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0. The language Lr consists of the binary relation <, binary functions +
and ·, unary function ′ (successor) and the constant 0. The set of genuinely
finite natural numbers is denoted by ω.

1. Since we have no idea how to solve the problem of hierarchy collapse
(without an oracle) described in the previous sections, we will mention a theorem
concerning the same problem for hierarchies with an oracle. For n ∈ ω and a
unary relation symbol R, let us denote by ERn the set of formulas of the form

∃~x1 < x ∀~x2 < x . . . Q~xn < x ∆(~x1, . . . , ~xn, x),

where ∆ is an open formula of the language Lr ∪ {R}. Also, for B ⊆ ω let

EBn = {ϕ(x)(N,B) : ϕ(x) ∈ ERn }.

Here ϕ(x)(N,B) is the set of x for which ϕ is true when LR is interpreted by N,
and R by B. The sets ARn and ABn are defined analogously by letting the first
quantifier be ∀. Their corresponding intersections are denoted ∆R

0 and ∆B
0 .

2. Proposition.
For all n ∈ ω there exists a subset B of ω such that EBn 6= EBn+1.
This proposition follows from a theorem of M. Sipser about Boolean circuits

(see “Borel Sets and Circuit Complexity”, JACM 1983, pp. 61–69), whose
presentation we closely follow. On the way, we study a theorem of Ajtai about
the structure of classes of sets of the form EBn that uses an analogue of the Borel
hierarchy.

3. Let M ) N. We work “inside M”, and it will be clear when we
consider elements ofM as elements, and when asM -bounded sets orM -bounded
functions. Moreover, whenever we use expressions like s ⊆M and f : s −→M ,
it should be understood that s and f are coded inside M (and so M -bounded).

Let s ⊆M . We denote by |s| the size of s, by 2s the set of Boolean functions
on s, and by 2⊆s the set of partial Boolean functions on s. The domain of a
function f is denoted by dom(f). We denote by Bsf the set of partial functions
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extending f . A set of functions α ⊆ 2s is called a basic subset of 2s if α = ∅
or α =

⋃n
i=0B

s
fi

for some n ∈ ω, where all functions fi have genuinely finite
domain (i.e. |dom(fi)| ∈ ω). In other words, a basic subset is defined by a
DNF.

The classes Ẽsn and Ãsn, for n ∈ ω, are defined by recursion on n as follows:
(i) Ẽs0 and Ãs0 consist of all basic subsets of 2s.
(ii) Ẽsn+1 contains all sets of the form

⋃
i<A αi, where the sequence αi is

coded inside M , all αi belong to Ãsn, and A < |s|m for some m ∈ ω.
(iii) Ãsn+1 = {2s \ α : α ∈ Ẽsn+1}.
(iv) As =

⋃
n∈ω Ẽ

s
n.

We mention the connection (not used in what follows) between As and the
theory of finite models, as described in 4 and 5:

4. If L is a finite relational language (that is, L contains only a (truly)
finite number of relation symbols), one denotes by L(R) the language obtained
by adding to L a new unary relation symbol R. If s̃ ∈M is an L-structure with
domain s ⊆ M , and f ∈ 2s, then we denote by (s̃, f) the resulting structure
when R is interpreted by the zero-set of f , i.e. {a ∈ s : f(a) = 0}. I leave the
proof of the following proposition, which isn’t difficult, as an exercise.

5. Proposition.
Suppose that s ⊆M , α ⊆ 2s and n ∈ ω. Then α belongs to Ẽsn (respectively,

Ãsn) if and only if there exists a finite relational language L, an L-structure
s̃ ∈ M with domain s, an ∃n (respectively ∀n) formula ϕ(x1, . . . , xk) of L(R),
and a1, . . . , ak ∈ s̃ such that

α = {f ∈ 2s : (s̃, f) |= ϕ(a1, . . . , ak)}.

