
Complexity measures
on the symmetric group

and beyond

Neta Dafni

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Complexity measures
on the symmetric group

and beyond

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Neta Dafni

Submitted to the Senate
of the Technion — Israel Institute of Technology
Kislev 5782 Haifa November 2021

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

This research was carried out under the supervision of Prof. Yuval Filmus, in the Faculty
of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s MSc research
period, the most up-to-date versions of which being:

Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals. Complexity
measures on the symmetric group and beyond. In 12th Innovations in Theoretical Computer
Science Conference, volume 185 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 87, 5.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.

Acknowledgements

First, I would like to thank my supervisor, Yuval Filmus, for teaching me a drop of his
knowledge with utmost patience, and for guiding me through my research.

I thank my family, for their love and support throughout my life, and most of all my dear
mother, who during the course of my research period forced me to push through tough
times.

I thank my office mates and other friends – Inbar Kaslasi, Victor Kolobov, Ohad Barta
and Matan Peled, for insightful conversations and for helping me improve my thesis. I also
thank Guy Raveh and Vladimir Kalnizky for their continuous encouragement.

The generous financial help of the Technion is gratefully acknowledged.

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Contents

List of Figures

Abstract 1

1 Introduction 3

2 Background 7

2.1 The Boolean cube and Boolean functions 7

2.1.1 Complexity measures . 7

2.1.2 Relations between the measures . 8

2.2 Generalization to other domains . 9

2.2.1 Examples of domains . 9

2.2.2 Domains as collections of sets . 9

2.2.3 Complexity measures for general domains 10

2.2.4 Composability . 12

2.2.5 Four parameters . 13

2.2.6 Relations between the measures . 14

3 Efficient computation of functions with low sensitivity 17

3.1 Ball property . 17

3.2 Small Circuits . 18

3.3 Low depth circuits . 20

3.3.1 Shortcuttability . 20

3.3.2 Domain Examples . 21

3.3.3 Overview of the construction . 24

3.3.4 Noise stability . 25

3.3.5 Majority Tree . 25

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

3.3.6 Conversion to a deterministic algorithm 27

3.3.7 Conversion to a circuit . 28

3.3.8 The Resulting Circuit . 28

4 Intersecting families of permutations 29

4.1 Background . 29

4.2 Setwise intersection . 31

4.2.1 Definitions and main result . 31

4.2.2 Intersection bound for the symmetric group 32

4.2.3 Conclusion . 32

5 Open questions 33

Hebrew Abstract i

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

List of Figures

2.1 Depiction of the permutation (1 2 4) in S5 as a perfect matching in the
bipartite graph K5,5 . 10

3.1 Example of a shortcut in the perfect matching scheme. The matching in-
cludes (a1,a2),(a3,b1),(a4,b2),(a5,b6) and (a6,b5). The shortcut is done over
1, 3 and 5. 23

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Abstract

The complexity of Boolean functions on the Boolean cube can be measured in several ways,
such as circuit complexity and decision tree complexity. Classical results show that many
of these measures are polynomially related, such as decision tree complexity, certificate
complexity, degree and sensitivity.

Recently, the study of Boolean functions has been extended to functions on domains other
than the Boolean cube, such as the slice, high-dimensional expanders and the Grassmann
scheme. A natural question is whether the study of different complexity measures can be
generalized to some of these domains.

In this work, we begin with surveying recent work that generalizes the definitions of some
of the classical complexity measures to domains other than the Boolean cube, including
the symmetric group, which is our main focus. We then describe results regarding the
relations between the different measures, generalizing the classical results and showing that
polynomial relations exist between the considered measures for many other domains.

We then focus on functions with low sensitivity, with the goal of constructing efficient
circuits for them. First, we generalize a result regarding the existence of small circuits for
functions with low sensitivity on the Boolean cube, constructing a circuit of size nO(s(f)),
where s (f) is the sensitivity of f . Next, we generalize a result regarding the exisence of low-
depth circuits for functions with low sensitivity on the Boolean cube, and construct such
circuits for functions over domains satisfying certain properties, including the symmetric
group. Our construction results in an unbounded fan-in circuit of depth O (s (f) log n) in
the case of the symmetric group.

The last part of our work concerns intersecting families of permutations. A family of
permutations is t-intersecting if any two permutations in the family agree on at least t

elements. It is known that for a large enough n, the maximal size of a t-intersecting family
of permutations is (n− t)!, and a family of that size is a t-star, that is, a family of the
form {π ∈ Sn | π (i1) = j1, ..., π (it) = jt} for some distinct i1, ..., it ∈ [n] and some distinct
j1, ..., jt ∈ [n]. We generalize this result to the case of t-setwise-intersection, where any two
permutations in the family agree on the image of a set of t elements. We give an alternative
proof to a known result stating that for a large enough n, the maximal size of a t-setwise-
intersecting family of permutations is t! (n− t)!, and a family of that size is a t-setwise-star,
that is, a family of the form {π ∈ Sn | π (S) = T} for some distinct S, T ∈

([n]
t

)
. Our proof

is much simpler than the known proof (which proves a stronger statement) and works for
smaller values of n.

1
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

2
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Chapter 1

Introduction

The Boolean cube of dimension n is the domain {0, 1}n. A Boolean function is a function
f : {0, 1}n → {0, 1}. Such a function can be the function computed by a Boolean circuit,
represent a decision problem, represent a property of objects such as graphs or subsets, or
many other examples.

In complexity theory, the main question is how complex some object is, and it is natural to
consider Boolean functions and how hard it is to compute them. Since the complexity of a
function can be measured in several ways, and there are different models of computation,
these questions are formalized in different ways, and several complexity measures appear in
the literature. We ultimately want to know about circuit complexity, which is interesting
for numerous reasons, one of the main ones being the connection to the classical “P vs. NP”
problem: if SAT is not computable by a polynomial sized circuit, then P ̸=NP.

Research in circuit complexity is yet to yield much, but there exists interest in other com-
plexity measures, on which we can say more. One of the classical measures is decision tree
complexity, or query complexity, which considers the depth of decision trees computing a
function. Its non-deterministic version is certificate complexity. Decision trees have appli-
cations in machine learning among other fields, and are also related to other computational
models, such as communication complexity. Other measures include degree and sensitivity.

Since there are different standard complexity measures, the following question arises: What
is the “real” way to measure the complexity of a function? It is therefore natural to look
for relations between the different measures, as well as gaps between them. The question
about which measure is the “correct” measure becomes simplified by existing work that
shows that many of the standard complexity measures, such as decision tree complexity,
certificate complexity and degree, are polynomially related. It has been conjectured for a
while that sensitivity is also polynomially related to the others, but the relation was only
known in one direction, until recently, when Huang [Hua19] has shown that sensitivity is
indeed polynomially related to the other measures.

Recently, the study of Boolean functions has been extended to functions on domains other
than the Boolean cube. Such domains include the slice (the subset of the Boolean cube
consisting of all vectors with fixed Hamming weight), which is used to analyze the Erdős-
Rényi G (n, m) model in random graphs, and high-dimensional expanders. O’Donnell and

3
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Wimmer [OW09] used Boolean functions on the slice to construct optimal nets for monotone
functions. Barak et al. [BGH+11] used Boolean functions on the Reed–Muller code to
construct and analyze the influential “short code”. Khot, Minzer and Safra [KMS17] used
Grassmann graphs for a reduction from the 3-Lin problem to the 2-to-2 Games problem,
thus proving Khot’s 2-to-2 conjecture [Kho02], a cousin of the celebrated unique games
conjecture.

Can we expand the study of different complexity measures to other domains? In [DFL+21],
the definitions of some of the classical complexity measures have been generalized to Boolean
functions over domains including the symmetric group Sn (the set of permutations on
{1, ..., n}), the perfect matching scheme (the set of perfect matchings in K2n), the slice and
the multislice (a multicoloured version of the slice, which generalizes the symmetric group as
well). It is then shown that all complexity measures other than sensitivity remain polyno-
mially equivalent for functions over those domains, by generalizing the classical arguments,
and sensitivity is added to the mix using representation theory.

Efficient computation of functions with low sensitivity

Sensitivity is a complexity measure for Boolean functions, measuring how much the function
is “sensitive” to small changes in the input, and defined as the maximal degree in the graph
({0, 1}n , E) where (x, y) is an edge if d (x, y) = 1 and f (x) ̸= f (y).

For decades, the sensitivity conjecture for functions over the Boolean cube remained open,
until it was proved by Huang [Hua19]. The sensitivity conjecture states that low sensitivity
functions also have low query complexity. Prior to Huang’s work, researchers tried to prove
weaker statements in which query complexity is replaced by various measures of circuit
complexity. Gopalan et al. [GNS+16] have used the fact that low sensitivity of a function
allows local correction to prove the “ball property” for functions over the Boolean cube,
showing that functions with low sensitivity can be recovered from their values on a ball of
small radius (with respect to the Hamming distance): The value of f at any point outside
the ball can be obtained as a majority of some of its neighbors that are closer to the ball,
and so f can be computed recursively. The ball property was then used to construct small
circuits for functions with low sensitivity. In addition, they constructed low depth circuits
for functions with low sensitivity, where the idea is to recursively introduce “one-sided
noise”, that is, zero some of the ones of the input, at each step computing the value of f

with high enough probability, until we reach a point of small enough Hamming distance,
whose value we already know.

Since the solution to the sensitivity conjecture has been introduced, the problem of bounding
circuit depth in terms of sensitivity could be solved using the relation between sensitivity
and decision tree complexity, and transforming decision trees into circuits. However, the
direct construction by Gopalan et al. [GNS+16] gives better bounds than the construction
that uses decision trees, and so this construction remains interesting.

In [DFL+21], the ball property result was generalized to domains other than the Boolean
cube, including the symmetric group. We apply this result to generalize the construction

4
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

of small size circuits and low depth circuits for functions of low sensitivity. The symmetric
group analog of the operation of moving from a point on the Boolean cube to its neighbor
is applying some transposition to the input, and the analog of zeroing some of the ones to
create “one-sided noise” is “removing” elements from the cycle representation of the input.

Below are versions of two of our main results, restricted to the symmetric group.

Definition (sensitivity). The sensitivity s (f, x) of a function f : Sn → {0, 1} at a point
x ∈ Sn is the maximum number s of disjoint transpositions τ1, ..., τs such that f (τx) ̸= f (x)
for each τ . The sensitivity of f is maxx∈Sn s (f, x).

Theorem 1. Let f : Sn → {0, 1} be a function with sensitivity s. Then f is computable by
a De Morgan circuit of size nO(s).

Theorem 2. Let f : Sn → {0, 1} be a function with sensitivity s. Then f is computable by
an unbounded fan-in De Morgan circuit of depth O (s log n).

We also prove similar results for functions on the perfect matching scheme.

Intersecting families of permutations

In this part of the thesis, we apply the relation between function degree and certificate
complexity to the study of intersecting families of permutations.

