Ahlswede-Khachatrian theorem

Yuval Filmus

2013

Abstract

The Erdős-Ko-Rado theorem determines the largest μ_{p}-measure of an intersecting family of sets. We consider the analogue of this theorem to t-intersecting families (families in which any two sets have at least t elements in common), following Ahlswede and Khachatrian [1, 2]. We present a proof of the μ_{p} version of their theorem, which is adapted from the earlier proofs. Due to the simpler nature of the μ_{p} setting, our proof is simpler and cleaner.

1 Introduction

Friedgut [5] considered t-intersecting families, showing that if \mathcal{F} is a t-intersecting family of sets and $p \leq 1 /(t+1)$ then $\mu_{p}(\mathcal{F}) \leq p^{t}$. The upper bound on p arises naturally in his proof. This limitation is not arbitrary. Indeed, when $p>1 /(t+1)$, the bound p^{t} is incorrect. The correct bound was found by Ahlswede and Khachatrian [1, 2] in the k-uniform setting. We state it in the language of slices: for a family of sets $\mathcal{F}, \operatorname{Sl}(\mathcal{F}, k)=\{A \in \mathcal{F}:|A|=k\}$.
Definition 1.1. The (t, r) Frankl family $\mathcal{F}_{t, r}$ is the t-intersecting family defined by

$$
\mathcal{F}_{t, r}=\{S \subseteq[t+2 r]:|S| \geq t+r\} .
$$

Theorem 1.1 (Ahlswede-Khachatrian). Let $1 \leq t \leq k \leq n$ and $r \geq 0$, and let \mathcal{F} be a t-intersecting family. When

$$
(k-t+1)\left(2+\frac{t-1}{r+1}\right)<n<(k-t+1)\left(2+\frac{t-1}{r}\right)
$$

we have $|\operatorname{Sl}(\mathcal{F}, k)| \leq\left|\operatorname{Sl}\left(\mathcal{F}_{t, r}, k\right)\right|$, with equality only if the slices are equivalent.
When

$$
n=(k-t+1)\left(2+\frac{t-1}{r+1}\right)
$$

we have $|\operatorname{Sl}(\mathcal{F}, k)| \leq\left|\operatorname{Sl}\left(\mathcal{F}_{t, r}, k\right)\right|=\left|\operatorname{Sl}\left(\mathcal{F}_{t, r+1}, k\right)\right|$, with equality only if $\operatorname{Sl}(\mathcal{F}, k)$ is equivalent to either $\operatorname{Sl}\left(\mathcal{F}_{t, r}, k\right)$ or $\operatorname{Sl}\left(\mathcal{F}_{t, r+1}, k\right)$.

The Dinur-Safra argument [4] implies the following counterpart in the μ_{p} setting.

Corollary 1.2. If \mathcal{F} is t-intersecting then for $r \geq 0$, when

$$
\frac{r}{t+2 r-1}<p<\frac{r+1}{t+2 r+1},
$$

we have $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)$ with equality only if \mathcal{F} is equivalent to $\mathcal{F}_{t, r}$.
If $p=(r+1) /(t+2 r+1)$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)=\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$.
Corollary 1.2 covers all $p<1 / 2$ (and for $t=1$, all $p \leq 1 / 2$). For $p>1 / 2$, there is no meaningful bound in sight: the μ_{p}-measure of the t-intersecting family consisting of all sets of size at least $(n+t) / 2$ approaches 1 . For $p=1 / 2$, the measure of this family approaches $1 / 2$.

The Dinur-Safra argument isn't strong enough to handle equality when there are two different optimal families. In the rest of this chapter, we adapt the proof of the Ahlswede-Khachtrian theorem to the μ_{p} setting, thereby settling the cases $p=(r+1) /(t+2 r+1)$. We will prove the following version of the AhlswedeKhachatrian theorem, which uses the notion of extension: for a family of sets \mathcal{F} on m points, $U^{n}(\mathcal{F})=\{A \subseteq[n]: A \cap[m] \in \mathcal{F}\}$.

Theorem 1.3. Let \mathcal{F} be a t-intersecting family on n points for $t \geq 2$. If $r /(t+2 r-1)<p<(r+1) /(t+2 r+1)$ for some $r \geq 0$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)$, with equality if and only if \mathcal{F} is equivalent to $U^{n}\left(\mathcal{F}_{t, r}\right)$.

If $p=(r+1) /(t+2 r+1)$ for some $r \geq 0$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)=\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$, with equality if and only if \mathcal{F} is equivalent to either $U^{n}\left(\mathcal{F}_{t, r}\right)$ or $U^{n}\left(\mathcal{F}_{t, r+1}\right)$.

2 Proof overview

Our proof of the Ahlswede-Khachatrian theorem in the μ_{p} setting combines the approaches in the two papers [1, 2] in which Ahlswede and Khachatrian proved their theorem in the classical setting (the two papers present two different proofs). The classical Erdős-Ko-Rado theorem can be proved using Katona's circle argument, and here we will concentrate on t-intersecting families for $t \geq 2$.

Given $t \geq 2$ and $p \in(0,1 / 2)$, our goal is to determine the t-intersecting families of maximum μ_{p}-measure. In general, the maximum μ_{p}-measure of a t intersecting family depends on the size of its support: for example, the maximum μ_{p}-measure of a 2 -intersecting family on 2 points is p^{2} for all $p<1 / 2$, but for any $p>1 / 3$ there is a 2 -intersecting family of larger measure $4 p^{3}-3 p^{4}$ on 4 points, namely the Frankl family $\mathcal{F}_{2,1}$. We will not be interested in the maximum $\mu_{p^{-}}$ measure of a t-intersecting family on n points. Rather, we will be interested in the supremum of the μ_{p}-measures of t-intersecting families on any number of points; we will show that for all $p<1 / 2$, the supremum is attained at one of the Frankl families.

The proof uses the technique of shifting. A t-intersecting family \mathcal{F} on n points is left-compressed if for all $A \in \mathcal{F}, j \in A$ and $i \in[n] \backslash A$ satisfying $i<j$, we have $A \backslash\{j\} \cup\{i\} \in \mathcal{F}$. Using shifting, we can show that given any t-intersecting family, there is a left-compressed t-intersecting family with the
same μ_{p}-measure for all p. Therefore as far as upper bounds are concerned, it is enough to consider left-compressed families.

Let \mathcal{F} be a left-compressed t-intersecting family, let $r \geq 0$ be an integer, and suppose that $r /(t+2 r-1)<p<(r+1) /(t+2 r+1)$. We can also assume that \mathcal{F} is monotone (if $A \in \mathcal{F}$ and $B \supseteq A$ then $B \in \mathcal{F}$). The proof consists of two steps. In the first step, we show that if \mathcal{F} depends (as a Boolean function) on some $i>t+2 r$ then we can construct from \mathcal{F} a t-intersecting family of larger $\mu_{p^{-}}$ measure. This implies that the maximum μ_{p}-measure of a t-intersecting family is attained at some family on $t+2 r$ points. In the second step, we show that if \mathcal{F} is not symmetric with respect to its first $t+2 r$ coordinates then we can construct from \mathcal{F} a t-intersecting family of larger μ_{p}-measure. This implies that the maximum μ_{p}-measure of a t-intersecting family is attained (uniquely) at a family of the form $\{A \subseteq[t+2 r]:|A| \geq k\}$, and so at the Frankl family $\mathcal{F}_{t, r}$.

A similar but more delicate argument handles the case $p=(r+1) /(t+2 r+1)$, and this completes the proof for left-compressed t-intersecting families. The upper bound on the μ_{p}-measure holds for arbitrary t-intersecting families. An argument similar in spirit to the one used by Chung et al. [3] to prove the equivalence of intersection problems and agreement problems shows that t-intersecting families of maximum μ_{p}-measure are equivalent to the corresponding Frankl family or families.

