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Abstract

The Erdős–Ko–Rado theorem determines the largest µp-measure of
an intersecting family of sets. We consider the analogue of this theorem
to t-intersecting families (families in which any two sets have at least t
elements in common), following Ahlswede and Khachatrian [1, 2]. We
present a proof of the µp version of their theorem, which is adapted from
the earlier proofs. Due to the simpler nature of the µp setting, our proof
is simpler and cleaner.

1 Introduction

Friedgut [5] considered t-intersecting families, showing that if F is a t-intersecting
family of sets and p ≤ 1/(t + 1) then µp(F) ≤ pt. The upper bound on p
arises naturally in his proof. This limitation is not arbitrary. Indeed, when
p > 1/(t + 1), the bound pt is incorrect. The correct bound was found by
Ahlswede and Khachatrian [1, 2] in the k-uniform setting. We state it in the
language of slices: for a family of sets F , Sl(F , k) = {A ∈ F : |A| = k}.

Definition 1.1. The (t, r) Frankl family Ft,r is the t-intersecting family defined
by

Ft,r = {S ⊆ [t+ 2r] : |S| ≥ t+ r}. ©

Theorem 1.1 (Ahlswede–Khachatrian). Let 1 ≤ t ≤ k ≤ n and r ≥ 0, and let
F be a t-intersecting family. When

(k − t+ 1)

(
2 +

t− 1

r + 1

)
< n < (k − t+ 1)

(
2 +

t− 1

r

)
,

we have |Sl(F , k)| ≤ | Sl(Ft,r, k)|, with equality only if the slices are equivalent.
When

n = (k − t+ 1)

(
2 +

t− 1

r + 1

)
,

we have |Sl(F , k)| ≤ | Sl(Ft,r, k)| = |Sl(Ft,r+1, k)|, with equality only if Sl(F , k)
is equivalent to either Sl(Ft,r, k) or Sl(Ft,r+1, k).

The Dinur–Safra argument [4] implies the following counterpart in the µp

setting.
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Corollary 1.2. If F is t-intersecting then for r ≥ 0, when

r

t+ 2r − 1
< p <

r + 1

t+ 2r + 1
,

we have µp(F) ≤ µp(Ft,r) with equality only if F is equivalent to Ft,r.
If p = (r + 1)/(t+ 2r + 1) then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1).

Corollary 1.2 covers all p < 1/2 (and for t = 1, all p ≤ 1/2). For p > 1/2,
there is no meaningful bound in sight: the µp-measure of the t-intersecting
family consisting of all sets of size at least (n+ t)/2 approaches 1. For p = 1/2,
the measure of this family approaches 1/2.

The Dinur–Safra argument isn’t strong enough to handle equality when there
are two different optimal families. In the rest of this chapter, we adapt the proof
of the Ahlswede–Khachtrian theorem to the µp setting, thereby settling the cases
p = (r + 1)/(t+ 2r + 1). We will prove the following version of the Ahlswede–
Khachatrian theorem, which uses the notion of extension: for a family of sets
F on m points, Un(F) = {A ⊆ [n] : A ∩ [m] ∈ F}.

Theorem 1.3. Let F be a t-intersecting family on n points for t ≥ 2. If
r/(t+ 2r− 1) < p < (r+ 1)/(t+ 2r+ 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r),
with equality if and only if F is equivalent to Un(Ft,r).

If p = (r+1)/(t+2r+1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1),
with equality if and only if F is equivalent to either Un(Ft,r) or Un(Ft,r+1).

2 Proof overview

Our proof of the Ahlswede–Khachatrian theorem in the µp setting combines
the approaches in the two papers [1, 2] in which Ahlswede and Khachatrian
proved their theorem in the classical setting (the two papers present two different
proofs). The classical Erdős–Ko–Rado theorem can be proved using Katona’s
circle argument, and here we will concentrate on t-intersecting families for t ≥ 2.

Given t ≥ 2 and p ∈ (0, 1/2), our goal is to determine the t-intersecting
families of maximum µp-measure. In general, the maximum µp-measure of a t-
intersecting family depends on the size of its support: for example, the maximum
µp-measure of a 2-intersecting family on 2 points is p2 for all p < 1/2, but for any
p > 1/3 there is a 2-intersecting family of larger measure 4p3− 3p4 on 4 points,
namely the Frankl family F2,1. We will not be interested in the maximum µp-
measure of a t-intersecting family on n points. Rather, we will be interested in
the supremum of the µp-measures of t-intersecting families on any number of
points; we will show that for all p < 1/2, the supremum is attained at one of
the Frankl families.

The proof uses the technique of shifting. A t-intersecting family F on n
points is left-compressed if for all A ∈ F , j ∈ A and i ∈ [n] \ A satisfying
i < j, we have A \ {j} ∪ {i} ∈ F . Using shifting, we can show that given any
t-intersecting family, there is a left-compressed t-intersecting family with the
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same µp-measure for all p. Therefore as far as upper bounds are concerned, it
is enough to consider left-compressed families.

