A Question from The Probabilistic Method

Yuval Filmus

April 2008

1 Introduction

This note concerns question 8 in chapter 2 of the well-known textbook "The Probabilistic Method". This question was given in a take-home exam by Nati Linial in April 2008. We present a complete solution, as well as several partial ones which are of interest.

The question is as follows:
Given integers $n \geq k \geq 1$ and an orthogonal $n \times n$ matrix A, show that $\max _{c} \sum_{r=0}^{k-1} A_{r c}^{2} \geq k / n$, and similarly $\min _{c} \sum_{r=0}^{k-1} A_{r c}^{2} \geq k / n$. Moreover, produce an instance A with equality.

The inequality is easily proved by noting that the squared sum of the first k rows is k (since each row is a unit vector), and so the largest column has squared sum at least k / n, and the smallest one at most k / n. The rest of this note concerns instances where the inequalities are tight.

2 Solution with Hadamard Matrices

Hadamard matrices can be defined as follows:

$$
\begin{aligned}
H_{0} & =[1], \\
H_{n+1} & =\left[\begin{array}{cc}
H_{n} & H_{n} \\
H_{n} & -H_{n}
\end{array}\right] .
\end{aligned}
$$

The matrix H_{n} is a $2^{n} \times 2^{n}$ symmetric matrix and satisfies $H_{n}^{2}=2^{n} I_{2^{n}}$. This is clear for H_{0} and follows for H_{n+1} since

$$
\begin{aligned}
H_{n+1}^{2} & =\left[\begin{array}{cc}
H_{n}^{2}+H_{n}^{2} & H_{n}^{2}-H_{n}^{2} \\
H_{n}^{2}-H_{n}^{2} & H_{n}^{2}+H_{n}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \cdot 2^{n} I_{2^{n}} & 0_{2^{n}} \\
0_{2^{n}} & 2 \cdot 2^{n} I_{2^{n}}
\end{array}\right]=2^{n+1} I_{2^{n+1}} .
\end{aligned}
$$

It follows that $2^{-n / 2} H_{n}$ is orthogonal. Moreover, since $\left(\pm 2^{-n / 2}\right)^{2}=2^{-n}$ it trivially follows that the squared sum of the first (in fact any) k elements of any column is $k / 2^{n}$.

3 Solution with Complex Vandermonde Matrices

Let $\omega=e^{2 \pi i / n}$ be a primitive n-th root of unity, and define the complex matrix $A_{i j}=\omega^{i j}$. This matrix is unitary up to a constant n :

$$
\left(A^{*} A\right)_{i j}=\sum_{k=0}^{n-1} \omega^{k(j-i)}= \begin{cases}n \cdot 1=n & i=j, \\ \frac{\omega^{n}-1}{\omega-1}=0 & i \neq j .\end{cases}
$$

Moreover, each entry in the matrix has unit norm, and so if we normalize the matrix by $1 / \sqrt{n}$ we obtain a unitary matrix which is a solution to our problem, apart from the fact that this matrix is complex instead of real. We continue by presenting two attempts to remedy this problem.

4 Realization of Vandermonde Matrix using a Representation of \mathbb{C}

Our first attempt to realize the Vandermonde matrix as a real matrix with similar properties is through the two-dimensional representation of \mathbb{C} over \mathbb{R}. The representation is as follows:

$$
M(x+y i)=\left[\begin{array}{cc}
x & -y \\
y & x
\end{array}\right] .
$$

It is now easy to check that for $z, w \in \mathbb{C}$ we have $M(z)^{\mathrm{T}}=M(\bar{z}), M(z)+$ $M(w)=M(z+w)$ and $M(z) M(w)=M(z w)$.

For any complex matrix A, denote by $M(A)$ the real matrix obtained by replacing each element z by $M(z)$. Thus $M(A)$ is double the size of A. It is
easy to see that $M\left(A^{*}\right)=M(A)^{\mathrm{T}}$. Moreover, it easily follows from linearity that $M(A B)=M(A) M(B)$. Thus if A is unitary, $M(A)$ is orthogonal.

