Range of Symmetric Matrices over $G F(2)$

Yuval Filmus

January 2010

Abstract

We prove that the range of a symmetric matrix over $G F(2)$ always contains its diagonal. This is best possible in several ways, for example $G F(2)$ cannot be replaced by any other field.

1 Introduction

We prove the following theorem:
Definition 1.1. The diagonal of a matrix M, notated $\operatorname{diag} M$, is the vector composed of the diagonal elements of M.

Theorem 1.1. Let M be a symmetric matrix over $G F(2)$. Then $\operatorname{diag} M \in$ range M.

This theorem is best possible in several ways:

1. We can't drop the assumption that M is symmetric. The simplest example is $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$.
2. We can't replace $G F(2)$ with any other field. The matrix $\left(\begin{array}{cc}1 & x \\ x & x^{2}\end{array}\right)$ is an example, for any $x \neq 0,1$.
3. We can't guarantee the existence of any other non-zero vector in range M. Indeed, if M is a block matrix composed of an all-ones block and an all-zeroes block, range $M=\{0$, $\operatorname{diag} M\}$.

2 Proof

We begin with a definition:
Definition 2.1. A matrix M over $G F(2)$ is called realizable if $\operatorname{diag} M \in$ range M.

Our goal is to show that all symmetric matrices are realizable. We will do so by applying a reduction operation which preserves realizability, until the matrix reduces to a very simple form which is trivially realizable.

Definition 2.2. Let M be a symmetric matrix, S be a subset of the indices, and i an index not in S. The reduction of M obtained by adding S to i, $N=M[S \rightarrow i]$, is defined as follows:

$$
N_{p q}=M_{p q}+\delta(p, i) \sum_{j \in S} M_{j q}+\delta(q, i) \sum_{j \in S} M_{p j} .
$$

The notation $\delta(x, y)$ means 1 if $x=y$ and 0 if $x \neq y$.
Definition 2.3. The set S is admissible with respect to a matrix M if

$$
\sum_{j \in S} M_{j j}=0
$$

A reduction with an admissible set is an admissible reduction.
Applying a reduction to a symmetric matrix results in a symmetric matrix with the same diagonal.
Lemma 2.1. If M is a symmetric matrix, S is a subset of the indices, and $i \notin S$, then $N=M[S \rightarrow i]$ is a symmetric matrix and $\operatorname{diag} M=\operatorname{diag} N$.
Proof. First, we show that N is symmetric:

$$
\begin{aligned}
N_{p q} & =M_{p q}+\delta(p, i) \sum_{j \in S} M_{j q}+\delta(q, i) \sum_{j \in S} M_{p j} \\
& =M_{q p}+\delta(q, i) \sum_{j \in S} M_{j p}+\delta(p, i) \sum_{j \in S} M_{q j}=N_{q p} .
\end{aligned}
$$

Second, we calculate the diagonal of N :

$$
N_{p p}=M_{p p}+\delta(p, i) \sum_{j \in S} M_{j p}+\delta(p, i) \sum_{j \in S} M_{p j}=M_{p p} .
$$

Reduction is a reversible operation.
Lemma 2.2. If $N=M[S \rightarrow i]$ then $M=N[S \rightarrow i]$.
Proof. This is an easy computation. Let $L=N[S \rightarrow i]$. Then

$$
\begin{aligned}
L_{p q} & =N_{p q}+\delta(p, i) \sum_{j \in S} N_{j q}+\delta(q, i) \sum_{j \in S} N_{p j} \\
& =M_{p q}+\delta(p, i) \sum_{j \in S}\left(M_{j q}+N_{j q}\right)+\delta(q, i) \sum_{j \in S}\left(M_{p j}+N_{p j}\right) \\
& =M_{p q}+\delta(p, i) \delta(q, i) \sum_{j \in S} \sum_{k \in S} M_{j k}+\delta(q, i) \delta(p, i) \sum_{j \in S} \sum_{k \in S} M_{k j}=M_{p q} . \square
\end{aligned}
$$

If the reduction is admissible, then there is a close connection between the ranges of both matrices.

Lemma 2.3. If $N=M[S \rightarrow i]$ and S is admissible for M then the range of N is obtained from the range of M as follows:

$$
\text { range } N=\left\{v+\left(\sum_{j \in S} v_{j}\right) e_{i}: v \in \operatorname{range} M\right\}
$$

where e_{i} is the ith basis vector. In words, the range of N is obtained from the range of M by adding the columns in S to column i.

