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Abstract

We prove that the range of a symmetric matrix over GF'(2) always
contains its diagonal. This is best possible in several ways, for example
GF(2) cannot be replaced by any other field.

1 Introduction

We prove the following theorem:

Definition 1.1. The diagonal of a matrix M, notated diag M, is the vector
composed of the diagonal elements of M.

Theorem 1.1. Let M be a symmetric matriz over GF(2). Then diag M €
range M .

This theorem is best possible in several ways:

1. We can’t drop the assumption that M is symmetric. The simplest
. (10
example is (1 O)'

2. We can’t replace GF(2) with any other field. The matrix (i ;2> is

an example, for any = # 0, 1.

3. We can’t guarantee the existence of any other non-zero vector in range M.
Indeed, if M is a block matrix composed of an all-ones block and an
all-zeroes block, range M = {0, diag M }.



2 Proof

We begin with a definition:

Definition 2.1. A matriz M over GF(2) is called realizable if diag M €
range M.

Our goal is to show that all symmetric matrices are realizable. We will
do so by applying a reduction operation which preserves realizability, until
the matrix reduces to a very simple form which is trivially realizable.

Definition 2.2. Let M be a symmetric matriz, S be a subset of the indices,
and © an index not in S. The reduction of M obtained by adding S to ¢,
N = M[S — ], is defined as follows:

Npg = Mpq + 5(p, Z) Z M;q + 5((]7 Z) Z Mp;.
jES JES
The notation 6(x,y) means 1 if v =y and 0 if v # y.
Definition 2.3. The set S is admissible with respect to a matriz M if
> Mj;=0.
jes
A reduction with an admissible set is an admissible reduction.

Applying a reduction to a symmetric matrix results in a symmetric matrix
with the same diagonal.

Lemma 2.1. If M is a symmetric matriz, S is a subset of the indices, and
i ¢S, then N = M[S — 1] is a symmetric matriz and diag M = diag N

Proof. First, we show that N is symmetric:

Npq = Myq + (p, 1) Z Mjq +6(q, 1) Z My,

jes jes
= Mg, +6(q,17) Z Mjy, +6(p, 1) Z Mg; = Ngp.
jeSs JjeS

Second, we calculate the diagonal of N:

Nop = My + 6(p, 1) Y My + 6(p, i) Y | Myj = My, O

jes Jjes



Reduction is a reversible operation.
Lemma 2.2. I[f N = M[S — i| then M = N[S — i].
Proof. This is an easy computation. Let L = N[S — i|. Then

Lyg = Npg +6(p,i) > Njg +6(q,1) Y N,

jeSs jes
= Mpq + 5(p, Z) Z(qu + qu) + 5(% Z) Z(ij + ij)
jes jes
_'A4ﬁ1ﬁ_5,pv Qa j{:j{: k%_é Qa u%i)zizjz:ju%jzzﬂ4
jES keS JES kES

If the reduction is admissible, then there is a close connection between
the ranges of both matrices.

Lemma 2.3. If N = M[S — i] and S is admissible for M then the range of
N is obtained from the range of M as follows:

range N = {v—i— (ZUj) € v E range]\/[},

jes
where e; is the ith basis vector. In words, the range of N is obtained from
the range of M by adding the columns in S to column 1.

Proof. Let x be a vector. We calculate Nz:

Nm)p:ZNpqxq
q
—Z(Mpq+5p, ZM]q—i-(Sq, Z )

Jes jes
Z paq +0(p, i Z jgTq T Z My;;
JES JjES
= (Mz),+6(p,1)(Mz); + z; (MZe])
jeSs »

This prompts us to defined

y:x+xiZe]~.

jes



Since i ¢ S, we similarly have
T =Y+ Y Z €.
jes

Rewriting our earlier result,

(Nz), = (Mz), + 6(p,i)(Mz); + =; <M Z ej>

JES p

= (My), + 0(p,i)(My); + d(p, ) y; (M Z 63')
= (My), + 0(p,i)(My); + d(p, 1)y; Z Mj;
= (My), + d(p,i)(My);.

Here we used the admissibility of S. The result follows since the function
transforming x to y is a bijection on the domain of M. O]

As a corollary, we obtain that an admissible reduction preserves realiz-
ability.

Corollary 2.4. If N = M[S — i] and S is admissible then N is realizable
if and only if M is realizable.

Proof. Suppose M is realizable. Denote v = diag M = diag N. Thus v €
range M. Since

D =) M;=0,

j€S j€S
by the lemma also v € range V. O]

We need several more trivial results.

Lemma 2.5. If a column of a matriz M is equal to diag M, then M 1is
realizable.

Lemma 2.6. Suppose M s a block matrixz. If all blocks of M are realizable,
then so is M.



Definition 2.4. If M;; = Mj;; = 0 for j # i, the index i is called lonely.
The matriz without row and column i is denoted M™*.

Corollary 2.7. Let M be a matriz with a lonely index i. If M~ is realizable
then so is M.

We now have enough tools at our disposal to prove the theorem.
Theorem 2.8. All matrices are realizable.

