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Yuval Filmus

Notation. Throughout, G = (V, E) will be a finite digraph, and ~ will be its (unique) ~-function.
A value function ¢ is any function g: V' — Z>q U {cc}. The notation g(v) = oco(K) means that
K = g(F(v)), where F(v) ={u: (v, u) € E}. Also, F~'(v) ={u: (u, v) € E}. We define

g'(v) = mex g(F(v)).

We now define several functions which take a value function as an optional argument. When
the argument is not given, v is understood.

VIi(g) = {veV:gv) < oo},
Ve(g) ={veV:g(v) = oo}
P(g) ={veV:g(v) =0},
D(g) ={v eV :g(v) =oco(K)and 0 ¢ K},
N/(g)={veV:0<g) < oo},
N*(g) ={v €V :g(v) = co(K) and 0 € K},
(9)

Note that (P(g), N(g), D(g)) is a partition of V', and

Vi(g) =P(g) UN/(g),
V>(g) = D(g) UN>(g).

We will also need the analogues for two tokens:

Py(g) = {(u, v) € V*: g(u) = g(v) < oo},

NJ(g9) = {(u, v) € V*: g(u) < g(v) < 00 or g(v) < g(u) < oo},
N5°(g) = {(u, v) € V*: (g(u) < g(v) = 0o(K) and g(u) € K) or (g(v) < g(u) = co(K) and g(v) € K)},
Na(g) = NJ(g) UNZ(g),

Df(g) = {(u, v) € V*: (g(u) < g(v) = 0o(K) and g(u) ¢ K) or (g(v) < g(u) = co(K) and g(v) ¢ K)},
D5°(9) = {(u, v) € V*: g(u) = g(v) = oo},

Ds(g) = DI (g) UDF(g);

Vi (9) = P2(9) UNL(g),
V5°(g) = Dy(g) UN(g)

Now let us define several axioms concerning value functions. Some of them concern also a
counter function c: V' — Z>(. Two axioms concern maximality given some other axioms.

A. Ifu € V/(g) then g(u) = ¢'(u).
A’ TfueVi(g)and i € [0, g(u)) then there exists v € F(u) satisfying g(v) =i and c(v) < c(u).

A”. Tfu € V/(g) and v € F(u) satisfies c¢(v) < c(u) then g(v) # g(u).



b. If u € V/(g) and v € F(u) satisfies v = 0o(K) then g(u) € K.

B. If v € F(u) satisfies g(u) < g¢g(v) then there exists w € F(v) satisfying g(w) = g(u) and

c(w) < c(u).

B’. Ifu € V/(g) and v € F(u) satisfies either v € V°°(g) or ¢(v) > ¢(u), then there exists w € F(v)
satisfying g(w) = g(u) and c(w) < c(u).

C. If u € V*°(g) then there exists v € F'(u) satisfying ¢g(v) = co(K) and ¢'(u) ¢ K.
c”. The function g(v) is maximal with respect to VV*°(g) (given the other axioms); that is, for any

non-empty set S C V/(g), if
Clo) = {g<v> vegS

00 veS

then G(v) violates one of the other axioms.

C”. The function g(v) has the maximum |[V°°(g)| (given the other axioms); that is, for any function
G(v) satisfying the other axioms, |V>°(G)| < [V>(g)|.

M. If v(u) < vy(v) then c(u) < ¢(v).

Note that C” implies c”.
We define several axiom systems:

I'=(A, b, C),
I'=(A, B, C),
'™ = (A, B, C, M),
I =(A, A", B C),
Iy, = (A, C; "),
Iy = (A, C; CH)

Note that '™ is stronger than I', and that I'} is weaker than I'y.

Axiom systems I', '™ and T'; require a counter function, which is the same throughout all the
axioms. To emphasize that ¢ is used as the counter function, we write I'(¢) and ' (c).

Axiom systems I' and I'M are satisfied by the unique value function v with the counter function
¢ constructed by algorithm GSG.

Our goal is to show that there is a unique value function satisfying I'y, namely ~, and that there
is a unique value function satisfying I's, again ~.

