Riddle Concerning ± 1 Vectors

Yuval Filmus

2002

You are given the list of all 2^{n} vectors with ± 1 entries of length n. Someone erased (changed to 0) some of the entries. Show that there's always a non-empty set of rows (vectors) summing to the zero vector.

Each ± 1 vector is the difference of two $0 / 1$ vectors, for example:

$$
\begin{array}{rlrrr}
& 1 & -1 & 1 & -1 \\
= & 1 & 0 & 1 & 0 \\
- & 0 & 1 & 0 & 1
\end{array}
$$

In this representation, every $0 / 1$ vector appears exactly once as a minuend and once as a subtrahend.

We can handle erasure of entries by modifying all subtrahends. If a 1 is erased, we modify the corresponding entry in the subtrahend from 0 to 1 . If a -1 is erased, we modify the corresponding entry from 1 to 0 . Continuing our previous example:

$$
\begin{array}{rrrrr}
& 0 & 0 & 1 & -1 \\
= & 1 & 0 & 1 & 0 \\
- & 1 & 0 & 0 & 1
\end{array}
$$

Let us number the lines according to the minuends. Define $f(x)$ to be the subtrahend at line x, so that line x is equal to $\ell(x)=x-f(x)$. The function f maps \mathbb{Z}_{2}^{n} to itself, and so if we apply it repetitively to some element, eventually it will reach a cycle x_{0}, \ldots, x_{m-1}, i.e. $f\left(x_{i}\right)=x_{i+1}(\bmod m)$. The lines x_{0}, \ldots, x_{m-1} sum to zero:

$$
\sum_{i=0}^{m-1} \ell\left(x_{i}\right)=\sum_{i=0}^{m-1} x_{i}-f\left(x_{i}\right)=\sum_{i=0}^{m-1} x_{i}-x_{i+1} \quad(\bmod m)=0
$$