For the duration of the proof, we will use $\mu_{p}^{X}(\mathcal{F})$ to denote the μ_{p}-measure of a family \mathcal{F} as a subset of 2^{X}.

3 Shifting

In this section we develop formally the classical technique of shifting. We start by defining the shifting operator.

Definition 3.1. Let \mathcal{F} be a family of sets on n points, and let $i, j \in[n], i \neq j$. For $A \in \mathcal{F}$, let $\mathbb{S}_{i \leftarrow j}(A)=A \backslash\{j\} \cup\{i\}$ if $j \in A, i \notin A$ and $A \backslash\{j\} \cup\{i\} \notin \mathcal{F}$, and let $\mathbb{S}_{i \leftarrow j}(A)=A$ otherwise. The shifted family $\mathbb{S}_{i \leftarrow j}(\mathcal{F})$ consists of the sets $\mathbb{S}_{i \leftarrow j}(A)$ for all $A \in \mathcal{F}$.

As an example, let $\mathcal{F}=\{\{2\},\{13\},\{23\}\}$. Then $\mathbb{S}_{1 \leftarrow 2}(\mathcal{F})=\{\{1\},\{13\},\{23\}\}$. Since $\left|\mathbb{S}_{i \leftarrow j}(A)\right|=|A|$, shifting doesn't change the μ_{p}-measure of a family. Shifting also maintains the property of being t-intersecting.

Lemma 3.1. Let \mathcal{F} be a family of sets on n points, and let $i, j \in[n], i \neq j$. If \mathcal{F} is t-intersecting for some $t \geq 1$ then $\mathbb{S}_{i \leftarrow j}(\mathcal{F})$ is also t-intersecting.

Proof. Let $A^{\prime}=\mathbb{S}_{i \leftarrow j}(A), B^{\prime}=\mathbb{S}_{i \leftarrow j}(B) \in \mathbb{S}_{i \leftarrow j}(\mathcal{F})$, where $A, B \in \mathcal{F}$. We consider several cases. If $A^{\prime}=A$ and $B^{\prime}=B$ then $\left|A^{\prime} \cap B^{\prime}\right|=|A \cap B| \geq t$ since \mathcal{F} is t-intersecting. If $A^{\prime} \neq A$ and $B^{\prime} \neq B$ then $i \in A^{\prime}, B^{\prime}$ and $j \in A, B$, and so $\left|A^{\prime} \cap B^{\prime}\right|=|(A \cap B) \backslash\{j\} \cup\{i\}|=|A \cap B| \geq t$. The remaining case is when $A^{\prime} \neq A$ and $B^{\prime}=B$. If $j \notin B$ then $\left|A^{\prime} \cap B^{\prime}\right| \geq|(A \backslash\{j\}) \cap B|=|A \cap B| \geq t$. If $j \in B$ and $i \in B$ then $\left|A^{\prime} \cap B^{\prime}\right|=|(A \backslash\{j\} \cup\{i\}) \cap B|=|A \cap B| \geq t$. If $j \in B$ and $i \notin B$ then by the definition of $\mathbb{S}_{i \leftarrow j}(B)$, we must have $B^{\prime \prime}=B \backslash\{j\} \cup\{i\} \in \mathcal{F}$.

Hence $\left|A^{\prime} \cap B\right|=\left|\left(A^{\prime} \backslash\{i\} \cup\{j\}\right) \cap(B \backslash\{j\} \cup\{i\})\right|=\left|A \cap B^{\prime \prime}\right| \geq t$. Therefore $\mathbb{S}_{i \leftarrow j}(\mathcal{F})$ is t-intersecting.

By shifting a given family toward smaller elements, we can obtain a leftcompressed family.

Definition 3.2. A family \mathcal{F} on n points is left-compressed if $\mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F}$ for all $i, j \in[n]$ such that $i<j$.

Lemma 3.2. Let \mathcal{F} be a t-intersecting family on n points. There is a leftcompressed t-intersecting family \mathcal{G} on n points such that $\mu_{p}(\mathcal{G})=\mu_{p}(\mathcal{F})$ for all $p \in[0,1]$. Furthermore, \mathcal{G} can be obtained from \mathcal{F} by a sequence of applications of the operators $\mathbb{S}_{i \leftarrow j}$ for various i, j.

Proof. Let $\Phi(\mathcal{F})$ be the sum of all elements in all sets in \mathcal{F}. It is easy to see that $\Phi\left(\mathbb{S}_{i \leftarrow j}(\mathcal{F})\right) \leq \Phi(\mathcal{F})$ whenever $i<j$, with equality only if $\mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F}$. Let $\mathbb{S}(\mathcal{F})$ result from applying in sequence the operators $\mathbb{S}_{i \leftarrow j}$ for all $i, j \in$ $[n]$ such that $i<j$, and define a sequence $\mathcal{F}_{0}=\mathcal{F}, \mathcal{F}_{s+1}=\mathbb{S}\left(\mathcal{F}_{s}\right)$. Since $\Phi\left(\mathcal{F}_{s+1}\right) \leq \Phi\left(\mathcal{F}_{s}\right)$ and $\Phi\left(\mathcal{F}_{s}\right)$ is a non-negative integer, $\Phi\left(\mathcal{F}_{s}\right)$ reaches its minimum at some $s=T$. Since $\Phi\left(\mathcal{F}_{T+1}\right)=\Phi\left(\mathcal{F}_{T}\right)$ and so $\mathcal{F}_{T+1}=\mathcal{F}_{T}$, we conclude that $\mathbb{S}_{i \leftarrow j}\left(\mathcal{F}_{T}\right)=\mathcal{F}_{T}$ for all $i, j \in[n]$ such that $i<j$, and so \mathcal{F}_{T} is leftcompressed. Lemma 3.1 shows that \mathcal{F}_{T} is t-intersecting. Finally, it is easy to check that shifting preserves the μ_{p}-measure for all $p \in[0,1]$.

From now on until Section 6 we will only be interested in left-compressed families.

4 Generating sets

In this section we implement the first step of the proof, following [1]. In this step, we show that if \mathcal{F} is a monotone left-compressed t-intersecting family and $p<(r+1) /(t+2 r+1)$, then either \mathcal{F} depends only on the first $t+2 r$ points, or we can modify \mathcal{F} to obtain a t-intersecting family of larger measure. The tool we will use is generating sets.

Definition 4.1. Let \mathcal{F} be a family of sets on n points. Its generating set $G(\mathcal{F})$ is the family of inclusion-minimal sets in \mathcal{F}. Its extent $m(\mathcal{F})$ is the largest integer appearing in any set in $G(\mathcal{F})$.

Let G be a family of sets on n points. Its upset $U^{n}(G)$ is the family $\mathcal{F}=$ $\{A \subseteq[n]: A \supseteq B$ for some $B \in G\}$.

A family of sets \mathcal{F} on n points is monotone if for all $B \in \mathcal{F}$, we have $A \in \mathcal{F}$ whenever $B \subseteq A \subseteq[n]$. An upset is always monotone. If \mathcal{F} is monotone then $\mathcal{F}=U^{n}(G(\mathcal{F}))$.

For example, $G\left(\mathcal{F}_{t, r}\right)=\{A \subseteq[t+2 r]:|A|=t+r\}$ and $m\left(\mathcal{F}_{t, r}\right)=t+2 r$. In the language of monotone Boolean functions, if \mathcal{F} is monotone then $G(\mathcal{F})$ is its set of minterms.