Let F be a left-compressed t-intersecting family, let r ≥ 0 be an integer, and
suppose that r/(t+2r−1) < p < (r+1)/(t+2r+1). We can also assume that F
is monotone (if A ∈ F and B ⊇ A then B ∈ F). The proof consists of two steps.
In the first step, we show that if F depends (as a Boolean function) on some
i > t + 2r then we can construct from F a t-intersecting family of larger µp-
measure. This implies that the maximum µp-measure of a t-intersecting family
is attained at some family on t + 2r points. In the second step, we show that
if F is not symmetric with respect to its first t + 2r coordinates then we can
construct from F a t-intersecting family of larger µp-measure. This implies that
the maximum µp-measure of a t-intersecting family is attained (uniquely) at a
family of the form {A ⊆ [t+ 2r] : |A| ≥ k}, and so at the Frankl family Ft,r.

A similar but more delicate argument handles the case p = (r+1)/(t+2r+1),
and this completes the proof for left-compressed t-intersecting families. The
upper bound on the µp-measure holds for arbitrary t-intersecting families. An
argument similar in spirit to the one used by Chung et al. [3] to prove the equiva-
lence of intersection problems and agreement problems shows that t-intersecting
families of maximum µp-measure are equivalent to the corresponding Frankl
family or families.

For the duration of the proof, we will use µX
p (F) to denote the µp-measure

of a family F as a subset of 2X .

3 Shifting

In this section we develop formally the classical technique of shifting. We start
by defining the shifting operator.

Definition 3.1. Let F be a family of sets on n points, and let i, j ∈ [n], i 6= j.
For A ∈ F , let Si←j(A) = A \ {j} ∪ {i} if j ∈ A, i /∈ A and A \ {j} ∪ {i} /∈ F ,
and let Si←j(A) = A otherwise. The shifted family Si←j(F) consists of the sets
Si←j(A) for all A ∈ F . ©

As an example, let F = {{2}, {13}, {23}}. Then S1←2(F) = {{1}, {13}, {23}}.
Since |Si←j(A)| = |A|, shifting doesn’t change the µp-measure of a family. Shift-
ing also maintains the property of being t-intersecting.

Lemma 3.1. Let F be a family of sets on n points, and let i, j ∈ [n], i 6= j. If
F is t-intersecting for some t ≥ 1 then Si←j(F) is also t-intersecting.

Proof. Let A′ = Si←j(A), B′ = Si←j(B) ∈ Si←j(F), where A,B ∈ F . We
consider several cases. If A′ = A and B′ = B then |A′ ∩B′| = |A∩B| ≥ t since
F is t-intersecting. If A′ 6= A and B′ 6= B then i ∈ A′, B′ and j ∈ A,B, and
so |A′ ∩B′| = |(A ∩B) \ {j} ∪ {i}| = |A ∩B| ≥ t. The remaining case is when
A′ 6= A and B′ = B. If j /∈ B then |A′ ∩B′| ≥ |(A \ {j}) ∩B| = |A ∩B| ≥ t. If
j ∈ B and i ∈ B then |A′∩B′| = |(A\{j}∪{i})∩B| = |A∩B| ≥ t. If j ∈ B and
i /∈ B then by the definition of Si←j(B), we must have B′′ = B \ {j} ∪ {i} ∈ F .
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Hence |A′ ∩ B| = |(A′ \ {i} ∪ {j}) ∩ (B \ {j} ∪ {i})| = |A ∩ B′′| ≥ t. Therefore
Si←j(F) is t-intersecting.

By shifting a given family toward smaller elements, we can obtain a left-
compressed family.

Definition 3.2. A family F on n points is left-compressed if Si←j(F) = F for
all i, j ∈ [n] such that i < j. ©

Lemma 3.2. Let F be a t-intersecting family on n points. There is a left-
compressed t-intersecting family G on n points such that µp(G) = µp(F) for all
p ∈ [0, 1]. Furthermore, G can be obtained from F by a sequence of applications
of the operators Si←j for various i, j.

Proof. Let Φ(F) be the sum of all elements in all sets in F . It is easy to see
that Φ(Si←j(F)) ≤ Φ(F) whenever i < j, with equality only if Si←j(F) = F .
Let S(F) result from applying in sequence the operators Si←j for all i, j ∈
[n] such that i < j, and define a sequence F0 = F , Fs+1 = S(Fs). Since
Φ(Fs+1) ≤ Φ(Fs) and Φ(Fs) is a non-negative integer, Φ(Fs) reaches its mini-
mum at some s = T . Since Φ(FT+1) = Φ(FT ) and so FT+1 = FT , we conclude
that Si←j(FT ) = FT for all i, j ∈ [n] such that i < j, and so FT is left-
compressed. Lemma 3.1 shows that FT is t-intersecting. Finally, it is easy to
check that shifting preserves the µp-measure for all p ∈ [0, 1].

From now on until Section 6 we will only be interested in left-compressed
families.

4 Generating sets

In this section we implement the first step of the proof, following [1]. In this
step, we show that if F is a monotone left-compressed t-intersecting family and
p < (r+ 1)/(t+ 2r+ 1), then either F depends only on the first t+ 2r points, or
we can modify F to obtain a t-intersecting family of larger measure. The tool
we will use is generating sets.

Definition 4.1. Let F be a family of sets on n points. Its generating set G(F)
is the family of inclusion-minimal sets in F . Its extent m(F) is the largest
integer appearing in any set in G(F).

Let G be a family of sets on n points. Its upset Un(G) is the family F =
{A ⊆ [n] : A ⊇ B for some B ∈ G}.

