Combinatorial Games Solution to exercise 3.7.6 Yuval Filmus

Notation. Throughout, G = (V, E) will be a finite digraph, and γ will be its (unique) γ -function. A value function g is any function $g: V \to \mathbb{Z}_{\geq 0} \cup \{\infty\}$. The notation $g(v) = \infty(K)$ means that K = g(F(v)), where $F(v) = \{u: (v, u) \in E\}$. Also, $F^{-1}(v) = \{u: (u, v) \in E\}$. We define

$$g'(v) = \max g(F(v)).$$

We now define several functions which take a value function as an optional argument. When the argument is not given, γ is understood.

$$\begin{split} V^f(g) &= \{v \in V : g(v) < \infty\}, \\ V^\infty(g) &= \{v \in V : g(v) = \infty\}; \\ \mathbb{P}(g) &= \{v \in V : g(v) = 0\}, \\ \mathbb{D}(g) &= \{v \in V : g(v) = \infty(K) \text{ and } 0 \notin K\}, \\ \mathbb{N}^f(g) &= \{v \in V : 0 < g(v) < \infty\}, \\ \mathbb{N}^\infty(g) &= \{v \in V : g(v) = \infty(K) \text{ and } 0 \in K\}, \\ \mathbb{N}(g) &= \mathbb{N}^f(g) \cup \mathbb{N}^\infty(g). \end{split}$$

Note that $(\mathbb{P}(g), \mathbb{N}(g), \mathbb{D}(g))$ is a partition of V, and

$$V^{f}(g) = \mathbb{P}(g) \cup \mathbb{N}^{f}(g),$$
$$V^{\infty}(g) = \mathbb{D}(g) \cup \mathbb{N}^{\infty}(g).$$

We will also need the analogues for two tokens:

$$\begin{split} \mathbb{P}_2(g) &= \{(u,\,v) \in V^2 : g(u) = g(v) < \infty\}, \\ \mathbb{N}_2^f(g) &= \{(u,\,v) \in V^2 : g(u) < g(v) < \infty \text{ or } g(v) < g(u) < \infty\}, \\ \mathbb{N}_2^\infty(g) &= \{(u,\,v) \in V^2 : (g(u) < g(v) = \infty(K) \text{ and } g(u) \in K) \text{ or } (g(v) < g(u) = \infty(K) \text{ and } g(v) \in K)\}, \\ \mathbb{N}_2(g) &= \mathbb{N}_2^f(g) \cup \mathbb{N}_2^\infty(g), \\ \mathbb{D}_2^f(g) &= \{(u,\,v) \in V^2 : (g(u) < g(v) = \infty(K) \text{ and } g(u) \notin K) \text{ or } (g(v) < g(u) = \infty(K) \text{ and } g(v) \notin K)\}, \\ \mathbb{D}_2^\infty(g) &= \{(u,\,v) \in V^2 : g(u) = g(v) = \infty\}, \\ \mathbb{D}_2(g) &= \mathbb{D}_2^f(g) \cup \mathbb{D}_2^\infty(g); \\ V_2^f(g) &= \mathbb{P}_2(g) \cup \mathbb{N}_2^f(g), \\ V_2^\infty(g) &= \mathbb{D}_2(g) \cup \mathbb{N}_2^\infty(g). \end{split}$$

Now let us define several axioms concerning value functions. Some of them concern also a counter function $c: V \to \mathbb{Z}_{\geq 0}$. Two axioms concern maximality given some other axioms.

A. If
$$u \in V^f(g)$$
 then $g(u) = g'(u)$.

A'. If $u \in V^f(g)$ and $i \in [0, g(u))$ then there exists $v \in F(u)$ satisfying g(v) = i and c(v) < c(u).

A". If $u \in V^f(g)$ and $v \in F(u)$ satisfies c(v) < c(u) then $g(v) \neq g(u)$.

- **b.** If $u \in V^f(g)$ and $v \in F(u)$ satisfies $v = \infty(K)$ then $g(u) \in K$.
- **B.** If $v \in F(u)$ satisfies g(u) < g(v) then there exists $w \in F(v)$ satisfying g(w) = g(u) and c(w) < c(u).
- **B'.** If $u \in V^f(g)$ and $v \in F(u)$ satisfies either $v \in V^{\infty}(g)$ or $c(v) \ge c(u)$, then there exists $w \in F(v)$ satisfying g(w) = g(u) and c(w) < c(u).
- C. If $u \in V^{\infty}(g)$ then there exists $v \in F(u)$ satisfying $g(v) = \infty(K)$ and $g'(u) \notin K$.
- **c".** The function g(v) is maximal with respect to $V^{\infty}(g)$ (given the other axioms); that is, for any non-empty set $S \subseteq V^f(g)$, if

$$G(v) = \begin{cases} g(v) & v \notin S \\ \infty & v \in S \end{cases}$$

then G(v) violates one of the other axioms.

