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1 Introduction

In this note, we study self-avoiding walks on the integer numbers starting at the
origin and at each step moving to a point a distance of at most two away.

More formally, a skip chain is a finite or infinite sequence p0, p1, . . . of integers
satisfying the following properties:

1. Origin: p0 = 0.

2. Moves: |pi+1 − pi| ≤ 2.

3. Self-avoidance: pi 6= pj for i 6= j.

We will be particularly interested in the quantity

lim
n→∞

w1/n
n ,

were wn is the number of walks of length n.

2 Reduction to automaton

Consider a skip chain pi. The skip chain is completely described by the sequence
of moves pi+1 − pi ∈ {±1,±2}. The moves that the skip chain can make at a
given point depend on the location of the already visited squares relative to its
current position. These can be described as doubly infinite words over the al-
phabet {�,�,�}, whose meaning is never visited, visited, current, respectively.
Some more notation: � will denote either � or �; wn will denote the word w
repeated n times; �←,�→ will denote a left-infinite (right-infinite) word com-
posed of �; �←,�→ will denote a left-infinite (right-infinite) word composed of
�,� in arbitrary position.
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We define the following eight families of states:

AR
n = �←(��)n � �→, n ≥ 0,

BR
n = �←(��)n � ��→ n ≥ 0,

CR
n = �←(��)n � ��→ n ≥ 1,

DR
n = �← � (��)n � �→ n ≥ 1,

ER
n = �← � (��)n � ��→ n ≥ 0,

FR
n = �←(��)n � � � �→ n ≥ 0,

GR
n = �←(��)n � � � �→ n ≥ 1,

HR
n = �←(��)n � � � ��→ n ≥ 0.

Eight more families are obtained by reversing the words. These will be denoted
by AL

n etc. Note that AR
0 = AL

0 , and otherwise all states are different. We
denote A0 = AR

0 = AL
0 .

Using these states, we can describe an infinite deterministic automaton which
accepts a sequence of moves iff it leads to a skip chain. The states of the
automaton are the infinite families of states mentioned above, and an absorbing
error state X. A sequence of moves is a skip chain iff it doesn’t end up at X.

We now describe the automaton. The starting state is A0. The following
table describes the allowable moves for the right families of states (left families
are obtained by reversing all directions). When two target states are given, the
first corresponds to the member of the family with smallest n, in other words
A0, B

R
0 , C

R
1 , D

R
1 , E

R
0 , F

R
0 , G

R
1 , H

R
0 , and the second corresponds to all other mem-

bers.
−2 −1 +1 +2

AR
n AL

1 , X BL
0 , C

R
n BR

n AR
n+1

BR
n EL

0 , F
R
n−1 X ER

0 DR
1

CR
n EL

0 , F
R
n−2 X X ER

0

DR
n X FL

0 , G
R
n−1 ER

n DR
n+1

ER
n X,HR

n−1 X ER
0 DR

1

FR
n EL

0 , F
R
n−1 X X X

GR
n HR

n−1 X X ER
0

HR
n X,HR

n−1 X X X

3 Infinite skip chains

Using the automaton described above, we can explicitly list all maximal skip
chains. A maximal skip chain is either a finite skip chain which cannot be
extended, or an infinite skip chain. Every finite skip chain can be extended to
some maximal skip chain, so the set of all finite skips is equal to the set of all
prefixes of all maximal skip chains.

At each point after the first move, the automaton is either in a right state
or a left state. When in a right state, the notation B2,B1,F1,F2 will represent
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the moves −2,−1,+1,+2; when in a left state, these will represent the opposite
moves +2,+1,−1,−2. In the starting position, both directions are the same,
and we will use F1,F2 to mean ±1,±2; the direction of the first move determines
the direction of the second state.