Our goal in this section is to show that if \mathcal{F} is a monotone t-intersecting family, $p<(r+1) /(t+2 r+1)$ and $m(\mathcal{F})>t+2 r$ then there is another t intersecting family \mathcal{G} with $\mu_{p}(\mathcal{G})>\mu_{p}(\mathcal{F})$. We will construct \mathcal{G} by modifying the generating set of \mathcal{F}, guided by the following easy lemma.

Lemma 4.1. Let \mathcal{F} be a left-compressed t-intersecting family with $m=m(\mathcal{F})$, and suppose that $A, B \in \mathcal{F}$ both contain m. If $|A \cap B|=t$ then $A \cup B=[m]$ and so $|A|+|B|=m+t$.

Proof. Let $A, B \in \mathcal{F}$ be as indicated. Clearly $A \cup B \subseteq[m]$. Suppose that for some $i \in[m], i \notin A \cup B$. By assumption, $i<m$. Since \mathcal{F} is left-compressed, $A^{\prime}=A \backslash\{m\} \cup\{i\} \in \mathcal{F}$. However, $\left|A^{\prime} \cap B\right|=|A \cap B|-1=t-1$, contradicting the assumption that \mathcal{F} is t-intersecting. We conclude that $A \cup B=[m]$ and so $|A|+|B|=|A \cup B|+|A \cap B|=m+t$.

This lemma suggests separating the sets in $G(\mathcal{F})$ containing m according to their size.

Definition 4.2. Let \mathcal{F} be a family of sets with $m=m(\mathcal{F})$. We define $G^{*}(\mathcal{F})=$ $\{A \in G(\mathcal{F}): m \in A\}$ and $G_{a}^{*}(\mathcal{F})=\left\{A \in G^{*}(\mathcal{F}):|A|=a\right\}$. In words, $G^{*}(\mathcal{F})$ consists of those sets in $G(\mathcal{F})$ containing m, and $G_{a}^{*}(\mathcal{F})$ consists of those sets in $G(\mathcal{F})$ containing m and of size a.

For a family G on n points and $m \in[n]$, we define $G \backslash m=\{A \backslash\{m\}: A \in$ $G\}$.

Suppose $a+b=m(\mathcal{F})+t$ and $a \neq b$. Lemma 4.1 implies that $U^{n}(G(\mathcal{F}) \backslash$ $\left.\left(G_{a}^{*}(\mathcal{F}) \cup G_{b}^{*}(\mathcal{F})\right) \cup\left(G_{a}^{*}(\mathcal{F}) \backslash m(\mathcal{F})\right)\right)$ is t-intersecting. Moreover, it turns out that this transformation can be used to increase the μ_{p}-measure.

We start by proving two easy auxiliary results.
Lemma 4.2. Let \mathcal{F} be a monotone left-compressed family on n points with $m=m(\mathcal{F})$ and let $A \in G^{*}(\mathcal{F})$. Then

$$
\mathcal{F} \backslash U^{n}(G(\mathcal{F}) \backslash\{A\})=\{A\} \times 2^{[n] \backslash[m]}
$$

In words, if $A \in G^{*}(\mathcal{F})$ then the sets generated by A are exactly $\{A\} \times 2^{[n] \backslash[m]}$.
Proof. Suppose $B \in \mathcal{F} \backslash U^{n}(G(\mathcal{F}) \backslash\{A\})$. Clearly $B \supseteq A$. We would like to show that $B \cap[m]=A$. If not, then let $x \in(B \cap[m]) \backslash A$. Since \mathcal{F} is left-compressed, $C=\mathbb{S}_{x \leftarrow m}(A) \in \mathcal{F}$. Clearly $C \in U^{n}(G(\mathcal{F}) \backslash\{A\})$, and since $B \supseteq C$, also $B \in U^{n}(G(\mathcal{F}) \backslash\{A\})$, contrary to the assumption. Hence $B \cap[m]=A$.

For the other direction, let $B=A \cup C$, where $C \subseteq[n] \backslash[m]$. If $B \in$ $U^{n}(G(\mathcal{F}) \backslash\{A\})$ then $B \supseteq D$ for some $D \in G(\mathcal{F}) \backslash\{A\}$. Since $\max D \leq m$, necessarily $D \subseteq B \cap[m]=A$, contradicting the fact that A is inclusion-minimal. This completes the proof of the lemma.

Lemma 4.3. Let \mathcal{F} be a family of sets on n points with $m=m(\mathcal{F})$ and let $A \in G^{*}(\mathcal{F})$. If $B \in \mathcal{F}$ and $B \cap[m-1]=A \backslash\{m\}$ then $m \in B$.

Proof. Suppose that $m \notin B$. Since $B \in \mathcal{F}, B \supseteq C$ for some $C \in G(\mathcal{F})$. Since $\max C \leq m$ and $m \notin B, C \subseteq B \cap[m]=A \backslash\{m\}$, contradicting the fact that A is inclusion-minimal.

Next, we describe the transformation itself.
Lemma 4.4. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points with $m=m(\mathcal{F})$, and let $a+b=m+t$ for some non-negative integers $a \neq b$. Define

$$
\begin{aligned}
H_{a} & =G(\mathcal{F}) \backslash\left(G_{a}^{*}(\mathcal{F}) \cup G_{b}^{*}(\mathcal{F})\right) \cup\left(G_{a}^{*}(\mathcal{F}) \backslash m\right), & \mathcal{G}_{a}=U^{n}\left(H_{a}\right) \\
H_{b} & =G(\mathcal{F}) \backslash\left(G_{a}^{*}(\mathcal{F}) \cup G_{b}^{*}(\mathcal{F})\right) \cup\left(G_{b}^{*}(\mathcal{F}) \backslash m\right), & \mathcal{G}_{b}=U^{n}\left(H_{b}\right)
\end{aligned}
$$

The families $\mathcal{G}_{a}, \mathcal{G}_{b}$ are t-intersecting. Furthermore, if $G_{a}^{*}(\mathcal{F}) \neq \emptyset$ or $G_{b}^{*}(\mathcal{F}) \neq \emptyset$ then for all $p<1 / 2, \max \left(\mu_{p}\left(\mathcal{G}_{a}\right), \mu_{p}\left(\mathcal{G}_{b}\right)\right)>\mu_{p}(\mathcal{F})$.

Proof. In order to show that \mathcal{G}_{a} is t-intersecting, it is enough to show that H_{a} is t-intersecting. Let $A, B \in H_{a}$. If $A, B \notin G_{a}^{*}(\mathcal{F}) \backslash m$ then $A, B \in G(\mathcal{F})$ and so $|A \cap B| \geq t$, so suppose that $A \in G_{a}^{*}(\mathcal{F}) \backslash m$. Notice that $A \cup\{m\} \in G_{a}^{*}(\mathcal{F})$. If $B \notin G^{*}(\mathcal{F})$ then $m \notin B$ and $B \in G(\mathcal{F})$, and so $|A \cap B|=|(A \cup\{m\}) \cap B| \geq t$. If $B \in G_{c}^{*}(\mathcal{F})$ then $c \neq b$ and so $|A \cup\{m\}|+|B|=a+c \neq a+b=m+t$. Therefore Lemma 4.1 implies that $|(A \cup\{m\}) \cap B| \geq t+1$ and so $|A \cap B| \geq t$. A similar argument applies if $B \in G_{a}^{*}(\mathcal{F}) \backslash\{m\}$ (with a in place of c), and we conclude that \mathcal{G}_{A} is t-intersecting. The proofs for \mathcal{G}_{b} are analogous.

