcal{F} by applying a sequence of shift operators.

Lemma 4.3 shows that in order to determine w(n, t, p) it is enough to focus on left-compressed families. Moreover, since the up-set of a *t*-intersecting family is also *t*-intersecting, we will assume in most of what follows that \mathcal{F} is a monotone left-compressed *t*-intersecting family. We will show that except for the case $p \geq 1/2$ and t = 1, such a family can only have maximum μ_p measure if it is a Frankl family with the correct parameters. We will deduce that general *t*-intersecting families of measure w(n, t, p) are equivalent to a Frankl family using the following lemma, whose proof closely follows the argument of Ahlswede and Khachatrian [3].

Lemma 4.4. Let \mathcal{F} be a monotone t-intersecting family on n points, and let $i, j \in [n]$. If $\mathbb{S}_{i,j}(\mathcal{F})$ is equivalent to $\mathcal{F}_{t,r}$ then so is \mathcal{F} .

Proof. Let $S \subseteq [n]$ be the set of size t + 2r such that $\mathbb{S}_{i,j}(\mathcal{F}) = \{A \subseteq [n] : |A \cap S| \ge t + r\}$.

Suppose first that $i, j \in S$ or $i, j \notin S$. If $A \in \mathbb{S}_{i,j}(\mathcal{F})$ then $A \in \mathcal{F}$, since otherwise A would have originated from $A' = (A \setminus \{j\}) \cup \{i\}$, but that is impossible since $A' \in \mathbb{S}_{i,j}(\mathcal{F})$. It follows that $\mathbb{S}_{i,j}(\mathcal{F}) \subseteq \mathcal{F}$ and so $\mathbb{S}_{i,j}(\mathcal{F}) = \mathcal{F}$, since shifting preserves cardinality. Therefore the lemma trivially holds.

The case $i \in S$ and $j \notin S$ cannot happen. Indeed, consider some set $A \subseteq S$ containing i but not j of size t + r. Then $A \in \mathbb{S}_{i,j}(\mathcal{F})$ and so, by definition of the shift, $A' = (A \setminus \{i\}) \cup \{j\} \in \mathbb{S}_{i,j}(\mathcal{F})$. However, $|A' \cap S| = t + r - 1$, and so $A' \notin \mathbb{S}_{i,j}(\mathcal{F})$, and we reach a contradiction.

It remains to consider the case $i \notin S$ and $j \in S$. Suppose first that r = 0. Then $S \in \mathbb{S}_{i,j}(\mathcal{F})$, and so either $S \in \mathcal{F}$ or $S' = (S \setminus \{j\}) \cup \{i\} \in \mathcal{F}$. In both cases, since \mathcal{F} is monotone, it contains all supersets of S or of S'. Since shifting preserves cardinality, \mathcal{F} must consist exactly of all supersets of S or of S', and thus is equivalent to a (t, 0)-Frankl family.

Suppose next that r > 0. Let V be the collection of all subsets of $S \setminus \{j\}$ of size exactly t + r - 1. For each $A \in V$ we have $A \cup \{j\} \in \mathbb{S}_{i,j}(\mathcal{F})$, and so either $A \cup \{j\} \in \mathcal{F}$ or $A \cup \{i\} \in \mathcal{F}$.

If \mathcal{F} contains $A \cup \{j\}$ for all $A \in V$ then \mathcal{F} contains all subsets of S of size t + r (since other subsets are not affected by the shift). Monotonicity forces \mathcal{F} to contain all of $\mathbb{S}_{i,j}(\mathcal{F})$, and thus $\mathcal{F} = \mathbb{S}_{i,j}(\mathcal{F})$ as before.

If \mathcal{F} contains $A \cup \{i\}$ for all $A \in V$, then in a similar way we deduce that \mathcal{F} is equivalent to the (t, r)-Frankl family based on $(S \setminus \{j\}) \cup \{i\}$.

It remains to consider the case in which \mathcal{F} contains $A \cup \{i\}$ for some $A \in V$, and $B \cup \{j\}$ for some other $B \in V$. We will show that in this case, \mathcal{F} is not *t*-intersecting. Consider the graph on V in which two vertices are connected if their intersection has the minimal size t - 1. This graph is a generalized Johnson graph, and we show below that it is connected. This implies that there must be two sets A, B satisfying $|A \cap B| = t - 1$ such that $A \cup \{i\}, B \cup \{j\} \in \mathcal{F}$. Since $|A \cap B| = t - 1$, we have reached a contradiction.

To complete the proof, we prove that the graph is connected. For reasons of symmetry, it is enough to give a path connecting $x = \{1, \ldots, t + r - 1\}$ and $y = \{2, \ldots, t + r\}$. Indeed, the vertex $\{2, \ldots, t, t + r + 1, \ldots, t + 2r\}$ is connected to both x and y.

The preceding lemmas allow us to reduce the proof of Theorem 3.1 to the left-compressed case.

4.2 Generating sets

The goal of the first part of the proof, which follows [3], is to show that any monotone left-compressed *t*-intersecting family of maximum μ_p -measure has to depend on a small number of points. We will use a representation of monotone families in which this property has a simple manifestation. Our definition is simpler than the original one, due to the different setting.

A family \mathcal{F} on *n* points is *non-trivial* if $\mathcal{F} \notin \{\emptyset, 2^{[n]}\}$. Let \mathcal{F} be a non-trivial monotone family. A generating set is an inclusion-minimal set $S \in \mathcal{F}$. The generating family of \mathcal{F} consists of all generating sets of \mathcal{F} . The extent of \mathcal{F} is the maximal index appearing in a generating set of \mathcal{F} . The boundary generating family of \mathcal{F} consists of all generating sets of \mathcal{F} containing its extent.

If \mathcal{G} is the generating family of \mathcal{F} then we use the notation \mathcal{G}^* for the boundary generating family of \mathcal{F} . For each integer a, we use the notation \mathcal{G}_a^* for the subset of \mathcal{G}^* consisting of sets of size a.

Generating sets are also known as *minterms*. If \mathcal{G} is the generating family of \mathcal{F} then \mathcal{G} is an antichain and \mathcal{F} is the up-set of \mathcal{G} (and this gives an alternative definition of \mathcal{G}). If \mathcal{F} has extent m then \mathcal{F} depends only on the first m coordinates: $S \in \mathcal{F}$ iff $S \bigtriangleup \{i\} \in \mathcal{F}$ for all i > m. For this reason, for the rest of the section we treat a family having extent m as a family on m points.

One reason to focus on the boundary generating family of \mathcal{F} is the following simple observations.

Lemma 4.5. Let \mathcal{F} be a non-trivial monotone left-compressed family of extent m with generating family \mathcal{G} and boundary generating family \mathcal{G}^* . For any subset $G \subseteq \mathcal{G}^*$, $\langle \mathcal{G} \setminus G \rangle = \mathcal{F} \setminus G$.

