A combinatorial method of tackling the problem of hierarchy collapse, and a theorem of Ajtai

A. J. Wilkie

June 16, 2010

0. The language L^r consists of the binary relation <, binary functions + and \cdot , unary function ' (successor) and the constant 0. The set of genuinely finite natural numbers is denoted by ω .

1. Since we have no idea how to solve the problem of hierarchy collapse (without an oracle) described in the previous sections, we will mention a theorem concerning the same problem for hierarchies with an oracle. For $n \in \omega$ and a unary relation symbol R, let us denote by E_n^R the set of formulas of the form

 $\exists \vec{x}_1 < x \; \forall \vec{x}_2 < x \; \dots \; Q \vec{x}_n < x \; \Delta(\vec{x}_1, \, \dots, \, \vec{x}_n, \, x),$

where Δ is an open formula of the language $L^r \cup \{R\}$. Also, for $B \subseteq \omega$ let

$$E_n^B = \{\varphi(x)^{(\mathbb{N},B)} : \varphi(x) \in E_n^R\}$$

Here $\varphi(x)^{(\mathbb{N},B)}$ is the set of x for which φ is true when L^R is interpreted by \mathbb{N} , and R by B. The sets A_n^R and A_n^B are defined analogously by letting the first quantifier be \forall . Their corresponding intersections are denoted Δ_0^R and Δ_0^B .

2. Proposition.

For all $n \in \omega$ there exists a subset B of ω such that $E_n^B \neq E_{n+1}^B$.

This proposition follows from a theorem of M. Sipser about Boolean circuits (see "Borel Sets and Circuit Complexity", JACM 1983, pp. 61–69), whose presentation we closely follow. On the way, we study a theorem of Ajtai about the structure of classes of sets of the form E_n^B that uses an analogue of the Borel hierarchy.

3. Let $M \supseteq \mathbb{N}$. We work "inside M", and it will be clear when we consider elements of M as elements, and when as M-bounded sets or M-bounded functions. Moreover, whenever we use expressions like $s \subseteq M$ and $f: s \longrightarrow M$, it should be understood that s and f are coded inside M (and so M-bounded).

Let $s \subseteq M$. We denote by |s| the size of s, by 2^s the set of Boolean functions on s, and by $2^{\subseteq s}$ the set of partial Boolean functions on s. The domain of a function f is denoted by dom(f). We denote by B_f^s the set of partial functions extending f. A set of functions $\alpha \subseteq 2^s$ is called a *basic subset* of 2^s if $\alpha = \emptyset$ or $\alpha = \bigcup_{i=0}^{n} B_{f_i}^s$ for some $n \in \omega$, where all functions f_i have genuinely finite domain (i.e. $|\operatorname{dom}(f_i)| \in \omega$). In other words, a basic subset is defined by a DNF.

The classes E_n^s and A_n^s , for $n \in \omega$, are defined by recursion on n as follows: (i) \tilde{E}_0^s and \tilde{A}_0^s consist of all basic subsets of 2^s .

(ii) E_{n+1}^s contains all sets of the form $\bigcup_{i < A} \alpha_i$, where the sequence α_i is coded inside M, all α_i belong to A_n^s , and $A < |s|^m$ for some $m \in \omega$.

(iii) $\tilde{A}_{n+1}^s = \{2^s \setminus \alpha : \alpha \in \tilde{E}_{n+1}^s\}.$

(iv)
$$A^s = \bigcup_{n \in \omega} E_n^s$$
.

We mention the connection (not used in what follows) between A^s and the theory of finite models, as described in 4 and 5:

If \mathcal{L} is a finite relational language (that is, \mathcal{L} contains only a (truly) 4. finite number of relation symbols), one denotes by $\mathcal{L}(R)$ the language obtained by adding to \mathcal{L} a new unary relation symbol R. If $\tilde{s} \in M$ is an \mathcal{L} -structure with domain $s \subseteq M$, and $f \in 2^s$, then we denote by (\tilde{s}, f) the resulting structure when R is interpreted by the zero-set of f, i.e. $\{a \in s : f(a) = 0\}$. I leave the proof of the following proposition, which isn't difficult, as an exercise.