A family of sets F on n points is monotone if for all B ∈ F , we have A ∈ F
whenever B ⊆ A ⊆ [n]. An upset is always monotone. If F is monotone then
F = Un(G(F)). ©

For example, G(Ft,r) = {A ⊆ [t + 2r] : |A| = t + r} and m(Ft,r) = t + 2r.
In the language of monotone Boolean functions, if F is monotone then G(F) is
its set of minterms.
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Our goal in this section is to show that if F is a monotone t-intersecting
family, p < (r + 1)/(t + 2r + 1) and m(F) > t + 2r then there is another t-
intersecting family G with µp(G) > µp(F). We will construct G by modifying
the generating set of F , guided by the following easy lemma.

Lemma 4.1. Let F be a left-compressed t-intersecting family with m = m(F),
and suppose that A,B ∈ F both contain m. If |A ∩ B| = t then A ∪ B = [m]
and so |A|+ |B| = m+ t.

Proof. Let A,B ∈ F be as indicated. Clearly A ∪ B ⊆ [m]. Suppose that for
some i ∈ [m], i /∈ A ∪ B. By assumption, i < m. Since F is left-compressed,
A′ = A \ {m} ∪ {i} ∈ F . However, |A′ ∩B| = |A∩B| − 1 = t− 1, contradicting
the assumption that F is t-intersecting. We conclude that A ∪B = [m] and so
|A|+ |B| = |A ∪B|+ |A ∩B| = m+ t.

This lemma suggests separating the sets in G(F) containing m according to
their size.

Definition 4.2. Let F be a family of sets with m = m(F). We define G∗(F) =
{A ∈ G(F) : m ∈ A} and G∗a(F) = {A ∈ G∗(F) : |A| = a}. In words, G∗(F)
consists of those sets in G(F) containing m, and G∗a(F) consists of those sets in
G(F) containing m and of size a.

For a family G on n points and m ∈ [n], we define G \m = {A \ {m} : A ∈
G}. ©

Suppose a + b = m(F) + t and a 6= b. Lemma 4.1 implies that Un
(
G(F) \

(G∗a(F) ∪ G∗b(F)) ∪ (G∗a(F) \m(F))
)

is t-intersecting. Moreover, it turns out
that this transformation can be used to increase the µp-measure.

We start by proving two easy auxiliary results.

Lemma 4.2. Let F be a monotone left-compressed family on n points with
m = m(F) and let A ∈ G∗(F). Then

F \ Un(G(F) \ {A}) = {A} × 2[n]\[m].

In words, if A ∈ G∗(F) then the sets generated by A are exactly {A} × 2[n]\[m].

Proof. Suppose B ∈ F\Un(G(F)\{A}). Clearly B ⊇ A. We would like to show
that B ∩ [m] = A. If not, then let x ∈ (B ∩ [m]) \A. Since F is left-compressed,
C = Sx←m(A) ∈ F . Clearly C ∈ Un(G(F) \ {A}), and since B ⊇ C, also
B ∈ Un(G(F) \ {A}), contrary to the assumption. Hence B ∩ [m] = A.

For the other direction, let B = A ∪ C, where C ⊆ [n] \ [m]. If B ∈
Un(G(F) \ {A}) then B ⊇ D for some D ∈ G(F) \ {A}. Since maxD ≤ m,
necessarily D ⊆ B∩ [m] = A, contradicting the fact that A is inclusion-minimal.
This completes the proof of the lemma.

Lemma 4.3. Let F be a family of sets on n points with m = m(F) and let
A ∈ G∗(F). If B ∈ F and B ∩ [m− 1] = A \ {m} then m ∈ B.
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Proof. Suppose that m /∈ B. Since B ∈ F , B ⊇ C for some C ∈ G(F). Since
maxC ≤ m and m /∈ B, C ⊆ B ∩ [m] = A \ {m}, contradicting the fact that A
is inclusion-minimal.

Next, we describe the transformation itself.

Lemma 4.4. Let F be a monotone left-compressed t-intersecting family on n
points with m = m(F), and let a + b = m + t for some non-negative integers
a 6= b. Define

Ha = G(F) \ (G∗a(F) ∪G∗b(F)) ∪ (G∗a(F) \m), Ga = Un(Ha),

Hb = G(F) \ (G∗a(F) ∪G∗b(F)) ∪ (G∗b(F) \m), Gb = Un(Hb).

The families Ga,Gb are t-intersecting. Furthermore, if G∗a(F) 6= ∅ or G∗b(F) 6= ∅
then for all p < 1/2, max(µp(Ga), µp(Gb)) > µp(F).

Proof. In order to show that Ga is t-intersecting, it is enough to show that Ha

is t-intersecting. Let A,B ∈ Ha. If A,B /∈ G∗a(F) \m then A,B ∈ G(F) and so
|A ∩B| ≥ t, so suppose that A ∈ G∗a(F) \m. Notice that A ∪ {m} ∈ G∗a(F). If
B /∈ G∗(F) then m /∈ B and B ∈ G(F), and so |A ∩B| = |(A ∪ {m}) ∩B| ≥ t.
If B ∈ G∗c(F) then c 6= b and so |A ∪ {m}| + |B| = a + c 6= a + b = m + t.
Therefore Lemma 4.1 implies that |(A ∪ {m}) ∩B| ≥ t+ 1 and so |A ∩B| ≥ t.
A similar argument applies if B ∈ G∗a(F) \ {m} (with a in place of c), and we
conclude that GA is t-intersecting. The proofs for Gb are analogous.