The study of intersecting families began with Erdős, Ko and Rado [EKR61], who studied
intersecting families over the domain

([n]
k

)
. In this context, an intersecting family is a

subset F ⊆
([n]

k

)
such that every x, y ∈ F intersect. Subsequent work extended their

results in two different directions, the basic question being how large can an intersecting
family be, and what do families of the maximum size look like. One of these directions is
considering t-intersecting families – a t-intersecting family is a subset F ⊆

([n]
k

)
such that

every x, y ∈ F satisfy |x ∩ y| ≥ t. The Ahlswede-Khachatrian theorem [AK97] generalizes
the Erdős-Ko-Rado theorem for t-intersecting families. The other direction is considering
other domains. Frankl and Wilson [FW86] extended the theorem to vector spaces, using
a spectral technique known as the weighted Hoffman bound. This technique was also used
by Wilson [Wil84] to prove a special case of the Ahlswede-Khachatrian theorem, and by
Fridgut [Fri08], who extended the study of t-intersecting families to the case where the sets
in the family are not restricted to be of a fixed size, and derived stability versions of this
result as well as previous ones.

These two directions were combined in the work of Ellis, Fridgut and Pilpel [EFP11], who
studied t-intersecting families over the symmetric group. A t-intersecting family over the
symmetric group is a subset F ⊆ Sn such that every x, y ∈ F agree on at least t elements.
In [EFP11] it was shown that for every t, for large enough n (depending on t), the maximum
size of a t-intersecting family is (n− t)!. Note that this size is achieved by a t-star, that
is, a family of the form {π ∈ Sn | π (i1) = j1, ..., π (it) = jt} for some distinct i1, ..., it ∈ [n]
and some distinct j1, ..., jt ∈ [n]. For t = 1, the size of the maximal intersecting families
can be shown using a generalization of Katona’s circle method. Using the spectral method,

5
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

[EFP11] showed that the characteristic function of such a family has degree 1, and applied
this using the Birkhoff-von Neumann theorem to characterize those families as 1-stars. In
general, they showed that the characteristic function of a maximum sized t-intersecting
family has degree t. Additionally, they claimed to have characterized all such families as
t-stars using a generalization of Birkhoff-von Neumann, but their argument was incorrect
for t > 1, as pointed out in [Fil17]. The result still holds, as follows from an argument
of Ellis [Ell11], who proved a much stronger result using a complex proof. An alternative,
combinatorical argument was given in [DFL+21], using the relation between degree and
certificate complexity. That proof is simpler than the one given by [Ell11] and gives a
better bound for the value of n for which the result holds.

We generalize this work to t-setwise-intersecting families. A set F ⊆ Sn is t-setwise-
intersecting if every x, y ∈ F agree on the image of some set in

([n]
t

)
. Ellis [Ell12] showed

that for every t, the maximal size of those families is t! (n− t)! for large enough n; showed
that the characteristic function of such a family has degree t; and characterized them as
t-setwise-stars – families of the form {π ∈ Sn | π (S) = T} for some S, T ∈

([n]
t

)
. We give a

simpler, combinatorical proof for the size of the maximal families and their characterization,
with a better bound on n, using the relation between degree and certificate complexity.

6
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Chapter 2

Background

2.1 The Boolean cube and Boolean functions

The Boolean cube of dimension n ∈ N is the domain {0, 1}n. Given x ∈ {0, 1}, we denote
the coordinates by x1, ..., xn, and for each input x in the domain, each xi is assigned a value
in {0, 1}. The domain consists of all such possible assignments. A Boolean function on the
cube is a function f : {0, 1}n → {0, 1}, assigning every point on the cube a Boolean value.

The study of Boolean functions meets complexity theory with the question of how complex
a Boolean function is. A complexity measure of a Boolean function on the cube is a function
assigning each Boolean function a value indicating how complex it is. The most classical
model of computation is Boolean circuits, and thus the main interest is surrounding circuit
complexity. However, other complexity measures are studied as well, and in this work we
focus on some of those.

2.1.1 Complexity measures

The complexity measures we now define are standard and have been studied for years.
For reference regarding the following definitions and facts, see the survey of Buhrman and
deWolf [Bd02].

Degree and approximate degree

A polynomial over the Boolean cube is a function P : {0, 1}n → R of the form

P (x) =
∑

S⊆[n]
cS

∏
i∈S

xi

where cS ∈ R. The degree of a polynomial P is the maximum size of a set S such that
cS ̸= 0.

A Boolean function f : {0, 1}n → {0, 1} can be uniquely represented by a polynomial P

such that f (x) = P (x) for all x ∈ {0, 1}n . The degree of f , denoted deg f , is the degree
of P .

7
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

The ϵ-approximate degree of a Boolean function f : {0, 1}n → {0, 1}, denoted d̃egϵf , is
the minimum degree of a polynomial P such that |f (x)− P (x)| ≤ ϵ for all x ∈ {0, 1}n.
The approximate degree of a function f , denoted d̃egf , is d̃eg 1

3
f . It is easy to see that

d̃egf ≤ deg f for all f , and It is known that d̃egϵf = Θ
(
d̃egf

)
for all ϵ ∈

(
0, 1

2

)
.

Certificate complexity

Let f : {0, 1}n → {0, 1} be a Boolean function. A certificate for a point x ∈ {0, 1}n is a set
C ⊆ [n] such that f (y) = f (x) whenever yi = xi for all i ∈ C. The certificate complexity of
f at x, denoted C (f, x), is the minimum size of a certificate for x. The certificate complexity
of f , denoted C (f), is maxx C (f, x).

Decision tree complexity

A decision tree is a tree whose internal nodes are labeled by elements of [n] and whose
edges and leaves are labeled by elements of {0, 1}. An internal node labeled with i ∈ [n] is
identified with the query “xi =?”. The decision tree computes the function that gives every
x ∈ {0, 1}n the label of the leaf identified with x in the natural way.

The decision tree complexity of a function f : {0, 1}n → {0, 1}, denoted D (f), is the mini-
mum depth (measured by edges) of a decision tree computing f .

The ϵ-error randomized decision tree complexity of f , denoted Rϵ (f), is the minimum R

such that there is a probability distribution D on decision trees of depth at most R such
that Pr [T (x) = f (x)] ≥ 1− ϵ for all x ∈ {0, 1}n . We define R (f) = R 1

3
(f). It is easy to

see that R (f) ≤ D (f) for all f , and it is known that Rϵ (f) = Θ (R (f)) for all ϵ ∈
(
0, 1

2

)
.

Sensitivity and block sensitivity

The sensitivity of a function f : {0, 1}n → {0, 1} at a point x ∈ {0, 1}n, denoted s (f, x),
is the number of points y at Hamming distance 1 from x such that f (y) ̸= f (x). In other
words, s (f, x) = |{i ∈ [n] | f (x⊕ i) ̸= f (x)}|, where x ⊕ i is the result of flipping the i’th
bit. The sensitivity of f , denoted s (f), is maxx s (f, x).

The block sensitivity of a function f at a point x, denoted bs (f, x), is the maximum number
s of disjoint subsets B1, ..., Bs ⊆ [n] such that f (x⊕Bi) ̸= f (x) for all i, where x ⊕ Bi is
the result of flipping all the bits whose indices belong to Bi. The block sensitivity of f is
bs (f) = maxx bs (f, x).

2.1.2 Relations between the measures

It has been known for a while that all the above measures except sensitivity are polynomially
related.

Recently, Huang [Hua19] showed that sensitivity is polynomially related to the others.

8
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

D R C s bs deg d̃eg
D 2, 3 2, 2 3, 6 2, 3 2, 3 4, 4
R 1, 1 2, 2 3, 6 2, 3 2, 3 4, 4
C 1, 1 1, 2 2.22, 5 2, 2 1.63, 3 2, 4
s 1, 1 1, 1 1, 1 1, 1 1.63, 2 2, 2
bs 1, 1 1, 1 1, 1 2, 4 1.63, 2 2, 2

deg 1, 1 1.33, 2 2, 2 2, 2 2, 2 2, 2
d̃eg 1, 1 1, 1 1, 1 2, 2 2, 2 1, 1

Table 2.1: Best known separations between complexity measures

Table 2.1 is taken from [ABK+21] and [BGJK21], and shows the separations between the
complexity measures; for two complexity measures α and β, an entry a, b in row α and
column β means that there exists a function g with α (g) ≥ β (g)a−o(1), and for all functions
f , α (f) ≤ β (f)b+o(1).

2.2 Generalization to other domains

In [DFL+21], the study of different complexity measures of Boolean functions and the
relations between them was extended to functions over domains other than the Boolean
cube. The definitions of the complexity measures listed above were generalized to other
domains, and it was shown that they are polynomially related for domains that satisfy
certain properties.

2.2.1 Examples of domains

First let us define some of the domains we consider.

Definition (Symmetric group). The symmetric group Sn is the set of all permutations on
[n].

Definition (Perfect matching scheme). The perfect matching scheme is the set of all perfect
matchings on the graph K2n.

Definition (Slice). The slice,
([n]

k

)
, is the set of all vectors in {0, 1}n of Hamming weight k.

Definition (Multislice). Let λ1, ..., λm be a sequence of positive integers summing to n.
The multislice M (λ) is the subset of {1, ..., m}n consisting of all vectors having exactly λi

coordinates labeled i. The multislice generalizes both the slice and the symmetric group.

2.2.2 Domains as collections of sets

Let us now define the framework in which we work. Here we view each point in a domain
as a set of elements over some universe.

Definition (Domain). Fix a universe U and n ∈ N. A domain is a collection of subsets of
U of size n.

9
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

1 1′

2 2′

3 3′

4 4′

5 5′

Figure 2.1: Depiction of the permutation (1 2 4) in S5 as a perfect matching in the bipartite
graph K5,5

Boolean cube 2.2.1. A Boolean vector x ∈ {0, 1}n can be identified with the set {(i, xi) | i ∈ [n]} ⊆
[n]× {0, 1}. The Boolean cube can thus be thought of as the product set

n∏
i=1
{(i, 0) , (i, 1)}

over the universe U = [n]× {0, 1}.

Symmetric group 2.2.2. A permutation π ∈ Sn can be identified with the set {(i, π (i)) | i ∈ [n]} ⊆
[n]2. Consider the complete bipartite graph Kn,n and name the vertices L = {1, ..., n} , R =
{1′, ..., n′}. A permutation is therefore a perfect matching in the graph, matching every
left vertex i to the right vertex π (i)′ (see Figure 2.1). Under this definition, Sn is simply
the set of all perfect matchings in Kn,n, and is a domain over the set U of all edges in the
graph.

2.2.3 Complexity measures for general domains

We now generalize the definitions of the different complexity measures.

Let X be a domain.

Degree and approximate degree

A polynomial is a function P : X → R of the form

P (x) =
∑
S⊆U

cS Jx ⊇ SK
where cS ∈ R and Jx ⊇ SK is the Boolean function which equals 1 if x ⊇ S. The definition
of d̃egϵf is identical to the definition over the Boolean cube, and we define deg f =d̃eg0f .

10
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Certificate complexity

Let f : X → {0, 1} be a Boolean function. A certificate for a point x ∈ X is a set c ⊆ x such
that f (y) = f (x) whenever y ⊇ c. The rest of the definition is identical to the definition
over the Boolean cube.