5. Proposition.

Suppose that $s \subseteq M$, $\alpha \subseteq 2^s$ and $n \in \omega$. Then α belongs to \tilde{E}_n^s (respectively, A_n^s) if and only if there exists a finite relational language \mathcal{L} , an \mathcal{L} -structure $\tilde{s} \in M$ with domain s, an \exists_n (respectively \forall_n) formula $\varphi(x_1, \ldots, x_k)$ of $\mathcal{L}(R)$, and $a_1, \ldots, a_k \in \tilde{s}$ such that

$$\alpha = \{ f \in 2^s : (\tilde{s}, f) \models \varphi(a_1, \ldots, a_k) \}.$$

Moreover, if $n \ge 1$ then the formula φ can be chosen without free variables.

In order to explain Ajtai's theorem we need the following definition:

6. Definition.

Let $s \subseteq M$. A set $S \subseteq 2^{\subseteq s}$ is called *s*-complete if

(i) For all $f, g \in S$, $|\operatorname{dom}(f)| = |\operatorname{dom}(g)|$. We denote the common value by ||S||.

(ii) For all $f, g \in S$, if $f \neq g$ then $B_f^s \cap B_g^s = \emptyset$. (iii) $\bigcup_{f \in S} B_f^s = 2^s$. In other words, S is a collection of partial functions, all having the same domain size, such that $\{B_f^s : f \in S\}$ is a partition of 2^s . Alternatively, S is a ||S||-DNF tautology, all of whose clauses are mutually exclusive.

7. Theorem. (Ajtai)

Let $s \subseteq M$ such that |s| is non-standard, and let $\alpha \in A^s$. Then there exists a $k \in \omega$, an s-complete set S with $||S|| \leq |s| - |s|^{1/k}$, and a subset S of S such that

$$\left| \alpha \bigtriangleup \bigcup_{f \in \mathcal{S}} B_f^s \right| \le 2^{|s| - |s|^{1/k}}.$$

Before proving 7, we deduce an important corollary.

8. Corollary.

Let $s \subseteq M$ such that |s| is non-standard. Suppose that $\alpha \in A^s$ and $|\alpha| \geq 2^{|s|-|s|^{1/\ell}}$ for all $\ell \in \omega$. Then there exist $f \in 2^{\subseteq s}$ and $m \in \omega$ such that $|\operatorname{dom}(f)| \leq |s| - |s|^{1/m}$ and $B_f^s \subseteq \alpha$.

Proof. We first comment that if S is s-complete, $t \in M$ and for all $f \in S$, $a_f \subseteq s$ is such that dom $(f) \cap a_f = \emptyset$ and $|a_f| = t$, then $S' = \{f \cup g : f \in S, g \in 2^{a_f}\}$ is clearly s-complete with ||S'|| = ||S|| + t. Thus one can assume that the S given by 7 satisfies

$$|s| - |s|^{1/k} - 1 \le ||S|| \le |s| - |s|^{1/k}$$

Let $u = \min\{|B_f^s \setminus \alpha| : f \in \mathcal{S}\}$. Using 7 and 6(ii), we have

$$2^{|s|-|s|^{1/k}} \ge \left| \alpha \bigtriangleup \bigcup_{f \in \mathcal{S}} B_f^s \right| \ge \left| \bigcup_{f \in \mathcal{S}} (B_f^s \setminus \alpha) \right| \ge u \cdot |\mathcal{S}|.$$