Let p < 1/2. We proceed to calculate µp(Ga) and µp(Gb). Lemma 4.2 shows
that

F \ Ga = G∗b(F)× 2[n]\[m],

and Lemma 4.3 shows that

Ga \ F = (G∗a(F) \m)× 2[n]\[m].

Therefore

µp(Ga) = µp(F)− µ[m]
p (G∗b(F)) + µ[m]

p (G∗a(F) \m)

= µp(F)− µ[m]
p (G∗b(F)) +

1− p
p

µ[m]
p (G∗a(F)).

Without loss of generality, suppose that µ
[m]
p (G∗a(F)) ≥ µ

[m]
p (G∗b(F)), which

implies that µ
[m]
p (G∗a(F)) > 0 by assumption. Then

µp(Ga) ≥ µp(F) +

(
1− p
p
− 1

)
µ[m]
p (G∗a(F)) > 0,

since p < 1/2 implies (1− p)/p > 1.

This lemma allows us to achieve our goal whenever G∗a(F) 6= ∅ for some
a 6= (m(F) + t)/2. When a = (m(F) + t)/2, the construction in the lemma
doesn’t result in a t-intersecting family. In order to fix the construction, we
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will focus on a subset of G∗a(F) not containing some common element. This
property will guarantee that the result is t-intersecting. If p is small enough
(depending on m(F)), then the construction still increases the µp-measure.

Lemma 4.5. Let F be a monotone left-compressed t-intersecting family on n
points with m = m(F) > t+2r for some r ≥ 0, and let a = (m+t)/2 be integral.
For i ∈ [m− 1], define

Hi = G(F) \G∗a(F) ∪ {A ∈ G∗a(F) \m : i /∈ A}, Gi = Un(Hi).

The families Gi are t-intersecting. Furthermore, if p < (r + 1)/(t+ 2r + 1) and
G∗a(F) 6= ∅ then maxi∈[m−1] µp(Gi) > µp(F).

Proof. Let i ∈ [m− 1]. We proceed to show that Gi is t-intersecting. As in the
proof of the corresponding part of Lemma 4.4, it is enough to show that Hi is
t-intersecting. If A,B ∈ Hi and not both A,B ∈ G∗a(F) \m then the argument
in Lemma 4.4 shows that |A ∩ B| ≥ t, so suppose that A,B ∈ G∗a(F) \ m.
Note that i /∈ A,B. Lemma 4.1 shows that |(A ∪ {m}) ∩ (B ∪ {m})| > t, and
so |A ∩ B| ≥ t, unless (A ∪ {m}) ∪ (B ∪ {m}) = [m]. However, the latter is
impossible since i /∈ A ∪B. This shows that Gi is t-intersecting.

Let Ki = {A ∈ G∗a(F) : i /∈ A}. We proceed to calculate µp(Gi). Lemma 4.2
shows that

F \ Gi = (G∗a(F) \Ki)× 2[n]\[m],

and Lemma 4.3 shows that

Gi \ F = (Ki \m)× 2[n]\[m].

Therefore

µp(Gi) = µp(F)− µ[m]
p (G∗a(F) \Ki) +

1− p
p

µ[m]
p (Ki)

= µp(F)− µ[m]
p (G∗a(F)) +

1

p
µ[m]
p (Ki).

(1)

In view of this, we would like to maximize µ
[m]
p (Ki). Since all sets in Ki have

Hamming weight a, µ
[m]
p (Ki) = |Ki|pa(1− p)m−a, and similarly µ

[m]
p (G∗a(F)) =

|G∗a(F)|pa(1 − p)m−a. We therefore want to maximize |Ki|. Since each A ∈
G∗a(F) satisfies |A ∩ [m− 1]| = a− 1, it is easy to see that

E
i∈[m−1]

|Ki| =
m− a
m− 1

|G∗a(F)|.

There must be some i ∈ [m−1] which satisfies |Ki| ≥ (m−a)/(m−1) · |G∗a(F)|,
and so µ

[m]
p (Ki) ≥ (m− a)/(m− 1) · µ[m]

p (G∗a(F)). Substituting this in (1), we
obtain

µp(Gi)− µp(F) ≥
(

1

p
· m− a
m− 1

− 1

)
µ[m]
p (G∗a(F))

=
m− a− p(m− 1)

p(m− 1)
µ[m]
p (G∗a(F)).
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The proof will be complete if we show that m− a > p(m− 1). Since m > t+ 2r
and m+ t is even, m ≥ t+ 2r + 2, and so

2[m− a− p(m− 1)] = m− t− 2p(m− 1)

= (1− 2p)m− t+ 2p

≥ (1− 2p)(t+ 2r + 2)− t+ 2p

= 2r + 2− 2p(t+ 2r + 1)

= 2[r + 1− p(t+ 2r + 1)] > 0.

Combining Lemma 4.4 and Lemma 4.5, we obtain the following result.