Decision tree complexity

In order to handle decision trees over arbitrary domains, we first need to define what a
query is.

Definition (query). A query Q is a subset of U which intersects each set in X in exactly one
point. Each domain is associated with a set Q of allowed queries (this set doesn’t necessarily
contain all possible subsets intersecting x at exactly one point). To avoid trivialities, we
assume that Q satisfies the following property: Every element of U is an element of some
query in Q. This ensures that any function can be represented as a decision tree.

Boolean cube 2.2.3. Here, the allowed queries are of the form {(i, 0) , (i, 1)} for some i ∈ [n],
which corresponds to the question “xi =?”.

Symmetric group 2.2.4. Here, the allowed queries are of the form {(i, j) | j ∈ [n]} for some
i ∈ [n], which corresponds to the question ”π (i) =?”, or {(i, j) | i ∈ [n]} for some j ∈ [n],
which corresponds to the question ”π−1 (j) =?”

Slice 2.2.5. Here, the allowed queries are of the form {(i, 0) , (i, 1)} for some i ∈ [n], similarly
to the Boolean cube.

A decision tree is a tree whose internal nodes are labeled by elements of Q, whose edges are
labeled by elements of U (the children of a node labeled Q are labeled by the elements of
Q), and whose leaves are labeled by elements of {0, 1}. A decision tree computes a function
in the natural way: Given an input x, start at the root. At each query Q, follow the edge
corresponding to the unique element of U in x∩Q. When a leaf is reached, return its label.

The rest of the definition is identical to the definition over the Boolean cube.

Sensitivity and block sensitivity

Recall that over the cube, the block sensitivity of a function f : {0, 1}n → {0, 1} at a
point x ∈ {0, 1}n, is the maximum number of disjoint subsets B1, ..., Bs ⊆ [n] such that
f (x⊕Bi) ̸= f (x) for all i, where x⊕Bi is the result of flipping all the bits whose indices
belong to Bi. Viewing x = x1, ..., xn as the set {(j, xj) | j ∈ [n]}, flipping all the bits
whose indices are in Bi corresponds to removing the elements in {(j, xj) | j ∈ Bi} from x

and adding the elements in {(j, 1− xj) | j ∈ Bi} instead. Requiring that the blocks Bi be
disjoint corresponds to requiring that the sets {(j, xj) | j ∈ Bi} be disjoint. Therefore, we
generalize this definition in the following way:

11
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

The block sensitivity of a function f : X → {0, 1} at a point x ∈ X , denoted bs (f, x), is the
maximum number of points y1, ..., ys ∈ X such that f (yi) ̸= f (x) for all i, and the sets
x\yi are disjoints.

The block sensitivity of f is bs (f) = maxx bs (f, x).

Over the cube, sensitivity is defined similarly to block sensitivity with the constraint that
the blocks are all of size 1, or in other words, that the blocks are as small as possible without
being empty. In order to generalize the definition of sensitivity to other domains, we need
to generalize the notion of a block being “as small as possible”.

Definition. For a domain X , the chunk size c is the minimal value of |x\y| for x, y ∈ X .

For example, in the Boolean cube, for two points x, y ∈ {0, 1}n, |x\y| is the Hamming
distance between x and y. The minimal distance between two different points is 1, and so
c = 1.

In the symmetric group, the minimal number of changes required to move from one per-
mutation to the other is 2 (corresponding to applying a transposition). Therefore, c = 2.

The sensitivity of a function f : X → {0, 1} is therefore defined similarly to block sensitivity
with the constraint that the block size is c.

2.2.4 Composability

A part of the proof that all the complexity measures are related uses a reduction to the
case of the Boolean cube. Given x ∈ X and y1, ..., ys ∈ X such that x\yi are disjoint, a
subset of the domain can be viewed as the cube {0, 1}s, where the vector z1, ..., zs ∈ {0, 1}s

is identified with the input

x\
(

s∪
i=1

x\yi

)
∪

 ∪
i∈[s]:zi=0

x\yi

 ∪
 ∪

i∈[s]:zi=1
yi\x

 ∈ X
In other words, whenever zi = 1, we “replace” the block x\yi with its counterpart in yi,
and otherwise we don’t.

For this to work, we need to ensure that the resulting input indeed belongs to X . This
property of the domain is called composability.

Definition (composability). A domain X is composable if whenever x, y1, ..., ys ∈ X are such
that yi ̸= x for all i and the sets x\yi are disjoint, then

(
x\

s∪
i=1

(x\yi)
)
∪
(

s∪
i=1

(yi\x)
)
∈ X

It is fairly easy to show that the Boolean cube is composable: Given an input x and a set
of disjoint sets of coordinates, we can choose any subset of it and flip all the bits belonging
to the corresponding coordinates, and the resulting vector is still an input in the domain.

12
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

It is less easy to show, but the symmetric group, the perfect matching scheme and the
slice are composable too. [DFL+21, Lemma 2.3] gives the following simple criterion for
composability:

Lemma 3. If X , viewed as as a subset of {0, 1}U , is the intersection of {0, 1}U and an affine
subspace, then X is composable.

Let us demonstrate the use of the above lemma on the the symmetric group. The symmetric
group is the set of solutions to the following linear system:

• For all i, j ∈ [n]: xi,j ∈ {0, 1}.

• For all i ∈ [n]: Σn
j=1xi,j = 1.

• For all j ∈ [n]: Σn
i=1xi,j = 1.

And thus satisfies the condition for Lemma 3.

2.2.5 Four parameters

We introduce the following four parameters of domains:

Maximum degree

The degree of an element a ∈ U is the number of queries mentioning it. The maximum
degree of X , denoted ∆, is the maximum degree of an element in U .

In the Boolean cube, every element (i, b) is mentioned only by the query ”xi =?”, and so
∆ = 1.

In the symmetric group, every element (i, j) is mentioned by two queries, ”π (i) =?” and
”π−1 (j) =?”, and so ∆ = 2.

Conflict bound

A subset c ⊆ U is a partial input if it is a subset of some input x ∈ X . Two partial inputs
c1, c2 conflict if no input x ∈ X contains both. The conflict bound, denoted M , is the
maximal value such that if c1, c2 are two partial inputs of size at most M and they are
conflicting, then there is a query which “seperates” them, that is, a query Q such that
Q ∩ c1 ̸= Q ∩ c2.

In the Boolean cube and the symmetric group, M = n, where n is the size of each input in
the domain (as a set). However, there are domains where M < n. Consider, for example,
the slice

([2]
1
)

of the vectors in {0, 1}2 of Hamming weight 1. The partial inputs c1 = {(1, 1)}
(that is, c1 can be extended to the vector (1 0) only) and c2 = {(2, 1)} (that is, c1 can be
extended to the vector (0 1) only) are conflicting, but no query separates them.

13
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Sensitivity ratio and block sensitivity ratio

Given two inputs x, y ∈ X , this parameter determines how many disjoint ways we can find
to “bring y closer to x” in terms of the distance between x and y. The block sensitivity
ratio, denoted β, is the largest parameter such that for every distinct x, y ∈ X there exist
distinct z1, ..., zs ∈ X , with s ≥ β |x\y|, such that:

• x\zi ⊊ x\y.

• The sets y\zi are disjoint.

The sensitivity ratio, denoted βc, is defined similarly, with the constraint that |y\zi| = c.

It is not hard to see that for the Boolean cube, β = βc = 1.

For the symmetric group, β = βc = 1
3 . The upper bound is witnessed by the following

example: Take x to be the identity, and y = (1 2 3). Then |x\y| = 3 but the only way to
“get closer” from y to x is to apply a transposition or y−1, and any two of those changes
are not disjoint. For the lower bound, assume x is the identity for simplicity, let y be any
permutation, and consider some cycle in y, without loss of generality (1 2 ... l). We form
z1 by picking some i in the cycle and “shortcutting” over it, that is, replacing the cycle
with (1 ... i− 1 i + 1 ... l). We can then repeat this action for any j /∈ {i− 1, i, i + 1} and
so on, and get at least l

3 disjoint changes. Repeating this for every cycle gives z1, ..., zs for
s ≥ |x\y|

3 .

2.2.6 Relations between the measures

In [DFL+21, Theorem 3.1] it is shown that for composable domains, the complexity mea-
sures are all polynomially related:

Theorem 4. Let (X ,U , n) be a composable domain with parameters ∆, M, β.

Every function f : X → {0, 1} satisfies:√
bs (f)

6
≤ d̃eg (f) ≤ deg (f) ≤ D (f)

bs (f) ≤ C (f) ≤ D (f)

bs (f) ≤ 3R (f) ≤ 3D (f)

D (f) ≤ β−2 max
(

∆,
n

M

)
bs (f)4

In particular, if ∆ = O (1), M = Ω (n) and β = Ω (1) then all complexity measures except
sensitivity are polynomially related.

In addition:

14
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

1. For the symmetric group, s (f) ≥
√

deg(f)
2

2. For the perfect matching scheme, s (f) ≥
√

deg (f)

3. For the multislice, s (f) ≥
√

deg(f)
2

In particular, for the above domains, all the complexity measures are polynomially related.

15
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

16
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Chapter 3

Efficient computation of functions
with low sensitivity

3.1 Ball property

Gopalan et al. [GNS+16] proved the following “ball property” for functions over the Boolean
cube, stating that functions with low sensitivity can be recovered from their values on a
ball of small radius (with respect to the Hamming distance).

Theorem 5. Let f : {0, 1}n → {0, 1} be a function with sensitivity s = s (f), then f can be
recovered from its evaluation on a ball of radius 2s + 1 around an arbitrary point.

In [DFL+21], the ball property is generalized to all composable domains. First we need to
generalize the notion of distance: For any domain, the distance d (x, y) between two inputs
is |y\x| (note that since every input is a set of size n, this definition is symmetrical).

Recall that the chunk size c is the minimal value of |x\y| for x, y ∈ X .

Theorem 6. Let (X ,U , n) be a composable domain with chunk size c and sensitivity ratio
βc. If f : X → {0, 1} has sensitivity s = s (f), then f can be recovered from its evaluation
on a ball of radius r = β−1

c (2s + 1) around an arbitrary point.

Proof Suppose that we are given the values of f at all points at distance at most r from
some x ∈ X . Let y be an arbitrary point at distance d ≥ r from x. It’s enough to show
that f (y) can be recovered from the values of f at points at distance less than d from x.

By definition of βc, there exist distinct z1, ..., zt ∈ X with t ≥ βcd (x, y) ≥ 2s + 1 such that
d (x, zi) ≤ d, the sets y\zi are disjoint, and |y\zi| = c. Suppose that f (y) is not the majority
of f (z1) , ..., f (z2s+1), meaning that at least s + 1 of f (z1) , ..., f (z2s+1) are different from
f (y). By definition of sensitivity, that contradicts the fact that s (f, y) ≤ s. And so, f (y)
is the majority of f (z1) , ..., f (z2s+1), thus completing the proof. ■

17
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

3.2 Small Circuits

In this section we apply the ball property to construct small circuits for low sensitivity
functions on composable domains. For the rest of the section, we refer to De Morgan
circuits and the size of a circuit is measured by number of gates.