Proof. Since \mathcal{G} is an antichain, no $A \in G$ is a superset of any other set in \mathcal{G} . For this reason, $\langle \mathcal{G} \setminus G \rangle \subseteq \mathcal{F} \setminus G$.

On the other hand, let $S \in \mathcal{F} \setminus G$. If S is not a superset of any $A \in G$ then clearly $S \in \langle \mathcal{G} \setminus G \rangle$. If $S \supseteq A$ for some $A \in G$ then since $S \neq A$, there is an element $i \in S \setminus A$. The set $S' = S \setminus \{m\}$ is a superset of $(A \setminus \{m\}) \cup \{i\}$, and so $S' \in \mathcal{F}$. Thus S' is a superset of some $B \in \mathcal{G}$. Since $m \notin S'$, necessarily $B \notin G$. As $S \supseteq B$, we conclude that $S \in \langle \mathcal{G} \setminus G \rangle$.

Lemma 4.6. Let \mathcal{F} be a non-trivial monotone left-compressed family of extent m with generating family \mathcal{G} and boundary generating family \mathcal{G}^* . For any subset $G \subseteq \mathcal{G}^*$,

$$\langle (\mathcal{G} \setminus G) \cup \{A \setminus \{m\} : A \in G\} \rangle = \mathcal{F} \cup \{A \setminus \{m\} : A \in G\}.$$

Proof. Denote by \mathcal{F}' the left-hand side. Clearly $\mathcal{F}' \supseteq \mathcal{F} \cup \{A \setminus \{m\} : A \in G\}$.

On the other hand, suppose that $S \in \mathcal{F}' \setminus \mathcal{F}$. Then for some $A \in G$, S is a superset of $A \setminus \{m\}$ but not of A. In particular, $m \notin S$. We claim that $S = A \setminus \{m\}$. Otherwise, there exists an element $i \in S \setminus (A \setminus \{m\})$. Since \mathcal{F} is left-compressed, $A' = (A \setminus \{m\}) \cup \{i\} \in \mathcal{F}$. Since \mathcal{F} is monotone and $S \supseteq A'$, we conclude that $S \in \mathcal{F}$, contradicting our assumption. Thus $\mathcal{F}' \setminus \mathcal{F} = \{A \setminus \{m\} : A \in G\}$. \Box

The following crucial observation drives the entire approach, and explains why we want to classify the sets in the boundary generating family according to their size.

Lemma 4.7. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family with extent m and boundary generating family \mathcal{G}^* . If $A, B \in \mathcal{G}^*$ intersect in exactly t elements then |A| + |B| = m + t.

Proof. We will show that $A \cup B = [m]$. It follows that $|A| + |B| = |A \cup B| + |A \cap B| = m + t$.

Since $A \cup B \subseteq [m]$ and $m \in A \cap B$ by definition, we have to show that every element i < m belongs to either A or B. Suppose that some element i belongs to neither. Since \mathcal{F} is left-compressed, the set $B' = (B \setminus \{m\}) \cup \{i\}$ also belongs to \mathcal{F} . However, $|A \cap B'| = |A \cap B| - 1 = t - 1$, contradicting the assumption that \mathcal{F} is t-intersecting.

Our goal now is to show that if m is too large then we can remove the dependency on m while keeping the family *t*-intersecting and increasing its μ_p -measure, for appropriate values of p. The idea is to remove m from sets in the boundary generating family. The only obstructions for doing so are sets A, B in the boundary generating family whose intersection contains *exactly* t elements, and here we use Lemma 4.7 to guide us: this can only happen if |A| + |B| = m + t. Accordingly, our modification will involve generating sets in \mathcal{G}_a^* and \mathcal{G}_b^* for a + b = m + t. There are two cases to consider: $a \neq b$ and a = b. The first case is simpler.

Lemma 4.8. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family with extent m, generating family \mathcal{G} , and boundary generating family \mathcal{G}^* . Let $a \neq b$ be parameters such that a + b = m + t and $\mathcal{G}_a^*, \mathcal{G}_b^*$ are not both empty. Consider the families $\mathcal{F}_1 = \langle \mathcal{G}_1 \rangle$ and $\mathcal{F}_2 = \langle \mathcal{G}_2 \rangle$, where

$$\mathcal{G}_1 = (\mathcal{G} \setminus (\mathcal{G}_a^* \cup \mathcal{G}_b^*)) \cup \{S \setminus \{m\} : S \in \mathcal{G}_b^*\}, \qquad \mathcal{G}_2 = (\mathcal{G} \setminus (\mathcal{G}_a^* \cup \mathcal{G}_b^*)) \cup \{S \setminus \{m\} : S \in \mathcal{G}_a^*\}.$$

Both families $\mathcal{F}_1, \mathcal{F}_2$ are t-intersecting. Moreover, if p < 1/2 then $\max(\mu_p(\mathcal{F}_1), \mu_p(\mathcal{F}_2)) > \mu_p(\mathcal{F})$; and if p = 1/2, $\max(\mu_p(\mathcal{F}_1), \mu_p(\mathcal{F}_2)) \ge \mu_p(\mathcal{F})$, with equality only if $\mu_p(\mathcal{F}_1) = \mu_p(\mathcal{F}_2) = \mu_p(\mathcal{F})$.

Proof. We start by showing that \mathcal{F}_1 (and so \mathcal{F}_2) is t-intersecting. Clearly, it is enough to show that its generating family \mathcal{G}_1 is t-intersecting. Suppose that $S, T \in \mathcal{G}_1$. We consider several cases.

If $S, T \in \mathcal{G}$ then $|S \cap T| \ge t$ since \mathcal{G} is *t*-intersecting.

If $S \in \mathcal{G}$ and $T \notin \mathcal{G}$ then $T' = T \cup \{m\} \in \mathcal{G}$ and so |T'| = b. If $m \notin S$ then $|S \cap T| = |S \cap T'| \ge t$. If $m \in S$ then by construction $|S| \ne a$, and so $|S \cap T| = |S \cap T'| - 1 \ge t$, using Lemma 4.7.

If $S, T \notin \mathcal{G}$ then $S' = S \cup \{m\} \in \mathcal{G}$ and $T' = T \cup \{m\} \in \mathcal{G}$, and so |S'| = |T'| = b. As in the preceding case, $|S \cap T| = |S' \cap T'| - 1 \ge t$ due to Lemma 4.7.

