A simple proof of the Kindler-Safra theorem

Yuval Filmus

March 27, 2022

1 Introduction

A Boolean degree 1 function (on a Boolean cube $\{0,1\}^{n}$) is a dictator. Friedgut, Kalai and Naor [FKN02] showed that if a Boolean function is close to degree 1, then it is close to a Boolean dictator.

Nisan and Szegedy NS94 showed that a Boolean degree d function is an $O\left(d 2^{d}\right)$-junta. The size of the junta was later improved to $O\left(2^{d}\right)$, which is optimal up to the hidden constant [CHS20, Wel20]. Kindler and Safra [KS02, Kin03] shows that if a Boolean degree d function is close to degree d, then it is close to a Boolean degree d function.

In this note, we give a simple proof of the Kindler-Safra theorem using the invariance principle. Our proof works in the more general setting of A-valued functions, which are functions whose output lies in some finite set A; this generalizes the Boolean setting, which corresponds to $A=\{0,1\}$.

2 Nisan-Szegedy

We start by showing that A-valued degree d functions are juntas. While this can be proved by reduction to the Boolean case ${ }^{1}$ we give a direct proof which relies only on hypercontractivity. The main idea is the following dichotomy:

Lemma 2.1. Let B be a finite set and let $d \geq 1$. If f is a B-valued degree d function on $\{0,1\}^{n}$, then either $f=0$ or $\|f\|^{2}=\Omega(1)$.

Here $\|f\|^{2}=\mathbb{E}\left[f^{2}\right]$, where the underlying distribution is the uniform distribution, and the hidden constant in $\Omega(1)$ depends on B, d.

Proof. First observe that if $y \in B$ then

$$
y^{2} \leq M y^{4}, \text { where } M=\max _{0 \neq b \in B} \frac{1}{b^{2}}
$$

[^0]Since $\operatorname{deg} f \leq d$, hypercontractivity shows that $\mathbb{E}\left[f^{4}\right] \leq 9^{d} \mathbb{E}\left[f^{2}\right]^{2}$. On the other hand, the observation above shows that $\mathbb{E}\left[f^{2}\right] \leq M \mathbb{E}\left[f^{4}\right]$. Therefore $\mathbb{E}\left[f^{2}\right] \leq 9^{d} M \mathbb{E}\left[f^{2}\right]^{2}$. Consequently, either $\mathbb{E}\left[f^{2}\right]=0$ or $\mathbb{E}\left[f^{2}\right] \geq 1 /\left(9^{d} M\right)$.

In order to deduce that an A-valued degree d function f must be a junta, we apply Lemma 2.1 not to f itself but to its Laplacians $L_{i} f(x)=\frac{f(x)-f\left(x^{\oplus i}\right)}{2}$. Recall that $L_{i} f=$ $\sum_{i \in S} \hat{f}\left(S \chi_{S}\right.$ and $\left\|f_{i}\right\|^{2}=\operatorname{Inf}_{i}[f]$. The Laplacians are B-valued for

$$
B=\frac{A-A}{2}:=\left\{\frac{a_{1}-a_{2}}{2}: a_{1}, a_{2} \in A\right\} .
$$

Theorem 2.2. Let A be a finite set and let $d \geq 1$. If f is an A-valued degree d function on $\{0,1\}^{n}$, then f depends on $O(1)$ coordinates.

Proof. Let $B=\frac{A-A}{2}$. For every $i \in[n]$, the function $L_{i} f$ is a B-valued degree d function satisfying $\left\|L_{i} f\right\|^{2}=\operatorname{Inf}_{i}[f]$, and so Lemma 2.1 shows that either $\operatorname{Inf}_{i}[f]=0$ or $\operatorname{Inf}_{i}[f]=\Omega(1)$. Since $\sum_{i} \operatorname{Inf}_{i}[f] \leq d\|f\|^{2} \leq d \max _{a \in A} a^{2}$, it follows that at most $O(1)$ many coordinates can have non-zero influence. The function f only depends on those coordinates.

3 Kindler-Safra

The starting point of our proof of the Kindler-Safra theorem is a version of Lemma 2.1 for functions which are close to degree d.

Lemma 3.1. Let B be a finite set and let $d \geq 1$. If f is a B-valued function on $\{0,1\}^{n}$ satisfying $\left\|f^{>d}\right\|^{2}=\epsilon$ then either $\|f\|^{2}=O(\epsilon)$ or $\left\|f^{\leq d}\right\|^{2}=\Omega(1)$.

