A simple proof of the Kindler–Safra theorem

Yuval Filmus

March 27, 2022

1 Introduction

A Boolean degree 1 function (on a Boolean cube $\{0,1\}^n$) is a dictator. Friedgut, Kalai and Naor [FKN02] showed that if a Boolean function is *close* to degree 1, then it is *close* to a Boolean dictator.

Nisan and Szegedy [NS94] showed that a Boolean degree d function is an $O(d2^d)$ -junta. The size of the junta was later improved to $O(2^d)$, which is optimal up to the hidden constant [CHS20, Wel20]. Kindler and Safra [KS02, Kin03] shows that if a Boolean degree dfunction is *close* to degree d, then it is *close* to a Boolean degree d function.

In this note, we give a simple proof of the Kindler–Safra theorem using the invariance principle. Our proof works in the more general setting of *A*-valued functions, which are functions whose output lies in some finite set A; this generalizes the Boolean setting, which corresponds to $A = \{0, 1\}$.

2 Nisan–Szegedy

We start by showing that A-valued degree d functions are juntas. While this can be proved by reduction to the Boolean case,¹ we give a direct proof which relies only on hypercontractivity. The main idea is the following dichotomy:

Lemma 2.1. Let B be a finite set and let $d \ge 1$. If f is a B-valued degree d function on $\{0,1\}^n$, then either f = 0 or $||f||^2 = \Omega(1)$.

Here $||f||^2 = \mathbb{E}[f^2]$, where the underlying distribution is the uniform distribution, and the hidden constant in $\Omega(1)$ depends on B, d.

Proof. First observe that if $y \in B$ then

$$y^{2} \leq My^{4}$$
, where $M = \max_{0 \neq b \in B} \frac{1}{b^{2}}$.

¹Given an A-valued function f, write $f = \sum_{a \in A} a f_a$, where $f_a = \prod_{b \neq a} \frac{f-b}{a-b}$ is Boolean.

Since deg $f \leq d$, hypercontractivity shows that $\mathbb{E}[f^4] \leq 9^d \mathbb{E}[f^2]^2$. On the other hand, the observation above shows that $\mathbb{E}[f^2] \leq M \mathbb{E}[f^4]$. Therefore $\mathbb{E}[f^2] \leq 9^d M \mathbb{E}[f^2]^2$. Consequently, either $\mathbb{E}[f^2] = 0$ or $\mathbb{E}[f^2] \geq 1/(9^d M)$.

In order to deduce that an A-valued degree d function f must be a junta, we apply Lemma 2.1 not to f itself but to its Laplacians $L_i f(x) = \frac{f(x) - f(x^{\oplus i})}{2}$. Recall that $L_i f = \sum_{i \in S} \hat{f}(S)\chi_S$ and $||f_i||^2 = \text{Inf}_i[f]$. The Laplacians are B-valued for

$$B = \frac{A - A}{2} := \left\{ \frac{a_1 - a_2}{2} : a_1, a_2 \in A \right\}.$$

Theorem 2.2. Let A be a finite set and let $d \ge 1$. If f is an A-valued degree d function on $\{0,1\}^n$, then f depends on O(1) coordinates.

Proof. Let $B = \frac{A-A}{2}$. For every $i \in [n]$, the function $L_i f$ is a *B*-valued degree *d* function satisfying $||L_i f||^2 = \text{Inf}_i[f]$, and so Lemma 2.1 shows that either $\text{Inf}_i[f] = 0$ or $\text{Inf}_i[f] = \Omega(1)$. Since $\sum_i \text{Inf}_i[f] \leq d||f||^2 \leq d \max_{a \in A} a^2$, it follows that at most O(1) many coordinates can have non-zero influence. The function *f* only depends on those coordinates. \Box

3 Kindler–Safra

The starting point of our proof of the Kindler–Safra theorem is a version of Lemma 2.1 for functions which are close to degree d.