Theorem 7. Let X be a composable domain with |U| = nO(1). Let f : X → {0, 1} be a
function with sensitivity s. Suppose that a membership oracle (a Boolean function taking
a subset of U as input and specifying whether it is a member of X or not) can be computed
by a circuit of size T . Then f can be computed by a circuit of size nO(β−1

c sc)T , where βc is
the sensitivity ratio and c is the chunk size.

For the rest of the section, we refer to domains with |U| = nO(1).

One of the main ideas of the construction is computing f on a point x using majority
over 2s + 1 disjoint neighbors of x (inputs whose distance from x is c), as done in the ball
property.

As a first step, we need to be able to compute the set of neighbors of a given point:

Lemma 8. We say that x, y ∈ X are neighbors if |x\y| = c. Given x as input, the set of all
neighbors of x can be computed by a circuit of size nO(c)T .

Proof Consider the following algorithm:

• For every A ∈
(x
c

)
and B ∈

(U\x
c

)
:

– Let z = (xi\A) ∪B.

– Use the membership oracle to determine whether z ∈ X . If so, output z.
For every xi, there are nO(c) pairs of sets A, B. Therefore, the size of the circuit is nO(c)T .■

To use the idea above, we must ultimately hard-code the values of f on some set. To use
this for the computation of f for an arbitrary point x, we need a way to “get from one
point to the other”. This is roughly done in the next lemma:

Lemma 9. Let G be the graph on X where (x, y) is an edge whenever x, y are neighbors.
Given x ̸= y ∈ X as input, a path in G of length at most n from x to y can be computed
by a circuit of size nO(c)T .

Proof Consider the following algorithm:

1. x0 ← x

2. For i = 0, ..., n− 1:

• Using Lemma 8, for every neighbor z of xi:

– If y\z ⊊ y\x, then xi+1 ← z

• If xi+1 = y, output x0, ..., xi+1

18
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

For βc > 0, at each step there exists z ∈ X that satisfies the condition, since by the definition
of βc there are at least β−1

c |y\x| such points z.

The condition y\z ⊊ y\x implies that |xi\y| decreases by at least 1 with each step, and
therefore y is always reached after at most n steps. ■

In our construction, the neighbors the majority is taken over will all be “closer” than x to
some point y. We know how to efficiently find a “fix” that gets us closer from a starting
point x to an endpoint y, and furthermore, get all the different fixes that achieve that. But
in order to use the sensitivity property on a point x, the neighbors z1, ..., z2s+1 used for the
majority must be disjoint, in that the sets x\zi are disjoint. The definition of βc provides
that there is a set of at least βcr such fixes, where r = |x\y|, that are disjoint. The next
lemma shows that, losing a factor of c, such a set can be computed greedily, by repeatedly
applying the search for a single fix, with the constraint that it be disjoint from the previous
ones:

Lemma 10. Let x, y ∈ X and let r = |x\y|. Then a set z1, ..., zβcrc−1 ∈ X such that
y\zi ⊊ y\x, the sets x\zi are disjoint, and |x\zi| = c for each i, can be computed by a
circuit of size nO(c)T .

Proof Consider the following algorithm:

1. D0 ← ∅

2. For i = 1, ..., βcrc
−1:

• Using Lemma 8, for every neighbor z of x:

– If (z\x) ∩
∪i−1

j=0 Dj = ∅ and y\z ⊊ y\x, then zi ← z and Di = z\x

3. Output z1, ..., zβcrc−1

A z satisfying the conditions always exists: There are z′
1, ..., z′

βcr
∈ X such that y\z′

k ⊊ y\x,
the sets x\z′

k are disjoint and |x\z′
k| = c. For i ≤ βcrc

−1, we have
∣∣∣∪i−1

j=0 Dj

∣∣∣ = (i− 1) c< βcr,
and therefore the union hits at most βcr − 1 of the z′

k, meaning one of the z′
k satisfies the

requirement. ■

The construction of the circuit in Theorem 7 is done as follows: Given a point x, we find
a path from x to an arbitrary point y, where each point is of distance c from the previous
one. We “go from y to x” and at each step, compute the values of f on a ball around the
point we’re in, of a radius r = β−1

c (2s + 1) c, using the values on the ball of the same radius
around the previous point. The way we do that is the following: We use the values of f on
a ball of radius r to compute its values on a ball around the same center of radius r + c,
and by the triangle inequality, it contains the ball around the next point.

Lemma 11. Given x ∈ X and the values of f on B (x, r) (the Hamming ball of radius r

around the point x), the values of f on B (x, r + c) can be computed by a circuit of size
nO(r)T .

19
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Proof The set of all the points in B (x, r + c) can be obtained in the following way: Start
with a list of the points in B (x, r). Find the set of all neighbors of each point using Lemma
8, and add each one that isn’t already there to the list. Repeat c times. At step i, the
operation requires a circuit of size nO(r+i)T ≤ nO(r+c)T = nO(r)T . Then, for i = 1, ..., c, we
can compute the values of f on B (x, r + i), using the majority of its values on βcrc

−1 = 2s+1
points in B (x, r + i− 1) obtained by the algorithm in Lemma 10. ■

We now hold all the tools required for the proof of Theorem 7.

Proof of Theorem 7 Consider the following algorithm, taking x ∈ X as input:

1. Fix an arbitrary point x0 and hard-code the values of f on B (x, r) for r =
β−1
c (2s + 1) c.

2. Compute a path x0, x1, ..., xd = x for d ≤ n using Lemma 9.

3. For 0 ≤ i ≤ d−1, compute the values of f on B (xi, r + c) using its values on B (xi, r)
and Lemma 11..

4. Output f (x)

For 1 ≤ i ≤ d, it holds that d (xi−1, xi) = c, and therefore B (xi, r) ⊆ B (xi−1, r + c). Each
iteration takes nO(r) time, there are at most n of them, and so we end up with the required
circuit size. ■

3.3 Low depth circuits

We introduce the construction of low-depth unbounded fan-in circuits for Boolean functions
with low sensitivity on domains with certain properties, including the symmetric group and
the perfect matching scheme. One approach to the task of bounding circuit depth in terms
of sensitivity would be to go through decision trees: a decision tree can be transformed
into a circuit in the natural way, giving a circuit of depth O (D (f)). From Theorem 4 it
follows that, for the symmetric group for example, D (f) = O

(
bs (f)4

)
= O (deg (f))8 =

O
(
s (f)16

)
, and so we get a circuit of depth O

(
s (f)16

)
. In comparison, the construction

in the following theorem gives an O (s (f) log n)-depth circuit.

3.3.1 Shortcuttability

The idea is to compute f (x) recursively using f ’s values on points “closer” to a fixed set
c ∈ X , like in the preceding section. In the case of the symmetric group, for example, one
might consider the distance of a permutation x from id. A way to get closer from x to id is
to “shortcut” over some non-fixed point i of x; that is, to apply the transposition (i x (i))
to x. This motivates us to define the following:

Definition. A domain X is called shortcuttable if there exist c ∈ X and an operator ↷ : X ×
c→ X (which we call “shortcut” and write x ↷ i for x ∈ X , i ∈ c) such that:

20
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

1. For every x ∈ X and i, j ∈ c, x ↷ i ↷ j = x ↷ j ↷ i. Note that this allows us to
define x ↷ S for S ⊆ c in the natural way.

2. Shortcutting over a set of elements that are not in x to begin with, results in a close
“enough” set to c: If S ⊆ c\x, then d (x ↷ S, c) ≤ d (x, c) − |S| (recall that the
distance d (x, y) is defined to be |y\x|).

3. For S ⊆ c and i ∈ S, x ↷ i is “closer” (or equally close) to x ↷ S than x:
(x ↷ S) \ (x ↷ i) ⊆ (x ↷ S) \x, and equality occurs iff i ∈ x. Note that for S = c,
we get that shortcutting over i brings x closer to c, since x ↷ c = c, as follows from
property 2. If i /∈ x, we call x ↷ i a proper shortcut.

4. The change in x due to a proper shortcut is “minimal”: For x ∈ X , i ∈ c\x,
d (x ↷ i, x) = c.

Next, we define a parameter similar to βc, but related to the shortcut operator. When we
perform a number of proper shortcuts on a set x, we want to ensure that enough of the
changes are disjoint (in a sense compatible with the definition of sensitivity).

Definition. We define the shortcut sensitivity ratio γ to be the largest parameter such that
for every x ∈ X and S ⊆ c\x, there exist distinct i1, .., im ∈ S, with m ≥ γ |S|, such that
the sets x\ (x ↷ ij) are disjoint.

We are now ready to present the theorem:

Theorem 12. Let X be a shortcuttable domain with reference to c ∈ X and let f : X →
{0, 1} be a function with sensitivity s. Assume that there exists an unbounded fan-in
logarithmic-depth circuit that takes as input x ∈ X and S ⊆ c (in the form of flags
specifying for each i ∈ c whether i ∈ S), and computes x ↷ S. Then f is computable by
an unbounded fan-in circuit of depth O (s log n).

3.3.2 Domain Examples

We now give examples for a few shortcuttable domains.

Boolean cube and product domains

Consider the Boolean cube, and let c = 0n. The shortcut operation corresponds to writing
“0” in some coordinate: for i ∈ [n], x ↷ (i, 0) = (x\ (i, 1)) ∪ (i, 0). It’s easy to check that
all the properties hold:

1. Shortcutting over any two coordinates, at any order, corresponds to zeroing both
coordinates.

2. In this case, equality holds: Shortcutting over any number s of coordinates that are
not already 0 reduces the Hamming weight by exactly s.

21
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

3. Here, (x ↷ S) \x = {j ∈ [n] | (j, 0) ∈ S ∧ (j, 1) ∈ x}, and given i = (i′, 0) ∈ S for
some i′ ∈ [n], (x ↷ S) \ (x ↷ i) = {j ∈ [n] | (j, 0) ∈ S\ {i} ∧ (j, 1) ∈ x}. Obviously
(x ↷ S) \ (x ↷ i) ⊆ (x ↷ S) \x, and equality occurs iff there does not exist j ∈ [n]
such that (j, 0) = i and (j, 1) ∈ x, that is, if xi′ = 0, or in other words, i ∈ x.

4. The change in x due to a proper shortcut is flipping one coordinate. The distance of
the resulting input from x is 1, which equals c.

Given x ∈ X and S ⊆ [n], it’s easy to construct a constant depth unbounded fan-in circuit
that computes x ↷ {(i, 0) | i ∈ S}: It suffices to write “0” in all the specified coordinates.

The above can be easily modified to work for any product domain.

Perfect matching scheme

Let X be the perfect matching scheme on 2n points. Denote the elements of [2n] by
a1, ..., an, b1, ..., bn, and let c be the matching that maps each ai to bi. For a matching x,
denote by x (a) the element matched to a by x.

For x ∈ X , shortcutting over (ai, bi) is the action of matching ai, bi to each other and
x (ai) , x (bi) to each other.

