
Combinatorial Games
Solution to exercise 3.7.6

Yuval Filmus

Notation. Throughout, G = (V, E) will be a finite digraph, and γ will be its (unique) γ-function.
A value function g is any function g : V → Z≥0 ∪ {∞}. The notation g(v) = ∞(K) means that
K = g(F (v)), where F (v) = {u : (v, u) ∈ E}. Also, F−1(v) = {u : (u, v) ∈ E}. We define

g′(v) = mex g(F (v)).

We now define several functions which take a value function as an optional argument. When
the argument is not given, γ is understood.

V f (g) = {v ∈ V : g(v) < ∞},
V ∞(g) = {v ∈ V : g(v) = ∞};
P(g) = {v ∈ V : g(v) = 0},
D(g) = {v ∈ V : g(v) = ∞(K) and 0 /∈ K},
Nf (g) = {v ∈ V : 0 < g(v) < ∞},
N∞(g) = {v ∈ V : g(v) = ∞(K) and 0 ∈ K},
N(g) = Nf (g) ∪ N∞(g).

Note that (P(g), N(g), D(g)) is a partition of V , and

V f (g) = P(g) ∪ Nf (g),

V ∞(g) = D(g) ∪ N∞(g).

We will also need the analogues for two tokens:

P2(g) = {(u, v) ∈ V 2 : g(u) = g(v) < ∞},
Nf

2(g) = {(u, v) ∈ V 2 : g(u) < g(v) < ∞ or g(v) < g(u) < ∞},
N∞2 (g) = {(u, v) ∈ V 2 : (g(u) < g(v) = ∞(K) and g(u) ∈ K) or (g(v) < g(u) = ∞(K) and g(v) ∈ K)},
N2(g) = Nf

2(g) ∪ N∞2 (g),

Df
2(g) = {(u, v) ∈ V 2 : (g(u) < g(v) = ∞(K) and g(u) /∈ K) or (g(v) < g(u) = ∞(K) and g(v) /∈ K)},

D∞2 (g) = {(u, v) ∈ V 2 : g(u) = g(v) = ∞},
D2(g) = Df

2(g) ∪ D∞2 (g);

V f
2 (g) = P2(g) ∪ Nf

2(g),

V ∞
2 (g) = D2(g) ∪ N∞2 (g).

Now let us define several axioms concerning value functions. Some of them concern also a
counter function c : V → Z≥0. Two axioms concern maximality given some other axioms.

A. If u ∈ V f (g) then g(u) = g′(u).

A’. If u ∈ V f (g) and i ∈ [0, g(u)) then there exists v ∈ F (u) satisfying g(v) = i and c(v) < c(u).

A”. If u ∈ V f (g) and v ∈ F (u) satisfies c(v) < c(u) then g(v) 6= g(u).
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b. If u ∈ V f (g) and v ∈ F (u) satisfies v = ∞(K) then g(u) ∈ K.

B. If v ∈ F (u) satisfies g(u) < g(v) then there exists w ∈ F (v) satisfying g(w) = g(u) and
c(w) < c(u).

B’. If u ∈ V f (g) and v ∈ F (u) satisfies either v ∈ V ∞(g) or c(v) ≥ c(u), then there exists w ∈ F (v)
satisfying g(w) = g(u) and c(w) < c(u).

C. If u ∈ V ∞(g) then there exists v ∈ F (u) satisfying g(v) = ∞(K) and g′(u) /∈ K.

c”. The function g(v) is maximal with respect to V ∞(g) (given the other axioms); that is, for any
non-empty set S ⊆ V f (g), if

G(v) =

{
g(v) v /∈ S

∞ v ∈ S

then G(v) violates one of the other axioms.

C”. The function g(v) has the maximum |V ∞(g)| (given the other axioms); that is, for any function
G(v) satisfying the other axioms, |V ∞(G)| ≤ |V ∞(g)|.

M. If γ(u) < γ(v) then c(u) < c(v).

Note that C” implies c”.
We define several axiom systems:

Γ′ = (A, b, C),

Γ = (A, B, C),

ΓM = (A, B, C, M),

Γ1 = (A′, A′′, B′, C),

Γ′2 = (A, C; c′′),

Γ2 = (A, C; C′′).

Note that ΓM is stronger than Γ, and that Γ′2 is weaker than Γ2.
Axiom systems Γ, ΓM and Γ1 require a counter function, which is the same throughout all the

axioms. To emphasize that c is used as the counter function, we write Γ(c) and Γ1(c).
Axiom systems Γ and ΓM are satisfied by the unique value function γ with the counter function

c constructed by algorithm GSG.
Our goal is to show that there is a unique value function satisfying Γ1, namely γ, and that there

is a unique value function satisfying Γ2, again γ.