Also, for all $\ell \in \omega$ we have

$$2^{|s|-|s|^{1/\ell}} \le |\alpha| \le \left| \bigcup_{f \in \mathcal{S}} B_f^s \right| + 2^{|s|-|s|^{1/k}}$$
$$= |\mathcal{S}| \cdot 2^{|s|-||\mathcal{S}||} + 2^{|s|-|s|^{1/k}}$$
$$\le |\mathcal{S}| \cdot 2^{|s|^{1/k}+1} + 2^{|s|-|s|^{1/k}}.$$

Since |s| is non-standard, it follows that $u \leq 2^{|s|^{1/\ell}}$ for all $\ell \in \omega$. In particular, there exists an $h \in 2^{\subseteq s}$ with $|s| - |s|^{1/k} - 1 \leq |\operatorname{dom}(h)| \leq |s| - |s|^{1/k}$ such that $|B_h^s \setminus \alpha| \leq 2^{|s|^{1/3k}}$. Let $\beta \subseteq s$ satisfy $\beta \cap \operatorname{dom}(h) = \emptyset$ and $|s|^{1/2k} \leq |\beta| \leq |s|^{1/2k} + 1$. Then

$$2^{|s|^{1/3k}} \ge |B_h^s \setminus \alpha| = \left| \left(\bigcup_{g \in 2^\beta} B_{h \cup g}^s \right) \setminus \alpha \right| = \sum_{g \in 2^\beta} |B_{h \cup g}^s \setminus \alpha|.$$

Therefore, if $|B_{h\cup g}^s \setminus \alpha| \ge 1$ for all $g \in 2^{\beta}$, then $2^{|s|^{1/3k}} \ge |2^{\beta}| \ge 2^{|s|^{1/2k}}$, a contradiction. Thus there exists a $g \in 2^{\beta}$ such that $B_{h\cup g}^s \subseteq \alpha$. Moreover,

$$|\operatorname{dom}(h \cup g)| \le |s| - |s|^{1/k} + |s|^{1/2k} + 1 \le |s| - |s|^{1/2k}.$$

One can use 8 to prove that certain natural sets of functions do not belong to A^s , and therefore are not first-order definable in the sense of 4 and 5. For example, it follows immediately from 8 that the set

$${f \in 2^s : |\{a \in s : f(a) = 0\}| \text{ is even}\}}$$

doesn't belong to A^s (for non-standard s).

9. Remark.

Ajtai proved a theorem stronger than 7, where "there exists a $k \in \omega$ " is replaced by "for each standard rational number η such that $0 < \eta < 1$ ". However, the proof that I give of 7 is much simpler than Ajtai's, and 7 is sufficient for most applications.

10. In order to prove 7, we shall need the following definitions and lemmas. We fix $s \subseteq M$ such that |s| is non-standard.

If σ is a non-trivial basic subset of 2^s (i.e. not \emptyset or 2^s), then clearly there exists a unique minimal subset $X \subseteq s$ which is genuinely finite such that $\sigma = \bigcup_{i < n} B_{f_i}^s$, where $n \in \omega \setminus \{0\}$ and $f_i \in 2^X$ for all i < n. We denote this X by $\operatorname{supp}(\sigma)$, and we write $\|\sigma\|$ for |X|. If σ is trivial then we use the convention $\operatorname{supp}(\sigma) = \emptyset$ and $\|\sigma\| = 0$. Thus we have

11.

$$|\sigma| \le \left(1 - \frac{1}{2^{\|\sigma\|}}\right) 2^{|s|} \text{ if } \sigma \neq 2^s.$$