The shortcutting satisfies property 1: Shortcutting over a set S, at any order, can be viewed
in the following way: Let Gx,S be the graph containing x’s edges and the edges (ai, bi) for
each i ∈ S. This graph is a collection of cycles and paths (with 2-cycles whenever x (ai) = bi

for i ∈ S). Then, for every cycle, every edge in the cycle that is not of the form (ai, bi) is
removed. For every path, every edge in the path that is not of the form (ai, bi) is removed,
and the two ends of the path are connected. See Figure 3.1 for example. As for property
3, if i ∈ x then x ↷ i = x and so equality holds. Suppose i /∈ x. We have that (x ↷ S) \x
consists of S\x and all the edges connecting the ends of paths in Gx,S . If i is a part of a
path or a k-cycle for k > 4 in Gx,S , then (x ↷ S) \ (x ↷ i) consists of S\ (x ∪ {i}) and the
edges connecting the ends of paths in Gx,S . Otherwise, i is a part of a 4-cycle in Gx,S , and
(x ↷ S) \ (x ↷ i) contains the same as before except the edge opposite to i in the 4-cycle
(as it is in x ↷ i as well). In both cases, (x ↷ S) \ (x ↷ i) ⊊ (x ↷ S) \x.

As for property 4, c = 2 for the perfect matching scheme, and indeed, d (x ↷ i, x) = 2 for
i such that x (ai) ̸= bi. As for property 2, see the following claim:

Claim 3.3.1. Let x ∈ X and S ⊆ [n] such that x (ai) ̸= bi for every i ∈ [n]. Then
d (x ↷ S, c) ≤ d (x, c)− |S|.

Proof. Note that d (x, c) = |i ∈ [n] | x (ai) ̸= bi|. A k-path in Gx,S corresponds to short-
cutting over k

2 − 1 indices, and decreases the distance from c either by k
2 − 1, if the ends

of the path are not of the form (ai, bi), or by k
2 , if they are. This is since every inner

vertex of the path, w.l.o.g. of the form ai, is not matched to bi by x but gets matched to bi

after the shortcut, and the same goes to the path ends in the second case, while a match
(ai, bi) in x never gets unmatched by a shortcut. Similarly, a k-cycle in Gx,S corresponds to
shortcutting over k

2 indices, and decreases the distance from c by k
2 . Summing over all the

22
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

Figure 3.1: Example of a shortcut in the perfect matching scheme. The matching includes
(a1,a2),(a3,b1),(a4,b2),(a5,b6) and (a6,b5). The shortcut is done over 1, 3 and 5.

paths and cycles, we get that overall the shortcutting over S decreases the distance from c

by at least |S|. ■

Finally, the circuit specified in the theorem can be constructed as shown in the following
claim:

Claim 3.3.2. There exists a logarithmic-depth formula that takes as input a matching x

and flags X (i) specifying for each i ∈ [n] whether (ai, bi) is being shortcut over, and outputs
the resulting matching y.

Proof Let S = {i ∈ [n] | X (i) holds}. For i, j, l ∈ [n] and c, d ∈ {a, b}, we construct a
formula Reachl (ci, dj) that holds iff there is a path of length l between the vertices ci, dj

in Gx,S , in the following way:

Reach0 (ci, dj) := “ci = dj”.

Reach1 (ci, dj) := “x (ci) = dj” ∨ (“i = j” ∧X (i)).

Those can obviously be computed in constant depth.

For l > 1: Reachl (ci, dj) =
∨

k∈[n],c∈{a,b}

(
Reach⌊ l

2⌋ (ci, ck) ∧Reach⌈ l
2⌉ (ck, dj)

)
Now, let Reach (ci, dj) =

∨
l∈[n] Reachl (ci, dj). Computing Reach (ci, dj) recursively results

in a formula for Reach (ci, dj) of logarithmic depth.

To complete the formula, we have y (ci) = dj iff one of the following holds:

• i = j and x (ci) = di.

• i = j, c ̸= d, x (ci) ̸= dj , and Reach (ci, dj) holds.

• i ̸= j, x (ci) = dj and neither of i, j is being shortcut over.

• i ̸= j, x (ci) ̸= dj , neither of i, j is being shortcut over, and Reach (ci, dj) holds. ■

23
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

The above is described by the formula:

(”i = j” ∧ ”x (ci) = di”)

∨ (”i = j” ∧ ”ci ̸= dj” ∧ ”x (ci) ̸= dj” ∧Reach (ci, dj))

∨ (”i ̸= j” ∧ ”x (ci) = dj” ∧ ¬X (i) ∧ ¬X (j))

∨ (”i ̸= j” ∧ ”x (ci) ̸= dj” ∧ ¬X (i) ∧ ¬X (j) ∧Reach (ci, dj))

Symmetric group

Let c = id. Here, we consider the cycle decomposition of a permutation, and shortcutting
means “removing” some element from its cycle, if said element is a non-fixed point, and oth-
erwise doing nothing. Formally, given i ∈ [n], x ↷ (i, i) = (i x (i)) x. Note that if x (i) = i,
x ↷ i simply equals x. For example, consider the permutation (1 2 3 4) (5 6 7) (8 9 10 11).
A shortcut over 1, 3, 4, 5, 6, 7, 10 will result in the permutation (8 9 11). Note that even
though we did not shortcut over 2, 2 was also removed from its cycle. This is an example
of a case where the inequality in property 2 is proper.

The symmetric group can be viewed as a special case of the perfect matching scheme: Given
x ∈ Sn, we identify x with the matching Mx over K2n where Mx (ai) = bj if x (i) = j. In
this setting, a shortcut over an index i in Sn is simply the matching shortcut over i in the
perfect matching scheme: Assume x (i) = j and x (k) = i. In the perfect matching scheme
we have Mx (ai) = bj , Mx (ak) = bi. The shortcutting over i in Sn results in x (i) = i and
x (k) = j, which translates to Mx (ai) = bi and Mx (ak) = bj , which is indeed the result
of the shortcutting over i in the perfect matching scheme. Thus, we conclude that Sn is
shortcuttable.

Our next task is to construct a circuit that takes as input x ∈ Sn and flags X (i) and outputs
the corresponding permutation y. We described a circuit that takes as input a matching Mx

and flags X (i) and outputs the resulting matching My. Note that the input x can easily
transformed to an input Mx to the existing circuit, in the following way: For ”Mx (ai) = bj”
we take ”x (i) = j”, and ”Mx (ci) = cj” is 0 for every i, j and c ∈ {a, b}. It’s left to describe
the formula for ”y (i) = j”, taking My as input, which is simply ”My (ai) = bj”.

3.3.3 Overview of the construction

We first describe a probabilistic algorithm that computes f with constant error. The idea is
to compute f recursively in the following way: Given x ∈ X , the output is taken to be the
majority of f on sets closer to c. For sets with a low enough distance from c, the algorithm
uses a hard-coded look-up table. Each of the inputs the majority is taken over is obtained
from x by shortcutting over a random set of elements, whose size is (a) small enough so
that the low sensitivity ensures that the resulting set has the same f -value as x with high
probability; and (b) large enough so that not too many recursion steps are needed. The
number of input sets chosen is taken to be a constant that ensures the conservation of the
constant error.

24
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

The algorithm is translated into a circuit where every step of the recursion is of constant
depth (as it’s a constant fan-in majority gate), and so is the lookup table. The recursion
depth is shown to be logarithmic, and so we get a logarithmic-depth, probabilistic circuit,
that computes f with constant error.

The probability of success is then boosted by taking majority over a polynomial number of
repetitions, and an expectation argument is used to show that there exists a suitable circuit
with zero error. Since majority can be implemented with depth logarithmic in the fan-in,
the boosting only adds a logarithmic-depth compound to the circuit.

3.3.4 Noise stability

The following results regard the probability that f (x) ̸= f (y) for a set y that is obtained
from x by shortcutting over a set of elements of a size t. We first consider t = 1 and use
the sensitivity property, then use a union bound to bound the probability for larger t in
terms of s, t and the size of the set |D| from which the elements are allowed to be chosen.
Finally, for t ∼ d

s we get a constant error.

Lemma 13. Let x ∈ X and let D ⊆ c. Let i be chosen uniformly out of D. Then
Pr [f (x) ̸= f (x ↷ i)] ≤ γ−1s

|D| , where γ is the shortcut sensitivity ratio.

Proof Let S = {i1, ..., ik} be the set of elements of D such that f (x) ̸= f (x ↷ i). Ob-
viously, for every such i, x ̸= x ↷ i. By definition of γ, there exist ij1 , ..., ijγk

such
that (x ↷ ij1) \x, ...,

(
x ↷ ijγk

)
\x are disjoint, and due to property 3 we have γk ≤ s, or,

k ≤ γ−1s. There are |D| elements to choose from, and so the probability of hitting one of
i1, ..., ik is at most γ−1s

|D| . ■

Corollary 14. Let i1, ..., it be chosen uniformly and independently out of D. Then Pr [f (x) ̸= f (x ↷ {i1, ..., it})] ≤
γ−1st
|D|−t .

Proof We can view the process of choosing i1, ..., it and applying the shortcuts in the fol-
lowing way: Initialize y0 = x. At step 1 ≤ j ≤ t:

• Choose ij ∈ D\ {i1, ..., ij−1} uniformly.

• Let yj = yj−1 ↷ ij .
For each j, |D\ {i1, ..., ij−1}| ≥ |D| − t. At each step, then, the probability that f changes
is at most γ−1s

|D|−t . The lemma follows by a union bound. ■

Corollary 15. If t ≤ |D|
10γ−1s+1 then Pr [f (x) ̸= f (y)] ≤ 1

10 .

Proof γ−1st
|D|−t ≤

γ−1s|D|
10γ−1s+1

|D|− |D|
10γ−1s+1

= γ−1s
10γ−1s+1−1 = 1

10 . ■

3.3.5 Majority Tree

The above property is used to output f (x) using the majority of f ’s values on sets obtained
from x as above, for t =

⌊
|D|

10γ−1s+1

⌋
, recursively, where the set D can roughly be thought

25
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

of as c\x. We describe the algorithm as a tree and perform the analysis in terms of the
root’s properties rather than recursively, for better compatibility with the transformation
to circuits. We start by considering the elements of c\x. With every branching of the tree,
we shortcut over some of them, and at every point keep track of the set of all elements that
were shortcut over so far.

Let x ∈ X and let D = c\x. Let T be a tree with the following properties:

1. Every vertex v is associated with a set Dv ⊆ [|D|]. For the root v0, Dv0 = ∅. The
mapping v 7→ Dv will be denoted DT .

2. Every inner vertex v has α children, where α is a constant to be defined later, and
for each child u of v, Du ⊋ Dv.

We associate every vertex v with a set xv ∈ X in the following way: Write D =
{

i1, ..., i|D|
}

and Dv =
{

j1, ..., j|Dv |
}

. Then xv = x ↷
{

ij1 , ..., ij|Dv |

}
. Note that xv0 = x.

3. If u is a child of v, then |Du\Dv| = ⌊ |D|−|Dv |
10γ−1s+1⌋.

4. Every leaf is of the same depth, which is the minimum depth required so that for
every leaf v, |D| − |Dv| ≤ 100γ−1s. Note that this depth does not depend on x, but
only on |D|.