Lemma 3.1. Let B be a finite set and let $d \ge 1$. If f is a B-valued function on $\{0,1\}^n$ satisfying $\|f^{>d}\|^2 = \epsilon$ then either $\|f\|^2 = O(\epsilon)$ or $\|f^{\leq d}\|^2 = \Omega(1)$.

Proof. As in the proof of Lemma 2.1, we can find M such that $b^2 \leq Mb^4$ for all $b \in B$. Given β , we want to bound $(b - \beta)^2$ in terms of b^4 and β^2 . If $|\beta| \leq |b|/2$ then $\rho = (b - \beta)/b$ satisfies $|\rho| \geq 1/2$, and so

$$(b-\beta)^2 = \rho^2 b^2 \le M \rho^2 b^4 = M \rho^{-2} (b-\beta)^4 \le 4M(b-\beta)^4.$$

In contrast, if $|\beta| \ge |b|/2$ then

$$(b-\beta)^2 \le 9\beta^2.$$

Therefore for all β we have

$$(b-\beta)^2 \le 4M(b-\beta)^4 + 9\beta^2.$$

Hypercontractivity shows that $\mathbb{E}[(f^{\leq d})^4] \leq 9^d \mathbb{E}[(f^{\leq d})^2]^2$. On the other hand, applying the observation above to b = f and $\beta = f^{>d}$ shows that $\mathbb{E}[(f^{\leq d})^2] \leq \mathbb{E}[f^2] \leq 4M \mathbb{E}[(f^{\leq d})^4] + 9\epsilon$. Altogether, this gives

$$\mathbb{E}[(f^{\leq d})^2] \leq 4M9^d \,\mathbb{E}[(f^{\leq d})^2]^2 + 9\epsilon.$$

If $\mathbb{E}[(f^{\leq d})^2] \leq 18\epsilon$ then we are done, since

$$\|f\|^2 = \|f^{\leq d}\|^2 + \|f^{>d}\|^2 \leq 19\epsilon$$

In contrast, if $\mathbb{E}[(f^{\leq d})^2] \geq 18\epsilon$ then

$$\frac{1}{2}\mathbb{E}[(f^{\leq d})^2] \leq \mathbb{E}[(f^{\leq d})^2] - 9\epsilon \leq 4M9^d \mathbb{E}[(f^{\leq d})^2]^2,$$

and so $||f^{\leq d}||^2 \geq 1/(8M9^d)$.

Now suppose that f is an A-valued function on $\{0,1\}^n$ satisfying $||f^{>d}||^2 = \epsilon$. As in the proof of Theorem 2.2, we apply Lemma 3.1 to the Laplacians $L_i f$. However, the conclusion is slightly different.

Lemma 3.2. Let A be a finite set and let $d \ge 1$. If f is an A-valued function on $\{0,1\}^n$ such that $||f^{>d}||^2 = \epsilon$ then we can find a set J of O(1) coordinates such that for each $z \in \{0,1\}^J$, the function f_z on $\{0,1\}^{\overline{J}}$ obtained by substituting $x|_J = z$ satisfies

 $\operatorname{Inf}_i[f_z] = O(\epsilon) \text{ for every } i \in \overline{J}.$

Proof. Let $B = \frac{A-A}{2}$. For every $i \in \overline{J}$, the function $L_i f$ is a B-valued function satisfying

$$\|(L_i f)^{>d}\|^2 = \sum_{\substack{i \in S \\ |S| > d}} \hat{f}(S)^2 \le \sum_{|S| > d} \hat{f}(S)^2 = \|f^{>d}\|^2 = \epsilon.$$

Therefore Lemma 3.1 shows that either $\text{Inf}_i[f] = O(\epsilon)$ or $\text{Inf}_i[f^{\leq d}] = \Omega(1)$. Since

$$\sum_{i=1}^{n} \operatorname{Inf}_{i}[f^{\leq d}] \leq d \|f^{\leq d}\|^{2} \leq d \|f\|^{2} \leq d \max_{a \in A} a^{2},$$

at most O(1) many variables can satisfy $\text{Inf}_i[f^{\leq d}] = \Omega(1)$. Put all these variables in a set J. If $i \notin J$ then $\text{Inf}_i[f] = O(\epsilon)$, and so for each assignment $z \in \{0, 1\}^J$,

$$\inf_{i}[f_{z}] = \mathbb{E}[(L_{i}f_{z})^{2}] = \mathbb{E}[(L_{i}f)^{2} \mid x_{J} = z] \le 2^{|J|} \mathbb{E}[(L_{i}f)^{2}] = 2^{|J|} \inf_{i}[f] = O(\epsilon).$$

In order to complete the proof, we would like to show that each f_z is nearly constant, in the sense that it has low variance. The first step is to apply Lemma 3.1.