Lemma 4.6. Let F be a monotone left-compressed t-intersecting family on n
points with m = m(F) > t+ 2r for some r ≥ 0. If p < (r+ 1)/(t+ 2r+ 1) then
there exists a t-intersecting family G on n points satisfying µp(G) > µp(F).

Proof. By definition, G∗(F) 6= ∅, and so G∗a(F) 6= ∅ for some a. If a 6= (m+t)/2
then the result follows from Lemma 4.4, otherwise it follows from Lemma 4.5.

We can conclude an important corollary.

Corollary 4.7. Let t ≥ 1, r ≥ 0 and p < (r + 1)/(t + 2r + 1). There exists
a monotone left-compressed t-intersecting family F on t + 2r points such that
for every t-intersecting family G, µp(G) ≤ µp(F). Furthermore, equality is only
possible if m(G) ≤ t+ 2r.

Proof. Lemma 3.2 implies that it is enough to construct a (not necessarily left-
compressed) t-intersecting family F on t+2r points. We let F be a t-intersecting
family of maximal µp-measure among those on t+ 2r points.

Now let G be a t-intersecting family on n points. In order to show that
µp(G) ≤ µp(F), we can assume that G has maximal µp-measure among t-
intersecting families on n points. Lemma 4.6 implies that m(G) ≤ t + 2r, and
so µp(G) ≤ µp(F) by definition. The lemma also implies that equality is only
possible if m(G) ≤ t+ 2r.

At this point, [1] considers the complemented family F̄ = {[n] \A : A ∈ F}.
When F is a k-uniform t-intersecting family, F̄ is an (n−k)-uniform (n−2k+t)-
intersecting family, and we can apply Corollary 4.7 to F̄ . However, in our setting
F̄ need not even be intersecting. Instead, we turn to the argument in [2].

5 Pushing-pulling

In this section we implement the second step of the proof, following [2]. We will
show that if F is a left-compressed t-intersecting family of maximal µp-measure,
where p > r/(t+ 2r − 1), then the first t+ 2r coordinates of F are symmetric.
We start by formalizing the notion of symmetry.
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Definition 5.1. A family of sets F is `-invariant if for all i 6= j in the range
1 ≤ i, j ≤ `, Si←j(F) = F .

The symmetric extent `(F) of a family of sets F on n points is the maximal
` ≤ n such that F is `-invariant. ©

Our goal in this section is to show that if p > r/(t+2r−1) and `(F) < t+2r
for some t-intersecting family F then we can come up with a t-intersecting family
of larger µp-measure.

Since we are focusing on left-compressed families, the only way in which
`-invariance can fail is if S`←i(F) 6= F for some i < `. The following definition
singles out the sets which determine the symmetric extent of a family.

Definition 5.2. Let F be a family of sets on n points with ` = `(F). If n > `
then its boundary sets are given by

X(F) = {A ∈ F : S`+1←i(A) /∈ F for some i ≤ `}.

if n = ` then we define X(F) = ∅. ©

Our starting point is the following analog of Lemma 4.1.

Lemma 5.1. Let F be a left-compressed t-intersecting family with ` = `(F),
and let A,B ∈ X(F). If |A ∩ B| = t then A ∩ B ⊆ [`] and A ∪ B ⊇ [`], and so
|A ∩ [`]|+ |B ∩ [`]| = `+ t.

Proof. Let A,B ∈ X(F) be as given, and note that ` + 1 /∈ A,B. We start
by showing that A ∩ B ⊆ [`]. Suppose that x ∈ A ∩ B satisfies x > `. Since
` + 1 /∈ A,B, in fact x > ` + 1. Since F is left-compressed, S`+1←x(A) ∈ F .
However, |S`+1←x(A) ∩ B| = |A ∩ B| − 1 = t − 1, contrary to assumption. We
conclude that A ∩B ⊆ [`].

Next, we show that A ∪ B ⊇ [`]. Suppose that x /∈ A ∪ B for some x ∈ [`].
Since t ≥ 1 and A∩B ⊆ [`], there is some y ∈ A∩B∩ [`]. Since F is `-invariant,
Sx←y(A) ∈ F . However, |Sx←y(A) ∩ B| = |A ∩ B| − 1 = t − 1, contrary to
assumption. We conclude that A ∪B ⊇ [`].

Finally, let A′ = A ∩ [`] and B′ = B ∩ [`]. We have A′ ∪ B′ = [`] and
|A′ ∩B′| = |A ∩B| = t, and so |A′|+ |B′| = |A′ ∪B′|+ |A′ ∩B′| = `+ t.

This suggests breaking down X(F) according to the size of the intersection
with [`].

Definition 5.3. Let F be a family of sets on n points with ` = `(F). Its ith
boundary marginal is given by

Xi(F) = {B ⊆ [n] \ [`+ 1] : [i] ∪B ∈ X(F)}. ©

The part played by the sets [i] is arbitrary. Indeed, we have the following
easy lemma.

Definition 5.4. For a set X and an integer i, we define(
X

i

)
= {A ⊆ X : |A| = i}. ©
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Lemma 5.2. Let F be a family of sets on n points with ` = `(F). Then

X(F) =
⋃̀
i=1

(
[`]

i

)
×Xi(F).

Proof. If A ∈ X(F) then S`+1←i(A) 6= A for some i ≤ `, and in particular
i ∈ A. This shows that X0(F) = ∅. Also, clearly ` + 1 /∈ A for all A ∈ X(F).
The lemma now follows directly from the `-equivalence of F .