Let $p<1 / 2$. We proceed to calculate $\mu_{p}\left(\mathcal{G}_{a}\right)$ and $\mu_{p}\left(\mathcal{G}_{b}\right)$. Lemma 4.2 shows that

$$
\mathcal{F} \backslash \mathcal{G}_{a}=G_{b}^{*}(\mathcal{F}) \times 2^{[n] \backslash[m]}
$$

and Lemma 4.3 shows that

$$
\mathcal{G}_{a} \backslash \mathcal{F}=\left(G_{a}^{*}(\mathcal{F}) \backslash m\right) \times 2^{[n] \backslash[m]}
$$

Therefore

$$
\begin{aligned}
\mu_{p}\left(\mathcal{G}_{a}\right) & =\mu_{p}(\mathcal{F})-\mu_{p}^{[m]}\left(G_{b}^{*}(\mathcal{F})\right)+\mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F}) \backslash m\right) \\
& =\mu_{p}(\mathcal{F})-\mu_{p}^{[m]}\left(G_{b}^{*}(\mathcal{F})\right)+\frac{1-p}{p} \mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)
\end{aligned}
$$

Without loss of generality, suppose that $\mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right) \geq \mu_{p}^{[m]}\left(G_{b}^{*}(\mathcal{F})\right)$, which implies that $\mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)>0$ by assumption. Then

$$
\mu_{p}\left(\mathcal{G}_{a}\right) \geq \mu_{p}(\mathcal{F})+\left(\frac{1-p}{p}-1\right) \mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)>0
$$

since $p<1 / 2$ implies $(1-p) / p>1$.
This lemma allows us to achieve our goal whenever $G_{a}^{*}(\mathcal{F}) \neq \emptyset$ for some $a \neq(m(\mathcal{F})+t) / 2$. When $a=(m(\mathcal{F})+t) / 2$, the construction in the lemma doesn't result in a t-intersecting family. In order to fix the construction, we
will focus on a subset of $G_{a}^{*}(\mathcal{F})$ not containing some common element. This property will guarantee that the result is t-intersecting. If p is small enough (depending on $m(\mathcal{F})$), then the construction still increases the μ_{p}-measure.

Lemma 4.5. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points with $m=m(\mathcal{F})>t+2 r$ for some $r \geq 0$, and let $a=(m+t) / 2$ be integral. For $i \in[m-1]$, define

$$
H_{i}=G(\mathcal{F}) \backslash G_{a}^{*}(\mathcal{F}) \cup\left\{A \in G_{a}^{*}(\mathcal{F}) \backslash m: i \notin A\right\}, \quad \mathcal{G}_{i}=U^{n}\left(H_{i}\right)
$$

The families \mathcal{G}_{i} are t-intersecting. Furthermore, if $p<(r+1) /(t+2 r+1)$ and $G_{a}^{*}(\mathcal{F}) \neq \emptyset$ then $\max _{i \in[m-1]} \mu_{p}\left(\mathcal{G}_{i}\right)>\mu_{p}(\mathcal{F})$.
Proof. Let $i \in[m-1]$. We proceed to show that \mathcal{G}_{i} is t-intersecting. As in the proof of the corresponding part of Lemma 4.4, it is enough to show that H_{i} is t-intersecting. If $A, B \in H_{i}$ and not both $A, B \in G_{a}^{*}(\mathcal{F}) \backslash m$ then the argument in Lemma 4.4 shows that $|A \cap B| \geq t$, so suppose that $A, B \in G_{a}^{*}(\mathcal{F}) \backslash m$. Note that $i \notin A, B$. Lemma 4.1 shows that $|(A \cup\{m\}) \cap(B \cup\{m\})|>t$, and so $|A \cap B| \geq t$, unless $(A \cup\{m\}) \cup(B \cup\{m\})=[m]$. However, the latter is impossible since $i \notin A \cup B$. This shows that \mathcal{G}_{i} is t-intersecting.

Let $K_{i}=\left\{A \in G_{a}^{*}(\mathcal{F}): i \notin A\right\}$. We proceed to calculate $\mu_{p}\left(\mathcal{G}_{i}\right)$. Lemma 4.2 shows that

$$
\mathcal{F} \backslash \mathcal{G}_{i}=\left(G_{a}^{*}(\mathcal{F}) \backslash K_{i}\right) \times 2^{[n] \backslash[m]}
$$

and Lemma 4.3 shows that

$$
\mathcal{G}_{i} \backslash \mathcal{F}=\left(K_{i} \backslash m\right) \times 2^{[n] \backslash[m]} .
$$

Therefore

$$
\begin{align*}
\mu_{p}\left(\mathcal{G}_{i}\right) & =\mu_{p}(\mathcal{F})-\mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F}) \backslash K_{i}\right)+\frac{1-p}{p} \mu_{p}^{[m]}\left(K_{i}\right) \tag{1}\\
& =\mu_{p}(\mathcal{F})-\mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)+\frac{1}{p} \mu_{p}^{[m]}\left(K_{i}\right)
\end{align*}
$$

In view of this, we would like to maximize $\mu_{p}^{[m]}\left(K_{i}\right)$. Since all sets in K_{i} have Hamming weight $a, \mu_{p}^{[m]}\left(K_{i}\right)=\left|K_{i}\right| p^{a}(1-p)^{m-a}$, and similarly $\mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)=$ $\left|G_{a}^{*}(\mathcal{F})\right| p^{a}(1-p)^{m-a}$. We therefore want to maximize $\left|K_{i}\right|$. Since each $A \in$ $G_{a}^{*}(\mathcal{F})$ satisfies $|A \cap[m-1]|=a-1$, it is easy to see that

$$
\underset{i \in[m-1]}{\mathbb{E}}\left|K_{i}\right|=\frac{m-a}{m-1}\left|G_{a}^{*}(\mathcal{F})\right| .
$$

There must be some $i \in[m-1]$ which satisfies $\left|K_{i}\right| \geq(m-a) /(m-1) \cdot\left|G_{a}^{*}(\mathcal{F})\right|$, and so $\mu_{p}^{[m]}\left(K_{i}\right) \geq(m-a) /(m-1) \cdot \mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)$. Substituting this in (1), we obtain

$$
\begin{aligned}
\mu_{p}\left(\mathcal{G}_{i}\right)-\mu_{p}(\mathcal{F}) & \geq\left(\frac{1}{p} \cdot \frac{m-a}{m-1}-1\right) \mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right) \\
& =\frac{m-a-p(m-1)}{p(m-1)} \mu_{p}^{[m]}\left(G_{a}^{*}(\mathcal{F})\right)
\end{aligned}
$$

The proof will be complete if we show that $m-a>p(m-1)$. Since $m>t+2 r$ and $m+t$ is even, $m \geq t+2 r+2$, and so

$$
\begin{aligned}
2[m-a-p(m-1)] & =m-t-2 p(m-1) \\
& =(1-2 p) m-t+2 p \\
& \geq(1-2 p)(t+2 r+2)-t+2 p \\
& =2 r+2-2 p(t+2 r+1) \\
& =2[r+1-p(t+2 r+1)]>0 .
\end{aligned}
$$

Combining Lemma 4.4 and Lemma 4.5, we obtain the following result.
Lemma 4.6. Let \mathcal{F} be a monotone left-compressed t-intersecting family on n points with $m=m(\mathcal{F})>t+2 r$ for some $r \geq 0$. If $p<(r+1) /(t+2 r+1)$ then there exists a t-intersecting family \mathcal{G} on n points satisfying $\mu_{p}(\mathcal{G})>\mu_{p}(\mathcal{F})$.

Proof. By definition, $G^{*}(\mathcal{F}) \neq \emptyset$, and so $G_{a}^{*}(\mathcal{F}) \neq \emptyset$ for some a. If $a \neq(m+t) / 2$ then the result follows from Lemma 4.4, otherwise it follows from Lemma 4.5.

