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Let us present Murali’s construction of the GZ basis for the slice, and show how it results in the explicit
formula given in the first author’s work.

We will construct, for each n ≥ 1 and each 0 ≤ d ≤ n/2, an orthogonal basis Bn,d of homogeneous

degree d functions. The orthogonal basis for the slice
!
[n]
d

"
is the union of Bn,e over 0 ≤ e ≤ min(d, n − d).

(We later comment on how this corresponds to Murali’s description, which is a bit different.)
For now, we just present the construction, not proving any of its properties. In brief, one inductively

proves that the elements are orthogonal, perhaps using their harmonicity (being annihilated by the Down
operator, the adjoint of the Up operator described below). One also explicitly computes their norms to show
that they don’t vanish. That they form a basis follows from a dimension argument. Finally, to show that
they are the GZ basis, one shows that they are eigenfunctions of the YJM elements, explicitly computing
the eigenvalues along the way. We skip all that for now.

We can identify each function in Bn,d with the corresponding subset of
!
[n]
d

"
using the following ob-

servation: the monomial xi1 · · ·xid (where all i1, . . . , id are distinct) is the same as the delta function of
{i1, . . . , id}.

The construction will use the Up operator U from
!
[n]
d

"
to

!
[n]
d+1

"
, which maps each element in

!
[n]
d

"
to all

subsets of
!
[n]
d+1

"
containing it (and extended linearly).

We can now explain how Murali thinks of his basis. Each element of Bn,d is a basis element over
!
[n]
d

"
.

To get the corresponding basis elements for the slices
!
[n]
d+1

"
, . . . ,

!
[n]
n−d

"
, Murali repeatedly applies the Up

operator. The Up operator takes a degree d monomial to a degree d monomial, multiplied by some factor
depending on d and on the slice you start with. Since all elements of Bn,d are homogeneous, the effect is

to multiply the homogeneous representation by some constant depending on d and on the slice
!
[n]
e

"
(where

d ≤ e ≤ n− d). The range of e is chosen to guarantee that the constant is non-zero.
Let us now describe the construction. The starting point is B1,0 = {1}. Each function in Bn−1,d also

appears in Bn,d (this is “0-lifting”). If d < (n− 1)/2, then we also get a new function:

f $→ X(f) := (n− 2d− 1)fxn − Uf.

Here multiplying by xn corresponds to “1-lifting”, and U is applied on the original n− 1 coordinates.
We will show that each member of Bn,d is always of the following form, for j1 < · · · < jd:

B(i1, . . . , id) =
#

j1,...,jd :
jt<it
is ∕=jt

(xi1 − xj1) · · · (xid − xjd).

In particular, we will show that
X(B(i1, . . . , id)) = B(i1, . . . , id, n).

We only expand basis elements if there is “space”, that is, if the basis element doesn’t vanish. This is
the case for a basis element B(k1, . . . , kd) if for each 1 ≤ e ≤ d, we have |[ke] \ {k1, . . . , ke}| ≥ e. In our
expansion procedure, we are guaranteed that this condition will hold for all proper prefixes, and the fact
that we only expand if d < (n− 1)/2 guarantees that it holds for the entire sequence.
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Consider any degree d monomial xk1 · · ·xkd
. The effect of the Up operator is to multiply it by the sum

of all elements not appearing in it, that is, x1 + · · ·+ xn−1 − xk1
− · · ·− xkd

. This is because we’re applying

the Up operator from
!
[n]
d

"
to

!
[n]
d+1

"
; in both cases, we can identify monomials with points.

Consider now any element in the sum defining B(j1, . . . , jd), for example

(xi1 − xj1) · · · (xid − xjd).

What happens when we apply the Up operator? Let us start with the case d = 1 for concreteness: (hats
represent elements removed from the sum)

U(xi1 − xj1) = xi1(x1 + · · ·+ $xi1 + · · ·+ xn−1)− xj1(x1 + · · ·+ $xj1 + · · ·+ xn−1).

Notice that both terms contain xi1xj1 , which we can cancel, obtaining

U(xi1 − xj1) = (xi1 − xj1)(x1 + · · ·+ $xj1 + · · ·+ $xi1 + · · ·+ xn−1).

A similar phenomenon happens in general due to the alternating signs, and we get

U [(xi1 − xj1) · · · (xid − xjd)] = (xi1 − xj1) · · · (xid − xjd)
#

1≤k≤n−1
k ∕=it,jt

xk.

Note that there are n− 2d− 1 elements in the sum.
Putting everything together, we get:

X(B(i1, . . . , id)) =
#

j1,...,jd :
jt<it
is ∕=jt

(xi1 − xj1) · · · (xid − xjd)

%

&&'(n− 2d− 1)xn −
#

1≤k≤n−1
k ∕=it,jt

xk

(

))*

=
#

j1,...,jd :
jt<it
is ∕=jt

(xi1 − xj1) · · · (xid − xjd)
#

1≤k≤n−1
k ∕=it,jt

(xn − xk)

= B(i1, . . . , id, n).

1 Gram–Schmidt Orthogonalization

Consider some degree d. We arrange the basis elements in lexicographical order with respect to xn > xn−1 >
· · · > x1. For example,

B(1, 2) < B(1, 3) < B(2, 3) < B(1, 4) < B(2, 4) < B(3, 4) < · · ·

Under this order, the basis B is a Gröbner basis for the harmonic multilinear degree d polynomials.
For i1, . . . , id, define

C(i1, . . . , id) = {(xi1 − xj1) · · · (xid − xjd) : jt < it, it ∕= js}.

We make three observations. First, every element in C(i1, . . . , id) is in the span of B(i′1, . . . , i
′
d) for

(i′1, . . . , i
′
d) ≤ (i1, . . . , id). This follows from the Gröbner basis property. Second, the difference of any two

elements is in the span of B(i′1, . . . , i
′
d) for (i′1, . . . , i

′
d) < (i1, . . . , id). Indeed, it suffices to consider two

elements differing in, say, jt. If the two values are j′t < j′′t , then the difference is in C(i1, . . . , j
′′
t , . . . , id), and

so in the required span by the first observation. Third, B(i1, . . . , id) is the sum of elements in C(i1, . . . , id).
Now suppose that we choose one element fi1,...,id ∈ C(i1, . . . , id) for each top set i1, . . . , id, and arrange

them in increasing order of (i1, . . . , id). I claim that Gram–Schmidt will produce the basis B(i1, . . . , id) (up
to scalar multiples). The proof is by induction. It suffices to show that B(i1, . . . , id) is in the span of fi1,...,id
and all preceding B’s. Indeed, by the second observation, all elements in C(i1, . . . , id) are in this span. The
third observation then completes the proof.
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