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Abstract

We prove that the range of a symmetric matrix over GF (2) always
contains its diagonal. This is best possible in several ways, for example
GF (2) cannot be replaced by any other field.

1 Introduction

We prove the following theorem:

Definition 1.1. The diagonal of a matrix M , notated diagM , is the vector
composed of the diagonal elements of M .

Theorem 1.1. Let M be a symmetric matrix over GF (2). Then diagM ∈
rangeM .

This theorem is best possible in several ways:

1. We can’t drop the assumption that M is symmetric. The simplest

example is

(
1 0
1 0

)
.

2. We can’t replace GF (2) with any other field. The matrix

(
1 x
x x2

)
is

an example, for any x 6= 0, 1.

3. We can’t guarantee the existence of any other non-zero vector in rangeM .
Indeed, if M is a block matrix composed of an all-ones block and an
all-zeroes block, rangeM = {0, diagM}.
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2 Proof

We begin with a definition:

Definition 2.1. A matrix M over GF (2) is called realizable if diagM ∈
rangeM .

Our goal is to show that all symmetric matrices are realizable. We will
do so by applying a reduction operation which preserves realizability, until
the matrix reduces to a very simple form which is trivially realizable.

Definition 2.2. Let M be a symmetric matrix, S be a subset of the indices,
and i an index not in S. The reduction of M obtained by adding S to i,
N = M [S → i], is defined as follows:

Npq = Mpq + δ(p, i)
∑
j∈S

Mjq + δ(q, i)
∑
j∈S

Mpj.

The notation δ(x, y) means 1 if x = y and 0 if x 6= y.

Definition 2.3. The set S is admissible with respect to a matrix M if∑
j∈S

Mjj = 0.

A reduction with an admissible set is an admissible reduction.

Applying a reduction to a symmetric matrix results in a symmetric matrix
with the same diagonal.

Lemma 2.1. If M is a symmetric matrix, S is a subset of the indices, and
i /∈ S, then N = M [S → i] is a symmetric matrix and diagM = diagN .

Proof. First, we show that N is symmetric:

Npq = Mpq + δ(p, i)
∑
j∈S

Mjq + δ(q, i)
∑
j∈S

Mpj

= Mqp + δ(q, i)
∑
j∈S

Mjp + δ(p, i)
∑
j∈S

Mqj = Nqp.

Second, we calculate the diagonal of N :

Npp = Mpp + δ(p, i)
∑
j∈S

Mjp + δ(p, i)
∑
j∈S

Mpj = Mpp.
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Reduction is a reversible operation.

Lemma 2.2. If N = M [S → i] then M = N [S → i].

Proof. This is an easy computation. Let L = N [S → i]. Then

Lpq = Npq + δ(p, i)
∑
j∈S

Njq + δ(q, i)
∑
j∈S

Npj

= Mpq + δ(p, i)
∑
j∈S

(Mjq +Njq) + δ(q, i)
∑
j∈S

(Mpj +Npj)

= Mpq + δ(p, i)δ(q, i)
∑
j∈S

∑
k∈S

Mjk + δ(q, i)δ(p, i)
∑
j∈S

∑
k∈S

Mkj = Mpq.

If the reduction is admissible, then there is a close connection between
the ranges of both matrices.

Lemma 2.3. If N = M [S → i] and S is admissible for M then the range of
N is obtained from the range of M as follows:

rangeN =

{
v +

(∑
j∈S

vj

)
ei : v ∈ rangeM

}
,

where ei is the ith basis vector. In words, the range of N is obtained from
the range of M by adding the columns in S to column i.

Proof. Let x be a vector. We calculate Nx:

(Nx)p =
∑
q

Npqxq

=
∑
q

(
Mpq + δ(p, i)

∑
j∈S

Mjq + δ(q, i)
∑
j∈S

Mpj

)
xq

=
∑
q

Mpqxq + δ(p, i)
∑
j∈S

Mjqxq +
∑
j∈S

Mpjxi

= (Mx)p + δ(p, i)(Mx)j + xi

(
M
∑
j∈S

ej

)
p

.

This prompts us to defined

y = x+ xi
∑
j∈S

ej.
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Since i /∈ S, we similarly have

x = y + yi
∑
j∈S

ej.

Rewriting our earlier result,

(Nx)p = (Mx)p + δ(p, i)(Mx)j + xi

(
M
∑
j∈S

ej

)
p

= (My)p + δ(p, i)(My)j + δ(p, i)yi

(
M
∑
j∈S

ej

)
j

= (My)p + δ(p, i)(My)j + δ(p, i)yi
∑
j∈S

Mjj

= (My)p + δ(p, i)(My)j.

Here we used the admissibility of S. The result follows since the function
transforming x to y is a bijection on the domain of M .

As a corollary, we obtain that an admissible reduction preserves realiz-
ability.

Corollary 2.4. If N = M [S → i] and S is admissible then N is realizable
if and only if M is realizable.

Proof. Suppose M is realizable. Denote v = diagM = diagN . Thus v ∈
rangeM . Since ∑

j∈S

vj =
∑
j∈S

Mjj = 0,

by the lemma also v ∈ rangeN .

We need several more trivial results.

Lemma 2.5. If a column of a matrix M is equal to diagM , then M is
realizable.

Lemma 2.6. Suppose M is a block matrix. If all blocks of M are realizable,
then so is M .
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Definition 2.4. If Mij = Mji = 0 for j 6= i, the index i is called lonely.
The matrix without row and column i is denoted M−i.