We now present two different constructions that attempt to increase the µp-
measure of a t-intersecting family. The first construction is the counterpart of
Lemma 4.4.

Lemma 5.3. Let F be a t-intersecting left-compressed family on n points with
` = `(F), and let a+ b = `+ t for some non-negative integers a 6= b. Define

Ga = F \
(

[`]

b

)
×Xb(F) ∪

(
[`]

a− 1

)
× {`+ 1} ×Xa(F),

Gb = F \
(

[`]

a

)
×Xa(F) ∪

(
[`]

b− 1

)
× {`+ 1} ×Xb(F).

The families Ga,Gb are t-intersecting. Furthermore, if G∗a(F) 6= ∅ or G∗b(F) 6= ∅
and t ≥ 2 then for all p ∈ (0, 1), max(µp(Ga), µp(Gb)) > µp(F).

Proof. We start by showing that Ga is t-intersecting. Let A,B ∈ Ga. If A,B /∈(
[`]
a−1
)
× {` + 1} × Xa(F) then A,B ∈ F and so |A ∩ B| ≥ t, so assume that

A ∈
(

[`]
a−1
)
× {` + 1} ×Xa(F). Pick some x ∈ [`] such that x /∈ A, and notice

that A′ = A \ {`+ 1} ∪ {x} ∈ F .
Suppose first that B ∈ F . If `+ 1 ∈ B or x /∈ B then |A∩B| ≥ |A′ ∩B| ≥ t,

so suppose that `+ 1 /∈ B and x ∈ B. If B′ = S`+1←x(B) ∈ F then |A ∩ B| =
|A′ ∩ B′| ≥ t. Otherwise, B ∈ X(F) and since ` + 1 /∈ B, |B ∩ [`]| 6= b. Since
|A′ ∩ [`]| = a, |A′ ∩ [`]|+ |B ∩ [`]| 6= a+ b = `+ t, and so Lemma 5.1 shows that
|A′ ∩B| ≥ t+ 1, which implies |A ∩B| ≥ |A′ ∩B| − 1 ≥ t.

Finally, suppose that A,B /∈ F . Pick some y ∈ [`] such that y /∈ B, and
notice that B′ = B \ {` + 1} ∪ {y} ∈ F . Since |A′ ∩ [`]| + |B′ ∩ [`]| = 2a 6=
a + b = ` + t, Lemma 5.1 shows that |A′ ∩ B′| ≥ t + 1. Therefore |A ∩ B| =
|[(A′ \ {x}) ∩ (B′ \ {y})] ∪ {`+ 1}| ≥ t. We conclude that Ga is t-intersecting.

It is straightforward to compute the µp-measures of Ga and Gb:

µp(Ga) = µp(F)−
(
`

b

)
pb(1− p)`+1−bµ[n]\[`+1]

p (Xb(F)) +

(
`

a− 1

)
pa(1− p)`+1−aµ[n]\[`+1]

p (Xa(F)),

µp(Gb) = µp(F)−
(
`

a

)
pa(1− p)`+1−aµ[n]\[`+1]

p (Xa(F)) +

(
`

b− 1

)
pb(1− p)`+1−bµ[n]\[`+1]

p (Xb(F)).

These formulas become simpler if we put

γa =

(
`

a

)
pa(1−p)`+1−aµ[n]\[`+1]

p (Xa(F)), γb =

(
`

b

)
pb(1−p)`+1−bµ[n]\[`+1]

p (Xb(F)).
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By assumption, either γa > 0 or γb > 0. Substituting these variables, we get

µp(Ga) = µp(F)− γa +
a

`− a+ 1
γb, µp(Gb) = µp(F)− γb +

b

`− b+ 1
γa.

Multiply the first equation by `− a+ 1, the second equation by `− b+ 1, and
sum to get

(`−a+1)(µp(Ga)−µp(F))+(`−b+1)(µp(Gb)−µp(F)) = (a+b−`−1)(γa+γb) = (t−1)(γa+γb) > 0.

We conclude that either µp(Ga) > µp(F) or µp(Gb) > µp(F).

The second construction, which is the counterpart of Lemma 4.5, concerns
a = (` + t)/2, and works by adjoining a new element, which ensures that the
resulting family is t-intersecting.

Lemma 5.4. Let F be a t-intersecting left-compressed family on n points with
` = `(F), and let a = (`+ t)/2 be integral. Define

G = F \
(

[`]

a

)
×Xa(F)× 2{n+1} ∪

(
[`+ 1]

a

)
×Xa(F)× {n+ 1}.

Note that G is a family on n+1 points. The family G is t-intersecting. Moreover,
if Xa(F) 6= ∅, t ≥ 2 and r/(t + 2r − 1) < p < 1/2, ` < t + 2r for some r ≥ 0,
then µp(G) > µp(F).

Proof. Put F ′ = G × 2{n+1}, and note that F ′ is t-intersecting and µp(F ′) =
µp(F). We start by showing that G is t-intersecting. Let A,B ∈ G. If A,B ∈ F ′

then clearly |A ∩ B| ≥ t, so suppose that A ∈
(
[`+1]
a

)
× Xa(F) × {n + 1}

and ` + 1 ∈ A. Pick some x ∈ [`] such that x /∈ A, and notice that A′ =
A \ {`+ 1, n+ 1} ∪ {x} ∈ F ′.