We can conclude an important corollary.
Corollary 4.7. Let $t \geq 1, r \geq 0$ and $p<(r+1) /(t+2 r+1)$. There exists a monotone left-compressed t-intersecting family \mathcal{F} on $t+2 r$ points such that for every t-intersecting family $\mathcal{G}, \mu_{p}(\mathcal{G}) \leq \mu_{p}(\mathcal{F})$. Furthermore, equality is only possible if $m(\mathcal{G}) \leq t+2 r$.

Proof. Lemma 3.2 implies that it is enough to construct a (not necessarily leftcompressed) t-intersecting family \mathcal{F} on $t+2 r$ points. We let \mathcal{F} be a t-intersecting family of maximal μ_{p}-measure among those on $t+2 r$ points.

Now let \mathcal{G} be a t-intersecting family on n points. In order to show that $\mu_{p}(\mathcal{G}) \leq \mu_{p}(\mathcal{F})$, we can assume that \mathcal{G} has maximal μ_{p}-measure among t intersecting families on n points. Lemma 4.6 implies that $m(\mathcal{G}) \leq t+2 r$, and so $\mu_{p}(\mathcal{G}) \leq \mu_{p}(\mathcal{F})$ by definition. The lemma also implies that equality is only possible if $m(\mathcal{G}) \leq t+2 r$.

At this point, [1] considers the complemented family $\overline{\mathcal{F}}=\{[n] \backslash A: A \in \mathcal{F}\}$. When \mathcal{F} is a k-uniform t-intersecting family, $\overline{\mathcal{F}}$ is an $(n-k)$-uniform $(n-2 k+t)$ intersecting family, and we can apply Corollary 4.7 to $\overline{\mathcal{F}}$. However, in our setting $\overline{\mathcal{F}}$ need not even be intersecting. Instead, we turn to the argument in [2].

5 Pushing-pulling

In this section we implement the second step of the proof, following [2]. We will show that if \mathcal{F} is a left-compressed t-intersecting family of maximal μ_{p}-measure, where $p>r /(t+2 r-1)$, then the first $t+2 r$ coordinates of \mathcal{F} are symmetric. We start by formalizing the notion of symmetry.

Definition 5.1. A family of sets \mathcal{F} is ℓ-invariant if for all $i \neq j$ in the range $1 \leq i, j \leq \ell, \mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F}$.

The symmetric extent $\ell(\mathcal{F})$ of a family of sets \mathcal{F} on n points is the maximal $\ell \leq n$ such that \mathcal{F} is ℓ-invariant.

Our goal in this section is to show that if $p>r /(t+2 r-1)$ and $\ell(\mathcal{F})<t+2 r$ for some t-intersecting family \mathcal{F} then we can come up with a t-intersecting family of larger μ_{p}-measure.

Since we are focusing on left-compressed families, the only way in which ℓ-invariance can fail is if $\mathbb{S}_{\ell \leftarrow i}(\mathcal{F}) \neq \mathcal{F}$ for some $i<\ell$. The following definition singles out the sets which determine the symmetric extent of a family.

Definition 5.2. Let \mathcal{F} be a family of sets on n points with $\ell=\ell(\mathcal{F})$. If $n>\ell$ then its boundary sets are given by

$$
X(\mathcal{F})=\left\{A \in \mathcal{F}: \mathbb{S}_{\ell+1 \leftarrow i}(A) \notin \mathcal{F} \text { for some } i \leq \ell\right\}
$$

if $n=\ell$ then we define $X(\mathcal{F})=\emptyset$.
Our starting point is the following analog of Lemma 4.1.
Lemma 5.1. Let \mathcal{F} be a left-compressed t-intersecting family with $\ell=\ell(\mathcal{F})$, and let $A, B \in X(\mathcal{F})$. If $|A \cap B|=t$ then $A \cap B \subseteq[\ell]$ and $A \cup B \supseteq[\ell]$, and so $|A \cap[\ell]|+|B \cap[\ell]|=\ell+t$.
Proof. Let $A, B \in X(\mathcal{F})$ be as given, and note that $\ell+1 \notin A, B$. We start by showing that $A \cap B \subseteq[\ell]$. Suppose that $x \in A \cap B$ satisfies $x>\ell$. Since $\ell+1 \notin A, B$, in fact $x>\ell+1$. Since \mathcal{F} is left-compressed, $\mathbb{S}_{\ell+1 \leftarrow x}(A) \in \mathcal{F}$. However, $\left|\mathbb{S}_{\ell+1 \leftarrow x}(A) \cap B\right|=|A \cap B|-1=t-1$, contrary to assumption. We conclude that $A \cap B \subseteq[\ell]$.

Next, we show that $A \cup B \supseteq[\ell]$. Suppose that $x \notin A \cup B$ for some $x \in[\ell]$. Since $t \geq 1$ and $A \cap B \subseteq[\ell]$, there is some $y \in A \cap B \cap[\ell]$. Since \mathcal{F} is ℓ-invariant, $\mathbb{S}_{x \leftarrow y}(A) \in \mathcal{F}$. However, $\left|\mathbb{S}_{x \leftarrow y}(A) \cap B\right|=|A \cap B|-1=t-1$, contrary to assumption. We conclude that $A \cup B \supseteq[\ell]$.

Finally, let $A^{\prime}=A \cap[\ell]$ and $B^{\prime}=B \cap[\ell]$. We have $A^{\prime} \cup B^{\prime}=[\ell]$ and $\left|A^{\prime} \cap B^{\prime}\right|=|A \cap B|=t$, and so $\left|A^{\prime}\right|+\left|B^{\prime}\right|=\left|A^{\prime} \cup B^{\prime}\right|+\left|A^{\prime} \cap B^{\prime}\right|=\ell+t$.

This suggests breaking down $X(\mathcal{F})$ according to the size of the intersection with $[\ell]$.
Definition 5.3. Let \mathcal{F} be a family of sets on n points with $\ell=\ell(\mathcal{F})$. Its i th boundary marginal is given by

$$
X_{i}(\mathcal{F})=\{B \subseteq[n] \backslash[\ell+1]:[i] \cup B \in X(\mathcal{F})\}
$$

The part played by the sets $[i]$ is arbitrary. Indeed, we have the following easy lemma.

Definition 5.4. For a set X and an integer i, we define

$$
\binom{X}{i}=\{A \subseteq X:|A|=i\}
$$

Lemma 5.2. Let \mathcal{F} be a family of sets on n points with $\ell=\ell(\mathcal{F})$. Then

$$
X(\mathcal{F})=\bigcup_{i=1}^{\ell}\binom{[\ell]}{i} \times X_{i}(\mathcal{F})
$$

Proof. If $A \in X(\mathcal{F})$ then $\mathbb{S}_{\ell+1 \leftarrow i}(A) \neq A$ for some $i \leq \ell$, and in particular $i \in A$. This shows that $X_{0}(\mathcal{F})=\emptyset$. Also, clearly $\ell+1 \notin A$ for all $A \in X(\mathcal{F})$. The lemma now follows directly from the ℓ-equivalence of \mathcal{F}.

We now present two different constructions that attempt to increase the $\mu_{p^{-}}$ measure of a t-intersecting family. The first construction is the counterpart of Lemma 4.4.