Lemma 4.5 and Lemma 4.6 show that $\mathcal{F}_1 = (\mathcal{F} \setminus \mathcal{G}_a^*) \cup \{S \setminus \{m\} : S \in \mathcal{G}_b^*\}$. Since $\mu_p(S \setminus \{m\}) = \frac{1-p}{p}\mu_p(S)$ whenever $m \in S$, $\mu_p(\mathcal{F}_1) = \mu_p(\mathcal{F}) - \mu_p(\mathcal{G}_a^*) + \frac{1-p}{p}\mu_p(\mathcal{G}_b^*)$. Similarly, $\mu_p(\mathcal{F}_2) = \mu_p(\mathcal{F}) - \mu_p(\mathcal{G}_b^*) + \frac{1-p}{p}\mu_p(\mathcal{G}_a^*)$. Taking the average of both estimates, we obtain

$$\frac{\mu_p(\mathcal{F}_1) + \mu_p(\mathcal{F}_2)}{2} = \mu_p(\mathcal{F}) + \frac{1}{2} \left(\frac{1-p}{p} - 1\right) \left(\mu_p(\mathcal{G}_a^*) + \mu_p(\mathcal{G}_b^*)\right).$$

When p < 1/2, the second term is positive, and so $\max(\mu_p(\mathcal{F}_1), \mu_p(\mathcal{F}_2)) > \mu_p(\mathcal{F})$. When p = 1/2 it vanishes, and so $\max(\mu_p(\mathcal{F}_1), \mu_p(\mathcal{F}_2)) \ge \mu_p(\mathcal{F})$. \Box

When a = b the construction in Lemma 4.8 cannot be executed, and we need a more complicated construction. The new construction will only work for small enough p, mirroring the fact that the optimal families for larger p depend on more points.

Lemma 4.9. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family with extent m > 1, generating family \mathcal{G} , and boundary generating family \mathcal{G}^* . Suppose that $a = \frac{m+t}{2}$ is an integer and that \mathcal{G}_a^* is non-empty. For each $i \in [m-1]$, let $\mathcal{G}_{a,i}^* = \{S \in \mathcal{G}_a^* : i \in S\}$, and define

$$\mathcal{G}_i = (\mathcal{G} \setminus \mathcal{G}_a^*) \cup \{S \setminus \{m\} : S \in \mathcal{G}_a^* \setminus \mathcal{G}_{a,i}^*\}.$$

All families $\mathcal{F}_i = \langle \mathcal{G}_i \rangle$ are t-intersecting. Moreover, if $p < \frac{m-t}{2(m-1)}$ then $\mu_p(\mathcal{F}_i) > \mu_p(\mathcal{F})$ for some $i \in [m-1]$.

Proof. We start by showing that the families \mathcal{F}_i are *t*-intersecting. Clearly, it is enough to show that \mathcal{G}_i is *t*-intersecting. Let $S, T \in \mathcal{G}_i$. We consider several cases.

If $S, T \in \mathcal{G}$ then $|S \cap T| \ge t$ since \mathcal{G} is *t*-intersecting.

If $S \in \mathcal{G}$ and $T \notin \mathcal{G}$ then $T' = T \cup \{m\} \in \mathcal{G}_a^*$ and $i \notin S$. If $m \notin S$ then $|S \cap T| = |S \cap T'| \ge t$. If $m \in S$ and $S \notin \mathcal{G}_a^*$ then $|S \cap T| \ge |S \cap T'| - 1 \ge t$, according to Lemma 4.7. If $m \in S$ and $S \in \mathcal{G}_a^*$ then by construction $i \notin S$. Since \mathcal{F} is left-compressed, $S' = (S \setminus \{m\}) \cup \{i\} \in \mathcal{F}$. Therefore $|S \cap T| = |S' \cap T'| \ge t$. If $S, T \notin \mathcal{G}$ then $S' = S \cup \{m\}$ and $T' = T \cup \{m\}$ both belong to \mathcal{G}_a^* , and i belongs to neither. Since

 $\mathcal{F} \text{ is left-compressed, } T'' = T \cup \{i\} \in \mathcal{F}, \text{ and so } |S \cap T| = |S' \cap T''| \ge t.$ Lemma 4.5 and Lemma 4.6 show that $\mathcal{F}_i = (\mathcal{F} \setminus \mathcal{G}_{a,i}^*) \cup \{S \setminus \{m\} : S \in \mathcal{G}_a^* \setminus \mathcal{G}_{a,i}^*\}.$ Since $\mu_p(S \setminus \{m\}) = C \setminus \mathcal{G}_a^* \setminus \mathcal{G}_{a,i}^*$.

Lemma 4.5 and Lemma 4.5 show that $\mathcal{F}_i = (\mathcal{F} \setminus \mathcal{G}_{a,i}) \cup \{\mathcal{F} \setminus \{\mathcal{M}\} : \mathcal{F} \subset \mathcal{G}_a \setminus \mathcal{G}_{a,i}\}$. Since $\mu_p(\mathcal{F} \setminus \{\mathcal{M}\}) = \frac{1-p}{p}\mu_p(S)$ whenever $m \in S$,

$$\mu_p(\mathcal{F}_i) = \mu_p(\mathcal{F}) - \mu_p(\mathcal{G}_{a,i}^*) + \frac{1-p}{p}(\mu_p(\mathcal{G}_a^*) - \mu_p(\mathcal{G}_{a,i}^*)) = \mu_p(\mathcal{F}) + \frac{1-p}{p}\mu_p(\mathcal{G}_a^*) - \frac{1}{p}\mu_p(\mathcal{G}_{a,i}^*) + \frac{1-p}{p}(\mathcal{G}_{a,i}^*) = \mu_p(\mathcal{F}) + \frac{1-p}{p}(\mathcal{G}_{a,i}^*) + \frac{1-p}{p}(\mathcal{G}_{a,i}^*) + \frac{1-p}{p}(\mathcal{G}_{a,i$$

Averaging over all $i \in [m-1]$, we obtain

$$\frac{1}{m-1}\sum_{i=1}^{m-1}\mu_p(\mathcal{F}_i) = \mu_p(\mathcal{F}) + \frac{1-p}{p}\mu_p(\mathcal{G}_a^*) - \frac{1}{p(m-1)}\sum_{i=1}^{m-1}\mu_p(\mathcal{G}_{a,i}^*)$$

Since the sets in \mathcal{G}_a^* contain exactly *a* elements, each set is counted a-1 times in $\sum_{i=1}^{m-1} \mu_p(\mathcal{G}_{a,i}^*)$, and so

$$\frac{1}{m-1}\sum_{i=1}^{m-1}\mu_p(\mathcal{F}_i) = \mu_p(\mathcal{F}) + \left(\frac{1-p}{p} - \frac{a-1}{p(m-1)}\right)\mu_p(\mathcal{G}_a^*).$$

When $1-p > \frac{a-1}{m-1} = \frac{m+t-2}{2(m-1)}$, the bracketed quantity is positive, and so $\max_i \mu_p(\mathcal{F}_i) > \mu_p(\mathcal{F})$.

4.3Pushing-pulling

The goal of the second part of the proof, which follows [5], is to show that any monotone left-compressed t-intersecting family of maximum μ_p -measure is symmetric within its extent, or in other words, of the form $\mathcal{F}_{t,r}$.

The analog of extent in this part is the symmetric extent. Let \mathcal{F} be a left-compressed family on npoints. Its symmetric extent is the largest integer ℓ such that $\mathbb{S}_{ij}(\mathcal{F}) = \mathcal{F}$ for $i, j \leq \ell$.