Moreover, if n ≥ 1 then the formula ϕ can be chosen without free variables.
In order to explain Ajtai’s theorem we need the following definition:

6. Definition.
Let s ⊆M . A set S ⊆ 2⊆s is called s-complete if
(i) For all f, g ∈ S, |dom(f)| = |dom(g)|. We denote the common value by

‖S‖.
(ii) For all f, g ∈ S, if f 6= g then Bsf ∩Bsg = ∅.
(iii)

⋃
f∈S B

s
f = 2s. In other words, S is a collection of partial functions,

all having the same domain size, such that {Bsf : f ∈ S} is a partition of
2s. Alternatively, S is a ‖S‖-DNF tautology, all of whose clauses are mutually
exclusive.

7. Theorem. (Ajtai)
Let s ⊆M such that |s| is non-standard, and let α ∈ As. Then there exists

a k ∈ ω, an s-complete set S with ‖S‖ ≤ |s| − |s|1/k, and a subset S of S such
that ∣∣∣∣α4 ⋃

f∈S

Bsf

∣∣∣∣ ≤ 2|s|−|s|
1/k
.
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Before proving 7, we deduce an important corollary.

8. Corollary.
Let s ⊆ M such that |s| is non-standard. Suppose that α ∈ As and

|α| ≥ 2|s|−|s|
1/`

for all ` ∈ ω. Then there exist f ∈ 2⊆s and m ∈ ω such
that |dom(f)| ≤ |s| − |s|1/m and Bsf ⊆ α.

Proof. We first comment that if S is s-complete, t ∈M and for all f ∈ S, af ⊆ s
is such that dom(f)∩ af = ∅ and |af | = t, then S′ = {f ∪ g : f ∈ S, g ∈ 2af } is
clearly s-complete with ‖S′‖ = ‖S‖+ t. Thus one can assume that the S given
by 7 satisfies

|s| − |s|1/k − 1 ≤ ‖S‖ ≤ |s| − |s|1/k.

Let u = min{|Bsf \ α| : f ∈ S}. Using 7 and 6(ii), we have

2|s|−|s|
1/k
≥
∣∣∣∣α4 ⋃

f∈S

Bsf

∣∣∣∣ ≥ ∣∣∣∣ ⋃
f∈S

(Bsf \ α)
∣∣∣∣ ≥ u · |S|.

Also, for all ` ∈ ω we have

2|s|−|s|
1/`
≤ |α| ≤

∣∣∣∣ ⋃
f∈S

Bsf

∣∣∣∣+ 2|s|−|s|
1/k

= |S| · 2|s|−‖S‖ + 2|s|−|s|
1/k

≤ |S| · 2|s|
1/k+1 + 2|s|−|s|

1/k
.

Since |s| is non-standard, it follows that u ≤ 2|s|
1/`

for all ` ∈ ω. In particu-
lar, there exists an h ∈ 2⊆s with |s| − |s|1/k − 1 ≤ | dom(h)| ≤ |s| − |s|1/k such
that |Bsh \ α| ≤ 2|s|

1/3k
. Let β ⊆ s satisfy β ∩ dom(h) = ∅ and |s|1/2k ≤ |β| ≤

|s|1/2k + 1. Then

2|s|
1/3k
≥ |Bsh \ α| =

∣∣∣∣( ⋃
g∈2β

Bsh∪g

)
\ α
∣∣∣∣ =

∑
g∈2β

|Bsh∪g \ α|.

Therefore, if |Bsh∪g \ α| ≥ 1 for all g ∈ 2β , then 2|s|
1/3k ≥ |2β | ≥ 2|s|

1/2k
, a

contradiction. Thus there exists a g ∈ 2β such that Bsh∪g ⊆ α. Moreover,

|dom(h ∪ g)| ≤ |s| − |s|1/k + |s|1/2k + 1 ≤ |s| − |s|1/2k.

One can use 8 to prove that certain natural sets of functions do not belong
to As, and therefore are not first-order definable in the sense of 4 and 5. For
example, it follows immediately from 8 that the set

{f ∈ 2s : |{a ∈ s : f(a) = 0}| is even}
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doesn’t belong to As (for non-standard s).