Lemma 5.3. Let \mathcal{F} be a t-intersecting left-compressed family on n points with $\ell=\ell(\mathcal{F})$, and let $a+b=\ell+t$ for some non-negative integers $a \neq b$. Define

$$
\begin{aligned}
\mathcal{G}_{a} & =\mathcal{F} \backslash\binom{[\ell]}{b} \times X_{b}(\mathcal{F}) \cup\binom{[\ell]}{a-1} \times\{\ell+1\} \times X_{a}(\mathcal{F}), \\
\mathcal{G}_{b} & =\mathcal{F} \backslash\binom{[\ell]}{a} \times X_{a}(\mathcal{F}) \cup\binom{[\ell]}{b-1} \times\{\ell+1\} \times X_{b}(\mathcal{F}) .
\end{aligned}
$$

The families $\mathcal{G}_{a}, \mathcal{G}_{b}$ are t-intersecting. Furthermore, if $G_{a}^{*}(\mathcal{F}) \neq \emptyset$ or $G_{b}^{*}(\mathcal{F}) \neq \emptyset$ and $t \geq 2$ then for all $p \in(0,1), \max \left(\mu_{p}\left(\mathcal{G}_{a}\right), \mu_{p}\left(\mathcal{G}_{b}\right)\right)>\mu_{p}(\mathcal{F})$.

Proof. We start by showing that \mathcal{G}_{a} is t-intersecting. Let $A, B \in \mathcal{G}_{a}$. If $A, B \notin$ $\binom{[\ell]}{a-1} \times\{\ell+1\} \times X_{a}(\mathcal{F})$ then $A, B \in \mathcal{F}$ and so $|A \cap B| \geq t$, so assume that $A \in\binom{[\ell]}{a-1} \times\{\ell+1\} \times X_{a}(\mathcal{F})$. Pick some $x \in[\ell]$ such that $x \notin A$, and notice that $A^{\prime}=A \backslash\{\ell+1\} \cup\{x\} \in \mathcal{F}$.

Suppose first that $B \in \mathcal{F}$. If $\ell+1 \in B$ or $x \notin B$ then $|A \cap B| \geq\left|A^{\prime} \cap B\right| \geq t$, so suppose that $\ell+1 \notin B$ and $x \in B$. If $B^{\prime}=\mathbb{S}_{\ell+1 \leftarrow x}(B) \in \mathcal{F}$ then $|A \cap B|=$ $\left|A^{\prime} \cap B^{\prime}\right| \geq t$. Otherwise, $B \in X(\mathcal{F})$ and since $\ell+1 \notin B,|B \cap[\ell]| \neq b$. Since $\left|A^{\prime} \cap[\ell]\right|=a,\left|A^{\prime} \cap[\ell]\right|+|B \cap[\ell]| \neq a+b=\ell+t$, and so Lemma 5.1 shows that $\left|A^{\prime} \cap B\right| \geq t+1$, which implies $|A \cap B| \geq\left|A^{\prime} \cap B\right|-1 \geq t$.

Finally, suppose that $A, B \notin \mathcal{F}$. Pick some $y \in[\ell]$ such that $y \notin B$, and notice that $B^{\prime}=B \backslash\{\ell+1\} \cup\{y\} \in \mathcal{F}$. Since $\left|A^{\prime} \cap[\ell]\right|+\left|B^{\prime} \cap[\ell]\right|=2 a \neq$ $a+b=\ell+t$, Lemma 5.1 shows that $\left|A^{\prime} \cap B^{\prime}\right| \geq t+1$. Therefore $|A \cap B|=$ $\left|\left[\left(A^{\prime} \backslash\{x\}\right) \cap\left(B^{\prime} \backslash\{y\}\right)\right] \cup\{\ell+1\}\right| \geq t$. We conclude that \mathcal{G}_{a} is t-intersecting.

It is straightforward to compute the μ_{p}-measures of \mathcal{G}_{a} and \mathcal{G}_{b} :
$\mu_{p}\left(\mathcal{G}_{a}\right)=\mu_{p}(\mathcal{F})-\binom{\ell}{b} p^{b}(1-p)^{\ell+1-b} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{b}(\mathcal{F})\right)+\binom{\ell}{a-1} p^{a}(1-p)^{\ell+1-a} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{a}(\mathcal{F})\right)$,
$\mu_{p}\left(\mathcal{G}_{b}\right)=\mu_{p}(\mathcal{F})-\binom{\ell}{a} p^{a}(1-p)^{\ell+1-a} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{a}(\mathcal{F})\right)+\binom{\ell}{b-1} p^{b}(1-p)^{\ell+1-b} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{b}(\mathcal{F})\right)$.
These formulas become simpler if we put
$\gamma_{a}=\binom{\ell}{a} p^{a}(1-p)^{\ell+1-a} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{a}(\mathcal{F})\right), \quad \gamma_{b}=\binom{\ell}{b} p^{b}(1-p)^{\ell+1-b} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{b}(\mathcal{F})\right)$.

By assumption, either $\gamma_{a}>0$ or $\gamma_{b}>0$. Substituting these variables, we get

$$
\mu_{p}\left(\mathcal{G}_{a}\right)=\mu_{p}(\mathcal{F})-\gamma_{a}+\frac{a}{\ell-a+1} \gamma_{b}, \quad \mu_{p}\left(\mathcal{G}_{b}\right)=\mu_{p}(\mathcal{F})-\gamma_{b}+\frac{b}{\ell-b+1} \gamma_{a}
$$

Multiply the first equation by $\ell-a+1$, the second equation by $\ell-b+1$, and sum to get

$$
(\ell-a+1)\left(\mu_{p}\left(\mathcal{G}_{a}\right)-\mu_{p}(\mathcal{F})\right)+(\ell-b+1)\left(\mu_{p}\left(\mathcal{G}_{b}\right)-\mu_{p}(\mathcal{F})\right)=(a+b-\ell-1)\left(\gamma_{a}+\gamma_{b}\right)=(t-1)\left(\gamma_{a}+\gamma_{b}\right)>0
$$

We conclude that either $\mu_{p}\left(\mathcal{G}_{a}\right)>\mu_{p}(\mathcal{F})$ or $\mu_{p}\left(\mathcal{G}_{b}\right)>\mu_{p}(\mathcal{F})$.
The second construction, which is the counterpart of Lemma 4.5, concerns $a=(\ell+t) / 2$, and works by adjoining a new element, which ensures that the resulting family is t-intersecting.

Lemma 5.4. Let \mathcal{F} be a t-intersecting left-compressed family on n points with $\ell=\ell(\mathcal{F})$, and let $a=(\ell+t) / 2$ be integral. Define

$$
\mathcal{G}=\mathcal{F} \backslash\binom{[\ell]}{a} \times X_{a}(\mathcal{F}) \times 2^{\{n+1\}} \cup\binom{[\ell+1]}{a} \times X_{a}(\mathcal{F}) \times\{n+1\}
$$

Note that \mathcal{G} is a family on $n+1$ points. The family \mathcal{G} is t-intersecting. Moreover, if $X_{a}(\mathcal{F}) \neq \emptyset, t \geq 2$ and $r /(t+2 r-1)<p<1 / 2, \ell<t+2 r$ for some $r \geq 0$, then $\mu_{p}(\mathcal{G})>\mu_{p}(\mathcal{F})$.

Proof. Put $\mathcal{F}^{\prime}=\mathcal{G} \times 2^{\{n+1\}}$, and note that \mathcal{F}^{\prime} is t-intersecting and $\mu_{p}\left(\mathcal{F}^{\prime}\right)=$ $\mu_{p}(\mathcal{F})$. We start by showing that \mathcal{G} is t-intersecting. Let $A, B \in \mathcal{G}$. If $A, B \in \mathcal{F}^{\prime}$ then clearly $|A \cap B| \geq t$, so suppose that $A \in\binom{[\ell+1]}{a} \times X_{a}(\mathcal{F}) \times\{n+1\}$ and $\ell+1 \in A$. Pick some $x \in[\ell]$ such that $x \notin A$, and notice that $A^{\prime}=$ $A \backslash\{\ell+1, n+1\} \cup\{x\} \in \mathcal{F}^{\prime}$.