If $\alpha \in \tilde{A}_1^s$, we can write $\alpha = \bigcap_{i < C} \sigma_i$, where for certain $n, m \in \omega$ we have that $|C| < |s|^m$, that for all i < C, σ_i is a basic subset of 2^s with $0 < ||\sigma_i|| \le n$, and that for all different i, j < C we have $\operatorname{supp}(\sigma_i) \neq \operatorname{supp}(\sigma_j)$. Note that $n \in \omega$ since $||\sigma_i|| \in \omega$ for all i < C and the sequence $\langle \sigma_i : i < C \rangle$ is *M*-coded. We denote by $||\alpha||$ the smallest value of *n*. If α is trivial, we put $||\alpha|| = 0$. Let us choose now a subset D_{α} of $\{0, 1, \ldots, C-1\}$ which is maximal under the property that for all different $i, j \in D_{\alpha}$, $\operatorname{supp}(\sigma_i) \cap \operatorname{supp}(\sigma_j) = \emptyset$. Using 11, we get that

12.

$$|\alpha| \le \left(1 - \frac{1}{2^{||\alpha||}}\right)^{|D_{\alpha}|} 2^{|s|}.$$

Moreover, since D_{α} is maximal we have:

13. For all $f \in 2^{\subseteq s}$ such that $\bigcup_{i \in D_{\alpha}} \operatorname{supp}(\sigma_i) \subseteq \operatorname{dom}(f)$, we have that $B_f^s \cap \alpha = B_f^s \cap \alpha_f$ for some $\alpha_f \in \tilde{A}_1^s$ with $\|\alpha_f\| \leq \|\alpha\| - 1$.

We define $\operatorname{supp}(\alpha) = \bigcup_{i \in D_{\alpha}} \operatorname{supp}(\sigma_i)$, so that

14. $|\operatorname{supp}(\alpha)| \le ||\alpha|| \cdot |D_{\alpha}|.$

We need the following combinatorial lemma:

15. Lemma.

Let $\beta_1, \beta_2, \ldots, \beta_t \subseteq s, m \in \omega$ and p, q be standard natural numbers such that p, q > 0 and p + q < 1. Suppose that $t \leq |s|^m$ and that $|\beta_i| \leq |s|^p$ for $i = 1, \ldots, t$. Then there exist $H \subseteq s$ and $\ell \in \omega$ such that $|H| \geq |s|^q$ and $|H \cap \beta_i| < \ell$ for $i = 1, \ldots, t$.

Proof. Suppose, for the sake of contradiction, that for all $\ell \in \omega$ and $H \subseteq s$ with $|H| = \lfloor |s|^q \rfloor + 1 \triangleq u$ there exists an *i*, where $1 \leq i \leq t$, such that $|H \cap \beta_i| \geq \ell$. Then for all $\ell \in \omega$,

$$\binom{|s|}{u} \leq \sum_{i=1}^{t} \binom{|\beta_i|}{\ell} \binom{|s|-\ell}{u-\ell}$$

(We suppose, of course, that the function $i \mapsto \beta_i$ is coded inside M.)

Thus for all $\ell \in \omega$,

$$\binom{|s|}{u} \le |s|^m \binom{|s|^p}{\ell} \binom{|s|}{u-\ell}.$$

It follows that $|s|^{\ell} \leq |s|^m |s|^{p\ell} u^{\ell}$ for all $\ell \in \omega$. Taking ℓ big enough, this contradicts the facts that $u = \lfloor |s|^q \rfloor + 1$, p + q < 1, p + q is standard and s is non-standard.

We will now prove the following theorem, from which 7 clearly follows.

16. Theorem.

Let $N, m \in \omega$ and $\langle \alpha_i : i < A \rangle$ be an *M*-coded sequence such that $A < |S|^m$ and either all α_i belong to \tilde{A}^s_N , or all α_i belong to \tilde{E}^s_N . Then there exist $k \in \omega$ and an *s*-complete set S with $||S|| \leq |s| - |s|^{1/k}$ such that for all $i \in A$ the following property holds:

$$\left|\alpha_i \bigtriangleup \bigcup_{f \in \mathcal{S}} (B_f^s \cap \sigma_{f,i})\right| \le 2^{|s| - |s|^{1/k}}, \qquad (*)$$

where for all i < A and for all $f \in S$, $\sigma_{f,i}$ is a basic subset of 2^s (and the function $(f,i) \mapsto \sigma_{f,i}$ is coded inside M).