The choice of size in property 4 is so that the set meets the requirement of Corollary 15,
and due to the property 2, determines the tree’s depth. The next claim shows that the
resulting depth is low enough to meet our needs regarding the circuit’s depth.

Claim 3.3.3. T ’s depth is O (s log n).

Proof Let v0, ..., vl be some path from the root to a leaf v such that |D|−
∣∣Dvl−1

∣∣ > 100γ−1s.
Such a path exists due to the minimality condition on the depth. For 0 ≤ j < l,

|D|−
∣∣∣Dvj+1

∣∣∣ = |D|−
∣∣∣Dvj

∣∣∣−∣∣∣Dvj+1\Dvj

∣∣∣ = |D|−
∣∣∣Dvj

∣∣∣−
 |D| −

∣∣∣Dvj

∣∣∣
10γ−1s + 1

 < |D|−
∣∣∣Dvj

∣∣∣−|D| −
∣∣∣Dvj

∣∣∣
10γ−1s + 1

+1.

For |D|−
∣∣∣Dvj

∣∣∣ > 100γ−1s, we have 1
10γ−1s+1

(
|D| −

∣∣∣Dvj

∣∣∣) > 3 and so 1 < 1
2(10γ−1s+1)

(
|D| −

∣∣∣Dvj

∣∣∣),
meaning

|D| −
∣∣∣Dvj

∣∣∣− |D| −
∣∣∣Dvj

∣∣∣
10γ−1s + 1

+ 1 < |D| −
∣∣∣Dvj

∣∣∣− |D| −
∣∣∣Dvj

∣∣∣
2 (10γ−1s + 1)

< |D| −
∣∣∣Dvj

∣∣∣− |D| −
∣∣∣Dvj

∣∣∣
100γ−1s

.

Thus, |D|−
∣∣∣Dvj

∣∣∣ <
(
1− 1

100γ−1s

)j
n, and so 1

n <
(
1− 1

100γ−1s

)l−1
, or, l−1 < log n

− log
(

1− 1
100γ−1s

) <

100γ−1s log n, where the last inequality is due to the fact that log (1− ϵ) < −ϵ for every
ϵ > 0. ■

26
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

To complete the compatibility with Corollary 15, we introduce the following distribution
on DT : Recall that Dv0 = ∅, where v0 is the root. Recursively, if u is a child of v, Du\Dv

is distributed uniformly (under the size constraint) over [|D|] \Dv.

We now associate a Boolean value A (v) to each vertex v, recursively, in the following way:
If v is a leaf, A (v) = f (xv). For an inner vertex, A (v) is the majority of A (u) over all
the children u of v. Next, we analyze the probability that A (v) = f (xv) for each v. Write
f (v) in short for f (xv). Note that f (v0) = f (x), where v0 is the root.

The constant probability of the inequality f (u) ̸= f (v) for each child u of v provided by
Corollary 15, combined with the constant number of children, results in an overall constant
error in the computation of f (v), as shown in the next claim:

Claim 3.3.4. There exists a constant α such that for every v, Pr [A (v) ̸= f (v)] < 1
20 .

Proof By induction on the distance from the furthest leaf:

If v is a leaf, A (v) = f (v) always.

Let u1, ..., uc be v’s children. For each ui, Pr [A (ui) ̸= f (ui)] < 1
20 by the induction

hypothesis. The set Dui\Dv is chosen as in Corollary 14 for t =
⌊

|D|−|Dv |
30s+1

⌋
, and so

Pr [f (ui) ̸= f (v)] < 1
10 by Corollary 15. Overall, Pr [A (ui) ̸= f (v)] < 1

5 .

Now, we can choose α such that Pr [A (v) ̸= f (v)] = Pr
[
maji∈[α] (A (ui) ̸= f (v))

]
< 1

20 . ■

The next claim characterizes the set of sets associated with the leaves in terms of distance
from c:

Claim 3.3.5. For every leaf v, xv ∈ B
(
id, 100γ−1s

)
.

Proof Follows from the fact that for every v, d (xv, c) ≤ |D| − |Dv| due to property 2. ■

3.3.6 Conversion to a deterministic algorithm

Let T (1), ..., T (k) be trees each distributed as above, and let v
(i)
0 be the root of T (i). Let

A0 (x) = maji∈[k]A
(
v

(i)
0

)
. Let X =

∣∣∣{i ∈ [k] | A
(
v

(i)
0

)
̸= f

(
v

(i)
0

)}∣∣∣. By Chernoff bound,

Pr [A0 (x) ̸= f (x)] = Pr
[
X >

k

2

]
<

(
e9

1010

) k
20

< 2− k
20 .

Taking k = 20n2, we get that majority over a polynomial number of trees gives an error
of at most 2−n2 for every permutation x of distance ∆ = |D| from id. In other words, the
expected number of inputs on which the circuit errs is less than 1. Therefore there is a
choice of randomness for which the circuit never errs.

Note that the construction is not non-uniform.

27
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

3.3.7 Conversion to a circuit

The properties of the structure we described are tailored to a fixed size of c\x. We thus
construct a different circuit for each ∆ = |c\x|, and the final circuit will compute ∆ and
redirect to the correct circuit.

Fix ∆. Consider a circuit that takes a permutation x with |c\x| = ∆, and is composed
of a logarithmic-depth tree of majority gates of depth d = O (s log n), each majority gate
computing the majority of α inputs (and is thus of constant depth), except for the last
one having 20n2 inputs (which makes the majority gate of logarithmic depth). Each leaf v

corresponds to a fixed set Dv ⊆ [∆], which the circuit translates into a set of elements to
be shortcut over when starting with the input x, in the following way: Fix some order on
c. For i ∈ c, j ∈ [∆], define P (i, j) to hold when i /∈ x and |{k ∈ c\x |, k ≤ i}| = j. P (i, j)
can be computed for every i, j in logarithmic depth by counting. Now, for i ∈ c, define
X (i) to hold if i is being shortcut over. Note that X (i) =

∨
j∈[D] (”j ∈ Dv” ∧ P (i, j)), and

so X (i) can be computed for every i.

3.3.8 The Resulting Circuit

Proof of Theorem 12 The task is achieved by a circuit consisting of the following com-
pounds:

• A logarithmic-depth circuit that computes ∆ = |c\x|.

• For each ∆ ≤ n:

– The circuit that, for each leaf v, transforms the set Dv ⊆ [∆] into flags X (i)
specifying whether i is being shortcut over.

– A circuit that, for each leaf v, takes the flags X (i) and computes the resulting
set. This can be done by assumption.

– A lookup table containing f ’s values on B
(
id, 100γ−1s

)
: On input y, the output

is ∨π∈B(id,100γ−1s):f(π)=1
∧

i∈U ”i ∈ y ⇐⇒ i ∈ π”.

– The majority gates.

■

28
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Chapter 4

Intersecting families of
permutations

4.1 Background

A t-intersecting family over a domain X for t ≥ 1 is a subset F ⊆ X such that any two sets
S1, S2 ∈ F satisfy |S1 ∩ S2| ≥ t.

For example, over the Boolean cube, F is t-intersecting if any two vectors x, y ∈ F agree on
at least t coordinates. Over the symmetric group, F is t-intersecting if any two permutations
x, y ∈ F agree on the images of at least t elements of [n]. First, we need the following
definition:

Definition. A t-star in a domain X over a universe U is a subset of X of the form {T ∈ X | S ⊆ T}
for some S ∈

(U
t

)
. We define Nt to be the maximum size of a t-star. Note that a t-star is

t-intersecting and so the maximum size of a t-intersecting family is at least Nt.

There has been an interest in t-intersecting families over different domains, the basic task
being finding the maximum size of a t-intersecting family, and characterize the maximal
families. Research began with [EKR61], who studied 1-intersecting families over the domain([n]

k

)
. They found that the maximum size of such a family is

(n−1
k−1
)

and characterized those
families as 1-stars.

Our focus will be on t-intersecting families over the symmetric group. Those were studies
by Ellis, Fridgut and Pilpel [EFP11], using a spectral technique (the case t = 1 was studied
before, by Deza and Frankl [FD77], Cameron and Ku [CK03], and Larose and Malvenuto
[LM04]). For a domain X , the idea behind the spectral approach to intersecting families is
to construct an X × X matrix, satisfying certain properties.

Definition. A real X × X matrix A is t-good if the following properties hold:

29
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

1. A is symmetric.

2. A is supported on pairs of non-t-intersecting elements, that is, if |x ∩ y| ≥ t then
A (x, y) = 0.

3. A1 = 1, where 1 is the constant 1 vector.

4. If deg f ≤ t and E [f] = 0 then Af = −ωf , where ω = Nt
X −Nt

.

5. If Af = λf and deg f > t then |λ| < ω.

A simple argument shows that the existence of a t-good matrix for X implies that a t-
intersecting family is of size at most Nt, and furthermore, the characteristic function of a
t-intersecting family of size Nt has degree at most t.

Ellis, Fridgut and Pilpel [EFP11] constructed a t-good matrix for X = Sn for large enough
n (as a function of t), and thus showed that for every t, for large enough n, the maximum
size of a t-intersecting family is Nt = (n− t)!, which is achieved by a t-star, that is, a family
of the form {π ∈ Sn | π (i1) = j1, ..., π (it) = jt} for some distinct i1, ..., it ∈ [n] and some
distinct j1, ..., jt ∈ [n]. Additionally, this result proved that the characteristic function of a
maximal t-intersecting family is of degree t. In the same work it was also shown that such a
family must be a t-star for large enough n, however, there was a mistake in their argument
for t > 1, which was pointed out in [Fil17]. The result still holds, as follows from an
argument of Ellis [Ell11], who actually showed something much stronger: if a t-intersecting
family is not a subset of a t-star, then its size is at most

(
1− 1

e + o (1)
)

(n− t)!.

An alternative, combinatorical argument was given in [DFL+21]. The argument applies to
multiple domains but we consider the case of the symmetric group.

First, let us generalize the notion of t-intersection into its bipartite version (this is not
actually needed for our result, it allows us to show a stronger statement): two subsets
F1,F2 over a domain are cross-t-intersecting if any S1 ∈ F1, S2 ∈ F2 have at least t

elements in common, or in the case of the symmetric group, agree on the images of at least
t elements.

We also need to introduce the notion of an intersection bound. For a domain X and t ≥ 1,
the intersection bound It is the maximal value such that for any x ∈ X and any partial
input C of size at most It, if x t-intersects all total inputs extending C then |x ∩ C| ≥ t.

The following theorem is taken from [DFL+21, Theorem 7.1]:

Theorem 16. If F1,F2 ⊆ Sn are cross-t-intersecting and the characteristic function f1 : Sn →
{0, 1} of F1 satisfies C (f1) ≤ It, then either F1 is contained in a t-star, or

|F2| ≤
(

C (f1)
t

)
C (f1) (n− t− 1)!

From the fact that for a large enough n, if |F| = (n− t)! then deg f ≤ t, where f is the
characteristic function of F , and from [Theorem 4], it follows that for such F , C (f) is is

30
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

bounded for a fixed t. Taking F1 = F2 = F we get that for a large enough n, either F is a
t-star or its size is smaller than (n− t)!.