Proof. As in the proof of Lemma 2.1, we can find M such that $b^{2} \leq M b^{4}$ for all $b \in B$. Given β, we want to bound $(b-\beta)^{2}$ in terms of b^{4} and β^{2}. If $|\beta| \leq|b| / 2$ then $\rho=(b-\beta) / b$ satisfies $|\rho| \geq 1 / 2$, and so

$$
(b-\beta)^{2}=\rho^{2} b^{2} \leq M \rho^{2} b^{4}=M \rho^{-2}(b-\beta)^{4} \leq 4 M(b-\beta)^{4}
$$

In contrast, if $|\beta| \geq|b| / 2$ then

$$
(b-\beta)^{2} \leq 9 \beta^{2}
$$

Therefore for all β we have

$$
(b-\beta)^{2} \leq 4 M(b-\beta)^{4}+9 \beta^{2}
$$

Hypercontractivity shows that $\mathbb{E}\left[\left(f^{\leq d}\right)^{4}\right] \leq 9^{d} \mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right]^{2}$. On the other hand, applying the observation above to $b=f$ and $\beta=f^{>d}$ shows that $\mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right] \leq \mathbb{E}\left[f^{2}\right] \leq 4 M \mathbb{E}\left[\left(f^{\leq d}\right)^{4}\right]+$ 9ϵ. Altogether, this gives

$$
\mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right] \leq 4 M 9^{d} \mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right]^{2}+9 \epsilon
$$

If $\mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right] \leq 18 \epsilon$ then we are done, since

$$
\|f\|^{2}=\left\|f^{\leq d}\right\|^{2}+\left\|f^{>d}\right\|^{2} \leq 19 \epsilon
$$

In contrast, if $\mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right] \geq 18 \epsilon$ then

$$
\frac{1}{2} \mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right] \leq \mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right]-9 \epsilon \leq 4 M 9^{d} \mathbb{E}\left[\left(f^{\leq d}\right)^{2}\right]^{2}
$$

and so $\left\|f f^{\leq d}\right\|^{2} \geq 1 /\left(8 M 9^{d}\right)$.
Now suppose that f is an A-valued function on $\{0,1\}^{n}$ satisfying $\left\|f^{>d}\right\|^{2}=\epsilon$. As in the proof of Theorem 2.2, we apply Lemma 3.1 to the Laplacians $L_{i} f$. However, the conclusion is slightly different.
Lemma 3.2. Let A be a finite set and let $d \geq 1$. If f is an A-valued function on $\{0,1\}^{n}$ such that $\left\|f^{>d}\right\|^{2}=\epsilon$ then we can find a set J of $O(1)$ coordinates such that for each $z \in\{0,1\}^{J}$, the function f_{z} on $\{0,1\}^{\bar{J}}$ obtained by substituting $\left.x\right|_{J}=z$ satisfies

$$
\operatorname{Inf}_{i}\left[f_{z}\right]=O(\epsilon) \text { for every } i \in \bar{J}
$$

Proof. Let $B=\frac{A-A}{2}$. For every $i \in \bar{J}$, the function $L_{i} f$ is a B-valued function satisfying

$$
\left\|\left(L_{i} f\right)^{>d}\right\|^{2}=\sum_{\substack{i \in S \\|S|>d}} \hat{f}(S)^{2} \leq \sum_{|S|>d} \hat{f}(S)^{2}=\left\|f^{>d}\right\|^{2}=\epsilon
$$

Therefore Lemma 3.1 shows that either $\operatorname{Inf}_{i}[f]=O(\epsilon)$ or $\operatorname{Inf}_{i}[f \leq d]=\Omega(1)$. Since

$$
\sum_{i=1}^{n} \operatorname{Inf}_{i}\left[f^{\leq d}\right] \leq d\left\|f^{\leq d}\right\|^{2} \leq d\|f\|^{2} \leq d \max _{a \in A} a^{2}
$$

at most $O(1)$ many variables can satisfy $\operatorname{Inf}_{i}[f \leq d]=\Omega(1)$. Put all these variables in a set J. If $i \notin J$ then $\operatorname{Inf}_{i}[f]=O(\epsilon)$, and so for each assignment $z \in\{0,1\}^{J}$,

$$
\operatorname{Inf}_{i}\left[f_{z}\right]=\mathbb{E}\left[\left(L_{i} f_{z}\right)^{2}\right]=\mathbb{E}\left[\left(L_{i} f\right)^{2} \mid x_{J}=z\right] \leq 2^{|J|} \mathbb{E}\left[\left(L_{i} f\right)^{2}\right]=2^{|J|} \operatorname{Inf}_{i}[f]=O(\epsilon)
$$