9. Remark.
Ajtai proved a theorem stronger than 7, where “there exists a k ∈ ω” is re-

placed by “for each standard rational number η such that 0 < η < 1”. However,
the proof that I give of 7 is much simpler than Ajtai’s, and 7 is sufficient for
most applications.

10. In order to prove 7, we shall need the following definitions and lemmas.
We fix s ⊆M such that |s| is non-standard.

If σ is a non-trivial basic subset of 2s (i.e. not ∅ or 2s), then clearly there
exists a unique minimal subset X ⊆ s which is genuinely finite such that σ =⋃
i<nB

s
fi

, where n ∈ ω \ {0} and fi ∈ 2X for all i < n. We denote this X by
supp(σ), and we write ‖σ‖ for |X|. If σ is trivial then we use the convention
supp(σ) = ∅ and ‖σ‖ = 0. Thus we have

11.

|σ| ≤
(

1− 1
2‖σ‖

)
2|s| if σ 6= 2s.

If α ∈ Ãs1, we can write α =
⋂
i<C σi, where for certain n,m ∈ ω we have

that |C| < |s|m, that for all i < C, σi is a basic subset of 2s with 0 < ‖σi‖ ≤ n,
and that for all different i, j < C we have supp(σi) 6= supp(σj). Note that n ∈ ω
since ‖σi‖ ∈ ω for all i < C and the sequence 〈σi : i < C〉 is M -coded. We
denote by ‖α‖ the smallest value of n. If α is trivial, we put ‖α‖ = 0. Let
us choose now a subset Dα of {0, 1, . . . , C − 1} which is maximal under the
property that for all different i, j ∈ Dα, supp(σi)∩ supp(σj) = ∅. Using 11, we
get that

12.

|α| ≤
(

1− 1
2‖α‖

)|Dα|
2|s|.

Moreover, since Dα is maximal we have:

13. For all f ∈ 2⊆s such that
⋃
i∈Dα supp(σi) ⊆ dom(f), we have that

Bsf ∩ α = Bsf ∩ αf for some αf ∈ Ãs1 with ‖αf‖ ≤ ‖α‖ − 1.

We define supp(α) =
⋃
i∈Dα supp(σi), so that

14. | supp(α)| ≤ ‖α‖ · |Dα|.

We need the following combinatorial lemma:

15. Lemma.
Let β1, β2, . . . , βt ⊆ s, m ∈ ω and p, q be standard natural numbers such

that p, q > 0 and p + q < 1. Suppose that t ≤ |s|m and that |βi| ≤ |s|p for
i = 1, . . . , t. Then there exist H ⊆ s and ` ∈ ω such that |H| ≥ |s|q and
|H ∩ βi| < ` for i = 1, . . . , t.
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Proof. Suppose, for the sake of contradiction, that for all ` ∈ ω and H ⊆ s with
|H| = b|s|qc+ 1 , u there exists an i, where 1 ≤ i ≤ t, such that |H ∩ βi| ≥ `.
Then for all ` ∈ ω, (

|s|
u

)
≤

t∑
i=1

(
|βi|
`

)(
|s| − `
u− `

)
.

(We suppose, of course, that the function i 7→ βi is coded inside M .)
Thus for all ` ∈ ω, (

|s|
u

)
≤ |s|m

(
|s|p

`

)(
|s|
u− `

)
.

It follows that |s|` ≤ |s|m|s|p`u` for all ` ∈ ω. Taking ` big enough, this
contradicts the facts that u = b|s|qc + 1, p + q < 1, p + q is standard and s is
non-standard.

We will now prove the following theorem, from which 7 clearly follows.