Proof. First of all, let us consider the case that $\alpha_i \in A_1^s$ for all i < A. We comment that $\max_{i < A} \|\alpha_i\| \in \omega$ since $\|\alpha_i\| \in \omega$ for all $i \in A$ and the sequence $\langle \alpha_i : i < A \rangle$ is *M*-coded. We proceed by induction on $\max_{i < A} \|\alpha_i\|$.

If $\max_{i < A} \|\alpha_i\| = 0$, then $\alpha_i \in \{\emptyset, 2^s\}$ for all i < A. Thus, we can define $\mathcal{S} = \{\emptyset\}, k = 1$ and $\sigma_{\emptyset,i} = \alpha_i$, which satisfies (*).

Suppose now that $\max_{i < A} \|\alpha_i\| = n + 1$, where $n \in \omega$. Define

$$E = \{i < A : |D_{\alpha_i}| \le \sqrt{|s|}\}$$

and $t_i = \operatorname{supp}(\alpha_i)$ for $i \in E$. Using 15, we get $H \subseteq s$ and $\ell \in \omega$ so that

- 17. $|H| \ge \sqrt[4]{s}$ and
- 18. For all $i \in E$, $|H \cap t_i| \leq \ell$.

Let $u_i = H \cap t_i$ for all $i \in E$. For every $h \in 2^{s \setminus H}$, $i \in E$ and $h^{(i)} \in 2^{u_i}$ we clearly have:

19. $\operatorname{dom}(h) \cap \operatorname{dom}(h^{(i)}) = \emptyset$ and $t_i \subseteq \operatorname{dom}(h) \cup \operatorname{dom}(h^{(i)})$, and so, using 13:

 $20. \quad B^s_{h\cup h^{(i)}}\cap \alpha_i=B^s_{h\cup h^{(i)}}\cap \alpha_{h\cup h^{(i)}} \text{ for some } \alpha_{h\cup h^{(i)}}\in \tilde{A}^s_1 \text{ with } \|\alpha_{h\cup h^{(i)}}\|\leq n.$

We can suppose that the projections of $\alpha_{h\cup h^{(i)}}$ to 2^H , which we denote $\alpha^*_{h\cup h^{(i)}} \in \tilde{A}^H_1$, exist. They also satisfy $\|\alpha^*_{h\cup h^{(i)}}\| \leq n$.

Thus, for fixed $h \in 2^{s \setminus H}$, we can apply the induction hypothesis for the sequence $\langle \alpha^*_{h \cup h^{(i)}} : i \in E, h^{(i)} \in 2^{u_i} \rangle$ (since $\alpha^*_{h \cup h^{(i)}} \in \tilde{A}_1^H$ and its size is at most $2^{\ell} |E| \leq 2^{\ell} A < |s|^{m+1} \leq |H|^{4(m+1)}$, using 17) to obtain $k_h \in \omega$ and an *H*-complete set S_h satisfying $||S_h|| \leq |H| - |H|^{1/k_h}$ such that for all $i \in E$ and $h^{(i)} \in 2^{u_i}$:

21.

$$\left|\alpha_{h\cup h^{(i)}}^* \bigtriangleup \bigcup_{f\in\mathcal{S}_h} \left(B_f^H \cap \tau_{f,i,h^{(i)}}\right)\right| \le 2^{|H|-|H|^{1/k_h}},$$

where the $\tau_{f,i,h^{(i)}}$ are basic subsets of 2^{H} .

We can suppose that the function $h \mapsto k_h$ is coded within M, so that $k^* \triangleq \max\{k_h : h \in 2^{s \setminus H}\}$ belongs to ω . Moreover, we can clearly suppose that for all $h \in 2^{s \setminus H}$, $k_h = k^*$ and $\|S_h\| = \lfloor |H| - |H|^{1/k^*} \rfloor$ (see the proof of 8) while 21 remains true.

