Inexpressibility of Until

Yuval Filmus

October 26, 2009

We prove that the until operator \mathcal{U} cannot be expressed in terms of the operators $\neg, \vee, \wedge, \circ, \square, \diamond$.

A given formula φ contains a finite number of variables, the set of which we denote by $V=V(\varphi)$. The set of states $\mathcal{S}=\mathcal{S}(\varphi)$ can be identified with the Boolean algebra $\mathbb{B}[V]$. Any distribution μ on \mathcal{S} lifts to a distribution on the set of infinite sequences \mathcal{S}^{∞}.

For $\sigma \in \mathcal{S}^{\infty}$, denote by $\left.\sigma\right|_{k}$ the initial prefix of σ of size k. Given a distribution μ on \mathcal{S}, define the canonical random sequence \mathcal{R} by $\mathcal{R}_{i} \sim \mu$ independently.

We say that an event E is determined given an event F if the probability $\operatorname{Pr}[E \mid F]$ is either zero or one. We say that a formula φ is finitely determined with index k if for any distribution μ on $\mathcal{S}=\mathcal{S}(\varphi)$ and any initial segment $s \in \mathcal{S}^{k}$, the event $\varphi(\sigma)$ is determined given $\left.\sigma\right|_{k}=s$.

Let us prove by induction that every formula φ with $\neg, \vee, \wedge, \circ, \square, \diamond$ is finitely determined. The base case $\varphi=x$ for a variable x is clearly finitely determined with index 1 . If φ is finitely determined with index k, then it's easy to see that so is $\neg \varphi$. If φ, ψ are finitely determined with indices k, ℓ, respectively, then it's easy to see that $\varphi \vee \psi$ and $\varphi \wedge \psi$ are finitely determined with index $\max (k, \ell)$. Moreover, if φ is finitely determined with index k, then it's easy to see that $\circ \varphi$ is finitely determined with index $k+1$.

To complete the proof by induction, let $\psi=\square \varphi$, where φ is finitely determined with index k (the case $\psi=\Delta \varphi$ is completely analogous). We consider two cases: either there exists a prefix s with $\mu(s)>0$ such that $\operatorname{Pr}\left[\mathcal{R}|\mathcal{R}|_{k}=s\right]=0$, or $\operatorname{Pr}[\mathcal{R}]=1$. In the first case, divide the random sequence $\mathcal{R} \in \mathcal{S}^{\infty}$ into random sequences $\mathcal{R}_{[i]}$ of length k. Notice that $\operatorname{Pr}[\psi(\mathcal{R})] \leq \prod_{i} \operatorname{Pr}\left[\mathcal{R}_{[i]} \neq s\right]=0$. In the second case, the event $\psi(\mathcal{R})$ is the intersection of countably many events of probability 1 , and so $\operatorname{Pr}[\psi(\mathcal{R})]=1$. In both cases, ψ is finitely determined with index 0 .

Conversely, $\varphi=p \mathcal{U} q$ is not finitely determined. Indeed, suppose that p, q are independent, with probabilities α, β, respectively. The probability of φ given a prefix in which p always holds is

$$
\sum_{t \geq 0}(\alpha(1-\beta))^{i} \beta=\frac{\beta}{1-\alpha(1-\beta)}
$$

If $\alpha=\beta=1 / 2$, this probability is $2 / 3$, and so φ is not finitely determined.