16. Theorem.
Let N,m ∈ ω and 〈αi : i < A〉 be an M -coded sequence such that A < |S|m

and either all αi belong to ÃsN , or all αi belong to ẼsN . Then there exist k ∈ ω
and an s-complete set S with ‖S‖ ≤ |s| − |s|1/k such that for all i ∈ A the
following property holds:∣∣∣∣αi4 ⋃

f∈S

(Bsf ∩ σf,i)
∣∣∣∣ ≤ 2|s|−|s|

1/k
, (∗)

where for all i < A and for all f ∈ S, σf,i is a basic subset of 2s (and the
function (f, i) 7→ σf,i is coded inside M).

Proof. First of all, let us consider the case that αi ∈ Ãs1 for all i < A. We
comment that maxi<A ‖αi‖ ∈ ω since ‖αi‖ ∈ ω for all i ∈ A and the sequence
〈αi : i < A〉 is M -coded. We proceed by induction on maxi<A ‖αi‖.

If maxi<A ‖αi‖ = 0, then αi ∈ {∅, 2s} for all i < A. Thus, we can define
S = {∅}, k = 1 and σ∅,i = αi, which satisfies (∗).

Suppose now that maxi<A ‖αi‖ = n+ 1, where n ∈ ω. Define

E = {i < A : |Dαi | ≤
√
|s|}

and ti = supp(αi) for i ∈ E. Using 15, we get H ⊆ s and ` ∈ ω so that

17. |H| ≥ 4
√
s and

18. For all i ∈ E, |H ∩ ti| ≤ `.

Let ui = H ∩ ti for all i ∈ E. For every h ∈ 2s\H , i ∈ E and h(i) ∈ 2ui we
clearly have:

19. dom(h)∩dom(h(i)) = ∅ and ti ⊆ dom(h)∪dom(h(i)), and so, using 13:
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20. Bs
h∪h(i) ∩αi = Bs

h∪h(i) ∩αh∪h(i) for some αh∪h(i) ∈ Ãs1 with ‖αh∪h(i)‖ ≤
n.

We can suppose that the projections of αh∪h(i) to 2H , which we denote
α∗
h∪h(i) ∈ ÃH1 , exist. They also satisfy ‖α∗

h∪h(i)‖ ≤ n.
Thus, for fixed h ∈ 2s\H , we can apply the induction hypothesis for the

sequence 〈α∗
h∪h(i) : i ∈ E, h(i) ∈ 2ui〉 (since α∗

h∪h(i) ∈ ÃH1 and its size is at
most 2`|E| ≤ 2`A < |s|m+1 ≤ |H|4(m+1), using 17) to obtain kh ∈ ω and an
H-complete set Sh satisfying ‖Sh‖ ≤ |H| − |H|1/kh such that for all i ∈ E and
h(i) ∈ 2ui :

21. ∣∣∣∣α∗h∪h(i)4
⋃
f∈Sh

(
BHf ∩ τf,i,h(i)

) ∣∣∣∣ ≤ 2|H|−|H|
1/kh

,

where the τf,i,h(i) are basic subsets of 2H .

We can suppose that the function h 7→ kh is coded within M , so that k∗ ,
max{kh : h ∈ 2s\H} belongs to ω. Moreover, we can clearly suppose that for
all h ∈ 2s\H , kh = k∗ and ‖Sh‖ = b|H| − |H|1/k∗c (see the proof of 8) while
21 remains true.

Let S = {h ∪ f : h ∈ 2s\H , f ∈ Sh}. Thus S is s-complete, and by 17:

22. ‖S‖ ≤ |s| − |H|+ (|H| − |H|1/k∗) = |s| − |H|1/k∗ ≤ |s| − |s|1/5k∗ .

We remark that if g ∈ S then g = h ∪ f , where h ∈ 2s\H and f ∈ Sh, and
this representation is unique (since Sh is H-complete), and so we can define, for
i ∈ E and g ∈ S,

σg,i =
⋃

h(i)∈2ui

(
Bsh(i) ∩ τ †f,i,h(i)

)
,

where τ †
f,i,h(i) is the lifting of τf,i,h(i) (given by 21) to 2s. Thus σg,i is a basic

subset of 2s, since ui is genuinely finite.
For all i ∈ E we clearly get, using 20:

23.
αi =

⋃
h∈2s\H

⋃
h(i)∈2ui

(
Bsh∪h(i) ∩ αh∪h(i)

)
and

24.