Theorem 16 (and similarly, its setwise version, Theorem 17) contains a stronger statement
than needed for our application of it; we only need its version for t-intersecting families
with F1 = F2 = F , rather than the stated cross-t-intersection version. The theorem was
originally phrased this way for historical reasons, and we being the original, more general
version, as the proof is just as simple, and for better clarity of the structure of the argument.

4.2 Setwise intersection

4.2.1 Definitions and main result

Another direction is to consider setwise-intersection instead of intersection. A subset F ⊆
Sn is t-setwise-intersecting if for every x, y ∈ F , there exists S ∈

([n]
t

)
such that x (S) =

y (S). We define cross-t-setwise-intersection similarly.

We next modify Theorem 16 for the setwise-intersection case. Here we would like to
show that for every t, for a large enough n, the maximum sized t-intersecting families
are the setwise equivalent of t-stars, which we call t-setwise-stars: families of the form
{π ∈ Sn | π (S) = T} for some S, T ∈

([n]
t

)
. Note that the size of a t-setwise-star is t! (n− t)!.

Let us define the setwise-intersection bound: Let Is
t be the maximal value such that if C is

a partial input of size at most Is
t and x ∈ X t-setwise-intersects every input that contains

C, then x t-setwise-intersects C.

Theorem 17. If F1,F2 are cross-t-setwise-intersecting and the characteristic function f1 : Sn →
{0, 1} satisfies C (f1) ≤ Is

t , then either F1 is contained in a t-setwise-star, or

|F2| ≤ max
0≤m<t

(
t

m

)(
C (f1)− t

t−m

)
t! (t−m)! (n− (2t−m))!

Proof If F2 is empty, the result is trivial. Assume F2 is non-empty.

Suppose F1 is not contained in any t-setwise-star. Let C be a 1-certificate of f1, that is, a
partial input such that every input x containing C satisfies f1 (x) = 1. For every S, T ∈

([n]
t

)
such that C (S) = T there exists yS,T ∈ F1 such that yS,T (S) ̸= T .

Let p ∈ F2. Since p t-setwise-intersects every input in F1, and thus every input extending
C, and |C| ≤ C (f1) ≤ Is

t , p t-setwise-intersects C. That is, there exist S, T ∈
([n]

t

)
such that

C (S) = p (S) = T , and thus there exists yS,T ∈ F1 such that yS,T (S) ̸= T . Then p also
t-setwise-intersects yS,T , that is, there exist U, W ∈

([n]
t

)
such that p (U) = yS,T (U) = W .

In conclusion, p satisfies p (S) = T and p (U\S) = W\T .

Let m = |U ∩ S|. Since yS,T (S) ̸= T , we have U ̸= S, and so m < t. Note that since
p (U) = W and p (S) = T , we have m = |W ∩ T |. There are

(|C|
t

)
choices for S and

(t
m

)(|C|−t
t−m

)
choices for U . Given S, U , the number of suitable inputs p is (n− (2t−m))!t! (t−m)!. ■

31
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

4.2.2 Intersection bound for the symmetric group

For this section it will be convenient to again view permutations in Sn as perfect matchings
over K2n: we denote the elements of [2n] by a1, ..., an, b1, ..., bn, and given x ∈ Sn, we
identify x with the matching Mx over K2n where Mx (ai) = bj if x (i) = j.

Lemma 18. An input x and a partial input C are t-setwise-intersecting if and only if x∪C

(as a subgraph of K2n) contains a set of cycles whose sizes sum to 2t.

Proof Suppose that x, C are t-setwise-intersecting and let S, T be the witnesses. Then
(x|S∪T) ∪ (C|S∪T) (as a subgraph of x ∪ C) is a union of cycles, since every vertex is of
degree 2, and is of size 2t, and therefore satisfies the requirement.

Suppose that x∪C contains such a set A. Let S = A∩{a1, ..., an} and T = A∩{b1, ..., bn}.
For every cycle in (x ∪ C) |A, half of the vertices are in S and half are in T , and therefore
|S| = |T | = t. (x ∪ C) |A contains 2t edges, each goes from S to T , and since x|A, C|A are
perfect matchings, it must be that x (S) = T and C (S) = T , and thus x, C are t-setwise
intersecting. ■

Claim 4.2.1. For t < n
2 we have Is

t = n− t− 1.

Proof We first show that Is
t < n−t. Let C = {(ai, bi) | i ∈ [n− t]}. Let x = {(a1, b2) , (a2, b3) , ..., (an−t, b1)}.

Then x, C are not t-setwise-intersecting. However, x ({n− t + 1, ..., n}) = {n− t + 1, ..., n},
and the same holds for every input y that extends C, and so x, y are t-setwise-intersecting
for every such y.

We now show that Is
t ≥ n − t − 1. Suppose |C| = k ≤ n − t − 1 and x, C are not

t-setwise-intersecting. By Lemma 18, it’s enough to show that C can be extended to y

such that no new cycles of length at most 2t are added to x ∪ y. For simplicity, assume
C = {(ai, bi) | i ∈ [k]}. Every vertex in {ai | i ∈ [k]} ∪ {bi | i ∈ [k]} is of degree 2 in C ∪ x,
and every vertex in {ai | i ∈ [n] \ [k]} ∪ {bi | i ∈ [n] \ [k]} is of degree 1, and so C ∪ x is a
union of cycles and paths such that the ends of the paths are exactly {ai | i ∈ [n] \ [k]} ∪
{bi | i ∈ [n] \ [k]}. Assume for simplicity that the pairs are {(ai, bi) | i ∈ [n] \ [k]}, and con-
nect (ak+1, bk+2) , ..., (an, bk+1). We thus extended C to an input y by adding a cycle of
length at least 2 (n− k) > 2t, as required. ■

4.2.3 Conclusion

Ellis [Ell12] shows that for every t, for a large enough n, if F is t-setwise-intersecting then
|F| ≤ t! (n− t)!. In addition, if F is t-setwise-intersecting and of size t! (n− t)!, then f is
of degree at most t, where f is the characteristic function of F .

Fixing t and taking F1 = F2 = F in Theorem 17, we get that for a large enough n, either F is
contained in a t-star or it is smaller than max0≤m<t

(t
m

)(C(f1)−t
t−m

)
(n− (2t−m))!t! (t−m)!,

which From [Theorem 4] is Ot (n− t− 1)! and thus is smaller than (n− t)!t! for a large
enough n. In conclusion, for a large enough n, the maximal t-setwise intersecting families
are exactly the t-setwise-stars.

32
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Chapter 5

Open questions

Low-depth circuits for composable domains Our construction of low-depth circuits
applies to functions over domains that satisfy the property we called “shortcuttability”, and
we showed that the symmetric group and the perfect matching scheme are shortcuttable.
Can the construction be generalized to all composable domains? Conversely, can we show
that for some interesting domain, the construction cannot work, for example, by showing
the existence of a family of functions with low sensitivity that cannot be computed by
low-depth circuits?

Setwise-intersection over composable domains Defining t-setwise intersection for
families of permutations is pretty natural. Can we generalize this definition to all com-
posable domains, and if so, obtain similar results? The answer for general composable
domains is unclear. However, we believe that future attempts to generalize the theory to
the perfect matching scheme would be successful. It’s easy to define t-setwise intersection
for the perfect matching scheme similarly to the definition over the symmetric group. The
more difficult part of such work would be to repeat the spectral argument – this method
was never tried in the context of the perfect matching scheme.

“Intermediate” types of intersection The notions of t-intersection and t-setwise in-
tersection can be identified with the partitions (1 ... 1) and (t) of t. What about other
partitions? For example, families of permutations that t-intersect in the sense that every
two permutations agree on the images of two (non-empty) subsets of [n] whose sizes sum
to t. Can we generalize the theory to all these kinds of intersections?

Improving the bound on n The results regarding the maximal size of a t-intersecting
family and the characterization of the maximal families as t-stars, hold for a large enough
n for any fixed t. The currently known bound on n as a function of t is exponential. Can
this be improved to polynomial n?

33
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

34
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Bibliography

[ABK+21] Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay
Tal. Degree vs. approximate degree and quantum implications of huang’s sen-
sitivity theorem. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1330–1342. ACM, 2021.

[AK97] Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem
for systems of finite sets. European Journal of Combinatorics, 18(2):125–136,
1997.

[Bd02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002. Com-
plexity and Logic.

[BGH+11] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghaven-
dra, and David Steurer. Making the long code shorter, with applications to the
unique games conjecture. Electron. Colloquium Comput. Complex., page 142,
2011.

[BGJK21] Shalev Ben-David, Mika Göös, Siddhartha Jain, and Robin Kothari. Unam-
biguous dnfs from hex. CoRR, abs/2102.08348, 2021.

[CK03] Peter J. Cameron and C.Y. Ku. Intersecting families of permutations. European
Journal of Combinatorics, 24(7):881–890, 2003.

[DFL+21] Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals.
Complexity measures on the symmetric group and beyond. In 12th Innovations
in Theoretical Computer Science Conference, volume 185 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 87, 5. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2021.

[EFP11] David Ellis, Ehud Friedgut, and Haran Pilpel. Intersecting families of permu-
tations. J. Amer. Math. Soc., 24(3):649–682, 2011.

[EKR61] Paul Erdös, Chao Ko, and Richard Rado. Intersection theorems for systems of
finite sets. Quarterly Journal of Mathematics, 12:313–320, 1961.

[Ell11] David Ellis. Stability for t-intersecting families of permutations. J. Combin.
Theory Ser. A, 118(1):208–227, 2011.

35
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

[Ell12] David Ellis. Setwise intersecting families of permutations. J. Combin. Theory
Ser. A, 119(4):825–849, 2012.

[FD77] Peter Frankl and Mikhail Deza. On the maximum number of permutations with
given maximal or minimal distance. Journal of Combinatorial Theory, Series
A, 22(3):352–360, 1977.

[Fil17] Yuval Filmus. A comment on intersecting families of permutations.
arXiv:1706.10146, 2017.

[Fri08] Ehud Friedgut. On the measure of intersecting families, uniqueness and stability.
Combinatorica, 28:503–528, 09 2008.

[FW86] P. Frankl and R.M. Wilson. The erdös-ko-rado theorem for vector spaces. Jour-
nal of Combinatorial Theory, Series A, 43(2):228–236, 1986.

[GNS+16] Parikshit Gopalan, Noam Nisan, Rocco Servedio, Kunal Talwar, and Avi
Wigderson. Smooth boolean functions are easy: Efficient algorithms for low-
sensitivity functions. pages 59–70, 01 2016.

[Hua19] Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity
conjecture. Annals of Mathematics, 190(3):949–955, 2019.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings
of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC
’02, page 767–775, New York, NY, USA, 2002. Association for Computing Ma-
chinery.

[KMS17] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games,
and grassmann graphs. In Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, page 576–589, New York, NY,
USA, 2017. Association for Computing Machinery.

[LM04] Benoit Larose and Claudia Malvenuto. Stable sets of maximal size in kneser-type
graphs. European Journal of Combinatorics, 25:657–673, 07 2004.

[OW09] Ryan O’Donnell and Karl Wimmer. Kkl, kruskal-katona, and monotone nets.
volume 42, pages 725 – 734, 11 2009.