Axiom scheme Γ1. To establish that Γ1 is satisfied by a unique value function, we shall show
that ΓM(c) → Γ1(c) and that Γ1(c) → Γ(c).

ΓM(c) → A′: Let u ∈ V f (g) and let i ∈ [0, g(u)). By A, there is some v ∈ F (u) satisfying
g(v) = i. Since g(v) < g(u), M guarantees that c(v) < c(u).

ΓM(c) → A′′: Let u ∈ V f (g) and let v ∈ F (u). By A, g(v) 6= g(u).
ΓM(c) → B′: Let u ∈ V f (g) and let v ∈ F (u). We claim that if either v ∈ V ∞(g) or c(v) ≥ c(u)

then g(v) ≥ g(u). If v ∈ V ∞(g) this is clear. If c(v) ≥ c(u) it follows from M. In fact, by A,
g(v) > g(u). Hence by B there exists w ∈ F (v) satisfying g(w) = g(u) and c(w) < c(u).
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Γ1(c) → A: Let u ∈ V f (g). To show that g(u) = g′(u), it is enough to show that (a) for
any i ∈ [0, g(u)) there exists v ∈ F (u) satisfying g(v) = i; and that (b) no v ∈ F (u) satisfies
g(v) = g(u). Fact (a) follows from A’.

To prove fact (b), let us assume that fact (b) does not hold, and let u ∈ V f (g) be a vertex
violating fact (b). Thus there exists v ∈ F (u) satisfying g(v) = g(u). Axiom A” shows that c(v) ≥
c(u). Hence B’ shows that there exists w ∈ F (v) satisfying g(w) = g(u) and c(w) < c(u) ≤ c(v).
Yet g(w) = g(v), violating axiom A”.

Γ1(c) → B: Let v ∈ F (u) satisfy g(u) < g(v). Suppose first that v ∈ V ∞(g) or c(v) ≥ c(u).
Then by B there exists w ∈ F (v) satisfying g(w) = g(u) and c(w) < c(u). If, on the other
hand, v ∈ V f (g) and c(v) < c(u), then by A’ there exists w ∈ F (v) satisfying g(w) = g(u) and
c(w) < c(v) < c(u).

Axiom scheme Γ2. Here the proof is more involved. Note first that since γ satisfies A and C, a
function satisfying Γ2 exists. We will prove the following theorem about the weaker system Γ′2.

Theorem 1 If g satisfies Γ′2 then V ∞(g) ⊆ V ∞(γ).

Corollary 2 If g satisfies Γ2 then V ∞(g) = V ∞(γ).

Now the main theorem is but a corollary to a corollary.

Theorem 3 If g satisfies Γ2 then g = γ.

Proof: Corollary 2 shows that V ∞(g) = V ∞(γ). It remains to show that g and γ are identical
on V f (g) = V f (γ). This is just Theorem 3.5.8 of the lecture notes, whose proof holds because
V f (g) = V f (γ). ¤

On our way to prove Theorem 1, we start with an important technical result.

Lemma 4 Axiom scheme Γ′2 implies axiom b. In other words, Γ′ is weaker than Γ′2.

Proof: We show that if b does not hold then minimality (axiom c”) fails. Indeed, suppose that b
fails. Thus for some us ∈ V f (g) there exists vs ∈ F (us) satisfying vs = ∞(K) and g(us) /∈ K.

Call a node u ∈ Vf (g) \ S essential for v ∈ F−1(u) given S if g(u) < g′(v) and u is the only
vertex w ∈ F (v) \ S with g(w) = g(u). We shall construct a set S inductively. The starting point
is S = {us}. As long as there is a vertex s ∈ S which is essential for t ∈ Vf (g) given S, add t to S.
Since Vf (g) is finite, the process must end. Now let us define a new value function G, based on the
final S, as follows.

G(v) =

{
g(v) v /∈ S

∞ v ∈ S

We claim that G satisfies A and C; this contradicts c”. We shall use the self-explanatory notation
A(G), C(G), A(g) and C(g) to avoid confusion.

We begin by proving A(G). Let u ∈ V f (G). Hence also u ∈ V f (g). If F (u)∩S = ∅, then A(G)
holds by A(g). Otherwise, since u /∈ S, no v ∈ F (u) ∩ S is essential for u given S. Hence for
every v ∈ F (u) ∩ S, either g(v) > g′(u) or some w ∈ F (u) \ S satisfies g(w) = g(v). We infer that
G′(u) = g′(u) and that A(G) holds by A(g).