Let $S = \{h \cup f : h \in 2^{s \setminus H}, f \in S_h\}$. Thus S is s-complete, and by 17:

22.
$$\|S\| \le |s| - |H| + (|H| - |H|^{1/k^*}) = |s| - |H|^{1/k^*} \le |s| - |s|^{1/5k^*}.$$

We remark that if $g \in S$ then $g = h \cup f$, where $h \in 2^{s \setminus H}$ and $f \in S_h$, and this representation is unique (since S_h is *H*-complete), and so we can define, for $i \in E$ and $g \in S$,

$$\sigma_{g,i} = \bigcup_{h^{(i)} \in 2^{u_i}} \left(B^s_{h^{(i)}} \cap \tau^{\dagger}_{f,i,h^{(i)}} \right),$$

where $\tau_{f,i,h^{(i)}}^{\dagger}$ is the lifting of $\tau_{f,i,h^{(i)}}$ (given by 21) to 2^s. Thus $\sigma_{g,i}$ is a basic subset of 2^s, since u_i is genuinely finite.

For all $i \in E$ we clearly get, using 20:

23.

$$\alpha_i = \bigcup_{h \in 2^{s \setminus H}} \bigcup_{h^{(i)} \in 2^{u_i}} \left(B^s_{h \cup h^{(i)}} \cap \alpha_{h \cup h^{(i)}} \right)$$

and

24.

$$\bigcup_{g\in\mathcal{S}} (B_g^s \cap \sigma_{g,i}) = \bigcup_{h\in 2^{s\setminus H}} \bigcup_{h^{(i)}\in 2^{u_i}} \left(B_{h\cup h^{(i)}}^s \cap \left(\bigcup_{f\in\mathcal{S}_h} (B_f^s \cap \tau_{f,i,h^{(i)}}^\dagger) \right) \right).$$

Thus

$$\begin{split} & \left| \alpha_i \bigtriangleup \bigcup_{g \in \mathcal{S}} (B_g^s \cap \sigma_{g,i}) \right| \\ & = \left| \bigcup_{h \in 2^{s \setminus H}} \bigcup_{h^{(i)} \in 2^{u_i}} \left(B_{h \cup h^{(i)}}^s \cap \left(\alpha_{h \cup h^{(i)}} \bigtriangleup \bigcup_{f \in \mathcal{S}_h} (B_f^s \cap \tau_{f,i,h^{(i)}}^\dagger) \right) \right) \right| \end{split}$$

Now, for all $h \in 2^{s \setminus H}$ and $h^{(i)} \in 2^{u_i}$,

$$\begin{aligned} \left| B^s_{h\cup h^{(i)}} \cap \left(\alpha_{h\cup h^{(i)}} \bigtriangleup \bigcup_{f\in\mathcal{S}_h} (B^s_f \cap \tau^{\dagger}_{f,i,h^{(i)}}) \right) \right| \\ = \left| \alpha^*_{h\cup h^{(i)}} \bigtriangleup \bigcup_{f\in\mathcal{S}_h} (B^H_f \cap \tau_{f,i,h^{(i)}}) \right| \le 2^{|H| - |H|^{1/k^*}} \end{aligned}$$

(by 21), and so

26. For all $i \in E$,

$$\left|\alpha_i \bigtriangleup \bigcup_{g \in \mathcal{S}} (B_g^s \cap \sigma_{g,i})\right| \le 2^{|s| - |H|} \cdot 2^{\ell} \cdot 2^{|H| - |H|^{1/k^*}} \le 2^{|s| - |s|^{1/5k^*}}$$

where the first inequality follows from 25 and 18, and the second one from 17.