⋃
g∈S

(Bsg ∩ σg,i) =
⋃

h∈2s\H

⋃
h(i)∈2ui

Bsh∪h(i) ∩
( ⋃
f∈Sh

(Bsf ∩ τ
†
f,i,h(i))

) .

Thus
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25. ∣∣∣∣αi4 ⋃
g∈S

(Bsg ∩ σg,i)
∣∣∣∣

=

∣∣∣∣∣∣
⋃

h∈2s\H

⋃
h(i)∈2ui

Bsh∪h(i) ∩
(
αh∪h(i)4

⋃
f∈Sh

(Bsf ∩ τ
†
f,i,h(i))

)∣∣∣∣∣∣ .
Now, for all h ∈ 2s\H and h(i) ∈ 2ui ,∣∣∣∣Bsh∪h(i) ∩

(
αh∪h(i)4

⋃
f∈Sh

(Bsf ∩ τ
†
f,i,h(i))

)∣∣∣∣
=
∣∣∣∣α∗h∪h(i)4

⋃
f∈Sh

(BHf ∩ τf,i,h(i))
∣∣∣∣ ≤ 2|H|−|H|

1/k∗

(by 21), and so

26. For all i ∈ E,∣∣∣∣αi4 ⋃
g∈S

(Bsg ∩ σg,i)
∣∣∣∣ ≤ 2|s|−|H| · 2` · 2|H|−|H|

1/k∗

≤ 2|s|−|s|
1/5k∗

,

where the first inequality follows from 25 and 18, and the second one from 17.

Now, let us put σg,i = ∅ for all g ∈ S if i /∈ E. Thus for all i /∈ E,∣∣∣∣αi4 ⋃
g∈S

(Bsg ∩ σg,i)
∣∣∣∣ = |αi| ≤

(
1− 1

2n+1

)√|s|
· 2|s|

(using 12 and the definition of E), and so

27. For all i /∈ E,∣∣∣∣αi4 ⋃
g∈S

(Bsg ∩ σg,i)
∣∣∣∣ ≤ 2|s|−|s|

1/5k∗

.

The induction is now complete (see 22, 26 and 27), so that we have proved
the case αi ∈ Ãs1 of the theorem.

In order to prove the theorem in general, we remark that if it holds for a
sequence 〈αi : i < A〉, then it also holds for its complement 〈2s \ αi : i < A〉,
since the class of basic subsets is closed under complementation. Thus it suffices
to prove that if the theorem holds for the sequence 〈αi,j : i, j < A〉 then it also
holds for the sequence 〈

⋃
j<A αi,j : i < A〉.

Let us therefore choose k ∈ ω and an s-complete set S with ‖S‖ ≤ |s|−|s|1/k
such that for all i, j < A,∣∣∣∣αi,j4 ⋃

f∈S

(Bsf ∩ σf,i,j)
∣∣∣∣ ≤ 2|s|−|s|

1/k
,
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where the σf,i,j are basic subsets of 2s. (We comment that the sequence 〈αi,j :
i, j < A〉 has length at most A2 ≤ |s|2m.) Let βf,i =

⋂
j<A σf,i,j for f ∈ S and

i < A, so that βf,i ∈ Ãs1. Thus for all i < A,( ⋂
j<A

αi,j

)
4
⋃
f∈S

(Bsf ∩ βf,i) ⊆
⋃
j<A

(
αi,j4

⋃
f∈S

(Bsf ∩ σf,i,j)
)
,

and so

28. For all i < A,∣∣∣∣( ⋂
j<A

αi,j

)
4
⋃
f∈S

(Bsf ∩ βf,i)
∣∣∣∣ ≤ A · 2|s|−|s|1/k .