Corollary 2.7. Let M be a matrix with a lonely index i. If M−i is realizable
then so is M .

We now have enough tools at our disposal to prove the theorem.

Theorem 2.8. All matrices are realizable.

Proof. The proof is by induction on n. The base case n = 1 is trivial.
Let M be an n × n matrix. Define S = {i : Mii = 1}. If S = ∅ then

diagM = 0 and so the theorem is trivial.
Suppose next that S = {s}. Assume first that Mab = 0 for all a, b 6= s. If

Mst = 1 for some t 6= s then column t represents M . If Mst = 0 for all t 6= s
then column s represents M .

Thus we can assume that Mab = 1 for some a, b 6= s. Since Maa =
Mbb = 0, we can add a to c for any other index c satisfying Mbc = 1, and b
to d for any other index d satisfying Mad = 1. In the resulting matrix N ,
Nae = Nbe = 0 for e 6= a, b. Thus N can be split into two blocks, {a, b}
and the rest. The block corresponding to {a, b} is trivially realizable, and by
induction so is the other block. Thus N is realizable, hence M is realizable.

From now on, we assume that |S| > 1. We consider several cases. Suppose
first that there exist i 6= j ∈ S such that Mij = 0. Since Mii + Mjj = 0, we
can add i, j to all k 6= i satisfying Mik = 1. In the resulting matrix N , the
index i is lonely. By induction, N−i is realizable, hence so are N and M .

Suppose next that there are indices i 6= j ∈ S and k /∈ S such that
Mij = Mik = 1. Since Mkk = 0, we can add k to j. The resulting matrix N
satisfies Nij = 0, and so the previous case applies.

Finally, suppose that none of the other cases apply. Thus for all i, j ∈ S
we have Mij = 1, and for all i ∈ S, k /∈ S we have Mik = 0. Therefore M is
a block matrix consisting of an all-ones block and a block whose diagonal is
zero. Any column i ∈ S realizes M .
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3 Recursive Proof for Forests

Any matrix over GF (2) corresponds to a graph. In this section we prove
the theorem for matrices which correspond to forests (we allow arbitrary
self-loops).

We first need a definition.

Definition 3.1. Let M be the adjacency matrix of a rooted tree, and suppose
r is the index of the root. A vector x is said to (α, β)-realize M if Mx =
diagM + αer and xr = β.

Furthermore, M is (α, β)-realizable if some vector (α, β)-realizes it.
A (∗, β)-realization is either a (0, β)- or a (1, β)-realization. An (α, ∗)-

realization is defined similarly.

We can divide all trees into three classes, as the following theorem shows.

Theorem 3.1. Let M be the adjacency matrix of a rooted tree. Then M
belongs to one of the following classes:

Class 0: M is (α, β)-realizable iff α + β = 1.

Class 1: M is (α, β)-realizable iff α = 0.

Class 2: M is (α, β)-realizable iff β = 0.

Note that the classes are mutually exclusive, and that in all classes, M is
(0, ∗)-realizable, and so it is realizable (in the original sense).

Proof. The proof is by induction on the height of the tree. The base case is
when M consists of a leaf. One can easily check that M = (0) is class 1 and
M = (1) is class 0.

Next, let M represent a tree T , and consider the (non-empty) set of
subtrees of the root. We denote the root of a subtree S by r(S). There are
two fundamental cases.

One of the subtrees S is class 1. We claim that in this case, T is class 2.
First, we show that T is (α, 0)-realizable for both choices of α. By induction,
all subtrees of T other than S are (0, ∗)-realizable. The subtree S is by
assumption (0, β)-realizable for both choices of β. By combining all these
realizations along with xr = 0, we get two vectors xβ that differ only on S.
Since xβr(S) = β, we see that Mx0,Mx1 differ on r. Thus they (α, 0)-realize
T for both possibilities of α.
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Second, we claim that T is not (α, 1)-realizable for any α. For suppose x
is an (α, 1)-realization of T . Then xS, the part consisting of the vertices of
S, (1, ∗)-realizes S, which contradicts the definition of class 1.

None of the subtrees is class 1. In that case, each subtree Si is (α, β)-
realizable only for β = fi(α), where either fi(α) = 1+α (class 0) or fi(α) = 0
(class 2). Notice that in both cases, fi(1) = 0. In any (∗, 1)-realization of T ,
all the subtrees must be (1, 0)-realized, and so this in fact a (0, 1)-realization
of T . Similarly, in any (∗, 0)-realization of T , subtree Si must be (0, fi(0))-
realized. Setting a = Mrr +

∑
fi(0), this is always an (a, 0)-realization of T .

Notice that in both cases, such realizations are actually possible. Thus T is
class 1 if a = 0 and class 0 if a = 1.

Corollary 3.2. All forests are realizable.

The proof of the theorem shows that a vertical path of length k with
self-loops in all vertices is class (k mod 3). If there are no self-loops at all,
it is class 1 + (k mod 2).

4 Noga Alon’s Proof

Here is Noga’s original proof. For every vector x and symmetric matrix M ,

xTMx =
∑
i,j

xiMijxj

=
∑
i

xiMiixi +
∑
i<j

(xiMijxj + xjMijxi)

=
∑
i

Miixi = xT diagM.

Therefore diagM ⊥ kerM , i.e.

diagM ∈ (kerM)⊥ = rangeMT = rangeM.

The proof is non-constructive since the connection between kerM and rangeMT

is proved by comparing dimensions.
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