Proof. Let x be a vector. We calculate $N x$:

$$
\begin{aligned}
(N x)_{p} & =\sum_{q} N_{p q} x_{q} \\
& =\sum_{q}\left(M_{p q}+\delta(p, i) \sum_{j \in S} M_{j q}+\delta(q, i) \sum_{j \in S} M_{p j}\right) x_{q} \\
& =\sum_{q} M_{p q} x_{q}+\delta(p, i) \sum_{j \in S} M_{j q} x_{q}+\sum_{j \in S} M_{p j} x_{i} \\
& =(M x)_{p}+\delta(p, i)(M x)_{j}+x_{i}\left(M \sum_{j \in S} e_{j}\right)_{p} .
\end{aligned}
$$

This prompts us to defined

$$
y=x+x_{i} \sum_{j \in S} e_{j} .
$$

Since $i \notin S$, we similarly have

$$
x=y+y_{i} \sum_{j \in S} e_{j} .
$$

Rewriting our earlier result,

$$
\begin{aligned}
(N x)_{p} & =(M x)_{p}+\delta(p, i)(M x)_{j}+x_{i}\left(M \sum_{j \in S} e_{j}\right)_{p} \\
& =(M y)_{p}+\delta(p, i)(M y)_{j}+\delta(p, i) y_{i}\left(M \sum_{j \in S} e_{j}\right)_{j} \\
& =(M y)_{p}+\delta(p, i)(M y)_{j}+\delta(p, i) y_{i} \sum_{j \in S} M_{j j} \\
& =(M y)_{p}+\delta(p, i)(M y)_{j} .
\end{aligned}
$$

Here we used the admissibility of S. The result follows since the function transforming x to y is a bijection on the domain of M.

As a corollary, we obtain that an admissible reduction preserves realizability.

Corollary 2.4. If $N=M[S \rightarrow i]$ and S is admissible then N is realizable if and only if M is realizable.

Proof. Suppose M is realizable. Denote $v=\operatorname{diag} M=\operatorname{diag} N$. Thus $v \in$ range M. Since

$$
\sum_{j \in S} v_{j}=\sum_{j \in S} M_{j j}=0
$$

by the lemma also $v \in$ range N.
We need several more trivial results.
Lemma 2.5. If a column of a matrix M is equal to $\operatorname{diag} M$, then M is realizable.

Lemma 2.6. Suppose M is a block matrix. If all blocks of M are realizable, then so is M.

Definition 2.4. If $M_{i j}=M_{j i}=0$ for $j \neq i$, the index i is called lonely. The matrix without row and column i is denoted M^{-i}.

Corollary 2.7. Let M be a matrix with a lonely index i. If M^{-i} is realizable then so is M.

We now have enough tools at our disposal to prove the theorem.
Theorem 2.8. All matrices are realizable.
Proof. The proof is by induction on n. The base case $n=1$ is trivial.
Let M be an $n \times n$ matrix. Define $S=\left\{i: M_{i i}=1\right\}$. If $S=\varnothing$ then $\operatorname{diag} M=0$ and so the theorem is trivial.

Suppose next that $S=\{s\}$. Assume first that $M_{a b}=0$ for all $a, b \neq s$. If $M_{s t}=1$ for some $t \neq s$ then column t represents M. If $M_{s t}=0$ for all $t \neq s$ then column s represents M.

Thus we can assume that $M_{a b}=1$ for some $a, b \neq s$. Since $M_{a a}=$ $M_{b b}=0$, we can add a to c for any other index c satisfying $M_{b c}=1$, and b to d for any other index d satisfying $M_{a d}=1$. In the resulting matrix N, $N_{a e}=N_{b e}=0$ for $e \neq a, b$. Thus N can be split into two blocks, $\{a, b\}$ and the rest. The block corresponding to $\{a, b\}$ is trivially realizable, and by induction so is the other block. Thus N is realizable, hence M is realizable.

From now on, we assume that $|S|>1$. We consider several cases. Suppose first that there exist $i \neq j \in S$ such that $M_{i j}=0$. Since $M_{i i}+M_{j j}=0$, we can add i, j to all $k \neq i$ satisfying $M_{i k}=1$. In the resulting matrix N, the index i is lonely. By induction, N^{-i} is realizable, hence so are N and M.

Suppose next that there are indices $i \neq j \in S$ and $k \notin S$ such that $M_{i j}=M_{i k}=1$. Since $M_{k k}=0$, we can add k to j. The resulting matrix N satisfies $N_{i j}=0$, and so the previous case applies.

Finally, suppose that none of the other cases apply. Thus for all $i, j \in S$ we have $M_{i j}=1$, and for all $i \in S, k \notin S$ we have $M_{i k}=0$. Therefore M is a block matrix consisting of an all-ones block and a block whose diagonal is zero. Any column $i \in S$ realizes M.