Taking now as A the Vandermonde matrix described in the previous section, we obtain an orthogonal matrix $M(A)$. Moreover, it is easy to see that $M(A)$ satisfies the conditions of our problem for $2 n$ and $2 k$. We thus obtain a solution for the problem in case n, k are both even.

5 Realization of Vandermonde Matrix using Folding

Our second attempt to realize the Vandermonde matrix stems from the similarities between the Hadamard and Vandermonde solutions for small n. As a typical example, consider $n=4$. The two (un-normalized) solutions H_{2} and V_{4} are as follows:

$$
H_{2}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right], \quad V_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

If we put $i=1$ in V_{4} that we obtain H_{2} up to switching the second and third rows and columns! Putting $i=-1$ will also work but requires a different permutation of H_{2}.

Let us see if this strange coincidence holds water. For definiteness we choose the assignment $i=1$, although (as the reader can check) $i=-1$ will also work. Starting with the Vandermonde matrix, we obtain the following symmetric matrix:

$$
A_{i j}=\cos \frac{2 \pi i j}{n}+\sin \frac{2 \pi i j}{n} .
$$

Let us calculate A^{2} (we shall consider indices modulo n):

$$
\begin{aligned}
\left(A^{2}\right)_{i j}= & \sum_{k=0}^{n-1} A_{i k} A_{j k}=\sum_{k=0}^{n-1} \frac{1}{2}\left(A_{i k} A_{j k}+A_{i(-k)} A_{j(-k)}\right) \\
= & \sum_{k=0}^{n-1} \frac{1}{2}\left[\left(\cos \frac{2 \pi i k}{n}+\sin \frac{2 \pi i k}{n}\right)\left(\cos \frac{2 \pi j k}{n}+\sin \frac{2 \pi j k}{n}\right)+\right. \\
& \left.\quad\left(\cos \frac{2 \pi i k}{n}-\sin \frac{2 \pi i k}{n}\right)\left(\cos \frac{2 \pi j k}{n}-\sin \frac{2 \pi j k}{n}\right)\right] \\
= & \sum_{k=0}^{n-1}\left(\cos \frac{2 \pi i k}{n} \cos \frac{2 \pi j k}{n}+\sin \frac{2 \pi i k}{n} \sin \frac{2 \pi j k}{n}\right) \\
= & \sum_{k=0}^{n-1} \frac{1}{2}\left(\cos \frac{2 \pi(i+j) k}{n}+\cos \frac{2 \pi(i-j) k}{n}-\cos \frac{2 \pi(i+j) k}{n}+\cos \frac{2 \pi(i-j) k}{n}\right) \\
= & \sum_{k=0}^{n-1} \cos \frac{2 \pi(i-j) k}{n}=\operatorname{Re} \sum_{k=0}^{n-1} \omega^{(i-j) k}= \begin{cases}n & i=j, \\
0 & i \neq j .\end{cases}
\end{aligned}
$$

Thus A is (up to normalization) orthogonal! The first row is composed of 1 s and so has the right sum of squares, but unfortunately the other entries are not necessarily of unit norm. It thus seems that we have found a solution only for $k=1$. This shortcoming can be amended by noting the following:

$$
\begin{aligned}
A_{i j}^{2}+A_{(-i) j}^{2} & =\left(\cos \frac{2 \pi i j}{n}+\sin \frac{2 \pi i j}{n}\right)^{2}+\left(\cos \frac{2 \pi i j}{n}-\sin \frac{2 \pi i j}{n}\right)^{2} \\
& =2 \cos ^{2} \frac{2 \pi i j}{n}+2 \sin ^{2} \frac{2 \pi i j}{n}=2 .
\end{aligned}
$$

It follows that a proper rearranging of the rows will lead to a solution for any k. Indeed, putting row i together with row $-i$ produces a partition of the set of rows into $\left\lfloor\frac{n-1}{2}\right\rfloor$ pairs and 1 or 2 singletons, depending on the parity. If $k=2 l$ is even then l of the pairs should be put as the first k rows (if $k=n$ then the pairs are supplemented by the remaining rows). If $k=2 l+1$ then the first k rows should consist of l pairs and one of the singletons. Thus, we have obtained a solution of the problem for any n, k. Moreover, by permuting the columns to match the permutation of the rows we get a symmetric solution.