- C". The function g(v) has the maximum $|V^{\infty}(g)|$ (given the other axioms); that is, for any function G(v) satisfying the other axioms, $|V^{\infty}(G)| \leq |V^{\infty}(g)|$.
- **M.** If $\gamma(u) < \gamma(v)$ then c(u) < c(v).

Note that C" implies c".

We define several axiom systems:

$$\Gamma' = (\mathbf{A}, \mathbf{b}, \mathbf{C}),$$
 $\Gamma = (\mathbf{A}, \mathbf{B}, \mathbf{C}),$
 $\Gamma^{M} = (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{M}),$
 $\Gamma_{1} = (\mathbf{A}', \mathbf{A}'', \mathbf{B}', \mathbf{C}),$
 $\Gamma'_{2} = (\mathbf{A}, \mathbf{C}; \mathbf{c}''),$
 $\Gamma_{2} = (\mathbf{A}, \mathbf{C}; \mathbf{C}'').$

Note that Γ^M is stronger than Γ , and that Γ'_2 is weaker than Γ_2 .

Axiom systems Γ , Γ^M and Γ_1 require a counter function, which is the same throughout all the axioms. To emphasize that c is used as the counter function, we write $\Gamma(c)$ and $\Gamma_1(c)$.

Axiom systems Γ and Γ^M are satisfied by the unique value function γ with the counter function c constructed by algorithm GSG .

Our goal is to show that there is a unique value function satisfying Γ_1 , namely γ , and that there is a unique value function satisfying Γ_2 , again γ .

Axiom scheme Γ_1 . To establish that Γ_1 is satisfied by a unique value function, we shall show that $\Gamma^M(c) \to \Gamma_1(c)$ and that $\Gamma_1(c) \to \Gamma(c)$.

 $\Gamma^M(c) \to \mathbf{A}'$: Let $u \in V^f(g)$ and let $i \in [0, g(u))$. By \mathbf{A} , there is some $v \in F(u)$ satisfying g(v) = i. Since g(v) < g(u), \mathbf{M} guarantees that c(v) < c(u).

 $\Gamma^M(c) \to \mathbf{A}''$: Let $u \in V^f(g)$ and let $v \in F(u)$. By \mathbf{A} , $g(v) \neq g(u)$.

 $\Gamma^M(c) \to \mathbf{B}'$: Let $u \in V^f(g)$ and let $v \in F(u)$. We claim that if either $v \in V^\infty(g)$ or $c(v) \ge c(u)$ then $g(v) \ge g(u)$. If $v \in V^\infty(g)$ this is clear. If $c(v) \ge c(u)$ it follows from \mathbf{M} . In fact, by \mathbf{A} , g(v) > g(u). Hence by \mathbf{B} there exists $w \in F(v)$ satisfying g(w) = g(u) and c(w) < c(u).

 $\Gamma_1(c) \to \mathbf{A}$: Let $u \in V^f(g)$. To show that g(u) = g'(u), it is enough to show that (a) for any $i \in [0, g(u))$ there exists $v \in F(u)$ satisfying g(v) = i; and that (b) no $v \in F(u)$ satisfies g(v) = g(u). Fact (a) follows from \mathbf{A} .

To prove fact (b), let us assume that fact (b) does not hold, and let $u \in V^f(g)$ be a vertex violating fact (b). Thus there exists $v \in F(u)$ satisfying g(v) = g(u). Axiom **A**" shows that $c(v) \ge c(u)$. Hence **B**' shows that there exists $w \in F(v)$ satisfying g(w) = g(u) and $c(w) < c(u) \le c(v)$. Yet g(w) = g(v), violating axiom **A**".

 $\Gamma_1(c) \to \mathbf{B}$: Let $v \in F(u)$ satisfy g(u) < g(v). Suppose first that $v \in V^{\infty}(g)$ or $c(v) \ge c(u)$. Then by \mathbf{B} there exists $w \in F(v)$ satisfying g(w) = g(u) and c(w) < c(u). If, on the other hand, $v \in V^f(g)$ and c(v) < c(u), then by \mathbf{A} ' there exists $w \in F(v)$ satisfying g(w) = g(u) and c(w) < c(v) < c(u).

