ANOTHER PROOF OF CAUCHY'S GROUP THEOREM ${ }^{1}$

James H. McKay, Seattle University

Since $a b=1$ implies $b a=b(a b) b^{-1}=1$, the identities are symmetrically placed in the group table of a finite group. Each row of a group table contains exactly one identity and thus if the group has even order, there are an even number of identities on the main diagonal. Therefore, $x^{2}=1$ has an even number of solutions.

Generalizing this observation, we obtain a simple proof of Cauchy's theorem. For another proof see [1].

Cauchy's Theorem. If the prime p divides the order of a finite group G, then G has $k p$ solutions to the equation $x^{p}=1$.

Let G have order n and denote the identity of G by 1 . The set

$$
S=\left\{\left(a_{1}, \cdots, a_{p}\right) \mid a_{i} \in G, a_{1} a_{2} \cdots a_{p}=1\right\}
$$

has n^{p-1} members. Define an equivalence relation on S by saying two p-tuples are equivalent if one is a cyclic permutation of the other.

If all components of a p-tuple are equal then its equivalence class contains only one member. Otherwise, if two components of a p-tuple are distinct, there are p members in the equivalence class.

Let r denote the number of solutions to the equation $x^{p}=1$. Then r equals the number of equivalence classes with only one member. Let s denote the number of equivalence classes with p members. Then $r+s p=n^{p-1}$ and thus $p \mid r$.

Reference

1. G. A. Miller, On an extension of Sylow's theorem, Bull. Amer. Math. Soc., vol. 4, 1898, pp. 323-327.
[^0]
[^0]: ${ }^{1}$ American Mathematical Monthly, Vol. 66 (February 1959), p. 119.

