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Suppose that vy is the uniform distribution over ([Z]), and let ux be an arbitrary distribution over ([Z]).

Define vi_1, uip—1 to be the distributions obtained by removing a random element from a set sampled
according to vy, ux, (respectively). Note that vg_; is just the uniform distribution over (k[f]l).

We will show:
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Since vy is the uniform distribution, we can compute
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and similarly
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Hence (MLS) is equivalent to
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In other words, we need to show that the left-hand side is minimized when puy is uniform.
Let X1,..., X\ be the elements of a random set sampled according to g, in random order. Then

H(,uk.) = H(X1, . an—l) + H(Xk|X1, - 7Xk—1) = H(/,Lk._l) + H(Xk|X1, . an—l)a

and so
kH (pr—1) — (k= 1)H (px) = H(pg-1) — (k — DH(Xp| X1, ..., Xg—1).

Similarly,
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= H(Xy) + H(X|X1) + -+ HXk| X1, .., Xg—2),

due to symmetry. Therefore

k-1
RH (1) — (k= 1) H () = Y _[H(Xe|X1,..., Xio1) — H(Xe| X1, X))
i=1
k-1
=3 I(Xp X X | X0, Xoo).
i=1
Given Xi,...,X;_1, the values (Xj;,..., X)) are (up to renaming) some distribution over ([2:8:8]),
and so to complete the proof, it suffices to show that I(Xy; X1,...,X;_1) is minimized for the uniform
distribution over ([Z]).
Indeed, convexity of mutual information shows that given the distribution of (X, ..., Xx_1), the mutual
information I(Xy; X1,..., Xk_1) is minimized when X}, is chosen uniformly over [n] \ {X1,..., Xr—_1}. Ap-

plying this repeatedly for all variables, we obtain that I(Xy; X1,..., Xx—1) is minimized when (X1,..., Xj)
is the uniform distribution.



