
Why is the number of 123- and 132-avoiding permutations equal to the number of binary trees?

1 What are restricted permutations?

We shall deal with permutations avoiding some specific patterns. For us, a permutation on [1, n]
will mean a list of the integers 1 up to n in some order. For example, here are all permutations on
[1, 3]:

123, 132, 213, 231, 312, 321.

The corresponding (normal) permutation is obtained by letting the element i go into the element
in position i. For example, in 1432, 1 goes to 1, 2 goes to 4, 3 goes to 3 and 4 goes to 2, hence the
permutation is (24).

The term pattern will mean for us the same thing as permutation, only with different semantics.
We say that a permutation σ avoids a pattern τ if no subperm of σ is ordered as the pattern τ . By
a subperm we mean a certain number of elements taken in order but not necessarily together. For
example, the seven non-empty subperms of 123 are

1, 2, 3, 12, 13, 23, 123.

A subperm is said to be ordered according to some pattern of the same length n if for any 1 ≤ k ≤ n,
the k-largest element is located in the same position in both the subperm and the pattern. For
example, the subperm αβγ is ordered as the pattern 132 if α < γ < β.

2 Wilf classes

Let An(τ) denote the number of permutation on [1, n] avoiding the pattern τ . For example,
A3(123) = 5, for obvious reasons. For each pattern length m, we say that the patterns τ and τ ′

are in the same Wilf class if An(τ) = An(τ ′) for any permutation length n. There are three simple
operations on patterns which are guaranteed to preserve the Wilf class: reversing, complementing
and inverting.

2.1 Reversing

The reverse of a pattern τ , denoted τR, is just the pattern τ reversed as a text string. For example,
123R = 321. It is clear that σ avoids τ if, and only if, σR avoids τR; it is further clear that reversing
is a permutation on Sn, hence τ and τR share the same Wilf class.

2.2 Complementing

The complement of a pattern τ , denoted τC , is obtained by subtracting each element of τ from
m + 1, m being the length of τ . For example, to complement 1432 we subtract each element
from 5 to obtain 1432C = 4123. It is easy to see that σ avoids τ if, and only if, σC avoids τC ,
since complementing corresponds to switching < and >; it is further clear that complementing is a
permutation on Sn, hence τ and τC share the same Wilf class.

2.3 Inverting

The inverse of a pattern τ , denoted τ−1, is obtained by inverting τ as a permutation. Alternatively,
one encodes τ using positional notation: that is, the first element is the position of 1 in τ , the second
is the position of 2, and so on. For example, consider inverting the permutation 1423. According

1

to the first definition, 1423−1 = (243)−1 = (234) = 1342. According to the second definition, the
position of 1 is 1, that of 2 is 3, that of 3 is 4, that of 4 is 2. Thus we also get 1342.

Why are the two definitions equivalent? Let us look at a permutation in a third way: as a set
of (i, j) pairs, meaning i goes to j. For example, 1423 = {(1, 1), (2, 4), (3, 2), (4, 3)}. Inverting
the permutation means reversing the pairs, which amounts to the positional notation.

Now we can easily show that a permutation σ avoids the pattern τ if, and only if, σ−1 avoids
τ−1: for this amounts only to decoding the pairs in the set representation the opposite way. Hence
τ and τ−1 belong to the same Wilf class.

3 Patterns of length 3

Now we set out to find the partition into Wilf classes of the patterns of length 3. The six possible
patterns were already listed, and we can remark that

123R = 321, 132C = 312, 312−1 = 231, 312R = 213.

Hence, a-priori there are at most two Wilf classes. We will show bellow that actually An(123) =
An(132) = Cn, where Cn = 1

n+1

(
2n
n

)
is the nth Catalan number, hence there is exactly one Wilf

class. This will be done by providing an explicit bijection between permutations avoiding a specific
pattern and rooted binary trees on n nodes. This will prove the result, since Cn is the number of
such trees. Note that when we count this number, we distinguish between a single left son and a
single right son (thus there are five trees having three vertices).

3.1 132-avoiding permutations

The connection between binary trees and 132-avoiding permutations is quite straightforward. What
does it mean for a permutation σ to avoid 132? Suppose |σ| = n (that is, σ is of size n). Let us
write σ = αnβ. Then clearly α and β must be 132-avoiding, and furthermore, every element in
α must be larger than any element in β. It is also clear that if these two conditions hold, then σ
avoids 132.

We can now outline a conversion procedure from 132-avoiding permutations into binary trees.
To convert σ = αnβ into a tree, we first convert α and β into trees (we have to subtract |β| from α
first). Then we create a new rooted tree, having the converted α as left branch, and the converted
β as right branch. For example, here are all 132-avoiding permutation of length 3 converted into
binary trees, with self-explanatory numbering:

3

2

1

3

2

1

3

2 1

3

2

1

3

2

1

123 213 231 312 321

We can easily prove inductively that different permutation give rise to different trees: if the
position of n in the two permutations is different, then the number of nodes in each branch from
the root will clearly be different; otherwise, things come down to comparing the corresponding left
branches and right branches; at least one of these must be different by induction.

