Combinatorial Games

Solution to exercise 3.7.6
Yuval Filmus

Notation. Throughout, $G=(V, E)$ will be a finite digraph, and γ will be its (unique) γ-function. A value function g is any function $g: V \rightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}$. The notation $g(v)=\infty(K)$ means that $K=g(F(v))$, where $F(v)=\{u:(v, u) \in E\}$. Also, $F^{-1}(v)=\{u:(u, v) \in E\}$. We define

$$
g^{\prime}(v)=\operatorname{mex} g(F(v))
$$

We now define several functions which take a value function as an optional argument. When the argument is not given, γ is understood.

$$
\begin{aligned}
V^{f}(g) & =\{v \in V: g(v)<\infty\}, \\
V^{\infty}(g) & =\{v \in V: g(v)=\infty\} ; \\
\mathbb{P}(g) & =\{v \in V: g(v)=0\}, \\
\mathbb{D}(g) & =\{v \in V: g(v)=\infty(K) \text { and } 0 \notin K\}, \\
\mathbb{N}^{f}(g) & =\{v \in V: 0<g(v)<\infty\}, \\
\mathbb{N}^{\infty}(g) & =\{v \in V: g(v)=\infty(K) \text { and } 0 \in K\}, \\
\mathbb{N}(g) & =\mathbb{N}^{f}(g) \cup \mathbb{N}^{\infty}(g) .
\end{aligned}
$$

Note that $(\mathbb{P}(g), \mathbb{N}(g), \mathbb{D}(g))$ is a partition of V, and

$$
\begin{aligned}
V^{f}(g) & =\mathbb{P}(g) \cup \mathbb{N}^{f}(g), \\
V^{\infty}(g) & =\mathbb{D}(g) \cup \mathbb{N}^{\infty}(g) .
\end{aligned}
$$

We will also need the analogues for two tokens:

$$
\begin{aligned}
\mathbb{P}_{2}(g) & =\left\{(u, v) \in V^{2}: g(u)=g(v)<\infty\right\}, \\
\mathbb{N}_{2}^{f}(g) & =\left\{(u, v) \in V^{2}: g(u)<g(v)<\infty \text { or } g(v)<g(u)<\infty\right\}, \\
\mathbb{N}_{2}^{\infty}(g) & =\left\{(u, v) \in V^{2}:(g(u)<g(v)=\infty(K) \text { and } g(u) \in K) \text { or }(g(v)<g(u)=\infty(K) \text { and } g(v) \in K)\right\}, \\
\mathbb{N}_{2}(g) & =\mathbb{N}_{2}^{f}(g) \cup \mathbb{N}_{2}^{\infty}(g), \\
\mathbb{D}_{2}^{f}(g) & =\left\{(u, v) \in V^{2}:(g(u)<g(v)=\infty(K) \text { and } g(u) \notin K) \text { or }(g(v)<g(u)=\infty(K) \text { and } g(v) \notin K)\right\}, \\
\mathbb{D}_{2}^{\infty}(g) & =\left\{(u, v) \in V^{2}: g(u)=g(v)=\infty\right\}, \\
\mathbb{D}_{2}(g) & =\mathbb{D}_{2}^{f}(g) \cup \mathbb{D}_{2}^{\infty}(g) ; \\
V_{2}^{f}(g) & =\mathbb{P}_{2}(g) \cup \mathbb{N}_{2}^{f}(g), \\
V_{2}^{\infty}(g) & =\mathbb{D}_{2}(g) \cup \mathbb{N}_{2}^{\infty}(g) .
\end{aligned}
$$

Now let us define several axioms concerning value functions. Some of them concern also a counter function $c: V \rightarrow \mathbb{Z}_{\geq 0}$. Two axioms concern maximality given some other axioms.
A. If $u \in V^{f}(g)$ then $g(u)=g^{\prime}(u)$.
\mathbf{A}^{\prime}. If $u \in V^{f}(g)$ and $i \in[0, g(u))$ then there exists $v \in F(u)$ satisfying $g(v)=i$ and $c(v)<c(u)$.
\mathbf{A}^{\prime}. If $u \in V^{f}(g)$ and $v \in F(u)$ satisfies $c(v)<c(u)$ then $g(v) \neq g(u)$.
b. If $u \in V^{f}(g)$ and $v \in F(u)$ satisfies $v=\infty(K)$ then $g(u) \in K$.
B. If $v \in F(u)$ satisfies $g(u)<g(v)$ then there exists $w \in F(v)$ satisfying $g(w)=g(u)$ and $c(w)<c(u)$.