If $\ell < n$ then the *boundary* of \mathcal{F} is the collection

$$\mathcal{X} = \{A \in \mathcal{F} : \ell + 1 \notin A \text{ and } (A \setminus \{i\}) \cup \{\ell + 1\} \text{ for some } i \in A \cap [\ell]\}.$$

In other words, \mathcal{X} consists of those sets in \mathcal{F} preventing it from having larger symmetric extent.

The definition of symmetric extension guarantees that \mathcal{X} can be decomposed as $\mathcal{X} = \sum_{a=0}^{\ell} {\binom{[\ell]}{a} \times \mathcal{X}_a}$, where \mathcal{X}_a is a collection of subsets of $[n] \setminus [\ell + 1]$, a notation we use below.

The symmetric extent of a family is always bounded by its extent, apart from one trivial case.

Lemma 4.10. Let \mathcal{F} be a non-trivial monotone family on n points having extent m and symmetric extent ℓ . Then $\ell \leq m$.

Proof. The family \mathcal{F} has the general form $\mathcal{F} = \bigcup_{i=0}^{\ell} {\binom{[\ell]}{i}} \times \mathcal{F}_i$, where $\mathcal{F}_1, \ldots, \mathcal{F}_{\ell}$ are collections of subsets of $[n] \setminus [\ell]$. We claim that if $m < \ell$ then all \mathcal{F}_i are equal. Indeed, let $i < \ell$. For each $A \in \mathcal{F}_i$, we have $[i] \cup A \in \mathcal{F}$. Since the extent of \mathcal{F} is smaller than ℓ , $[i] \cup \{\ell\} \cup A \in \mathcal{F}$, implying $A \in \mathcal{F}_{i+1}$. Similarly, for each $A \in \mathcal{F}_{i+1}$ we have $[i] \cup \{\ell\} \cup A \in \mathcal{F}$, and so $[i] \cup \{\ell\} \in \mathcal{F}$, implying $A \in \mathcal{F}_i$. We have shown that $\mathcal{F} = 2^{[\ell]} \times \mathcal{F}_0$. Since the extent of m is at most ℓ , necessarily $\mathcal{F} = 2^{[n]}$.

The following crucial observation is the counterpart of Lemma 4.7.

Lemma 4.11. Let \mathcal{F} be a left-compressed t-intersecting family of symmetric extent ℓ and boundary \mathcal{X} . If $|A \cap B| = t$ for some $A, B \in \mathcal{X}$ then $|A \cap [\ell]| + |B \cap [\ell]| = \ell + t$.

Proof. We start by showing that $A \cap B \subseteq [\ell]$. Indeed, suppose that $i \in A \cap B$ for some $i > \ell$. Since neither of A, B contains $\ell + 1$, in fact $i > \ell + 1$. Since \mathcal{F} is left-compressed, $A' = (A \setminus \{i\}) \cup \{\ell + 1\} \in \mathcal{F}$. However, $|A' \cap B| = |A \cap B| - 1 = t - 1$, contradicting the assumption that \mathcal{F} is t-intersecting.

Next, we show that $A \cup B \supseteq [\ell]$. Indeed, suppose that $i \notin A \cup B$ for some $i \in \ell$. By definition of \mathcal{X} , the set A must contain some element $j \in [\ell]$. By definition of symmetric extent (if j < i) or by the fact that \mathcal{F} is left-compressed (if j > i), $A' = (A \setminus \{j\}) \cup \{i\} \in \mathcal{F}$. However, $|A' \cap B| = |A \cap B| - 1 = t - 1$, contradicting the assumption that \mathcal{F} is *t*-intersecting.

Finally, let $A' = A \cap [\ell]$ and $B' = B \cap [\ell]$. Since $A' \cap B' = A \cap B$ and $A' \cup B' = [\ell]$, we deduce that $|A'| + |B'| = |A' \cup B'| + |A' \cap B'| = \ell + t..$

Our goal now is to try to eliminate \mathcal{X} , thus increasing the symmetric extent. We do this by trying to add $\binom{\lfloor \ell \rfloor}{a-1} \times \{\ell+1\} \times \mathcal{X}_a$ to \mathcal{F} . The obstructions are described by Lemma 4.11, which explains why we decompose \mathcal{X} according to the size of the intersection with $[\ell]$. Accordingly, our modification will act on the sets in $\mathcal{X}_a, \mathcal{X}_b$ for $a+b=\ell+t$. As in the preceding section, we have to consider two cases, $a\neq b$ and a = b, and the first case is simpler.

Lemma 4.12. Let \mathcal{F} be a left-compressed t-intersecting family on n points of symmetric extent $\ell < n$. Let $a \neq b$ be parameters such that $a + b = \ell + t$ and $\mathcal{X}_a, \mathcal{X}_b$ are not both empty. Consider the two families

$$\mathcal{F}_1 = \left(\mathcal{F} \setminus \binom{[\ell]}{b} \times \mathcal{X}_b\right) \cup \binom{[\ell]}{a-1} \times \{\ell+1\} \times \mathcal{X}_a, \quad \mathcal{F}_2 = \left(\mathcal{F} \setminus \binom{[\ell]}{a} \times \mathcal{X}_a\right) \cup \binom{[\ell]}{b-1} \times \{\ell+1\} \times \mathcal{X}_b$$

Both families $\mathcal{F}_1, \mathcal{F}_2$ are t-intersecting. Moreover, if t > 1 then for all $p \in (0,1), \max(\mu_p(\mathcal{F}_1), \mu_p(\mathcal{F}_2)) > 0$ $\mu_p(\mathcal{F}).$

Proof. We start by showing that \mathcal{F}_1 (and so \mathcal{F}_2) is t-intersecting. Suppose that $S, T \in \mathcal{F}_1$. We consider several cases.

If $S, T \in \mathcal{F}$ then $|S \cap T| \ge t$ since \mathcal{F} is t-intersecting.

If $S \in \mathcal{F}$ and $T \notin \mathcal{F}$ then $T \in {\binom{[\ell]}{a-1}} \times \{\ell+1\} \times \mathcal{X}_a$. Choose $i \in [\ell] \setminus T$ arbitrarily, and notice that $T' = (T \setminus \{\ell+1\}) \cup \{i\} \in {\binom{[\ell]}{a}} \times \mathcal{X}_a, \text{ and so } T' \in \mathcal{F}. \text{ If } i \notin S \text{ or } \ell+1 \in S \text{ then } |S \cap T| \ge |S \cap T'| \ge t.$ Suppose therefore that $i \in S$ and $\ell + 1 \notin S$. If $S' = (S \setminus \{i\}) \cup \{\ell + 1\} \in \mathcal{F}$ then $|S \cap T| = |S' \cap T'| \ge t$. Otherwise, by definition of $\mathcal{X}, S \in \mathcal{X}$. By definition of $\mathcal{F}_1, |S \cap [\ell]| \neq b$, and so Lemma 4.11 shows that $|S \cap T| \ge |S \cap T'| - 1 \ge t$.