Tedious but elementary calculations yield the following recursive description
of all maximal skip chains. For n ≥ 0, denote by En the set of all maximal skip
chains starting at state ER

n /E
L
n , and denote by A0 the set of all chains. These

are defined by the following equations:

A0 = {Fn
2 F1F2B1B2E0 : n ≥ 0} ∪ {Fn

2 F1Fm
2 F1Em : n ≥ 0, m ≥ 1}

∪ {Fn
2 F1Fm+1

2 B1Bm
2 : n ≥ 0m ≥ 1} ∪ {Fn

2 F1Fm
2 B1F2E0 : n ≥ 0m ≥ 2}

∪ {Fn
2 F2

1E0 : n ≥ 0} ∪ {Fn
2 F1Bn+1

2 E0 : n ≥ 0}
∪ {Fn

2 B1F2E0 : n ≥ 1} ∪ {Fn
2 B1Bn

2E0 : n ≥ 1},
En = Bn

2 ∪ F1E0 ∪ F2B1B2E0
∪ {Fm

2 F1Em : m ≥ 1} ∪ {Fm+1
2 B1Bm

2 : m ≥ 1} ∪ {Fm
2 B1F2E0 : m ≥ 2}.

4 Asymptotics

Denote by A[`]
0 , E

[`]
n the number of prefixes of the given set of length `. Using

the Iverson bracket notation, we can calculate explictly

E [`]
n = [n ≤ `] + [` ≥ 2] + [` ≥ 3]

+ E [`−1]
0 + E [`−3]

0 + E [`−2]
1

+
`−2∑
m=2

(
[` ≤ 2m] + E [`−m−1]

m + E [`−m−2]
0

)
.

Therefore

E [`]
n = E [`−1]

0 + E [`−3]
0 + E [`−2]

1 +
`−2∑
m=2

(
E [`−m−1]

m + E [`−m−2]
0

)
+ ε, 0 ≤ ε ≤ `.

In order to estimate E [`]
n , we define recurrence equations which will provide

both a lower bound and an upper bound on E [`]
n , independent of `. These are

L` = L`−1 + L`−2 + L`−3 +
`−2∑
m=2

(L`−m−1 + L`−m−2), L0 = 1,

U` = U`−1 + U`−2 + U`−3 +
`−2∑
m=2

(U`−m−1 + U`−m−2) + `, U0 = 1.

Consider the sequence L`. When expanding out all terms, each sequence
leading to L0 = 1 corresponds to a selection of `i such that

∑
i `i = `. The

choices for `i are the multiset

{1, 2, 3} ∪ {m,m+ 1 : m ≥ 3} = {1, 2} ∪ {m,m : m ≥ 3}.
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Therefore L` is the coefficient of x` in the generating series

∞∑
t=0

(
x+ x2 + 2

x3

1− x

)
=

1
1− x− x2 − 2x3/(1− x)

=
1− x

1− 2x− x3
.

The denominator has one real root µ−1 ≈ 0.453397651516404 which is also the
root of smallest modulus, and so L` = Θ(µ`), where µ ≈ 2.20556943040059.

In order to deal with the upper bound sequence, fix some term Uk that we
wish to estimate. We then form a new sequence V` by replacing the additive
constant ` in the recurrence relation for V` with V0. Clearly, for ` ≤ k we have
V` ≤ kV`. When expanding out all terms corresponding to V`, each sequence
leading to V0 corresponds to a selection of `i such that

∑
i `i ≤ `, and the `i

are chosen as in the sequence L`. Therefore V` is the coefficient of x` in the
generating series

1− x
1− 2x− x3

· 1
1− x

=
1

1− 2x− x3
,

of the same order of growth as L`. In particular, we get U` = O(`µ`). Since
L` ≤ E [`]

n ≤ U`, we conclude that for all n uniformly,

Ω(µ`) ≤ E [`]
n ≤ O(`µ`).

We now go back to A[`]
0 . Since F2

1E
[`−2]
0 ⊂ A[`]

0 , we see that A[`]
0 grows at

least as fast as E [`]
0 (up to constants). On the other hand, each sequence in

A[`]
0 is of the form wE`−k

m for some m, k (for the finite sequences, take k = `).
Inspection of the equation for A0 reveals that there are O(`2) choices for w.
Therefore

Ω(µ`) ≤ A[`]
0 ≤ O(`3µ`).

We conclude that
lim

`→∞

√̀
A[`]

0 = µ.
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