In order to complete the proof, we would like to show that each f_{z} is nearly constant, in the sense that it has low variance. The first step is to apply Lemma 3.1.
Lemma 3.3. Assume the setting of Lemma 3.2.
For every $z \in\{0,1\}^{J}$, either $\operatorname{Var}\left[f_{z}\right]=O(\epsilon)$ or $\operatorname{Var}\left[f_{z}\right]=\Omega(1)$.
Proof. We define a function g_{z} on $\{0,1\}^{\bar{J}} \times\{0,1\}^{\bar{J}}$ as follows:

$$
g_{z}(x, y)=f_{z}(x)-f_{z}(y) .
$$

Since f_{z} is A-valued, g_{z} is $(A-A)$-valued. Also,

$$
\left\|g_{z}^{>d}\right\|^{2}=2\left\|f_{z}^{>d}\right\|^{2} \leq 2^{|J|+1}\left\|f^{>d}\right\|^{2}=O(\epsilon)
$$

Applying Lemma 3.1, either $\left\|g_{z}\right\|^{2}=O(\epsilon)$ or $\left\|g_{z}\right\|^{2} \geq\left\|g_{\bar{z}}^{\leq d}\right\|^{2}=\Omega(1)$. The lemma now follows from $\left\|g_{z}\right\|^{2}=2 \operatorname{Var}\left[f_{z}\right]$.

We rule out the case $\operatorname{Var}\left[f_{z}\right]=\Omega(1)$ using the invariance principle.
Lemma 3.4. Assume the setting of Lemma 3.2.
For every $z \in\{0,1\}^{J}$ we have $\operatorname{Var}\left[f_{z}\right]=O(\epsilon)$.
Proof. According to Lemma 3.3, either $\operatorname{Var}\left[f_{z}\right]=O(\epsilon)$ or $\operatorname{Var}\left[f_{z}\right]=\Omega(1)$. If $\operatorname{Var}\left[f_{z}\right]=O(\epsilon)$ then we are done, so suppose that $\operatorname{Var}\left[f_{z}\right]=\Omega(1)$.

The invariance principle MOO10] (see also O'D14, Theorem 11.71]) implies that if g is a degree d function on $\{0,1\}^{n}$ with variance 1 and all influences at most δ then for every u,

$$
\left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}[g(x) \leq u]-\operatorname{Pr}_{w \sim N(0,1)}[g(w) \leq u]\right|=O\left(\delta^{1 /(4 d+1)}\right) .
$$

For every $\gamma>0$, this implies that

$$
\left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}[g(x) \in(u-\gamma, u]]-\operatorname{Pr}_{w \sim N(0,1)}[g(w) \in(u-\gamma, u]]\right|=O\left(\delta^{1 /(4 d+1)}\right)
$$

Since $g(w)$ is a continuous random variable, if we take the limit $\gamma \rightarrow 0$ then we obtain

$$
\operatorname{Pr}[g=u]=O\left(\delta^{1 /(4 d+1)}\right)
$$

Applying this to $g=f_{z} / \sqrt{\operatorname{Var}\left[f_{z}\right]}$, in which all influences are at most $O(\epsilon) / \Omega(1)=O(\epsilon)$, we deduce that for all t,

$$
\operatorname{Pr}\left[f_{z}=t\right]=O\left(\epsilon^{1 /(4 d+1)}\right)
$$

On the other hand, since f_{z} is A-valued, we can find $a \in A$ such that $\operatorname{Pr}\left[f_{z}=a\right] \geq 1 /|A|$. Thus $1 /|A|=O\left(\epsilon^{1 /(4 d+1)}\right)$, and so $\epsilon=\Omega\left(1 /|A|^{4 d+1}\right)=\Omega(1)$.