If $S, T \notin \mathcal{F}$ then $S, T \in {\binom{[\ell]}{a-1}} \times \{\ell+1\} \times \mathcal{X}_a$. Choose $i \in [\ell] \setminus S$ and $j \in [\ell] \setminus T$ arbitrarily, and define $S' = (S \setminus \{\ell+1\}) \cup \{i\}$ and $T' = (T \setminus \{\ell+1\}) \cup \{j\}$. As before, $S', T' \in \mathcal{X}$, and so Lemma 4.11 shows that $|S' \cap T'| \ge t+1$. Since $S \cap T \supseteq ((S' \cap T') \setminus \{i, j\}) \cup \{\ell+1\}$, we see that $|S \cap T| \ge |S' \cap T'| - 1 \ge t$.

We calculate the measures of \mathcal{F}_1 and \mathcal{F}_2 in terms of the quantities $m_a = \mu_p(\binom{[\ell]}{a} \times \mathcal{X}_a)$ and $m_b = \mu_p(\binom{[\ell]}{b} \times \mathcal{X}_b)$:

$$\mu_p(\mathcal{F}_1) = \mu_p(\mathcal{F}) - m_b + \frac{\binom{\ell}{a-1}}{\binom{\ell}{a}} m_a = \mu_p(\mathcal{F}) - m_b + \frac{a}{\ell - a + 1} m_a,$$

$$\mu_p(\mathcal{F}_2) = \mu_p(\mathcal{F}) - m_a + \frac{\binom{\ell}{b-1}}{\binom{\ell}{b}} m_b = \mu_p(\mathcal{F}) - m_a + \frac{b}{\ell - b + 1} m_b.$$

Multiply the first inequality by $\frac{\ell-a+1}{\ell-t+2}$, the second inequality by $\frac{\ell-b+1}{\ell-t+2}$, and add; note that $\ell-t+2 = (\ell-a+1) + (\ell-b+1) > 0$. The result is

$$\frac{\ell - a + 1}{\ell - t + 2} \mu_p(\mathcal{F}_1) + \frac{\ell - b + 1}{\ell - t + 2} \mu_p(\mathcal{F}_2) = \mu_p(\mathcal{F}) + \left[\frac{a}{\ell - t + 2} - \frac{\ell - b + 1}{\ell - t + 2}\right] m_a + \left[\frac{b}{\ell - t + 2} - \frac{\ell - a + 1}{\ell - t + 2}\right] m_b$$
$$= \mu_p(\mathcal{F}) + \frac{t - 1}{\ell - t + 2} (m_a + m_b),$$

using $a + b = \ell + t$. We conclude that when t > 1, $\max(\mu_p(\mathcal{F}_1), \mu_p(\mathcal{F}_2)) > \mu_p(\mathcal{F})$.

When a = b, the construction increases the extent m (defined in the preceding section), and works only for large enough p.

Lemma 4.13. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family on n points of extent m < n and symmetric extent ℓ , and let $s \in [n]$ be an index satisfying s > m and $s \neq \ell + 1$ (such an element exists if $\ell < m$ or if $m \leq n-2$). Suppose that $a = \frac{\ell+t}{2}$ is an integer and that \mathcal{X}_a is non-empty. Let $\mathcal{X}'_a = \{S \in \mathcal{X}_a : s \in S\}$ and define

$$\mathcal{F}' = \left(\mathcal{F} \setminus {[\ell] \choose a} imes \mathcal{X}_a
ight) \cup {[\ell+1] \choose a} imes \mathcal{X}'_a.$$

The family \mathcal{F}' is t-intersecting. Moreover, if $p > \frac{\ell - t + 2}{2(\ell + 1)}$ then $\mu_p(\mathcal{F}') > \mu_p(\mathcal{F})$.

Proof. We start by showing that \mathcal{F}' is *t*-intersecting. Suppose that $S, T \in \mathcal{F}'$. We consider several cases. If $S, T \in \mathcal{F}$ then $|S \cap T| \ge t$ since \mathcal{F} is *t*-intersecting.

If $S \in \mathcal{F}$ and $T \notin \mathcal{F}$ then $T \in \binom{[\ell+1]}{a} \times \mathcal{X}'_a$ and $\ell + 1, s \in T$. Choose $i \in [\ell] \setminus T$ arbitrarily, and notice that $T' = (T \setminus \{\ell + 1\}) \cup \{i\} \in \binom{[\ell]}{a} \times \mathcal{X}_a \in \mathcal{F}$. If $i \notin S$ or $\ell + 1 \in S$ then $|S \cap T| \ge |S \cap T'| \ge t$. Suppose therefore that $i \in S$ and $\ell + 1 \notin S$. If $S' = (S \setminus \{i\}) \cup \{\ell + 1\} \in \mathcal{F}$ then $|S \cap T| = |S' \cap T'| \ge t$. Otherwise, $S \in \mathcal{X}$. If $|S \cap [\ell]| \ne a$ then Lemma 4.11 shows that $|S \cap T| \ge |S \cap T'| - 1 \ge t$. If $|S \cap [\ell]| = a$ then by construction, $s \in S$. Since the extent of \mathcal{F} is m < s, also $S' = S \setminus \{s\} \in \mathcal{F}$. Therefore $|S \cap T| \ge |S' \cap T'| \ge t$, since $s \in S \cap T$ but $s \notin S'$.

If $S, T \notin \mathcal{F}$ then $S, T \in \binom{[\ell+1]}{a} \times \mathcal{X}'_a$ and $\ell+1, s \in S, T$. Choose $i \in [\ell] \setminus S$ and $j \in [\ell] \setminus T$, so that $S' = (S \setminus \{\ell+1\}) \cup \{i\}$ and $T' = (T \setminus \{\ell+1\}) \cup \{j\}$ are both in \mathcal{F} . By construction, s belongs to S and T and so to S' and T'. Since the extent of \mathcal{F} is $m < s, S'' = S \setminus \{s\}$ and $T'' = T \setminus \{s\}$ also belong to \mathcal{F} . Observe that $S \cap T \subseteq ((S'' \cap T'') \setminus \{i, j\}) \cup \{\ell+1, s\}$, and so $|S \cap T| \ge |S'' \cap T''| \ge t$.

We calculate the measure of \mathcal{F}' in terms of the quantity $m_a = \mu_p(\binom{[\ell]}{a} \times \mathcal{X}_a)$:

$$\mu_p(\mathcal{F}') = \mu_p(\mathcal{F}) - m_a + p \frac{\binom{\ell+1}{a}}{\binom{\ell}{a}} m_a = \mu_p(\mathcal{F}) - m_a + p \frac{\ell+1}{\ell+1-a} m_a = \mu_p(\mathcal{F}) + \frac{a - (1-p)(\ell+1)}{\ell+1-a} m_a.$$

Thus $\mu_p(\mathcal{F}') > \mu_p(\mathcal{F})$ as long as $1 - p < \frac{a}{\ell+1} = \frac{\ell+t}{2(\ell+1)}$.