Lemma 3.3. Assume the setting of Lemma 3.2.

For every $z \in \{0,1\}^J$, either $\operatorname{Var}[f_z] = O(\epsilon)$ or $\operatorname{Var}[f_z] = \Omega(1)$.

Proof. We define a function g_z on $\{0,1\}^{\overline{J}} \times \{0,1\}^{\overline{J}}$ as follows:

$$g_z(x,y) = f_z(x) - f_z(y).$$

Since f_z is A-valued, g_z is (A - A)-valued. Also,

$$||g_z^{>d}||^2 = 2||f_z^{>d}||^2 \le 2^{|J|+1}||f^{>d}||^2 = O(\epsilon).$$

Applying Lemma 3.1, either $||g_z||^2 = O(\epsilon)$ or $||g_z||^2 \ge ||g_z^{\le d}||^2 = \Omega(1)$. The lemma now follows from $||g_z||^2 = 2 \operatorname{Var}[f_z]$.

We rule out the case $\operatorname{Var}[f_z] = \Omega(1)$ using the invariance principle.

Lemma 3.4. Assume the setting of Lemma 3.2. For every $z \in \{0, 1\}^J$ we have $\operatorname{Var}[f_z] = O(\epsilon)$.

Proof. According to Lemma 3.3, either $\operatorname{Var}[f_z] = O(\epsilon)$ or $\operatorname{Var}[f_z] = \Omega(1)$. If $\operatorname{Var}[f_z] = O(\epsilon)$ then we are done, so suppose that $\operatorname{Var}[f_z] = \Omega(1)$.

The invariance principle [MOO10] (see also [O'D14, Theorem 11.71]) implies that if g is a degree d function on $\{0, 1\}^n$ with variance 1 and all influences at most δ then for every u,

$$\left|\Pr_{x \sim \{0,1\}^n}[g(x) \le u] - \Pr_{w \sim N(0,1)}[g(w) \le u]\right| = O(\delta^{1/(4d+1)}).$$

For every $\gamma > 0$, this implies that

$$\left|\Pr_{x \sim \{0,1\}^n}[g(x) \in (u - \gamma, u]] - \Pr_{w \sim N(0,1)}[g(w) \in (u - \gamma, u]]\right| = O(\delta^{1/(4d+1)}).$$

Since g(w) is a continuous random variable, if we take the limit $\gamma \to 0$ then we obtain

$$\Pr[g = u] = O(\delta^{1/(4d+1)}).$$

Applying this to $g = f_z / \sqrt{\operatorname{Var}[f_z]}$, in which all influences are at most $O(\epsilon) / \Omega(1) = O(\epsilon)$, we deduce that for all t,

$$\Pr[f_z = t] = O(\epsilon^{1/(4d+1)}).$$

On the other hand, since f_z is A-valued, we can find $a \in A$ such that $\Pr[f_z = a] \ge 1/|A|$. Thus $1/|A| = O(\epsilon^{1/(4d+1)})$, and so $\epsilon = \Omega(1/|A|^{4d+1}) = \Omega(1)$.

Finally, $\operatorname{Var}[f_z] \leq ||f_z||^2 \leq \max_{a \in A} a^2 = O(1)$. Since $\epsilon = \Omega(1)$, it follows that $\operatorname{Var}[f_z] = O(\epsilon)$.

At this point we can show that f is close to a J-junta.

Lemma 3.5. Assume the setting of Lemma 3.2.