Axiom scheme Γ_2 . Here the proof is more involved. Note first that since γ satisfies **A** and **C**, a function satisfying Γ_2 exists. We will prove the following theorem about the weaker system Γ'_2 .

Theorem 1 If g satisfies Γ_2' then $V^{\infty}(g) \subseteq V^{\infty}(\gamma)$.

Corollary 2 If g satisfies Γ_2 then $V^{\infty}(g) = V^{\infty}(\gamma)$.

Now the main theorem is but a corollary to a corollary.

Theorem 3 If g satisfies Γ_2 then $g = \gamma$.

Proof: Corollary 2 shows that $V^{\infty}(g) = V^{\infty}(\gamma)$. It remains to show that g and γ are identical on $V^f(g) = V^f(\gamma)$. This is just Theorem 3.5.8 of the lecture notes, whose proof holds because $V^f(g) = V^f(\gamma)$. \square

On our way to prove Theorem 1, we start with an important technical result.

Lemma 4 Axiom scheme Γ'_2 implies axiom **b**. In other words, Γ' is weaker than Γ'_2 .

Proof: We show that if **b** does not hold then minimality (axiom **c**") fails. Indeed, suppose that **b** fails. Thus for some $u_s \in V^f(g)$ there exists $v_s \in F(u_s)$ satisfying $v_s = \infty(K)$ and $g(u_s) \notin K$.

Call a node $u \in V_f(g) \setminus S$ essential for $v \in F^{-1}(u)$ given S if g(u) < g'(v) and u is the only vertex $w \in F(v) \setminus S$ with g(w) = g(u). We shall construct a set S inductively. The starting point is $S = \{u_s\}$. As long as there is a vertex $s \in S$ which is essential for $t \in V_f(g)$ given S, add t to S. Since $V_f(g)$ is finite, the process must end. Now let us define a new value function G, based on the final S, as follows.

$$G(v) = \begin{cases} g(v) & v \notin S \\ \infty & v \in S \end{cases}$$

We claim that G satisfies \mathbf{A} and \mathbf{C} ; this contradicts \mathbf{c} ". We shall use the self-explanatory notation $\mathbf{A}(G)$, $\mathbf{C}(G)$, $\mathbf{A}(g)$ and $\mathbf{C}(g)$ to avoid confusion.

We begin by proving $\mathbf{A}(G)$. Let $u \in V^f(G)$. Hence also $u \in V^f(g)$. If $F(u) \cap S = \emptyset$, then $\mathbf{A}(G)$ holds by $\mathbf{A}(g)$. Otherwise, since $u \notin S$, no $v \in F(u) \cap S$ is essential for u given S. Hence for every $v \in F(u) \cap S$, either g(v) > g'(u) or some $w \in F(u) \setminus S$ satisfies g(w) = g(v). We infer that G'(u) = g'(u) and that $\mathbf{A}(G)$ holds by $\mathbf{A}(g)$.

We complete the proof by showing that $\mathbf{C}(G)$ holds. Let $u \in V^{\infty}(G)$. If G'(u) = g'(u) then, by construction, either $u = u_s$ or $u \in V^{\infty}(g)$. If $u = u_s$ then $\mathbf{C}(G)$ holds since u_s violates axiom **b**. Otherwise, $\mathbf{C}(G)$ holds by $\mathbf{C}(g)$.

Now assume G'(u) < g'(u). By construction, G'(u) = g(v) for some $v \in F(u) \cap S$. By $\mathbf{A}(g)$, $g(v) \notin g(F(v))$. Since $G(v) = \infty(K)$ with $K \subseteq g(F(v))$, we see that $G'(u) = g(v) \notin K$. Hence $\mathbf{C}(G)$ holds. \square

The technical lemma is helpful because of the following lemma.

Lemma 5 If g satisfies Γ' then $\mathbb{P}(g) \subseteq \mathbb{P} \cup \mathbb{D}$, $\mathbb{N}(g) \subseteq \mathbb{N} \cup \mathbb{D}$ and $\mathbb{D}(g) \subseteq \mathbb{D}$.

Proof: First, note that by definition and **A**, any position in $\mathbb{N}(g)$ has a successor in $\mathbb{P}(g)$; note that by **A** and **b**, all the successors of a position in $\mathbb{P}(g)$ lie in $\mathbb{N}(g)$; note that by definition, no successor of a position in $\mathbb{D}(g)$ lies in $\mathbb{P}(g)$; and note that any position in $\mathbb{D}(g)$ has a successor in $\mathbb{D}(g)$, by definition and **C**.

