Thirteenth proof of a result about tiling a rectangle

Yuval Filmus

November 7, 2010

We paraphrase the 13th proof of Stan Wagon's well-known "Fourteen proofs of a result about tiling a rectangle".

Define an integral rectangle as a rectangle whose sides are parallel to the axes, and at least one of its sides has integral length. The result is as follows. If a rectangle can be tiled by integral rectangles, then it is itself integral.

Here's the proof. Denote by $\{x\}$ the fractional part of a number, i.e. $\{x\}=$ $x-\lfloor x\rfloor$. For a rectangle R with corners $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, define its dummy area $\alpha(R)$ as $\left(\left\{x_{2}\right\}-\left\{x_{1}\right\}\right)\left(\left\{y_{2}\right\}-\left\{y_{1}\right\}\right)$. Notice that a rectangle is integral iff its dummy area is zero.

Suppose that a grid divides a rectangle R into rectangles $G_{i, j}$. It's easy to see that $\alpha(R)=\sum_{i, j} \alpha\left(G_{i, j}\right)$. Now suppose that a rectangle R is tiled by rectangles R_{i}. Extend all sides of all rectangles to form a grid $G_{j, k}$. Then

$$
\alpha(R)=\sum_{j, k} \alpha\left(G_{j, k}\right)=\sum_{i} \alpha\left(R_{i}\right) .
$$

If all rectangles R_{i} are integral then $\alpha\left(R_{i}\right)=0$ and so $\alpha(R)=0$, and R is integral.

The proof can be easily extended to show that if a k-dimensional box is tiled by boxes, each of which having at least l integral sides, then so does the large box.