Lemma 4.13 cannot be applied when m = n. However, if n has the correct parity, we can combine Lemma 4.13 with Lemma 4.8 to handle this issue.

Lemma 4.14. Let \mathcal{F} be a non-trivial monotone left-compressed t-intersecting family on n points of extent m and symmetric extent ℓ , where either $\ell < m$ or m < n. If n + t is even and $\frac{\ell - t + 2}{2(\ell + 1)} then there exists a t-intersecting family on n points with larger <math>\mu_p$ -measure.

Proof. Consider first the case $\ell < m$. If m < n then the statement follows from Lemma 4.12 and Lemma 4.13, so suppose that m = n. Let $\mathcal{F}' = \mathcal{F} \cup \mathcal{F} \times \{n+1\}$, and note that this is a non-trivial monotone left-compressed t-intersecting family on n + 1 points. We can apply Lemma 4.13 to obtain a non-trivial monotone left-compressed t-intersecting family \mathcal{G} on n + 1 points satisfying $\mu_p(\mathcal{G}) > \mu_p(\mathcal{F}') = \mu_p(\mathcal{F})$. Since n+1+t is odd, we can apply Lemma 4.8 repeatedly to obtain a non-trivial monotone t-intersecting family \mathcal{H} on n + 1 points and extent n which satisfies $\mu_p(\mathcal{H}) \ge \mu_p(\mathcal{G}) > \mu_p(\mathcal{F})$. Since \mathcal{H} has extent n, there is a t-intersecting family on n points having the same μ_p -measure.

Consider next the case $\ell = m < n$. If $m \le n-2$ then the statement follows from Lemma 4.12 and Lemma 4.13, so suppose that m = n - 1. In this case m + t is odd, and so the statement follows from Lemma 4.8.

5 Proof of main theorem

5.1 The case p < 1/2

In this section we prove Theorem 3.1 in the case p < 1/2. In view of the results of Section 4.1, it suffices to consider monotone left-compressed families. We first settle the case t = 1, which corresponds to the classical Erdős–Ko–Rado theorem.

Lemma 5.1. Let \mathcal{F} be a monotone left-compressed intersecting family on n points of maximum μ_p -measure, for some $p \in (0, 1/2)$. Then $\mathcal{F} = \mathcal{F}_{1,0}$.

Proof. Let *m* be the extent of \mathcal{F} . Since $\frac{m-t}{2(m-1)} = 1/2$, Lemma 4.8 and Lemma 4.9 together show that m = 1, and so $\mathcal{F} = \mathcal{F}_{1,0}$.

The case $t \geq 2$ requires more work.

Lemma 5.2. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points of maximum μ_p measure, for some $p \in (0, 1/2)$ and t > 1. Let r be the maximal integer satisfying $p \geq \frac{r}{t+2r-1}$ and $t + 2r \leq n$. If $p \neq \frac{r}{t+2r-1}$ then $\mathcal{F} = \mathcal{F}_{t,r}$, and if $p = \frac{r}{t+2r-1}$ then $\mathcal{F} \in \{\mathcal{F}_{t,r}, \mathcal{F}_{t,r-1}\}$.

Proof. Our definition of r guarantees that one of the following two alternatives holds: either $p < \frac{r+1}{t+2r-1}$, or $n \le t+2r+1$.

Let *m* be the extent of \mathcal{F} . We claim that $m \leq t + 2r$. If $n \leq t + 2r + 1$ then Lemma 4.8 shows that m + t is even, and so $m \leq t + 2r$. Suppose therefore that $p < \frac{r+1}{t+2r-1}$ and m > t + 2r. Lemma 4.8 shows that in fact $m \geq t + 2r + 2$, and so

$$\frac{m-t}{2(m-1)} = \frac{1}{2} - \frac{t-1}{2(m-1)} \ge \frac{1}{2} - \frac{t-1}{2(t+2r+1)} = \frac{r+1}{t+2r+1}.$$

Therefore Lemma 4.8 and Lemma 4.9 contradict the assumption that \mathcal{F} has maximum μ_p -measure.

We now turn to consider the symmetric extent ℓ of \mathcal{F} . We first consider the case in which $p > \frac{r}{t+2r-1}$. We claim that in this case $\ell = m$. If $\ell < m$ then Lemma 4.8 and Lemma 4.12 show that both m + t and $\ell + t$ are even, and so $\ell \le m - 2 \le t + 2r - 2$. This implies that

$$\frac{\ell - t + 2}{2(\ell + 1)} = \frac{1}{2} - \frac{t - 1}{2(\ell + 1)} \le \frac{1}{2} - \frac{t - 1}{2(t + 2r - 1)} = \frac{r}{t + 2r - 1}.$$

Therefore Lemma 4.12 and Lemma 4.14 contradict the assumption that \mathcal{F} has maximum μ_p -measure.

We have shown that if $p > \frac{r}{t+2r-1}$ then $\ell = m \leq t+2r$, and moreover m+t is even. Thus $\ell = m = t+2s$ for some $s \leq r$. Since \mathcal{F} is t-intersecting, $\mathcal{F} \subseteq \mathcal{F}_{t,s}$ for some $s \leq r$. The fact that \mathcal{F} has maximum μ_p -measure forces $\mathcal{F} = \mathcal{F}_{t,s}$. In view of Lemma 2.1, necessarily s = r.

The case $p = \frac{r}{t+2r-1}$ is slightly more complicated. Suppose first that $\ell = m$. In that case, as before, $\mathcal{F} = \mathcal{F}_{t,s}$ for some $s \leq r$. This time Lemma 2.1 shows that $s \in \{r, r-1\}$.

Suppose next that $\ell < m$. The same argument as before shows that $\ell \ge m-2$. Lemma 4.8 and Lemma 4.12 show that both $\ell + t$ and m + t are even, and so $\ell = m-2$ in this case. In the remainder of the proof, we show that this leads to a contradiction. To simplify notation, we will assume that m = n. As m + t is even, we can write m = t + 2s for some $s \le r$.

Since \mathcal{F} is monotone and has symmetric extent m-2, it can be decomposed as follows:

$$\mathcal{F} = \begin{pmatrix} [t+2s-2] \\ \ge a \end{pmatrix} \cup \begin{pmatrix} [t+2s-2] \\ \ge b \end{pmatrix} \times \{t+2s+1\} \cup \\ \begin{pmatrix} [t+2s-2] \\ \ge c \end{pmatrix} \times \{t+2s\} \cup \begin{pmatrix} [t+2s-2] \\ \ge d \end{pmatrix} \times \{t+2s-1, t+2s\}$$

Since the family is t-intersecting, we must have $2d - (t + 2s - 2) + 2 \ge t$, and so $d \ge t + s - 2$. If $d \ge t + s - 1$ then monotonicity implies that $a, b, c \ge d \ge t + s - 1$, and so $\mathcal{F} \subseteq \mathcal{F}_{t,s-1}$. Since \mathcal{F} has maximum μ_p -measure, necessarily $\mathcal{F} = \mathcal{F}_{t,s-1}$, in which case the extent is t + 2s - 2, contrary to assumption.