Suppose first that $B \in \mathcal{F}^{\prime}$. If $\ell+1 \in B$ or $x \notin B$ then $|A \cap B| \geq\left|A^{\prime} \cap B\right| \geq$ t, so suppose that $\ell+1 \notin B$ and $x \in B$. If $B^{\prime}=\mathbb{S}_{\ell+1 \leftarrow x}(B) \in \mathcal{F}^{\prime}$ then $|A \cap B|=\left|A^{\prime} \cap B^{\prime}\right| \geq t$. Otherwise, $B \in X\left(\mathcal{F}^{\prime}\right)$. We distinguish between two cases. If $|B \cap[\ell]| \neq a$ then $\left|A^{\prime} \cap[\ell]\right|+|B \cap[\ell]| \neq 2 a=\ell+t$, and so Lemma 5.1 shows that $\left|A^{\prime} \cap B\right| \geq t+1$, which implies $|A \cap B| \geq\left|A^{\prime} \cap B\right|-1 \geq t$. If $|B \cap[\ell]|=a$ then necessarily $n+1 \in B$, and so $B^{\prime}=B \backslash\{n+1\} \in \mathcal{F}^{\prime}$. Therefore $|A \cap B| \geq\left|\left[\left(A^{\prime} \backslash\{x\}\right) \cap B^{\prime}\right] \cup\{n+1\}\right| \geq\left|A^{\prime} \cap B^{\prime}\right| \geq t$.

Finally, suppose that $A, B \notin \mathcal{F}^{\prime}$. Pick some $y \in[\ell]$ such that $y \notin B$, and notice that $B^{\prime}=B \backslash\{\ell+1, n+1\} \cup\{y\} \in \mathcal{F}^{\prime}$. We have $|A \cap B|=$ $\left|\left[\left(A^{\prime} \backslash\{x\}\right) \cap\left(B^{\prime} \backslash\{y\}\right)\right] \cup\{\ell+1, n+1\}\right| \geq\left|A^{\prime} \cap B^{\prime}\right| \geq t$. We conclude that \mathcal{G} is t-intersecting.

It is straightforward to compute the μ_{p}-measure of \mathcal{G} :

$$
\begin{aligned}
\mu_{p}(\mathcal{G}) & =\mu_{p}(\mathcal{F})-\binom{\ell}{a} p^{a}(1-p)^{\ell-a+1} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{a}(\mathcal{F})\right)+\binom{\ell+1}{a} p^{a+1}(1-p)^{\ell-a+1} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{a}(\mathcal{F})\right) \\
& =\mu_{p}(\mathcal{F})+\left(-1+\frac{\ell+1}{\ell-a+1} p\right)\binom{\ell}{a} p^{a}(1-p)^{\ell-a+1} \mu_{p}^{[n] \backslash[\ell+1]}\left(X_{a}(\mathcal{F})\right)
\end{aligned}
$$

Since $X_{a}(\mathcal{F}) \neq \emptyset$, in order to complete the proof we need to show that the expression inside the parentheses is positive. Since $\ell<t+2 r$ and $\ell+t$ is even, $\ell \leq t+2 r-2$. Clearly $a \leq \ell$ and so $\ell-a+1>0$, hence the parenthesized expression is positive if the following expression is:

$$
\begin{aligned}
2[(\ell+1) p-(\ell-a+1)] & =2 a-2(1-p)(\ell+1) \\
& =t-1-(1-2 p)(\ell+1) \\
& \geq t-1-(1-2 p)(t+2 r-1) \\
& =2 p(t+2 r-1)-2 r>0
\end{aligned}
$$

using in the third line the assumption $p<1 / 2$.
Combining Lemma 5.3 and Lemma 5.4, we obtain the following result.
Lemma 5.5. Let \mathcal{F} be a left-compressed t-intersecting family on n points with $\ell=\ell(\mathcal{F})<t+2 r$ for some $r \geq 0$. If $t \geq 2$ and $r /(t+2 r-1)<p<1 / 2$ then there exists a t-intersecting family \mathcal{G} on $n+1$ points satisfying $\mu_{p}(\mathcal{G})>\mu_{p}(\mathcal{F})$.

Proof. By definition, $X(\mathcal{F}) \neq \emptyset$, and so $X_{a}(\mathcal{F}) \neq \emptyset$ for some a. If $a \neq(\ell+t) / 2$ then the result follows from Lemma 5.3, otherwise it follows from Lemma 5.4.

Combining this result with Corollary 4.7, we can prove the Ahlswede-Khachatrian theorem for left-compressed families.

Theorem 5.6. Let \mathcal{F} be a left-compressed t-intersecting family on n points for $t \geq 2$. If $r /(t+2 r-1)<p<(r+1) /(t+2 r+1)$ for some $r \geq 0$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)$, with equality if and only if $\mathcal{F}=U^{n}\left(\mathcal{F}_{t, r}\right)$.

If $p=(r+1) /(t+2 r+1)$ for some $r \geq 0$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)=\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$, with equality if and only if either $\mathcal{F}=U^{n}\left(\mathcal{F}_{t, r}\right)$ or $\mathcal{F}=U^{n}\left(\mathcal{F}_{t, r+1}\right)$.

Proof. Suppose first that $r /(t+2 r-1)<p<(r+1) /(t+2 r+1)$ for some $r \geq 0$. Corollary 4.7 gives a monotone left-compressed t-intersecting family \mathcal{F}^{*} on $t+2 r$ points such that $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}^{*}\right)$, with equality only if $m(\mathcal{F}) \leq t+2 r$. Lemma 5.5 shows that $\ell\left(\mathcal{F}^{*}\right)=t+2 r$, and so \mathcal{F}^{*} must be of the form

$$
\mathcal{F}_{s}^{*}=\{A \subseteq[t+2 r]:|A| \geq s\}
$$

for some s. This family is t-intersecting for $s \geq t+r$, and the optimal choice $s=t+r$ shows that $\mathcal{F}^{*}=\mathcal{F}_{t+r}^{*}=\mathcal{F}_{t, r}$. The corollary and the lemma together show that $\mu_{p}(\mathcal{F})=\mu_{p}\left(\mathcal{F}^{*}\right)$ is only possible if $m(\mathcal{F})=\ell(\mathcal{F})=t+2 r$, and so $\mathcal{F}=U^{n}\left(\mathcal{F}_{s}^{*}\right)$ for some s. This readily implies that $\mathcal{F}=U^{n}\left(\mathcal{F}^{*}\right)$.

Suppose next that $p=(r+1) /(t+2 r+1)$ for some $r \geq 0$. Corollary 4.7 gives a monotone left-compressed t-intersecting family \mathcal{F}^{*} on $t+2 r+2$ points such that $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}^{*}\right)$, with equality only if $m(\mathcal{F}) \leq t+2 r+2$. Since μ_{p} is continuous and there are finitely many families on $t+2 r+2$ points, we see that $\mu_{p}\left(\mathcal{F}^{*}\right)=\mu_{p}\left(\mathcal{F}_{t, r}\right)=\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$. Corollary 4.7 and Lemma 5.5 show that
$\mu_{p}(\mathcal{F})=\mu_{p}\left(\mathcal{F}^{*}\right)$ is only possible if $m(\mathcal{F}) \leq t+2 r+2$ and $\ell(\mathcal{F}) \geq t+2 r$. Assume for simplicity that $n=t+2 r+2$. The family \mathcal{F} has the following general form:
$\mathcal{F}=\mathcal{F}_{a}^{*} \cup \mathcal{F}_{b}^{*} \times\{t+2 r+1\} \cup \mathcal{F}_{c}^{*} \times\{t+2 r+2\} \cup \mathcal{F}_{d}^{*} \times\{t+2 r+1, t+2 r+2\}$.
Some of these parts may be missing, in which case we use \mathcal{F}_{∞}^{*}. Since \mathcal{F} is t-intersecting, $d \geq t+r-1$. If $d=t+r-1$ then since \mathcal{F} is t-intersecting, $a \geq t+r+1$ and $b, c \geq t+r$. Therefore $\mathcal{F} \subseteq \mathcal{F}_{t, r+1}$ and so $\mathcal{F}=\mathcal{F}_{t, r+1}$. Otherwise, $d \geq t+r$, and so monotonicity shows that $a, b, c \geq t+r$. Therefore $\mathcal{F} \subseteq U^{n}\left(\mathcal{F}_{t, r}\right)$ and so $\mathcal{F}=U^{n}\left(\mathcal{F}_{t, r}\right)$.