Conversely, to convert a binary tree into a 132-avoiding permutation, we employ the following
mechanism. We convert recursively the left branch into a permutation α, and the right branch
into a permutation β; an empty branch translates into an empty permutation. Then we add |β|
to α, getting γ, and finally we get the converted permutation γnβ. Thus we have shown that
An(132) = Cn.

2

3.2 123-avoiding permutations

The connection between binary trees and 123-avoiding permutations is more obscure and less nat-
ural. We must first study the recursive structure of 123-avoiding permutations, as we have done in
the previous case.

We shall classify 123-avoiding permutations according to the length of the (largest) falling se-
quence starting the permutation σ, denoted `(σ). For example, the permutation 3214 starts with
a descending run of length three: 3214. There is a strong connection between this length and the
location of the highest element n, which will be very helpful.

The connection is that n always begins or (immediately) follows the falling sequence. For if we
are given a 123-avoiding permutation σ which does not start with n, let us write σ = αβnγ, where
α is the falling sequence. The falling sequence is always of length at least one. If β was not empty,
then take the last element a of α, and the first element b of β. Since clearly a < b < n, we have
found an occurrence of the forbidden pattern 123 in σ — and that cannot be. Hence n must follow
the falling sequence.

Now consider all 123-avoiding permutations σ on [1, n] with `(σ) = i. What happens if we
extract n? There are two possibilities: either σ = nαβ or σ = αnβ, where nα or α is the falling
sequence. Denoting the permutation obtained by removing n as σ′, we get in both cases σ′ = αβ;
however, in the first case, α remains the falling sequence, hence `(σ′) = i−1, whereas in the second
case, we only know that `(σ′) ≥ i.

Conversely, we can make any permutation σ′ on [1, n− 1] with `(σ′) ≥ i− 1 a new permutation
σ on [1, n] with `(σ′) = i by inserting n at the proper place: at the beginning if `(σ′) = i − 1, or
after exactly i elements if `(σ′) ≥ i.

What does all this have to do with binary trees? There is a binary-tree equivalent to a falling
sequence: a right-branching. The right-branching of a (rooted) binary tree is defined as the nodes
on the path beginning with the root and always branching to the right, or sometimes their number
(naturally we could also have used the analog concept of left-branching). For example, the following
tree has a right branching of length three, which is highlighted:

As we have seen, permutations σ with `(σ) = i can be reduced to permutations σ′ with `(σ′) ≥
i − 1 with one element less. We can use this in order to transform 123-avoiding permutations to
binary trees, where our goal is to generate a tree with a right-branching equal to `(σ). Given
a permutation σ, we discern among two cases: the first is when n starts the permutation, the
second when it does not. The first case is easy: we drop the n, getting a permutation σ′ with
`(σ′) = `(σ)− 1. We generate its corresponding tree recursively, then append it as the right son of
a new root to get the tree for σ, which has the appropriate right branching. We demonstrate the
process, highlighting the right-branching:

=⇒ =⇒

1 21 321

3

The second case is a bit more involved. We need to cut the right-branching in order to make
it of length exactly `(σ). All that we know is that `(σ′) ≥ `(σ), and so this cutting can always be
done. To explain how this cutting is done, let us draw a diagram:

X

L R

=⇒
X R

L

Note that doubled nodes signify subtrees, which might turn out to be empty. The cut should
be made after i − 1 right branches — that is, there should be i vertices from the root to the full
vertex, including both. As an example, we complete the construction of the tree corresponding to
3214:

=⇒

321 3214

We can easily prove inductively that different permutations give rise to different trees: evidently,
permutations of two different types (that is, our cases) give rise to different trees, one where the root
has a left son, one when it hasn’t. Two permutations of the first type clearly lead to different trees,
and for permutations of the second type, we consider two cases: in the first case, the positions of n
are different — this clearly leads to different trees (with different right-branchings); in the second
case, n appears in the same position, and now we have to resort to induction in order to see that
we get two different trees.

To deconstruct a tree into a permutation, we reverse the construction: first we remember the
right-branching `, where we put ` = 0 if the root has no left son (for reasons soon to be explained).
Then we reduce the tree, according to two cases: if there is no left son, we just delete the root; if
there is a left son, then we decompose the tree as follows:

X R

L

=⇒ X

L R

After decomposing the tree (in any of the two cases), we obtain a permutation recursively. Now
we insert n after ` elements (that is, n will be in position ` + 1). Hence we have shown that
An(123) = Cn.

4

4 Appendix: some transforms

Here are some trees and their transforms; 132-transforms and bellow them 123-transforms.

1 12 21 123 213 231 312 321
1 12 21 132 231 213 312 321

1234 2134 2314 3124 3214 2341 3241
1432 2431 2413 3412 3421 2143 3241

3412 3421 4123 4213 4231 4312 4321
3142 3214 4132 4231 4213 4312 4321

5