Now, let us put $\sigma_{g,i} = \emptyset$ for all $g \in S$ if $i \notin E$. Thus for all $i \notin E$,

$$\left|\alpha_i \bigtriangleup \bigcup_{g \in \mathcal{S}} (B_g^s \cap \sigma_{g,i})\right| = |\alpha_i| \le \left(1 - \frac{1}{2^{n+1}}\right)^{\sqrt{|s|}} \cdot 2^{|s|}$$

(using 12 and the definition of E), and so

27. For all $i \notin E$,

$$\left|\alpha_i \bigtriangleup \bigcup_{g \in \mathcal{S}} (B_g^s \cap \sigma_{g,i})\right| \le 2^{|s| - |s|^{1/5k^*}}.$$

The induction is now complete (see 22, 26 and 27), so that we have proved the case $\alpha_i \in \tilde{A}_1^s$ of the theorem.

In order to prove the theorem in general, we remark that if it holds for a sequence $\langle \alpha_i : i < A \rangle$, then it also holds for its complement $\langle 2^s \setminus \alpha_i : i < A \rangle$, since the class of basic subsets is closed under complementation. Thus it suffices to prove that if the theorem holds for the sequence $\langle \alpha_{i,j} : i, j < A \rangle$ then it also holds for the sequence $\langle \omega_{i,j} : i, j < A \rangle$ then it also holds for the sequence $\langle \bigcup_{j < A} \alpha_{i,j} : i < A \rangle$.

Let us therefore choose $k \in \omega$ and an s-complete set S with $||S|| \le |s| - |s|^{1/k}$ such that for all i, j < A,

$$\left|\alpha_{i,j} \bigtriangleup \bigcup_{f \in \mathcal{S}} (B_f^s \cap \sigma_{f,i,j})\right| \le 2^{|s| - |s|^{1/k}},$$

25.

where the $\sigma_{f,i,j}$ are basic subsets of 2^s . (We comment that the sequence $\langle \alpha_{i,j} : i, j < A \rangle$ has length at most $A^2 \leq |s|^{2m}$.) Let $\beta_{f,i} = \bigcap_{j < A} \sigma_{f,i,j}$ for $f \in \mathcal{S}$ and i < A, so that $\beta_{f,i} \in \tilde{A}_1^s$. Thus for all i < A,

$$\bigg(\bigcap_{j$$

and so

28. For all i < A,

$$\left| \left(\bigcap_{j < A} \alpha_{i,j} \right) \bigtriangleup \bigcup_{f \in \mathcal{S}} (B_f^s \cap \beta_{f,i}) \right| \le A \cdot 2^{|s| - |s|^{1/k}}.$$

Clearly, for all i < A and $f \in S$ the projection $\beta_{f,i}^*$ of $\beta_{f,i}$ into $s \setminus \operatorname{dom}(f)$ belongs to $\tilde{A}_1^{s \setminus \operatorname{dom}(f)}$. The already proven case of the theorem implies that for all $f \in S$ there exist $k' \in \omega$ and an $(s \setminus \operatorname{dom}(f))$ -complete set S_f , with $\|S_f\| \leq |s \setminus \operatorname{dom}(f)| - |s \setminus \operatorname{dom}(f)|^{1/k'} \leq |s| - \|S\| - (|s| - \|S\|)^{1/k'}$, such that

29. For all i < A and $f \in \mathcal{S}$,

$$\left| \beta_{f,i}^* \bigtriangleup \bigcup_{g \in \mathcal{S}_f} \left(B_g^{s \setminus \operatorname{dom}(f)} \cap \tau_{g,i} \right) \right| \le 2^{|s \setminus \operatorname{dom}(f)| - |s \setminus \operatorname{dom}(f)|^{1/k'}} \le 2^{|s| - ||\mathcal{S}|| - (|s| - ||\mathcal{S}||)^{1/k'}},$$

where the $\tau_{g,i}$ are basic subsets of $2^{s \setminus \text{dom}(f)}$. Like above, we can suppose that k' does not depend on f, and that for all $f, g \in S$, $\|S_f\| = \|S_g\|$.