We complete the proof by showing that C(G) holds. Let u ∈ V ∞(G). If G′(u) = g′(u) then, by
construction, either u = us or u ∈ V ∞(g). If u = us then C(G) holds since us violates axiom b.
Otherwise, C(G) holds by C(g).

Now assume G′(u) < g′(u). By construction, G′(u) = g(v) for some v ∈ F (u) ∩ S. By A(g),
g(v) /∈ g(F (v)). Since G(v) = ∞(K) with K ⊆ g(F (v)), we see that G′(u) = g(v) /∈ K. Hence C(G)
holds. ¤
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The technical lemma is helpful because of the following lemma.

Lemma 5 If g satisfies Γ′ then P(g) ⊆ P ∪ D, N(g) ⊆ N ∪ D and D(g) ⊆ D.

Proof: First, note that by definition and A, any position in N(g) has a successor in P(g); note
that by A and b, all the successors of a position in P(g) lie in N(g); note that by definition, no
successor of a position in D(g) lies in P(g); and note that any position in D(g) has a successor in
D(g), by definition and C.

We claim that when starting at a position in P(g), a player can’t win; that when starting at a
position in N(g), an optimal player won’t lose; and that when starting at a position in D(g), an
optimal player will neither win nor lose. This will imply the lemma.

Indeed, a player starting at N(g) can always move to a position in P(g), and from there, the
other player can (if at all) only move to a position in N(g); thus an optimal player starting at N(g)
won’t lose, and a player starting at a position in P(g) can’t win.

Now consider a player starting at D(g), and let us look at the resulting game. If the game ever
exits D(g), the player exiting D(g) moves to a position in N(g), hence that player cannot win. Thus
a player starting at D(g) won’t lose if she always goes from a position in D(g) to another position
in D(g). By symmetry, a player starting at a position in D(g) cannot win. ¤

A similar lemma is the following.

Lemma 6 If g satisfies Γ′ then P2(g) ⊆ P2 ∪ D2, N2(g) ⊆ N2 ∪ D2 and D2(g) ⊆ D2.

Proof: As in the proof of lemma 5, it is enough to show that (a) any position in N2(g) has a
successor in P2(g); (b) all the successors of a position in P2(g) are in N2(g); (c) no successor of
D2(g) lies in P2(g); and (d) any position in D2(g) has a successor in D2(g).

We begin by proving fact (a). If (u, v) ∈ Nf
2(g), the fact follows from A. If, on the other hand,

(u, v) ∈ N∞2 (g), the fact follows by definition.
We move on to fact (b). Consider (u, v) ∈ P2(g), and suppose we move to (u, w), where

w ∈ F (v). If w ∈ V f (g), then the fact follows by definition and A. If, on the other hand, w ∈ V ∞(g),
the fact follows from b.

We continue with fact (c). Consider (u, v) ∈ D2(g), and suppose we move to (u, w) ∈ P2(g),
where w ∈ F (v). Since P2(g) ⊆ (V f

2 (g))2, we must have (u, v) ∈ Df
2(g) and g(v) = ∞(K). However,

by definition g(u) /∈ K, hence g(u) 6= g(w), contradicting the definition of P2(g).
Finally, we prove fact (d). Suppose first that (u, v) ∈ Df

2(g), say g(v) = ∞. If g(u) 6= g′(v),
then we can move to (w, v) ∈ Df

2(g), where w ∈ F (u) satisfies g(w) = g′(v), by definition and A.
If, on the other hand, g(u) = g′(v), we can move to (u, w) ∈ Df

2(g), where w ∈ F (v) satisfies
g(w) = ∞(K) and g(u) = g′(v) /∈ K, by C.

Suppose otherwise that (u, v) ∈ D∞2 (g). Then we can move to (u, w) ∈ D∞2 (g), where w ∈
V ∞(g), by C. ¤

Corollary 7 If g satisfies Γ′ then N∞(g) ⊆ N∞ ∪ D.

Proof: Let v ∈ N∞(g), and suppose that v ∈ N. If v ∈ Nf then (v, v) ∈ P2, whereas if v ∈ N∞
then (v, v) ∈ D2. Since (v, v) ∈ D2(g) ⊆ D2, we see that v ∈ N∞. ¤

Lemmas 4 and 5 and corollary 7 together imply theorem 1.
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