Proof. The proof is by induction on n. The base case n = 1 is trivial.

Let M be an n x n matrix. Define S = {i : M;; = 1}. If S = & then
diag M = 0 and so the theorem is trivial.

Suppose next that S = {s}. Assume first that M,, = 0 for all a,b # s. If
Mg =1 for some t # s then column ¢ represents M. If My =0 for all ¢ # s
then column s represents M.

Thus we can assume that M,, = 1 for some a,b # s. Since M,, =
My, = 0, we can add a to ¢ for any other index ¢ satisfying M,. = 1, and b
to d for any other index d satisfying M,q = 1. In the resulting matrix N,
Noe = Npe = 0 for e # a,b. Thus N can be split into two blocks, {a,b}
and the rest. The block corresponding to {a, b} is trivially realizable, and by
induction so is the other block. Thus N is realizable, hence M is realizable.

From now on, we assume that |.S| > 1. We consider several cases. Suppose
first that there exist ¢ # j € S such that M;; = 0. Since M;; + M;; = 0, we
can add 7, j to all k # i satisfying M;; = 1. In the resulting matrix N, the
index 4 is lonely. By induction, N~ is realizable, hence so are N and M.

Suppose next that there are indices ¢ # j € S and k ¢ S such that
M;; = M;, = 1. Since My, = 0, we can add k to j. The resulting matrix N
satisfies N;; = 0, and so the previous case applies.

Finally, suppose that none of the other cases apply. Thus for all 4,5 € S
we have M,;; =1, and for all i € S, k ¢ S we have M;;, = 0. Therefore M is
a block matrix consisting of an all-ones block and a block whose diagonal is
zero. Any column i € S realizes M. O



3 Recursive Proof for Forests

Any matrix over GF(2) corresponds to a graph. In this section we prove
the theorem for matrices which correspond to forests (we allow arbitrary
self-loops).

We first need a definition.

Definition 3.1. Let M be the adjacency matriz of a rooted tree, and suppose
r is the index of the root. A wector x is said to (o, 5)-realize M if Mx =
diag M + ae, and x, = 3.

Furthermore, M s («, B)-realizable if some vector («, [3)-realizes it.

A (%, B)-realization is either a (0,3)- or a (1,5)-realization. An (a,x*)-
realization is defined similarly.

We can divide all trees into three classes, as the following theorem shows.

Theorem 3.1. Let M be the adjacency matriz of a rooted tree. Then M
belongs to one of the following classes:

Class 0: M is (o, B)-realizable iff o + 3 = 1.
Class 1: M is («a, 5)-realizable iff o = 0.
Class 2: M is («, B)-realizable iff B = 0.

Note that the classes are mutually exclusive, and that in all classes, M s
(0, x)-realizable, and so it is realizable (in the original sense).

Proof. The proof is by induction on the height of the tree. The base case is
when M consists of a leaf. One can easily check that M = (0) is class 1 and
M = (1) is class 0.

Next, let M represent a tree T', and consider the (non-empty) set of
subtrees of the root. We denote the root of a subtree S by r(S). There are
two fundamental cases.

One of the subtrees S s class 1. We claim that in this case, T is class 2.
First, we show that T is («a, 0)-realizable for both choices of a. By induction,
all subtrees of T other than S are (0, *)-realizable. The subtree S is by
assumption (0, 5)-realizable for both choices of . By combining all these
realizations along with z, = 0, we get two vectors 2 that differ only on S.
Since :Ef(s) = B3, we see that Mz Mz' differ on r. Thus they (o, 0)-realize
T for both possibilities of «.



Second, we claim that 7" is not («, 1)-realizable for any «. For suppose x
is an (a, 1)-realization of T'. Then xg, the part consisting of the vertices of
S, (1, *)-realizes S, which contradicts the definition of class 1.

None of the subtrees is class 1. In that case, each subtree S; is («a, f)-
realizable only for § = f;(a), where either f;(a) = 14+« (class 0) or f;(a) =0
(class 2). Notice that in both cases, f;(1) = 0. In any (%, 1)-realization of T’
all the subtrees must be (1, 0)-realized, and so this in fact a (0, 1)-realization
of T. Similarly, in any (x,0)-realization of 7', subtree S; must be (0, f;(0))-
realized. Setting a = M, + Y f;(0), this is always an (a, 0)-realization of T
Notice that in both cases, such realizations are actually possible. Thus 7' is
class 1 if a = 0 and class 0 if a = 1. O

Corollary 3.2. All forests are realizable.

The proof of the theorem shows that a vertical path of length k£ with
self-loops in all vertices is class (k mod 3). If there are no self-loops at all,
it is class 1 + (k mod 2).

4 Noga Alon’s Proof

Here is Noga’s original proof. For every vector x and symmetric matrix M,
.CETM.QT = inMijxj
1]
i i<j
Therefore diag M 1 ker M, i.e.
diag M € (ker M)* = range M” = range M.

The proof is non-constructive since the connection between ker M and range M7*
is proved by comparing dimensions.
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