B'. If $u \in V^{f}(g)$ and $v \in F(u)$ satisfies either $v \in V^{\infty}(g)$ or $c(v) \geq c(u)$, then there exists $w \in F(v)$ satisfying $g(w)=g(u)$ and $c(w)<c(u)$.
C. If $u \in V^{\infty}(g)$ then there exists $v \in F(u)$ satisfying $g(v)=\infty(K)$ and $g^{\prime}(u) \notin K$.
\mathbf{c} ". The function $g(v)$ is maximal with respect to $V^{\infty}(g)$ (given the other axioms); that is, for any non-empty set $S \subseteq V^{f}(g)$, if

$$
G(v)= \begin{cases}g(v) & v \notin S \\ \infty & v \in S\end{cases}
$$

then $G(v)$ violates one of the other axioms.
C". The function $g(v)$ has the maximum $\left|V^{\infty}(g)\right|$ (given the other axioms); that is, for any function $G(v)$ satisfying the other axioms, $\left|V^{\infty}(G)\right| \leq\left|V^{\infty}(g)\right|$.
M. If $\gamma(u)<\gamma(v)$ then $c(u)<c(v)$.

Note that C" implies c".
We define several axiom systems:

$$
\begin{aligned}
\Gamma^{\prime} & =(\mathbf{A}, \mathbf{b}, \mathbf{C}), \\
\Gamma & =(\mathbf{A}, \mathbf{B}, \mathbf{C}), \\
\Gamma^{M} & =(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{M}), \\
\Gamma_{1} & =\left(\mathbf{A}^{\prime}, \mathbf{A}^{\prime \prime}, \mathbf{B}^{\prime}, \mathbf{C}\right), \\
\Gamma_{2}^{\prime} & =\left(\mathbf{A}, \mathbf{C} ; \mathbf{c}^{\prime \prime}\right), \\
\Gamma_{2} & =\left(\mathbf{A}, \mathbf{C} ; \mathbf{C}^{\prime \prime}\right) .
\end{aligned}
$$

Note that Γ^{M} is stronger than Γ, and that Γ_{2}^{\prime} is weaker than Γ_{2}.
Axiom systems Γ, Γ^{M} and Γ_{1} require a counter function, which is the same throughout all the axioms. To emphasize that c is used as the counter function, we write $\Gamma(c)$ and $\Gamma_{1}(c)$.

Axiom systems Γ and Γ^{M} are satisfied by the unique value function γ with the counter function c constructed by algorithm GSG.

Our goal is to show that there is a unique value function satisfying Γ_{1}, namely γ, and that there is a unique value function satisfying Γ_{2}, again γ.
Axiom scheme Γ_{1}. To establish that Γ_{1} is satisfied by a unique value function, we shall show that $\Gamma^{M}(c) \rightarrow \Gamma_{1}(c)$ and that $\Gamma_{1}(c) \rightarrow \Gamma(c)$.
$\Gamma^{M}(c) \rightarrow \mathbf{A}^{\prime}$: Let $u \in V^{f}(g)$ and let $i \in[0, g(u))$. By \mathbf{A}, there is some $v \in F(u)$ satisfying $g(v)=i$. Since $g(v)<g(u), \mathbf{M}$ guarantees that $c(v)<c(u)$.
$\Gamma^{M}(c) \rightarrow \mathbf{A}^{\prime \prime}:$ Let $u \in V^{f}(g)$ and let $v \in F(u)$. By A, $g(v) \neq g(u)$.
$\Gamma^{M}(c) \rightarrow \mathbf{B}^{\prime}:$ Let $u \in V^{f}(g)$ and let $v \in F(u)$. We claim that if either $v \in V^{\infty}(g)$ or $c(v) \geq c(u)$ then $g(v) \geq g(u)$. If $v \in V^{\infty}(g)$ this is clear. If $c(v) \geq c(u)$ it follows from \mathbf{M}. In fact, by \mathbf{A}, $g(v)>g(u)$. Hence by B there exists $w \in F(v)$ satisfying $g(w)=g(u)$ and $c(w)<c(u)$.
$\Gamma_{1}(c) \rightarrow \mathbf{A}$: Let $u \in V^{f}(g)$. To show that $g(u)=g^{\prime}(u)$, it is enough to show that (a) for any $i \in[0, g(u))$ there exists $v \in F(u)$ satisfying $g(v)=i$; and that (b) no $v \in F(u)$ satisfies $g(v)=g(u)$. Fact (a) follows from \mathbf{A}^{\prime}.