Suppose first that B ∈ F ′. If `+ 1 ∈ B or x /∈ B then |A ∩B| ≥ |A′ ∩B| ≥
t, so suppose that ` + 1 /∈ B and x ∈ B. If B′ = S`+1←x(B) ∈ F ′ then
|A ∩ B| = |A′ ∩ B′| ≥ t. Otherwise, B ∈ X(F ′). We distinguish between two
cases. If |B ∩ [`]| 6= a then |A′ ∩ [`]|+ |B ∩ [`]| 6= 2a = `+ t, and so Lemma 5.1
shows that |A′ ∩ B| ≥ t + 1, which implies |A ∩ B| ≥ |A′ ∩ B| − 1 ≥ t. If
|B ∩ [`]| = a then necessarily n + 1 ∈ B, and so B′ = B \ {n + 1} ∈ F ′.
Therefore |A ∩B| ≥ |[(A′ \ {x}) ∩B′] ∪ {n+ 1}| ≥ |A′ ∩B′| ≥ t.

Finally, suppose that A,B /∈ F ′. Pick some y ∈ [`] such that y /∈ B,
and notice that B′ = B \ {` + 1, n + 1} ∪ {y} ∈ F ′. We have |A ∩ B| =
|[(A′ \ {x})∩ (B′ \ {y})]∪ {`+ 1, n+ 1}| ≥ |A′ ∩B′| ≥ t. We conclude that G is
t-intersecting.

It is straightforward to compute the µp-measure of G:

µp(G) = µp(F)−
(
`

a

)
pa(1− p)`−a+1µ[n]\[`+1]

p (Xa(F)) +

(
`+ 1

a

)
pa+1(1− p)`−a+1µ[n]\[`+1]

p (Xa(F))

= µp(F) +

(
−1 +

`+ 1

`− a+ 1
p

)(
`

a

)
pa(1− p)`−a+1µ[n]\[`+1]

p (Xa(F)).
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Since Xa(F) 6= ∅, in order to complete the proof we need to show that the
expression inside the parentheses is positive. Since ` < t+ 2r and `+ t is even,
` ≤ t + 2r − 2. Clearly a ≤ ` and so ` − a + 1 > 0, hence the parenthesized
expression is positive if the following expression is:

2[(`+ 1)p− (`− a+ 1)] = 2a− 2(1− p)(`+ 1)

= t− 1− (1− 2p)(`+ 1)

≥ t− 1− (1− 2p)(t+ 2r − 1)

= 2p(t+ 2r − 1)− 2r > 0,

using in the third line the assumption p < 1/2.

Combining Lemma 5.3 and Lemma 5.4, we obtain the following result.

Lemma 5.5. Let F be a left-compressed t-intersecting family on n points with
` = `(F) < t + 2r for some r ≥ 0. If t ≥ 2 and r/(t + 2r − 1) < p < 1/2 then
there exists a t-intersecting family G on n+ 1 points satisfying µp(G) > µp(F).

Proof. By definition, X(F) 6= ∅, and so Xa(F) 6= ∅ for some a. If a 6= (`+ t)/2
then the result follows from Lemma 5.3, otherwise it follows from Lemma 5.4.

Combining this result with Corollary 4.7, we can prove the Ahlswede–Khachatrian
theorem for left-compressed families.

Theorem 5.6. Let F be a left-compressed t-intersecting family on n points
for t ≥ 2. If r/(t + 2r − 1) < p < (r + 1)/(t + 2r + 1) for some r ≥ 0 then
µp(F) ≤ µp(Ft,r), with equality if and only if F = Un(Ft,r).

If p = (r+1)/(t+2r+1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1),
with equality if and only if either F = Un(Ft,r) or F = Un(Ft,r+1).

Proof. Suppose first that r/(t + 2r − 1) < p < (r + 1)/(t + 2r + 1) for some
r ≥ 0. Corollary 4.7 gives a monotone left-compressed t-intersecting family F∗
on t+2r points such that µp(F) ≤ µp(F∗), with equality only if m(F) ≤ t+2r.
Lemma 5.5 shows that `(F∗) = t+ 2r, and so F∗ must be of the form

F∗s = {A ⊆ [t+ 2r] : |A| ≥ s}

for some s. This family is t-intersecting for s ≥ t + r, and the optimal choice
s = t+ r shows that F∗ = F∗t+r = Ft,r. The corollary and the lemma together
show that µp(F) = µp(F∗) is only possible if m(F) = `(F) = t + 2r, and so
F = Un(F∗s ) for some s. This readily implies that F = Un(F∗).

Suppose next that p = (r + 1)/(t + 2r + 1) for some r ≥ 0. Corollary 4.7
gives a monotone left-compressed t-intersecting family F∗ on t+ 2r + 2 points
such that µp(F) ≤ µp(F∗), with equality only if m(F) ≤ t + 2r + 2. Since µp

is continuous and there are finitely many families on t + 2r + 2 points, we see
that µp(F∗) = µp(Ft,r) = µp(Ft,r+1). Corollary 4.7 and Lemma 5.5 show that

12



µp(F) = µp(F∗) is only possible if m(F) ≤ t+2r+2 and `(F) ≥ t+2r. Assume
for simplicity that n = t+ 2r+ 2. The family F has the following general form:

F = F∗a ∪F∗b × {t+ 2r+ 1} ∪ F∗c × {t+ 2r+ 2} ∪ F∗d × {t+ 2r+ 1, t+ 2r+ 2}.

