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1 Introduction

This note concerns question 8 in chapter 2 of the well-known textbook “The
Probabilistic Method”. This question was given in a take-home exam by
Nati Linial in April 2008. We present a complete solution, as well as several
partial ones which are of interest.

The question is as follows:

Given integers n ≥ k ≥ 1 and an orthogonal n × n ma-
trix A, show that maxc

∑k−1
r=0 A

2
rc ≥ k/n, and similarly

minc
∑k−1

r=0 A
2
rc ≥ k/n. Moreover, produce an instance A with

equality.

The inequality is easily proved by noting that the squared sum of the first
k rows is k (since each row is a unit vector), and so the largest column has
squared sum at least k/n, and the smallest one at most k/n. The rest of this
note concerns instances where the inequalities are tight.

2 Solution with Hadamard Matrices

Hadamard matrices can be defined as follows:

H0 =
[
1
]
,

Hn+1 =

[
Hn Hn

Hn −Hn

]
.
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The matrix Hn is a 2n× 2n symmetric matrix and satisfies H2
n = 2nI2n . This

is clear for H0 and follows for Hn+1 since

H2
n+1 =

[
H2
n +H2

n H2
n −H2

n

H2
n −H2

n H2
n +H2

n

]
=

[
2 · 2nI2n 02n

02n 2 · 2nI2n

]
= 2n+1I2n+1 .

It follows that 2−n/2Hn is orthogonal. Moreover, since
(
±2−n/2)2 = 2−n it

trivially follows that the squared sum of the first (in fact any) k elements of
any column is k/2n.

3 Solution with Complex Vandermonde Ma-

trices

Let ω = e2πi/n be a primitive n-th root of unity, and define the complex
matrix Aij = ωij. This matrix is unitary up to a constant n:

(A∗A)ij =
n−1∑
k=0

ωk(j−i) =

{
n · 1 = n i = j,
ωn−1
ω−1

= 0 i 6= j.

Moreover, each entry in the matrix has unit norm, and so if we normalize
the matrix by 1/

√
n we obtain a unitary matrix which is a solution to our

problem, apart from the fact that this matrix is complex instead of real. We
continue by presenting two attempts to remedy this problem.

4 Realization of Vandermonde Matrix using

a Representation of C
Our first attempt to realize the Vandermonde matrix as a real matrix with
similar properties is through the two-dimensional representation of C over
R. The representation is as follows:

M(x+ yi) =

[
x −y
y x

]
.

It is now easy to check that for z, w ∈ C we have M(z)T = M(z), M(z) +
M(w) = M(z + w) and M(z)M(w) = M(zw).

For any complex matrix A, denote by M(A) the real matrix obtained by
replacing each element z by M(z). Thus M(A) is double the size of A. It is
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easy to see that M(A∗) = M(A)T. Moreover, it easily follows from linearity
that M(AB) = M(A)M(B). Thus if A is unitary, M(A) is orthogonal.

Taking now as A the Vandermonde matrix described in the previous sec-
tion, we obtain an orthogonal matrix M(A). Moreover, it is easy to see that
M(A) satisfies the conditions of our problem for 2n and 2k. We thus obtain
a solution for the problem in case n, k are both even.

5 Realization of Vandermonde Matrix using

Folding

Our second attempt to realize the Vandermonde matrix stems from the sim-
ilarities between the Hadamard and Vandermonde solutions for small n. As
a typical example, consider n = 4. The two (un-normalized) solutions H2

and V4 are as follows:

H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , V4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
If we put i = 1 in V4 that we obtain H2 up to switching the second

and third rows and columns! Putting i = −1 will also work but requires a
different permutation of H2.

Let us see if this strange coincidence holds water. For definiteness we
choose the assignment i = 1, although (as the reader can check) i = −1 will
also work. Starting with the Vandermonde matrix, we obtain the following
symmetric matrix:

Aij = cos
2πij

n
+ sin

2πij

n
.
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Let us calculate A2 (we shall consider indices modulo n):

(
A2
)
ij

=
n−1∑
k=0

AikAjk =
n−1∑
k=0

1

2

(
AikAjk + Ai(−k)Aj(−k)

)
=

n−1∑
k=0

1

2

[(
cos

2πik

n
+ sin

2πik

n

)(
cos

2πjk

n
+ sin

2πjk

n

)
+

(
cos

2πik

n
− sin

2πik

n

)(
cos

2πjk

n
− sin

2πjk

n

)]

=
n−1∑
k=0

(
cos

2πik

n
cos

2πjk

n
+ sin

2πik

n
sin

2πjk

n

)

=
n−1∑
k=0

1

2

(
cos

2π(i+ j)k

n
+ cos

2π(i− j)k
n

− cos
2π(i+ j)k

n
+ cos

2π(i− j)k
n

)

=
n−1∑
k=0

cos
2π(i− j)k

n
= Re

n−1∑
k=0

ω(i−j)k =

{
n i = j,

0 i 6= j.

Thus A is (up to normalization) orthogonal! The first row is composed of
1s and so has the right sum of squares, but unfortunately the other entries
are not necessarily of unit norm. It thus seems that we have found a solution
only for k = 1. This shortcoming can be amended by noting the following:

A2
ij + A2

(−i)j =

(
cos

2πij

n
+ sin

2πij

n

)2

+

(
cos

2πij

n
− sin

2πij

n

)2

= 2 cos2
2πij

n
+ 2 sin2 2πij

n
= 2.

It follows that a proper rearranging of the rows will lead to a solution for
any k. Indeed, putting row i together with row −i produces a partition of
the set of rows into bn−1

2
c pairs and 1 or 2 singletons, depending on the

parity. If k = 2l is even then l of the pairs should be put as the first k
rows (if k = n then the pairs are supplemented by the remaining rows). If
k = 2l + 1 then the first k rows should consist of l pairs and one of the
singletons. Thus, we have obtained a solution of the problem for any n, k.
Moreover, by permuting the columns to match the permutation of the rows
we get a symmetric solution.
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