Axiom scheme TI';. To establish that I'; is satisfied by a unique value function, we shall show
that '™ (c) — T'y(c) and that I'y(c) — ['(c).

™(c) — A’: Let u € V/(g) and let i € [0, g(u)). By A, there is some v € F(u) satisfying
g(v) = 4. Since g(v) < g(u), M guarantees that c(v) < c(u).

I'™(c) — A”: Let u € V/(g) and let v € F(u). By A, g(v) # g(u).

'™ (c) — B": Let u € V/(g) and let v € F(u). We claim that if either v € V*°(g) or c¢(v) > c(u)

then g(v) > g(u). If v € V*°(g) this is clear. If c¢(v) > c(u) it follows from M. In fact, by A,
g(v) > g(u). Hence by B there exists w € F(v) satisfying g(w) = g(u) and c(w) < c(u).



[i(c) — A: Let u € V/(g). To show that g(u) =
any i € [0, g(u)) there exists v € F(u) satisfying g(v)
g(v) = g(u). Fact (a) follows from A’.

To prove fact (b), let us assume that fact (b) does not hold, and let u € V/(g) be a vertex
violating fact (b). Thus there exists v € F'(u) satisfying g(v) = g(u). Axiom A” shows that c(v) >
c(u). Hence B’ shows that there exists w € F(v) satisfying g(w) = g(u) and c(w) < c(u) < ¢(v).
Yet g(w) = g(v), violating axiom A”.

I'i(c) — B: Let v € F(u) satisfy g(u) < g(v). Suppose first that v € V>®(g) or ¢(v) > c(u).
Then by B there exists w € F(v) satisfying g(w) = g(u) and c¢(w) < c(u). If, on the other
hand, v € V/(g) and c(v) < c(u), then by A’ there exists w € F(v) satisfying g(w) = g(u) and
c(w) < c(v) < e(u).

¢'(u), it is enough to show that (a) for
= 4; and that (b) no v € F(u) satisfies

Axiom scheme I';. Here the proof is more involved. Note first that since v satisfies A and C, a
function satisfying I'y exists. We will prove the following theorem about the weaker system I',.

Theorem 1 If g satisfies Iy then V>°(g) C V>°(v).
Corollary 2 If g satisfies I'y then V>°(g) = V(7).

Now the main theorem is but a corollary to a corollary.
Theorem 3 If g satisfies I's then g = 7.

Proof: Corollary 2 shows that V*°(g) = V*°(y). It remains to show that g and 7 are identical
on V/(g) = V/(y). This is just Theorem 3.5.8 of the lecture notes, whose proof holds because
Vi(g)=VI(y). O

On our way to prove Theorem 1, we start with an important technical result.

Lemma 4 Aziom scheme I, implies axiom b. In other words, I is weaker than I,

Proof: We show that if b does not hold then minimality (axiom c”) fails. Indeed, suppose that b
fails. Thus for some u; € V¥ (g) there exists vy € F(uy) satisfying vy = co(K) and g(u,) ¢ K.

Call a node u € Vy(g) \ S essential for v € F~'(u) given S if g(u) < ¢'(v) and u is the only
vertex w € F(v) \ S with g(w) = g(u). We shall construct a set S inductively. The starting point
is S = {us}. Aslong as there is a vertex s € S which is essential for ¢ € V;(g) given S, add ¢ to S.
Since Vy(g) is finite, the process must end. Now let us define a new value function G, based on the

final S, as follows.
Clo) = {gw) vegS
oo wveS

We claim that G satisfies A and C; this contradicts ¢”. We shall use the self-explanatory notation
A(G), C(G), A(g) and C(g) to avoid confusion.

We begin by proving A(G). Let u € V/(G). Hence also u € V/(g). If F(u)NS = @, then A(G)
holds by A(g). Otherwise, since u ¢ S, no v € F(u) NS is essential for u given S. Hence for
every v € F(u) NS, either g(v) > ¢'(u) or some w € F(u) \ S satisfies g(w) = g(v). We infer that
G'(u) = ¢'(u) and that A(G) holds by A(g).