Some of these parts may be missing, in which case we use F∗∞. Since F is
t-intersecting, d ≥ t + r − 1. If d = t + r − 1 then since F is t-intersecting,
a ≥ t + r + 1 and b, c ≥ t + r. Therefore F ⊆ Ft,r+1 and so F = Ft,r+1.
Otherwise, d ≥ t+ r, and so monotonicity shows that a, b, c ≥ t+ r. Therefore
F ⊆ Un(Ft,r) and so F = Un(Ft,r).

6 Culmination of the proof

Combined with Lemma 3.2, Theorem 5.6 already provides a tight upper bound
on the µp-measure of arbitrary t-intersecting families. In order to complete the
proof of the Ahlswede–Khachatrian theorem, it remains to prove uniqueness.

Recall that two families F ,G on n points are equivalent if they differ by
a permutation of the coordinates. We start by showing that the families Ft,r

are resilient to shifting in the case of t-intersecting families, using an argument
from [1]. We need a preparatory lemma.

Lemma 6.1. Let t, r ≥ 0, and consider the following graph. The vertices are
subsets of [t+ 2r] of size [t+ r]. Two subsets A,B are connected if |A ∩B| = t
(note that |A ∩B| ≥ t). Then the graph is connected.

Proof. If r = 0 then the graph contains a single vertex and there is nothing
to prove, so suppose r ≥ 1. We start by showing that A = [t + r] and B =
[t+ r]∆{1, t+ r + 1} = {2, . . . , t+ r + 1} are connected. Let C = [t] ∪ {t+ r +
1, . . . , t+ 2r}. Then

|A ∩ C| = |[t]| = t,

|B ∩ C| = |{2, . . . , t} ∪ {t+ r + 1}| = t.

Hence A and B are connected via C. This shows that any two sets A,B with
|A∆B| = 2 are connected, and so the graph is connected.

Now we can prove the desired result on shifting.

Lemma 6.2. Let F be a t-intersecting family on n points, and suppose that for
some i, j ∈ [n], Si←j(F) is equivalent to Ft,r. Then F is equivalent to Ft,r.

Proof. We can assume that Si←j(F) = Un(Ft,r). If j ∈ [t + 2r] then since
Si←j(F) depends only on the first t + 2r coordinates, necessarily i ∈ [t + 2r]
and so Si←j(F) = F . Similarly, if i /∈ [t + 2r] then necessarily j /∈ [t + 2r] and
again Si←j(F) = F . In both cases the lemma trivially holds. So without loss
of generality, suppose that n = t + 2r + 1, i = t + 2r and j = t + 2r + 1. The
following two subfamilies are involved in the shift:

F1 = {A ∈ F : j ∈ A, i /∈ A,A∆{i, j} /∈ F},
F2 = {A ∈ F : i ∈ A, j /∈ A,A∆{i, j} /∈ F}.
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We have
Si←j(F) = F \ F1 ∪ {A∆{i, j} : A ∈ F1}.

If F1 = ∅ then Si←j(F) = F , and the lemma clearly holds. If F2 = ∅ then
Si←j(F) results from F by switching the coordinates i and j, and again the
lemma holds. It remains to consider the case F1,F2 6= ∅. Consider the family

G = {A ⊆ [t+ 2r − 1] : |A| = t+ r − 1}.

For every A ∈ G, A ∪ {i} = A ∪ {t + 2r} ∈ Ft,r, and so either A ∪ {i} ∈ F2

or A ∪ {j} ∈ F1 (but not both). Form a graph whose vertices are the sets
in G, and two sets A,B are connected if |A ∩ B| = t − 1. Color a vertex A
with 1 if A ∪ {j} ∈ F1, and with 2 if A ∪ {i} ∈ F2. Since F1,F2 6= ∅, the
coloring is not monochromatic. Lemma 6.1 shows that the graph is connected,
and so there is some bichromatic edge (A,B), say A′ = A ∪ {j} ∈ F1 and
B′ = B ∪ {i} ∈ F2. However, |A′ ∩B′| = |A∩B| = t− 1, contradicting the fact
that F is t-intersecting. We conclude that either F1 = ∅ or F2 = ∅.

The Ahlswede–Khachatrian theorem is an easy corollary.

Theorem 1.3. Let F be a t-intersecting family on n points for t ≥ 2. If
r/(t+ 2r− 1) < p < (r+ 1)/(t+ 2r+ 1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r),
with equality if and only if F is equivalent to Un(Ft,r).

If p = (r+1)/(t+2r+1) for some r ≥ 0 then µp(F) ≤ µp(Ft,r) = µp(Ft,r+1),
with equality if and only if F is equivalent to either Un(Ft,r) or Un(Ft,r+1).

Proof. Let G be the left-compressed family satisfying µp(G) = µp(F) given by
Lemma 3.2. Theorem 5.6 implies the upper bounds. Together with Lemma 6.2,
the theorem implies the cases of equality.
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