[Wil84] Richard M. Wilson. The exact bound in the erdös-ko-rado theorem. Combina-
torica, 4:247–257, 1984.

36
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

לאפס כלומר, הקלט, על חד-כיווני“ ”רעש להחיל הוא זו בבנייה הרעיון נמוך. מעומק מעגלים אלו פונקציות

עד רקורסיבית התהליך על ולחזור מספיק, גבוהה בהסתברות הפונקציה ערך את לחשב מהאחדות, חלק

ידוע. כבר עליה הפונקציה שערך מספיק, נמוך המינג ממשקל לנקודה שמגיעים

רגישות בעלות פונקציות עבור נמוך מעומק מעגלים לבניית נוספת גישה מאפשרת הרגישות השערת הוכחת

העץ ואת נמוך, מעומק החלטה עץ יש נמוכה רגישות בעלת לפונקציה החלטה: עצי דרך העוברת נמוכה,

בעצי המשתמשת מהבנייה יותר טובים חסמים נותנת הישירה הבנייה זאת, עם למעגל. להפוך אפשר

מעניינת. עודנה ולכן החלטה,

משתמשים אנחנו זו בעבודה הסימטרית. החבורה כולל נוספים, לתחומים הוכללה הכדור תכונת בהמשך,

רגישות בעלות לפונקציות נמוך מעומק והמעגלים הקטנים המעגלים בניית את להכליל כדי הזו בהכללה

מקלט למעבר הסימטרית בחבורה המקבילה הפעולה נוספים. ותחומים הסימטרית החבורה מעל נמוכה

התמורה. על חילוף הפעלת היא מהביטים, אחד הפיכת ע“י מתקבלת הבוליאנית שבקוביה לשכנו, אחד

מהאיברים חלק הסרת היא מהאחדות, חלק איפוס באמצעות חד-כיווני“ ”רעש ליצירת המקבילה הפעולה

מעגלים. ע“י התמורה מייצוג

כאשר ,nO(s(f)) בגודל מעגל הסימטרית, החבורה מעל f פונקציה עבור נותנת, שלנו הקטן המעגל בניית

נותנת, נמוך מעומק המעגל בניית דומה. היא נוספים תחומים עבור והתוצאה ,f של הרגישות היא s (f)
עבור מתקיימת דומה ותוצאה ,O (s (f) log n) בעומק מעגל הסימטרית, החבורה מעל f פונקציה עבור

המושלמים. השידוכים סכמת

תמורות של נחתכות משפחות

הקשר את כך לשם ורותמים תמורות, של נחתכות במשפחות מתמקדים אנחנו זו, עבודה של האחרון בחלק

שלה. האישור וסיבוכיות בוליאנית פונקציה של דרגה בין הפולינומי

זה, בהקשר .
([n]

k

)
בתחום קבוצות של נחתכות משפחות של במקרה החל נחתכות משפחות של המחקר

המחקר בהמשך, נחתכות. הן x, y ∈ F קבוצות שתי שכל כך F ⊆
([n]

k

)
משפחה היא נחתכת משפחה

משפחה ואיך להיות, יכולה נחתכת משפחה גדולה כמה היא השאלה כאשר שונים, בכיוונים הורחב בנושא

היא קבוצות של t-נחתכת משפחה – t-נחתכות במשפחות עוסק הכיוונים אחד נראית. מקסימלית נחתכת

בנושא העבודות את מרחיב אחר כיוון .t לפחות בגודל חיתוך בעלות הן קבוצות שתי כל שבה משפחה

נוספים. לתחומים

תמורות של t-נחתכת משפחה תמורות. של t-נחתכות במשפחות שעסקו בעבודות נפגשו הללו הכיוונים שני

n עבור כי מתברר איברים. t לפחות על מסכימות x, y ∈ F תמורות שתי שכל כך F ⊆ Sn משפחה היא

t-כוכב, היא כזו ומשפחה ,(n− t)! הוא תמורות של t-נחתכת משפחה של המקסימלי הגודל מספיק, גדול

שונים איברים הם i1, ..., it ∈ [n] כאשר {π ∈ Sn | π (i1) = j1, ..., π (it) = jt} מהצורה משפחה כלומר

שונים. איברים הם j1, ..., jt ∈ [n]-ו

מסכימות תמורות שתי כל שבהן תמורות, של t-קבוצה-נחתכות משפחות של למקרה זו תוצאה מכלילים אנו

גדול n עבור שלפיה, ידועה לתוצאה חלופית הוכחה נותנים אנו .t בגודל איברים קבוצת של התמונה על

היא כזו ומשפחה ,t! (n− t)! הוא תמורות של t-קבוצה-נחתכת משפחה של המקסימלי הגודל מספיק,

המובאת ההוכחה .S, T ∈
([n]

t

)
כאשר {π ∈ Sn | π (S) = T} מהצורה משפחה כלומר t-קבוצה-כוכב,

ערכים עבור ומתקיימת יותר), חזקה תוצאה (שמראה הקיימת מההוכחה בהרבה פשוטה היא ידינו על

.n של יותר קטנים

ii
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

תקציר

פונקציה היא הבוליאנית הקוביה על בוליאנית פונקציה .{0, 1}n התחום היא n ממימד הבוליאנית הקוביה

בעיית של ייצוג בוליאני, מעגל ע“י המחושבת הפונקציה להיות יכולה כזו פונקציה .f : {0, 1}n → {0, 1}
נוספות. רבות דוגמאות או תת-קבוצה, או גרף כמו אובייקט של ייצוג הכרעה,

או לחישוב קשה הוא בוליאנית, פונקציה כמו מסוים, אובייקט כמה עד בשאלה מתעניינים הסיבוכיות בתורת

(המודדת החלטה עצי סיבוכיות מעגלים, סיבוכיות ביניהם סיבוכיות, מדדי מספר מופיעים בספרות מסובך.

של האי-דטרמיניסטית (הגרסה אישור סיבוכיות הפונקציה), את שמחשבים החלטה עצי של עומקם את

מי השאלה: את מעלה שונים סיבוכיות מדדי מספר של קיומם ורגישות. דרגה החלטה), עצי סיבוכיות

מקבלת הנ“ל השאלה השונים. המדדים בין ופערים קשרים לחפש כן, על טבעי, ה“נכון“? המדד הוא מהם

הם מעגלים), לסיבוכיות (פרט שהזכרנו אלו כולל רבים, מדדים כי המראות ידועות תוצאות בזכות מענה

פולינומית. שקולים

מעל בוליאניות לפונקציות התרחב הבוליאנית הקוביה מעל בוליאניות פונקציות של המחקר הזמן, עם

רב- מרחיבים גרפים קבוע), המינג ומשקל קבוע מאורך הוקטורים כל (קבוצת הפרוסה כמו נוספים, תחומים

הקוביה מעל סיבוכיות מדדי של התיאוריה את אלה לתחומים להרחיב ניתן האם גרסמן. וסכמת ממדיים

מעל בוליאניות לפונקציות הוכללו הקלאסיים הסיבוכיות ממדדי חלק של ההגדרות לאחרונה, הבוליאנית?

המושלמים השידוכים סכמת איברים), n מעל התמורות כל (קבוצת Sn הסימטרית החבורה כגון תחומים

מוכללת (גרסה והרב-פרוסה הפרוסה צמתים), 2n בעל המלא הגרף מעל המושלמים השידוכים כל (קבוצת

מדדי כי מתברר הסימטרית). החבורה של הכללה גם המהווה צבעים, מספר יש שבה הפרוסה של

אלה. תחומים עבור גם פולינומית שקולים נשארים הסיבוכיות

נמוכה רגישות בעלות פונקציות של יעיל חישוב

קטנים לשינויים ”רגישה“ הפונקציה כמה עד המודד בוליאניות פונקציות של סיבוכיות מדד היא רגישות

צמתים שני ובין הקוביה, קודקודי הם שצמתיו בגרף המקסימלית הדרגה להיות מוגדרת הרגישות בקלט.

.f (x) ̸= f (y) ומתקיים מזה זה 1 המינג במרחק הם אם קשת יש x, y

פולינומית, שקולים הם הבוליאנית הקוביה מעל שהזכרנו הסיבוכיות ממדדי חלק כי עשורים מספר כבר ידוע

בעלת לפונקציה כי הגורסת הרגישות, השערת שהוכחה לפני הרגישות. את כלל לא זה לאחרונה עד אך

מעגלים. וסיבוכיות רגישות בין קשרים להוכיח נסיונות נעשו נמוך, עומק בעל החלטה עץ קיים נמוכה רגישות

מעל פונקציות של תכונה להוכחת שימשה זו ועובדה מקומי, תיקון מאפשרת פונקציה של נמוכה רגישות

ערכיה ע“י יחיד באופן נקבעת נמוכה רגישות בעלת פונקציה הכדור“: ”תכונת הנקראת הבוליאנית, הקוביה

ע“י יחיד באופן נקבע לכדור מחוץ x נקודה בכל הפונקציה של שערכה כיוון זאת קטן. המינג כדור על

תכונת רקורסיבית. הפונקציה את לחשב ניתן וכך לכדור, יותר הקרובים x משכני חלק פני על רוב לקיחת

עבור נבנו בנוסף, נמוכה. רגישות בעלות פונקציות עבור קטנים בוליאניים מעגלים לבניית שימשה הכדור

i
Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

המחשב. למדעי בפקולטה פילמוס, יובל פרופסור של בהנחייתו בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיה המחברת מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחברת, של המחקר תקופת במהלך

Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals. Complexity
measures on the symmetric group and beyond. In 12th Innovations in Theoretical Computer
Science Conference, volume 185 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 87, 5.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

סיבוכיות מדדי
הסימטרית החבורה על

נוספים ותחומים

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

דפני נטע

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2021 נובמבר חיפה התשפ"ב כסלו

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

סיבוכיות מדדי
הסימטרית החבורה על

נוספים ותחומים

דפני נטע

Technion - Computer Science Department - M.Sc. Thesis MSC-2022-04 - 2022

	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 The Boolean cube and Boolean functions
	2.1.1 Complexity measures
	2.1.2 Relations between the measures

	2.2 Generalization to other domains
	2.2.1 Examples of domains
	2.2.2 Domains as collections of sets
	2.2.3 Complexity measures for general domains
	2.2.4 Composability
	2.2.5 Four parameters
	2.2.6 Relations between the measures

	3 Efficient computation of functions with low sensitivity
	3.1 Ball property
	3.2 Small Circuits
	3.3 Low depth circuits
	3.3.1 Shortcuttability
	3.3.2 Domain Examples
	3.3.3 Overview of the construction
	3.3.4 Noise stability
	3.3.5 Majority Tree
	3.3.6 Conversion to a deterministic algorithm
	3.3.7 Conversion to a circuit
	3.3.8 The Resulting Circuit

	4 Intersecting families of permutations
	4.1 Background
	4.2 Setwise intersection
	4.2.1 Definitions and main result
	4.2.2 Intersection bound for the symmetric group
	4.2.3 Conclusion

	5 Open questions
	Bibliography
	Hebrew Abstract