To prove fact (b), let us assume that fact (b) does not hold, and let $u \in V^{f}(g)$ be a vertex violating fact (b). Thus there exists $v \in F(u)$ satisfying $g(v)=g(u)$. Axiom A" shows that $c(v) \geq$ $c(u)$. Hence \mathbf{B}^{\prime} shows that there exists $w \in F(v)$ satisfying $g(w)=g(u)$ and $c(w)<c(u) \leq c(v)$. Yet $g(w)=g(v)$, violating axiom $\mathbf{A}^{\prime \prime}$.
$\Gamma_{1}(c) \rightarrow \mathbf{B}$: Let $v \in F(u)$ satisfy $g(u)<g(v)$. Suppose first that $v \in V^{\infty}(g)$ or $c(v) \geq c(u)$. Then by B there exists $w \in F(v)$ satisfying $g(w)=g(u)$ and $c(w)<c(u)$. If, on the other hand, $v \in V^{f}(g)$ and $c(v)<c(u)$, then by \mathbf{A}^{\prime} there exists $w \in F(v)$ satisfying $g(w)=g(u)$ and $c(w)<c(v)<c(u)$.

Axiom scheme $\boldsymbol{\Gamma}_{\mathbf{2}}$. Here the proof is more involved. Note first that since γ satisfies \mathbf{A} and \mathbf{C}, a function satisfying Γ_{2} exists. We will prove the following theorem about the weaker system Γ_{2}^{\prime}.

Theorem 1 If g satisfies Γ_{2}^{\prime} then $V^{\infty}(g) \subseteq V^{\infty}(\gamma)$.
Corollary 2 If g satisfies Γ_{2} then $V^{\infty}(g)=V^{\infty}(\gamma)$.
Now the main theorem is but a corollary to a corollary.
Theorem 3 If g satisfies Γ_{2} then $g=\gamma$.
Proof: Corollary 2 shows that $V^{\infty}(g)=V^{\infty}(\gamma)$. It remains to show that g and γ are identical on $V^{f}(g)=V^{f}(\gamma)$. This is just Theorem 3.5.8 of the lecture notes, whose proof holds because $V^{f}(g)=V^{f}(\gamma)$.

On our way to prove Theorem 1, we start with an important technical result.
Lemma 4 Axiom scheme Γ_{2}^{\prime} implies axiom b. In other words, Γ^{\prime} is weaker than Γ_{2}^{\prime}.
Proof: We show that if \mathbf{b} does not hold then minimality (axiom \mathbf{c} ") fails. Indeed, suppose that \mathbf{b} fails. Thus for some $u_{s} \in V^{f}(g)$ there exists $v_{s} \in F\left(u_{s}\right)$ satisfying $v_{s}=\infty(K)$ and $g\left(u_{s}\right) \notin K$.