We complete the proof by showing that C(G) holds. Let u € V>°(G). If G'(u) = ¢'(u) then, by
construction, either u = ug or u € V*>°(g). If u = u, then C(G) holds since u, violates axiom b.
Otherwise, C(G) holds by C(g).

Now assume G'(u) < ¢'(u). By construction, G'(u) = g(v) for some v € F(u) N S. By A(yg),
g(v) ¢ g(F(v)). Since G(v) = oo( K) with K C g(F(v)), we see that G'(u) = g(v) ¢ K. Hence C(G)
holds. UJ



The technical lemma is helpful because of the following lemma.
Lemma 5 If g satisfies I then P(g) CPUD, N(g9) CNUD and D(g) C D.

Proof: First, note that by definition and A, any position in N(g) has a successor in P(g); note
that by A and b, all the successors of a position in P(g) lie in N(g); note that by definition, no
successor of a position in D(g) lies in P(g); and note that any position in D(g) has a successor in
D(g), by definition and C.

We claim that when starting at a position in P(g), a player can’t win; that when starting at a
position in N(g), an optimal player won’t lose; and that when starting at a position in D(g), an
optimal player will neither win nor lose. This will imply the lemma.

Indeed, a player starting at N(g) can always move to a position in P(g), and from there, the
other player can (if at all) only move to a position in N(g); thus an optimal player starting at N(g)
won’t lose, and a player starting at a position in P(g) can’t win.

Now consider a player starting at D(g), and let us look at the resulting game. If the game ever
exits D(g), the player exiting D(g) moves to a position in N(g), hence that player cannot win. Thus
a player starting at D(g) won'’t lose if she always goes from a position in D(g) to another position
in D(g). By symmetry, a player starting at a position in D(g) cannot win. O

A similar lemma is the following.

Lemma 6 If g satisfies I then Py(g) C Py UDy, Ny(g) € Ny U Dy and Dy(g) C Ds.

Proof: As in the proof of lemma 5, it is enough to show that (a) any position in Ny(g) has a
successor in Py(g); (b) all the successors of a position in Py(g) are in Na(g); (¢) no successor of
Dy(g) lies in Py(g); and (d) any position in Dy(g) has a successor in Dy(g).

We begin by proving fact (a). If (u, v) € Nj(g), the fact follows from A. If, on the other hand,
(u, v) € N(g), the fact follows by definition.

We move on to fact (b). Consider (u, v) € Ps(g), and suppose we move to (u, w), where
w € F(v). If w € V/(g), then the fact follows by definition and A.. If, on the other hand, w € V°°(g),
the fact follows from b.

We continue with fact (c¢). Consider (u, v) € Ds(g), and suppose we move to (u, w) € Py(g),
where w € F(v). Since Py(g) C (V{ (¢))2, we must have (u, v) € DJ(g) and g(v) = co(K). However,
by definition g(u) ¢ K, hence g(u) # g(w), contradicting the definition of Py(g).

Finally, we prove fact (d). Suppose first that (u, v) € Di(g), say g(v) = co. If g(u) # ¢ (v),
then we can move to (w, v) € DJ(g), where w € F(u) satisfies g(w) = ¢/(v), by definition and A.
If, on the other hand, g(u) = ¢'(v), we can move to (u, w) € Di(g), where w € F(v) satisfies
g(w) = oo(K) and g(u) = ¢'(v) ¢ K, by C.

Suppose otherwise that (u, v) € D(g). Then we can move to (u, w) € DP(g), where w €
V*(g), by C. O

Corollary 7 If g satisfies I then N*°(g) C N>~ U D.
Proof: Let v € N®(g), and suppose that v € N. If v € N/ then (v, v) € Py, whereas if v € N*®

then (v, v) € Dy. Since (v, v) € Dy(g) C Dy, we see that v € N*. [
Lemmas 4 and 5 and corollary 7 together imply theorem 1.