There is a function g on $\{0,1\}^n$, depending only on the coordinates in J, such that $||f-g||^2 = O(\epsilon)$.

Proof. Let G be the function on $\{0,1\}^J$ given by $G(z) = \mathbb{E}[f_z]$. We define $g(x) = G(x|_J)$. Then

$$||f - g||^2 = \mathbb{E}_{z \in \{0,1\}^J} ||f_z - \mathbb{E}[f_z]||^2 = \mathbb{E}_{z \in \{0,1\}^J} [\operatorname{Var}[f_z]] = O(\epsilon),$$

using Lemma 3.4.

We can now state and prove the A-valued Kindler–Safra theorem.

Theorem 3.6. Let A be a finite set and let $d \ge 1$. If f is an A-valued function on $\{0,1\}^n$ such that $\|f^{>d}\|^2 = \epsilon$ then there exists an A-valued degree d function h in $\{0,1\}^n$ such that $\Pr[f \ne h] = O(\epsilon)$.

According to Theorem 2.2, the function h depends on O(1) coordinates.

Proof. Lemma 3.5 gives a function g, depending on O(1) coordinates, such that $||f - g||^2 = O(\epsilon)$. Let h(x) be obtained by rounding g(x) to the closest element of A. For every x we have $|h(x)-g(x)| \leq |f(x)-g(x)|$ and so $|h(x)-f(x)| \leq |h(x)-g(x)|+|g(x)-f(x)| \leq 2|f(x)-g(x)|$. Consequently, $||h - f||^2 \leq 4||g - f||^2 = O(\epsilon)$.

Since f and h are both A-valued, for each x either f(x) = h(x) or $|h(x) - f(x)| = \Omega(1)$. Consequently, $\mathbb{E}[(h-f)^2] = \Omega(\Pr[h \neq f])$, and so $\Pr[h \neq f] = O(||h - f||^2) = O(\epsilon)$.

Finally, suppose that h does not have degree d. Then $\hat{h}(S)^2 \neq 0$ for some |S| > d. Since h depends on M = O(1) coordinates, $\hat{h}(S) = \mathbb{E}[h\chi_S]$ is a non-zero value which is the average of 2^M elements from $A \cup -A$, and consequently $\hat{h}(S)^2 = \Omega(1)$, implying that $||h^{>d}||^2 = \Omega(1)$. On the other hand,

$$\|h^{>d}\|^2 \le 2\|f^{>d}\|^2 + 2\|h^{>d} - f^{>d}\|^2 = 2\epsilon + 2\|(h-f)^{>d}\|^2 \le 2\epsilon + \|h-f\|^2 = O(\epsilon).$$

This shows that $\epsilon = \Omega(1)$. Therefore $||f - h||^2 \le \max_{a_1, a_2 \in A} (a_1 - a_2)^2 = O(\epsilon)$.

References

- [CHS20] John Chiarelli, Pooya Hatami, and Michael Saks. An asymptotically tight bound on the number of relevant variables in a bounded degree Boolean function. *Combinatorica*, 40(2):237–244, 2020.
- [FKN02] Ehud Friedgut, Gil Kalai, and Assaf Naor. Boolean functions whose Fourier transform is concentrated on the first two levels. Adv. in Appl. Math., 29(3):427–437, 2002.
- [Kin03] Guy Kindler. *Property Testing, PCP and Juntas.* PhD thesis, Tel Aviv University, 2003.
- [KS02] Guy Kindler and Shmuel Safra. Noise-resistant Boolean functions are juntas. (manuscript), 2002.
- [MOO10] Elchanan Mossel, Ryan O'Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Ann. of Math. (2), 171(1):295–341, 2010.
- [NS94] Noam Nisan and Márió Szegedy. On the degree of Boolean functions as real polynomials. volume 4, pages 301–313. 1994. Special issue on circuit complexity (Barbados, 1992).
- [O'D14] Ryan O'Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.
- [Wel20] Jake Wellens. Relationships between the number of inputs and other complexity measures of Boolean functions. *arXiv*, abs/2005.00566, 2020.