6 Culmination of the proof

Combined with Lemma 3.2, Theorem 5.6 already provides a tight upper bound on the μ_{p}-measure of arbitrary t-intersecting families. In order to complete the proof of the Ahlswede-Khachatrian theorem, it remains to prove uniqueness.

Recall that two families \mathcal{F}, \mathcal{G} on n points are equivalent if they differ by a permutation of the coordinates. We start by showing that the families $\mathcal{F}_{t, r}$ are resilient to shifting in the case of t-intersecting families, using an argument from [1]. We need a preparatory lemma.
Lemma 6.1. Let $t, r \geq 0$, and consider the following graph. The vertices are subsets of $[t+2 r]$ of size $[t+r]$. Two subsets A, B are connected if $|A \cap B|=t$ (note that $|A \cap B| \geq t$). Then the graph is connected.

Proof. If $r=0$ then the graph contains a single vertex and there is nothing to prove, so suppose $r \geq 1$. We start by showing that $A=[t+r]$ and $B=$ $[t+r] \Delta\{1, t+r+1\}=\{2, \ldots, t+r+1\}$ are connected. Let $C=[t] \cup\{t+r+$ $1, \ldots, t+2 r\}$. Then

$$
\begin{aligned}
|A \cap C| & =|[t]|=t \\
|B \cap C| & =|\{2, \ldots, t\} \cup\{t+r+1\}|=t
\end{aligned}
$$

Hence A and B are connected via C. This shows that any two sets A, B with $|A \Delta B|=2$ are connected, and so the graph is connected.

Now we can prove the desired result on shifting.
Lemma 6.2. Let \mathcal{F} be at-intersecting family on n points, and suppose that for some $i, j \in[n], \mathbb{S}_{i \leftarrow j}(\mathcal{F})$ is equivalent to $\mathcal{F}_{t, r}$. Then \mathcal{F} is equivalent to $\mathcal{F}_{t, r}$.
Proof. We can assume that $\mathbb{S}_{i \leftarrow j}(\mathcal{F})=U^{n}\left(\mathcal{F}_{t, r}\right)$. If $j \in[t+2 r]$ then since $\mathbb{S}_{i \leftarrow j}(\mathcal{F})$ depends only on the first $t+2 r$ coordinates, necessarily $i \in[t+2 r]$ and so $\mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F}$. Similarly, if $i \notin[t+2 r]$ then necessarily $j \notin[t+2 r]$ and again $\mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F}$. In both cases the lemma trivially holds. So without loss of generality, suppose that $n=t+2 r+1, i=t+2 r$ and $j=t+2 r+1$. The following two subfamilies are involved in the shift:

$$
\begin{aligned}
& \mathcal{F}_{1}=\{A \in \mathcal{F}: j \in A, i \notin A, A \Delta\{i, j\} \notin \mathcal{F}\} \\
& \mathcal{F}_{2}=\{A \in \mathcal{F}: i \in A, j \notin A, A \Delta\{i, j\} \notin \mathcal{F}\}
\end{aligned}
$$

We have

$$
\mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F} \backslash \mathcal{F}_{1} \cup\left\{A \Delta\{i, j\}: A \in \mathcal{F}_{1}\right\}
$$

If $\mathcal{F}_{1}=\emptyset$ then $\mathbb{S}_{i \leftarrow j}(\mathcal{F})=\mathcal{F}$, and the lemma clearly holds. If $\mathcal{F}_{2}=\emptyset$ then $\mathbb{S}_{i \leftarrow j}(\mathcal{F})$ results from \mathcal{F} by switching the coordinates i and j, and again the lemma holds. It remains to consider the case $\mathcal{F}_{1}, \mathcal{F}_{2} \neq \emptyset$. Consider the family

$$
\mathcal{G}=\{A \subseteq[t+2 r-1]:|A|=t+r-1\} .
$$

For every $A \in \mathcal{G}, A \cup\{i\}=A \cup\{t+2 r\} \in \mathcal{F}_{t, r}$, and so either $A \cup\{i\} \in \mathcal{F}_{2}$ or $A \cup\{j\} \in \mathcal{F}_{1}$ (but not both). Form a graph whose vertices are the sets in \mathcal{G}, and two sets A, B are connected if $|A \cap B|=t-1$. Color a vertex A with 1 if $A \cup\{j\} \in \mathcal{F}_{1}$, and with 2 if $A \cup\{i\} \in \mathcal{F}_{2}$. Since $\mathcal{F}_{1}, \mathcal{F}_{2} \neq \emptyset$, the coloring is not monochromatic. Lemma 6.1 shows that the graph is connected, and so there is some bichromatic edge (A, B), say $A^{\prime}=A \cup\{j\} \in \mathcal{F}_{1}$ and $B^{\prime}=B \cup\{i\} \in \mathcal{F}_{2}$. However, $\left|A^{\prime} \cap B^{\prime}\right|=|A \cap B|=t-1$, contradicting the fact that \mathcal{F} is t-intersecting. We conclude that either $\mathcal{F}_{1}=\emptyset$ or $\mathcal{F}_{2}=\emptyset$.

The Ahlswede-Khachatrian theorem is an easy corollary.
Theorem 1.3. Let \mathcal{F} be a t-intersecting family on n points for $t \geq 2$. If $r /(t+2 r-1)<p<(r+1) /(t+2 r+1)$ for some $r \geq 0$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)$, with equality if and only if \mathcal{F} is equivalent to $U^{n}\left(\mathcal{F}_{t, r}\right)$.

If $p=(r+1) /(t+2 r+1)$ for some $r \geq 0$ then $\mu_{p}(\mathcal{F}) \leq \mu_{p}\left(\mathcal{F}_{t, r}\right)=\mu_{p}\left(\mathcal{F}_{t, r+1}\right)$, with equality if and only if \mathcal{F} is equivalent to either $U^{n}\left(\mathcal{F}_{t, r}\right)$ or $U^{n}\left(\mathcal{F}_{t, r+1}\right)$.

Proof. Let \mathcal{G} be the left-compressed family satisfying $\mu_{p}(\mathcal{G})=\mu_{p}(\mathcal{F})$ given by Lemma 3.2. Theorem 5.6 implies the upper bounds. Together with Lemma 6.2, the theorem implies the cases of equality.

References

[1] Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem for systems of finite sets. Eur. J. Comb., 18(2):125-136, 1997.
[2] Rudolf Ahlswede and Levon H. Khachatrian. A pushing-pulling method: New proofs of intersection theorems. Combinatorica, 19(1):1-15, 1999.
[3] Fan R. K. Chung, Ronald L. Graham, Peter Frankl, and James B. Shearer. Some intersection theorems for ordered sets and graphs. J. Comb. Theory, Ser. A, 43(1):23-37, 1986.
[4] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover. Ann. Math., 162(1):439-485, 2005.
[5] Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. Combinatorica, 28(5):503-528, 2008.