3 Recursive Proof for Forests

Any matrix over $G F(2)$ corresponds to a graph. In this section we prove the theorem for matrices which correspond to forests (we allow arbitrary self-loops).

We first need a definition.
Definition 3.1. Let M be the adjacency matrix of a rooted tree, and suppose r is the index of the root. A vector x is said to (α, β)-realize M if $M x=$ $\operatorname{diag} M+\alpha e_{r}$ and $x_{r}=\beta$.

Furthermore, M is (α, β)-realizable if some vector (α, β)-realizes it.
$A(*, \beta)$-realization is either $a(0, \beta)$ - or a $(1, \beta)$-realization. An $(\alpha, *)$ realization is defined similarly.

We can divide all trees into three classes, as the following theorem shows.
Theorem 3.1. Let M be the adjacency matrix of a rooted tree. Then M belongs to one of the following classes:

Class 0: M is (α, β)-realizable iff $\alpha+\beta=1$.
Class 1: M is (α, β)-realizable iff $\alpha=0$.
Class 2: M is (α, β)-realizable iff $\beta=0$.
Note that the classes are mutually exclusive, and that in all classes, M is $(0, *)$-realizable, and so it is realizable (in the original sense).

Proof. The proof is by induction on the height of the tree. The base case is when M consists of a leaf. One can easily check that $M=(0)$ is class 1 and $M=(1)$ is class 0.

Next, let M represent a tree T, and consider the (non-empty) set of subtrees of the root. We denote the root of a subtree S by $r(S)$. There are two fundamental cases.

One of the subtrees S is class 1. We claim that in this case, T is class 2. First, we show that T is $(\alpha, 0)$-realizable for both choices of α. By induction, all subtrees of T other than S are $(0, *)$-realizable. The subtree S is by assumption $(0, \beta)$-realizable for both choices of β. By combining all these realizations along with $x_{r}=0$, we get two vectors x^{β} that differ only on S. Since $x_{r(S)}^{\beta}=\beta$, we see that $M x^{0}, M x^{1}$ differ on r. Thus they ($\alpha, 0$)-realize T for both possibilities of α.

Second, we claim that T is not $(\alpha, 1)$-realizable for any α. For suppose x is an $(\alpha, 1)$-realization of T. Then x_{S}, the part consisting of the vertices of $S,(1, *)$-realizes S, which contradicts the definition of class 1 .

None of the subtrees is class 1. In that case, each subtree S_{i} is (α, β) realizable only for $\beta=f_{i}(\alpha)$, where either $f_{i}(\alpha)=1+\alpha($ class 0$)$ or $f_{i}(\alpha)=0$ (class 2). Notice that in both cases, $f_{i}(1)=0$. In any $(*, 1)$-realization of T, all the subtrees must be (1,0)-realized, and so this in fact a (0,1)-realization of T. Similarly, in any ($*, 0$)-realization of T, subtree S_{i} must be $\left(0, f_{i}(0)\right)$ realized. Setting $a=M_{r r}+\sum f_{i}(0)$, this is always an ($\left.a, 0\right)$-realization of T. Notice that in both cases, such realizations are actually possible. Thus T is class 1 if $a=0$ and class 0 if $a=1$.

Corollary 3.2. All forests are realizable.
The proof of the theorem shows that a vertical path of length k with self-loops in all vertices is class $(k \bmod 3)$. If there are no self-loops at all, it is class $1+(k \bmod 2)$.

4 Noga Alon's Proof

Here is Noga's original proof. For every vector x and symmetric matrix M,

$$
\begin{aligned}
x^{T} M x & =\sum_{i, j} x_{i} M_{i j} x_{j} \\
& =\sum_{i} x_{i} M_{i i} x_{i}+\sum_{i<j}\left(x_{i} M_{i j} x_{j}+x_{j} M_{i j} x_{i}\right) \\
& =\sum_{i} M_{i i} x_{i}=x^{T} \operatorname{diag} M .
\end{aligned}
$$

Therefore $\operatorname{diag} M \perp \operatorname{ker} M$, i.e.

$$
\operatorname{diag} M \in(\operatorname{ker} M)^{\perp}=\operatorname{range} M^{T}=\operatorname{range} M
$$

The proof is non-constructive since the connection between ker M and range M^{T} is proved by comparing dimensions.

5 Thanks

I thank Moti Levy for spotting out a mistake in the proof of Corollary 2.4, and Moron for letting me know Noga's proof.