We claim that when starting at a position in $\mathbb{P}(g)$, a player can't win; that when starting at a position in $\mathbb{N}(g)$, an optimal player won't lose; and that when starting at a position in $\mathbb{D}(g)$, an optimal player will neither win nor lose. This will imply the lemma.

Indeed, a player starting at $\mathbb{N}(g)$ can always move to a position in $\mathbb{P}(g)$, and from there, the other player can (if at all) only move to a position in $\mathbb{N}(g)$; thus an optimal player starting at $\mathbb{N}(g)$ won't lose, and a player starting at a position in $\mathbb{P}(g)$ can't win.

Now consider a player starting at $\mathbb{D}(g)$, and let us look at the resulting game. If the game ever exits $\mathbb{D}(g)$, the player exiting $\mathbb{D}(g)$ moves to a position in $\mathbb{N}(g)$, hence that player cannot win. Thus a player starting at $\mathbb{D}(g)$ won't lose if she always goes from a position in $\mathbb{D}(g)$ to another position in $\mathbb{D}(g)$. By symmetry, a player starting at a position in $\mathbb{D}(g)$ cannot win. \square

A similar lemma is the following.

Lemma 6 If g satisfies Γ' then $\mathbb{P}_2(g) \subseteq \mathbb{P}_2 \cup \mathbb{D}_2$, $\mathbb{N}_2(g) \subseteq \mathbb{N}_2 \cup \mathbb{D}_2$ and $\mathbb{D}_2(g) \subseteq \mathbb{D}_2$.

Proof: As in the proof of lemma 5, it is enough to show that (a) any position in $\mathbb{N}_2(g)$ has a successor in $\mathbb{P}_2(g)$; (b) all the successors of a position in $\mathbb{P}_2(g)$ are in $\mathbb{N}_2(g)$; (c) no successor of $\mathbb{D}_2(g)$ lies in $\mathbb{P}_2(g)$; and (d) any position in $\mathbb{D}_2(g)$ has a successor in $\mathbb{D}_2(g)$.

We begin by proving fact (a). If $(u, v) \in \mathbb{N}_2^f(g)$, the fact follows from **A**. If, on the other hand, $(u, v) \in \mathbb{N}_2^{\infty}(g)$, the fact follows by definition.

We move on to fact (b). Consider $(u, v) \in \mathbb{P}_2(g)$, and suppose we move to (u, w), where $w \in F(v)$. If $w \in V^f(g)$, then the fact follows by definition and **A**. If, on the other hand, $w \in V^{\infty}(g)$, the fact follows from **b**.

We continue with fact (c). Consider $(u, v) \in \mathbb{D}_2(g)$, and suppose we move to $(u, w) \in \mathbb{P}_2(g)$, where $w \in F(v)$. Since $\mathbb{P}_2(g) \subseteq (V_2^f(g))^2$, we must have $(u, v) \in \mathbb{D}_2^f(g)$ and $g(v) = \infty(K)$. However, by definition $g(u) \notin K$, hence $g(u) \neq g(w)$, contradicting the definition of $\mathbb{P}_2(g)$.

Finally, we prove fact (d). Suppose first that $(u, v) \in \mathbb{D}_2^f(g)$, say $g(v) = \infty$. If $g(u) \neq g'(v)$, then we can move to $(w, v) \in \mathbb{D}_2^f(g)$, where $w \in F(u)$ satisfies g(w) = g'(v), by definition and **A**. If, on the other hand, g(u) = g'(v), we can move to $(u, w) \in \mathbb{D}_2^f(g)$, where $w \in F(v)$ satisfies $g(w) = \infty(K)$ and $g(u) = g'(v) \notin K$, by **C**.

Suppose otherwise that $(u, v) \in \mathbb{D}_2^{\infty}(g)$. Then we can move to $(u, w) \in \mathbb{D}_2^{\infty}(g)$, where $w \in V^{\infty}(g)$, by \mathbb{C} . \square

Corollary 7 If g satisfies Γ' then $\mathbb{N}^{\infty}(g) \subseteq \mathbb{N}^{\infty} \cup \mathbb{D}$.

Proof: Let $v \in \mathbb{N}^{\infty}(g)$, and suppose that $v \in \mathbb{N}$. If $v \in \mathbb{N}^f$ then $(v, v) \in \mathbb{P}_2$, whereas if $v \in \mathbb{N}^{\infty}$ then $(v, v) \in \mathbb{D}_2$. Since $(v, v) \in \mathbb{D}_2(g) \subseteq \mathbb{D}_2$, we see that $v \in \mathbb{N}^{\infty}$. \square

Lemmas 4 and 5 and corollary 7 together imply theorem 1.