Call a node $u \in V_{f}(g) \backslash S$ essential for $v \in F^{-1}(u)$ given S if $g(u)<g^{\prime}(v)$ and u is the only vertex $w \in F(v) \backslash S$ with $g(w)=g(u)$. We shall construct a set S inductively. The starting point is $S=\left\{u_{s}\right\}$. As long as there is a vertex $s \in S$ which is essential for $t \in V_{f}(g)$ given S, add t to S. Since $V_{f}(g)$ is finite, the process must end. Now let us define a new value function G, based on the final S, as follows.

$$
G(v)= \begin{cases}g(v) & v \notin S \\ \infty & v \in S\end{cases}
$$

We claim that G satisfies \mathbf{A} and \mathbf{C}; this contradicts \mathbf{c} ". We shall use the self-explanatory notation $\mathbf{A}(G), \mathbf{C}(G), \mathbf{A}(g)$ and $\mathbf{C}(g)$ to avoid confusion.

We begin by proving $\mathbf{A}(G)$. Let $u \in V^{f}(G)$. Hence also $u \in V^{f}(g)$. If $F(u) \cap S=\varnothing$, then $\mathbf{A}(G)$ holds by $\mathbf{A}(g)$. Otherwise, since $u \notin S$, no $v \in F(u) \cap S$ is essential for u given S. Hence for every $v \in F(u) \cap S$, either $g(v)>g^{\prime}(u)$ or some $w \in F(u) \backslash S$ satisfies $g(w)=g(v)$. We infer that $G^{\prime}(u)=g^{\prime}(u)$ and that $\mathbf{A}(G)$ holds by $\mathbf{A}(g)$.

We complete the proof by showing that $\mathbf{C}(G)$ holds. Let $u \in V^{\infty}(G)$. If $G^{\prime}(u)=g^{\prime}(u)$ then, by construction, either $u=u_{s}$ or $u \in V^{\infty}(g)$. If $u=u_{s}$ then $\mathbf{C}(G)$ holds since u_{s} violates axiom \mathbf{b}. Otherwise, $\mathbf{C}(G)$ holds by $\mathbf{C}(g)$.

Now assume $G^{\prime}(u)<g^{\prime}(u)$. By construction, $G^{\prime}(u)=g(v)$ for some $v \in F(u) \cap S$. By $\mathbf{A}(g)$, $g(v) \notin g(F(v))$. Since $G(v)=\infty(K)$ with $K \subseteq g(F(v))$, we see that $G^{\prime}(u)=g(v) \notin K$. Hence $\mathbf{C}(G)$ holds.

The technical lemma is helpful because of the following lemma.
Lemma 5 If g satisfies Γ^{\prime} then $\mathbb{P}(g) \subseteq \mathbb{P} \cup \mathbb{D}, \mathbb{N}(g) \subseteq \mathbb{N} \cup \mathbb{D}$ and $\mathbb{D}(g) \subseteq \mathbb{D}$.
Proof: First, note that by definition and \mathbf{A}, any position in $\mathbb{N}(g)$ has a successor in $\mathbb{P}(g)$; note that by \mathbf{A} and \mathbf{b}, all the successors of a position in $\mathbb{P}(g)$ lie in $\mathbb{N}(g)$; note that by definition, no successor of a position in $\mathbb{D}(g)$ lies in $\mathbb{P}(g)$; and note that any position in $\mathbb{D}(g)$ has a successor in $\mathbb{D}(g)$, by definition and \mathbf{C}.

We claim that when starting at a position in $\mathbb{P}(g)$, a player can't win; that when starting at a position in $\mathbb{N}(g)$, an optimal player won't lose; and that when starting at a position in $\mathbb{D}(g)$, an optimal player will neither win nor lose. This will imply the lemma.

Indeed, a player starting at $\mathbb{N}(g)$ can always move to a position in $\mathbb{P}(g)$, and from there, the other player can (if at all) only move to a position in $\mathbb{N}(g)$; thus an optimal player starting at $\mathbb{N}(g)$ won't lose, and a player starting at a position in $\mathbb{P}(g)$ can't win.

Now consider a player starting at $\mathbb{D}(g)$, and let us look at the resulting game. If the game ever exits $\mathbb{D}(g)$, the player exiting $\mathbb{D}(g)$ moves to a position in $\mathbb{N}(g)$, hence that player cannot win. Thus a player starting at $\mathbb{D}(g)$ won't lose if she always goes from a position in $\mathbb{D}(g)$ to another position in $\mathbb{D}(g)$. By symmetry, a player starting at a position in $\mathbb{D}(g)$ cannot win.

