Erdős-Ko-Rado for μ_{p} using Katona's circle method

Yuval Filmus

November 7, 2010

Let \mathcal{F} be a family of subsets of $[n]=\{1, \ldots, n\}$, i.e. $\mathcal{F} \subset 2^{2^{[n]}}$. We say that \mathcal{F} is an intersecting family if every two $A, B \in \mathcal{F}$ intersect. For example, the family

$$
\mathcal{F}_{i}=\{S \subset[n]: i \in S\}
$$

is intersecting; it is called a dictatorship.
For each $p \in[0,1]$, we define a measure μ_{p} on families of subsets of $[n]$. Let X_{p} be a random subset of $[n]$ obtained by selecting each $i \in[n]$ with probability p. Then

$$
\mu_{p}(\mathcal{F})=\operatorname{Pr}\left[X_{p} \in \mathcal{F}\right] .
$$

The well-known Erdős-Ko-Rado theorem (in its weighted version) characterizes the intersecting families of maximal measure for $p \leq 1 / 2$ (when $p>1 / 2$, the maximal measure depends on n).

Theorem 1 (EKR). Let $p \in[0,1 / 2]$. Then every intersecting family \mathcal{F} satisfies $\mu_{p}(\mathcal{F}) \leq p$. Moreover, if $p<1 / 2$ then $\mu_{p}(\mathcal{F})=p$ iff \mathcal{F} is a dictatorship.

Proof. Let C be a circle whose circumference has length 1. Pick n uniformly random points x_{i} on the circle (independently). Let I be any interval of length p on the circle, without its right endpoint. The set

$$
X_{I}=\{i \in[n]: i \in I\}
$$

is distributed according to X_{p}, and therefore $\operatorname{Pr}\left[X_{I} \in \mathcal{F}\right]=\mu_{p}(\mathcal{F})$. If we pick the interval I itself uniformly at random on the circle, then we still get $\operatorname{Pr}\left[X_{I} \in \mathcal{F}\right]=\mu_{p}(\mathcal{F})$, since the distribution of the points x_{i} is rotationally invariant.

Consider now any arrangement of the points on the circle, and let y_{1}, y_{2} be any two starting points of intervals of length p such that $X_{\left[y_{1}, y_{1}+p\right)}, X_{\left[y_{2}, y_{2}+p\right)} \in$ \mathcal{F}. Since \mathcal{F} is intersecting, both intervals must intersect, i.e. $\left|y_{1}-y_{2}\right| \leq p$ (here we use $p \leq 1 / 2$). Denoting by Y the set of starting points of intervals y such that $X_{[y, y+p)} \in \mathcal{F}$, we see that the diameter of Y is at most p, and so conditioned on the positions of $x_{i}, \operatorname{Pr}\left[X_{I} \in \mathcal{F}\right] \leq p$. We conclude that $\mu_{p}(\mathcal{F}) \leq p$.

Suppose now that $p<1 / 2$ and that $\mu_{p}(\mathcal{F})=p$. Thus for almost all arrangements of points x_{i}, Y consists of an interval of length p. Consider one such
arrangement, and suppose wlog that $Y=(0, p]$. Since $0 \notin Y$, there must be a point x_{s} whose exact position is p. Let $X=X_{[p, 2 p)}$. Denote by E the event that the points x_{1}, \ldots, x_{n} are chosen so that $x_{s}=p$, points in X are located in [$p, 2 p$), points not in X are located outside of $(0,2 p+\epsilon)$, and no points coincide, where ϵ is chosen small enough so that $2 p+\epsilon<1$. Since $\operatorname{Pr}[E]>0$ conditioned on $x_{s}=p$, there is some arrangement of points satisfying E and $\left|Y^{\prime}\right|=p$ (this follows from rotation invariance). Notice that $p \in Y^{\prime}$ but $p+\delta \notin Y^{\prime}$ for $\delta<\epsilon$, since otherwise $p+\delta \in Y$ (here we're using the fact that if $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F})$. We conclude that $Y^{\prime}=(0, p]$. For small enough $\delta>0$, $X_{[\delta, \delta+p)}^{\prime}=\left\{x_{s}\right\}$, and so $\mathcal{F}=\{A \subset[n]: s \in A\}$ is a dictatorship.

Open question: use this proof method to show that if $\mu_{p}(\mathcal{F}) \geq p-\epsilon$ then there's a point s contained in $1-c_{p, \epsilon}$ of the sets in \mathcal{F}.