We conclude that d = t+s-2. The fact that \mathcal{F} is t-intersecting implies that $c+d-(t+2s-2)+1 \ge t$, and so $c \ge t+s-1$. Similarly $b \ge t+s-1$, and moreover $a+d-(t+2s-2) \ge t$, implying $a \ge t+s$. Thus $\mathcal{F} \subseteq \mathcal{F}_{t,s}$. Since \mathcal{F} has maximum μ_p -measure, necessarily $\mathcal{F} = \mathcal{F}_{t,s}$, in which case the symmetric extent is t+2s, contrary to assumption.

5.2 The case p = 1/2

In this section we prove Theorem 3.1 in the case p = 1/2. This case is known as Katona's theorem, after Katona's paper [11], and we reprove it here using the techniques of Section 4. The case t = 1 is trivial, so we only prove the case $t \ge 2$. Once again, it suffices to consider monotone left-compressed families.

Lemma 5.3. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points of maximum $\mu_{1/2}$ measure, for some t > 1. If $n \in \{t + 2r, t + 2r + 1\}$ then $\mathcal{F} = \mathcal{F}_{t,r}$.

Proof. Let m be the extent of \mathcal{F} , and ℓ be its symmetric extent.

Suppose first that n = t + 2r. Lemma 4.14 shows that $\ell = m = n$, which easily implies $\mathcal{F} = \mathcal{F}_{t,r}$.

Suppose next that n = t + 2r + 1. If $m \leq t + 2r$ then the previous case n = t + 2r shows that $\mathcal{F} = \mathcal{F}_{t,r}$, so suppose that m = n. Since m + t is odd, Lemma 4.8 shows that there is a family \mathcal{H} of extent at most m - 1 = t + 2r such that $\mu_p(\mathcal{H}) \geq \mu_p(\mathcal{F})$. In view of the preceding case, this shows that $\mathcal{H} = \mathcal{F}_{t,r}$, and so $\mu_p(\mathcal{F}) \leq \mu_p(\mathcal{F}_{t,r})$. It remains to show that $\mathcal{F} = \mathcal{F}_{t,r}$ when $\mu_p(\mathcal{F}) = \mu_p(\mathcal{F}_{t,r})$.

The family \mathcal{H} is constructed by repeatedly applying the following operation, where \mathcal{G}^* is the boundary generating family of \mathcal{F} , and a + b = n + t: remove \mathcal{G}_a^* and \mathcal{G}_b^* , and add either $\{S \setminus \{m\} : S \in \mathcal{G}_a^*\}$ or $\{S \setminus \{m\} : S \in \mathcal{G}_b^*\}$. All options must lead eventually to the same family $\mathcal{F}_{t,r}$, and this can only happen if $\mathcal{G}_a^* = \mathcal{G}_b^* = \emptyset$ for all a, b. However, in that case the extent of \mathcal{F} is in fact n - 1, contradicting our assumption.

5.3 The case p > 1/2

In this section we prove Theorem 3.1 in the case p > 1/2. The proof in this case differs from that of the other cases: it uses a different shifting argument, also due to Ahlswede and Khachatrian [6], who used it for the case p = 1/2.

The idea is to use a different kind of shifting. Let \mathcal{F} be a family on n points. For two disjoint sets $A, B \subseteq [n]$, the shift operator $\mathbb{S}_{A,B}$ acts on \mathcal{F} as follows. Let $\mathcal{F}_{A,B}$ consist of all sets in S containing A and disjoint from B. Then

$$\mathbb{S}_{A,B}(\mathcal{F}) = (F \setminus \mathcal{F}_{A,B}) \cup \{S : S \in \mathcal{F}_{A,B} \text{ and } (S \setminus A) \cup B \in \mathcal{F}\} \cup \{(S \setminus A) \cup B : S \in \mathcal{F}_{A,B} \text{ and } (S \setminus A) \cup B \notin \mathcal{F}\}.$$

(This is a generalization of the original shifting operator: $\mathbb{S}_{i,j}$ is the same as $\mathbb{S}_{\{i\},\{j\}}$.)

This kind of shift is useful when p > 1/2 due to the following obvious property.

Lemma 5.4. If |B| > |A| then $\mu_p(\mathbb{S}_{A,B}(\mathcal{F})) \ge \mu_p(\mathcal{F})$ for any $p \in (1/2,1)$, with equality if only if $\mathbb{S}_{A,B}(\mathcal{F}) = \mathcal{F}$.

When done correctly, $\mathbb{S}_{A,B}$ preserves the property of being *t*-intersecting, as the following lemma from [6], whose lengthy proof we omit, shows.

Lemma 5.5. Let \mathcal{F} be a t-intersecting family on n points, and let $A, B \subseteq [n]$ be disjoint sets of cardinalities |A| = s and |B| = s + 1. If \mathcal{F} is (r, r + 1)-stable for all r < s then $\mathbb{S}_{A,B}(\mathcal{F})$ is t-intersecting as well.

A family is (s, s + 1)-stable if $\mathbb{S}_{A,B}(\mathcal{F}) = \mathcal{F}$ for any disjoint sets A, B of cardinalities |A| = s and |B| = s + 1. As in the case of the simpler shifting operator $\mathbb{S}_{i,j}$, we can convert any family to a stable family while maintaining its being t-intersecting, by repeatedly applying a shifting operation on sets A, B with minimal |A|, implying the following lemma.

Lemma 5.6. Let $p \in (1/2, 1)$. If \mathcal{F} is a t-intersecting family on n points having maximum μ_p -measure then \mathcal{F} is (s, s + 1)-stable for all s.

The importance of stable families is the following simple observation from [6].

Lemma 5.7. If a t-intersecting family \mathcal{F} on n points is (s, s + 1)-stable for all s then every $A, B \in \mathcal{F}$ satisfy $|A| + |B| \ge n + t - 1$.

 $\textit{Proof. Let } A, B \in \mathcal{F}. \text{ If } A \cup B = [n] \text{ then } |A| + |B| = |A \cup B| + |A \cap B| \ge n + t, \text{ so suppose } |A \cup B| < n.$

Define $s = \min(|A \cap B|, n - |A \cup B| - 1) \ge 0$, and choose a subset $C \subseteq A \cap B$ of size s and a subset $D \subseteq [n] \setminus (A \cup B)$ of size s + 1. Since \mathcal{F} is (s, s + 1)-stable, $A' = (A \setminus C) \cup D \in \mathcal{F}$. We have $|A' \cap B| = |A \cap B| - |C| = |A \cap B| - s$, showing that $|A \cap B| \ge s + t$. In particular, $s = n - |A \cup B| - 1$, and so

$$|A| + |B| = |A \cup B| + |A \cap B| \ge (n - s - 1) + (s + t) = n + t - 1.$$

The bound n + t - 1 is tight: when n = t + 2r + 1, the family $\mathcal{F}_{t,r}$ is (s, s + 1)-stable for all s, and two sets A, B of size t + r satisfy |A| + |B| = n + r - 1.