Let $\mathcal{S}^* = \{f \cup g : f \in \mathcal{S}, g \in \mathcal{S}_f\}$, and for all $f \in \mathcal{S}, g \in \mathcal{S}_f$ and i < A, let $\sigma_{f \cup g,i} = \tau_{g,i}^{\dagger}$, where $\tau_{g,i}^{\dagger}$ is the lifting of $\tau_{g,i}$ to 2^s . We remark that 30.

$$\|\mathcal{S}^*\| \le |s| - (|s| - \|\mathcal{S}\|)^{1/k'} \le |s| - |s|^{1/k'}$$

Using 29 we have that for all i < A,

$$\left| \bigcup_{f \in \mathcal{S}} \left((B_f^s \cap \beta_{f,i}) \bigtriangleup \left(B_f^s \cap \bigcup_{g \in \mathcal{S}_f} (B_g^s \cap \tau_{g,i}^\dagger) \right) \right) \right| \le |\mathcal{S}| \cdot 2^{s - ||\mathcal{S}|| - (|s| - ||\mathcal{S}||)^{1/k'}}$$
$$= 2^{|s| - (|s| - ||\mathcal{S}||)^{1/k'}}$$
$$\le 2^{|s| - |s|^{1/kk'}}.$$

(The fact that $|\mathcal{S}| = 2^{||\mathcal{S}||}$ follows easily from the definition of an s-complete set.)

But

$$\bigcup_{f \in \mathcal{S}} \left(B_f^s \cap \bigcup_{g \in \mathcal{S}_f} (B_g^s \cap \tau_{g,i}^\dagger) \right) = \bigcup_{h \in \mathcal{S}^*} (B_h^s \cap \sigma_{h,i}),$$

and so

$$\left| \bigcup_{f \in \mathcal{S}} (B_f^s \cap \beta_{f,i}) \bigtriangleup \bigcup_{h \in \mathcal{S}^*} (B_h^s \cap \sigma_{h,i}) \right| \le 2^{|s| - |s|^{1/kk'}}.$$

This, along with 28 and 30, implies that if we set $k^* = kk' + 1$ then for all i < A,

$$\left|\bigcap_{j$$

and $\|\mathcal{S}^*\| \leq |s| - |s|^{1/k^*}$, which is what we wanted to prove.

31. The results of 7 and 8 can be used in the study of sets of the form Δ_0^B (see 1). For example, it's an open question whether the class of Δ_0 sets (without an oracle) is closed under "counting modulo 2", that is: does $B \in \Delta_0$ (where $B \subseteq \omega$) imply that $B^{\text{even}} \in \Delta_0$, where $B^{\text{even}} = \{n \in \omega : |m \leq n : n \in B|\}$ is even? On the other hand, using the remark mentioned after the proof of 8 and an enumeration of the formulas in $\bigcup_{n \in \omega} E_n^R$, it is easy to construct a set $B \subseteq \omega$ such that $B^{\text{even}} \notin \Delta_0^B$ (see Paris-Wilkie below).

Closing, I'd like to mention an amusing result that can be proven using the same method. I leave the details as an exercise.

32. Proposition. (Ajtai)

Suppose that M is denumerable. Let $a \in M$ be non-standard, and \tilde{a} be the substructure of M with domain $\{x \in M : x < a\}$ (recall that the language of M is relational). Then there exist $A, B \subseteq \{x \in M : x < a\}$, coded inside M, such that $(\tilde{a}, A) \cong (\tilde{a}, B)$ but, according to M, |A| is even while |B| is odd!

33. Bibliography.

M. Ajtai, Σ_1^1 -formulae on finite structures, Annals of Pure and Applied Logic, Vol. 24(1), 1983.

J. Paris and A. J. Wilkie, *Counting problems in bounded arithmetic*, Proceedings of the Seventh Latin American Logic Congress, Caracas, Venezuela, 1983.