Clearly, for all i < A and f ∈ S the projection β∗f,i of βf,i into s \ dom(f)

belongs to Ã
s\dom(f)
1 . The already proven case of the theorem implies that

for all f ∈ S there exist k′ ∈ ω and an (s \ dom(f))-complete set Sf , with
‖Sf‖ ≤ |s \ dom(f)| − |s \ dom(f)|1/k′ ≤ |s| − ‖S‖ − (|s| − ‖S‖)1/k′ , such that

29. For all i < A and f ∈ S,∣∣∣∣β∗f,i4 ⋃
g∈Sf

(Bs\dom(f)
g ∩ τg,i)

∣∣∣∣ ≤ 2|s\dom(f)|−|s\dom(f)|1/k
′

≤ 2|s|−‖S‖−(|s|−‖S‖)1/k
′

,

where the τg,i are basic subsets of 2s\dom(f). Like above, we can suppose that
k′ does not depend on f , and that for all f, g ∈ S, ‖Sf‖ = ‖Sg‖.

Let S∗ = {f ∪ g : f ∈ S, g ∈ Sf}, and for all f ∈ S, g ∈ Sf and i < A, let
σf∪g,i = τ †g,i, where τ †g,i is the lifting of τg,i to 2s. We remark that

30.
‖S∗‖ ≤ |s| − (|s| − ‖S‖)1/k

′
≤ |s| − |s|1/k

′
.

Using 29 we have that for all i < A,∣∣∣∣∣∣
⋃
f∈S

(Bsf ∩ βf,i)4
(
Bsf ∩

⋃
g∈Sf

(Bsg ∩ τ
†
g,i)
)∣∣∣∣∣∣ ≤ |S| · 2s−‖S‖−(|s|−‖S‖)1/k

′

= 2|s|−(|s|−‖S‖)1/k
′

≤ 2|s|−|s|
1/kk′

.

(The fact that |S| = 2‖S‖ follows easily from the definition of an s-complete
set.)
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But ⋃
f∈S

(
Bsf ∩

⋃
g∈Sf

(Bsg ∩ τ
†
g,i)
)

=
⋃
h∈S∗

(Bsh ∩ σh,i),

and so ∣∣∣∣ ⋃
f∈S

(Bsf ∩ βf,i)4
⋃
h∈S∗

(Bsh ∩ σh,i)
∣∣∣∣ ≤ 2|s|−|s|

1/kk′

.

This, along with 28 and 30, implies that if we set k∗ = kk′+1 then for all i < A,∣∣∣∣ ⋂
j<A

αi,j4
⋃
h∈S∗

(Bsh ∩ σh,i)
∣∣∣∣ ≤ 2|s|−|s|

1/k∗

and ‖S∗‖ ≤ |s| − |s|1/k∗ , which is what we wanted to prove.

31. The results of 7 and 8 can be used in the study of sets of the form ∆B
0

(see 1). For example, it’s an open question whether the class of ∆0 sets (without
an oracle) is closed under “counting modulo 2”, that is: doesB ∈ ∆0 (whereB ⊆
ω) imply that Beven ∈ ∆0, where Beven = {n ∈ ω : |m ≤ n : n ∈ B|} is even?
On the other hand, using the remark mentioned after the proof of 8 and an
enumeration of the formulas in

⋃
n∈ω E

R
n , it is easy to construct a set B ⊆ ω

such that Beven /∈ ∆B
0 (see Paris-Wilkie below).

Closing, I’d like to mention an amusing result that can be proven using the
same method. I leave the details as an exercise.

32. Proposition. (Ajtai)
Suppose that M is denumerable. Let a ∈M be non-standard, and ã be the

substructure of M with domain {x ∈ M : x < a} (recall that the language of
M is relational). Then there exist A,B ⊆ {x ∈ M : x < a}, coded inside M ,
such that (ã, A) ∼= (ã, B) but, according to M , |A| is even while |B| is odd!
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