A similar lemma is the following.
Lemma 6 If g satisfies Γ^{\prime} then $\mathbb{P}_{2}(g) \subseteq \mathbb{P}_{2} \cup \mathbb{D}_{2}, \mathbb{N}_{2}(g) \subseteq \mathbb{N}_{2} \cup \mathbb{D}_{2}$ and $\mathbb{D}_{2}(g) \subseteq \mathbb{D}_{2}$.
Proof: As in the proof of lemma 5, it is enough to show that (a) any position in $\mathbb{N}_{2}(g)$ has a successor in $\mathbb{P}_{2}(g)$; (b) all the successors of a position in $\mathbb{P}_{2}(g)$ are in $\mathbb{N}_{2}(g)$; (c) no successor of $\mathbb{D}_{2}(g)$ lies in $\mathbb{P}_{2}(g)$; and (d) any position in $\mathbb{D}_{2}(g)$ has a successor in $\mathbb{D}_{2}(g)$.

We begin by proving fact (a). If $(u, v) \in \mathbb{N}_{2}^{f}(g)$, the fact follows from \mathbf{A}. If, on the other hand, $(u, v) \in \mathbb{N}_{2}^{\infty}(g)$, the fact follows by definition.

We move on to fact (b). Consider $(u, v) \in \mathbb{P}_{2}(g)$, and suppose we move to (u, w), where $w \in F(v)$. If $w \in V^{f}(g)$, then the fact follows by definition and \mathbf{A}. If, on the other hand, $w \in V^{\infty}(g)$, the fact follows from \mathbf{b}.

We continue with fact (c). Consider $(u, v) \in \mathbb{D}_{2}(g)$, and suppose we move to $(u, w) \in \mathbb{P}_{2}(g)$, where $w \in F(v)$. Since $\mathbb{P}_{2}(g) \subseteq\left(V_{2}^{f}(g)\right)^{2}$, we must have $(u, v) \in \mathbb{D}_{2}^{f}(g)$ and $g(v)=\infty(K)$. However, by definition $g(u) \notin K$, hence $g(u) \neq g(w)$, contradicting the definition of $\mathbb{P}_{2}(g)$.

Finally, we prove fact (d). Suppose first that $(u, v) \in \mathbb{D}_{2}^{f}(g)$, say $g(v)=\infty$. If $g(u) \neq g^{\prime}(v)$, then we can move to $(w, v) \in \mathbb{D}_{2}^{f}(g)$, where $w \in F(u)$ satisfies $g(w)=g^{\prime}(v)$, by definition and \mathbf{A}. If, on the other hand, $g(u)=g^{\prime}(v)$, we can move to $(u, w) \in \mathbb{D}_{2}^{f}(g)$, where $w \in F(v)$ satisfies $g(w)=\infty(K)$ and $g(u)=g^{\prime}(v) \notin K$, by C.

Suppose otherwise that $(u, v) \in \mathbb{D}_{2}^{\infty}(g)$. Then we can move to $(u, w) \in \mathbb{D}_{2}^{\infty}(g)$, where $w \in$ $V^{\infty}(g)$, by C.

Corollary 7 If g satisfies Γ^{\prime} then $\mathbb{N}^{\infty}(g) \subseteq \mathbb{N}^{\infty} \cup \mathbb{D}$.
Proof: Let $v \in \mathbb{N}^{\infty}(g)$, and suppose that $v \in \mathbb{N}$. If $v \in \mathbb{N}^{f}$ then $(v, v) \in \mathbb{P}_{2}$, whereas if $v \in \mathbb{N}^{\infty}$ then $(v, v) \in \mathbb{D}_{2}$. Since $(v, v) \in \mathbb{D}_{2}(g) \subseteq \mathbb{D}_{2}$, we see that $v \in \mathbb{N}^{\infty}$.

Lemmas 4 and 5 and corollary 7 together imply theorem 1.