We need one more lemma, on uniform families, which also follows from the classical Ahlswede–Khachatrian theorem; the proof appearing below only relies on the Erdős–Ko–Rado theorem.

Lemma 5.8. Let $\mathcal{F} \subseteq {\binom{[t+2r+1]}{t+r}}$ be a t-intersecting family of maximum size, and define a family $\mathcal{F}'_{t,r}$, the uniform analog of $\mathcal{F}_{t,r}$, as follows:

$$\mathcal{F}'_{t,r} = \{ S \in \binom{[t+2r+1]}{t+r} : |S \cap [t+2r]| = t+r \}.$$

If $t \ge 2$ then \mathcal{F} is equivalent to $\mathcal{F}'_{t,r}$ (that is, equals a similar family with [t+2r] possibly replaced by some other subset of [t+2r+1] of size t+2r), and if t=1 then $|\mathcal{F}| \le |\mathcal{F}'_{t,r}|$.

Proof. Define $\mathcal{G} = \{\overline{A} : A \in \mathcal{F}\}$ (where $\overline{A} = [t + 2r + 1] \setminus A$), so that $\mathcal{G} \subseteq {\binom{[t+2r+1]}{r+1}}$. Since

$$|\overline{A} \cap \overline{B}| = |\overline{A \cup B}| = t + 2r + 1 - |A \cup B| = t + 2r + 1 - |A| - |B| + |A \cap B| = |A \cap B| - (t - 1),$$

we see that the condition that \mathcal{F} is *t*-intersecting is equivalent to the condition that \mathcal{G} is intersecting.

Since $r+1 \leq \frac{t+2r+1}{2}$ (with equality only for t=1), the Erdős–Ko–Rado theorem shows that $|\mathcal{G}| \leq \binom{t+2r}{r} = \binom{t+2r}{t+r}$. Moreover, when $t \geq 2$, equality holds only when $\mathcal{G} = \{S \in \binom{[t+2r+1]}{r+1} : i \in S\}$ for some $i \in [t+2r+1]$. In that case, $\mathcal{F} = \{S \in \binom{[t+2r+1]}{t+r} : i \notin S\}$, and so \mathcal{F} is equivalent to $\mathcal{F}'_{t,r}$ (in the family $\mathcal{F}_{t,r}$ itself, i = t+2r+1).

We can now prove Theorem 3.1 in the case p > 1/2.

Lemma 5.9. Let \mathcal{F} be a t-intersecting family on n points of maximum μ_p -measure, for some $p \in (1/2, 1)$. Suppose that $n \in \{t + 2r, t + 2r + 1\}$. If $t \geq 2$ or n = t + 2r then \mathcal{F} is equivalent to $\mathcal{F}_{t,r}$. If t = 1 and n = t + 2r + 1 then $\mu_p(\mathcal{F}) \leq \mu_p(\mathcal{F}_{t,r})$ and $\mathcal{F} = \mathcal{G} \cup {\binom{[t+2r+1]}{\geq t+r+1}}$, where $\mathcal{G} \subseteq {\binom{[t+2r+1]}{t+r}}$ contains exactly ${\binom{t+2r}{t+r}}$ sets. *Proof.* Lemma 5.6 shows that \mathcal{F} is (s, s+1)-stable for all s, and so Lemma 5.7 shows that any $A, B \in \mathcal{F}$ satisfy $|A| + |B| \ge n + t - 1$. In particular, any set A has cardinality at least $\frac{n+t-1}{2}$. We now consider two cases, according to the parity of n + t.

Suppose first that n = t + 2r. Then $\frac{n+t-1}{2} = t + r - \frac{1}{2}$, and so all sets in \mathcal{F} have cardinality at least t+r. In other words, $\mathcal{F} \subseteq \mathcal{F}_{t,r}$. Since \mathcal{F} has maximum μ_p -measure, $\mathcal{F} = \mathcal{F}_{t,r}$.

Suppose next that n = t + 2r + 1. Then $\frac{n+t-1}{2} = t + r$, and so all sets in \mathcal{F} have cardinality at least t+r. If $|A| \ge t+r$ and $|B| \ge t+r+1$ then $|A \cap B| \ge |A|+|B|-n=t$, and so the fact that \mathcal{F} has maximum μ_p -measure shows that $\mathcal{F} = \mathcal{G} \cup {[n] \choose \ge t+r+1}$, where $\mathcal{G} \subseteq {[n] \choose t+r}$ is t-intersecting. We can now complete the proof using Lemma 5.8. If $t \ge 2$ then \mathcal{G} is equivalent to $\mathcal{F}'_{t,r}$, say

$$\mathcal{G} = \{S \in \binom{[t+2r+1]}{t+r} : |S \cap X| = t+r\},\$$

where |X| = t + 2r. Since any set of size at least t + r + 1 intersects X in at least t + r points, $\mathcal{F} = \{S \subseteq [n] : |S \cap X| \ge t + r\}, \text{ and so } \mathcal{F} \text{ is equivalent to } \mathcal{F}_{t,r}.$

When t = 1, Lemma 5.8 shows that $|\mathcal{G}| \leq |\mathcal{F}'_{t,r}|$, and so the same reasoning shows that $\mu_p(\mathcal{F}) \leq \square$ $\mu_p(\mathcal{F}_{t,r}).$

References

- [1] Rudolf Ahlswede and Valdimir Blinovsky. Lectures on Advances in Combinatorics. Springer, 2008.
- [2] Rudolf Ahlswede and Levon H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Comb. Theory A, 76(1):121–138, 1996.
- [3] Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem for systems of finite sets. Eur. J. Comb., 18(2):125–136, 1997.
- [4] Rudolf Ahlswede and Levon H. Khachatrian. The diametric theorem in Hamming spaces—optimal anticodes. Adv. Appl. Math., 20:429-449, 1998.
- [5] Rudolf Ahlswede and Levon H. Khachatrian. A pushing-pulling method: New proofs of intersection theorems. Combinatorica, 19(1):1-15, 1999.
- [6] Rudolf Ahlswede and Levon H. Khachatrian. Katona's intersection theorem: Four proofs. Combinatorica, 25(1):105–110, 2005.
- [7] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover. Ann. Math., 162(1):439-485, 2005.
- [8] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
- [9] Péter Frankl. The Erdős–Ko–Rado theorem is true for n = ckt. In Combinatorics, Proceedings of the Fifth Hungarian Colloquium on Combinatorics, Keszthely, pages 365–375, Amsterdam, 1978. North-Holland.
- [10] Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. *Combinatorica*, 28(5):503-528, 2008.
- [11] Gyula O. H. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hungar., 15:329-337, 1964.
- [12] Natan Keller and Noam Lifshitz. A tight stability version of the complete intersection theorem. CoRR, abs/1604.06135, 2016.