Finally, $\operatorname{Var}\left[f_{z}\right] \leq\left\|f_{z}\right\|^{2} \leq \max _{a \in A} a^{2}=O(1)$. Since $\epsilon=\Omega(1)$, it follows that $\operatorname{Var}\left[f_{z}\right]=$ $O(\epsilon)$.

At this point we can show that f is close to a J-junta.
Lemma 3.5. Assume the setting of Lemma 3.2.
There is a function g on $\{0,1\}^{n}$, depending only on the coordinates in J, such that $\|f-g\|^{2}=O(\epsilon)$.

Proof. Let G be the function on $\{0,1\}^{J}$ given by $G(z)=\mathbb{E}\left[f_{z}\right]$. We define $g(x)=G\left(\left.x\right|_{J}\right)$. Then

$$
\|f-g\|^{2}=\underset{z \in\{0,1\}^{J}}{\mathbb{E}}\left\|f_{z}-\mathbb{E}\left[f_{z}\right]\right\|^{2}=\underset{z \in\{0,1\}^{J}}{\mathbb{E}}\left[\operatorname{Var}\left[f_{z}\right]\right]=O(\epsilon),
$$

using Lemma 3.4.
We can now state and prove the A-valued Kindler-Safra theorem.
Theorem 3.6. Let A be a finite set and let $d \geq 1$. If f is an A-valued function on $\{0,1\}^{n}$ such that $\left\|f^{>d}\right\|^{2}=\epsilon$ then there exists an A-valued degree d function h in $\{0,1\}^{n}$ such that $\operatorname{Pr}[f \neq h]=O(\epsilon)$.

According to Theorem 2.2, the function h depends on $O(1)$ coordinates.
Proof. Lemma 3.5 gives a function g, depending on $O(1)$ coordinates, such that $\|f-g\|^{2}=$ $O(\epsilon)$. Let $h(x)$ be obtained by rounding $g(x)$ to the closest element of A. For every x we have $|h(x)-g(x)| \leq|f(x)-g(x)|$ and so $|h(x)-f(x)| \leq|h(x)-g(x)|+|g(x)-f(x)| \leq 2|f(x)-g(x)|$. Consequently, $\|h-f\|^{2} \leq 4\|g-f\|^{2}=O(\epsilon)$.

Since f and h are both A-valued, for each x either $f(x)=h(x)$ or $|h(x)-f(x)|=\Omega(1)$. Consequently, $\mathbb{E}\left[(h-f)^{2}\right]=\Omega(\operatorname{Pr}[h \neq f])$, and so $\operatorname{Pr}[h \neq f]=O\left(\|h-f\|^{2}\right)=O(\epsilon)$.

Finally, suppose that h does not have degree d. Then $\hat{h}(S)^{2} \neq 0$ for some $|S|>d$. Since h depends on $M=O(1)$ coordinates, $\hat{h}(S)=\mathbb{E}\left[h \chi_{S}\right]$ is a non-zero value which is the average of 2^{M} elements from $A \cup-A$, and consequently $h(S)^{2}=\Omega(1)$, implying that $\left\|h^{>d}\right\|^{2}=\Omega(1)$. On the other hand,

$$
\left\|h^{>d}\right\|^{2} \leq 2\left\|f^{>d}\right\|^{2}+2\left\|h^{>d}-f^{>d}\right\|^{2}=2 \epsilon+2\left\|(h-f)^{>d}\right\|^{2} \leq 2 \epsilon+\|h-f\|^{2}=O(\epsilon) .
$$

This shows that $\epsilon=\Omega(1)$. Therefore $\|f-h\|^{2} \leq \max _{a_{1}, a_{2} \in A}\left(a_{1}-a_{2}\right)^{2}=O(\epsilon)$.

References

[CHS20] John Chiarelli, Pooya Hatami, and Michael Saks. An asymptotically tight bound on the number of relevant variables in a bounded degree Boolean function. Combinatorica, 40(2):237-244, 2020.
[FKN02] Ehud Friedgut, Gil Kalai, and Assaf Naor. Boolean functions whose Fourier transform is concentrated on the first two levels. Adv. in Appl. Math., 29(3):427-437, 2002.
[Kin03] Guy Kindler. Property Testing, PCP and Juntas. PhD thesis, Tel Aviv University, 2003.
[KS02] Guy Kindler and Shmuel Safra. Noise-resistant Boolean functions are juntas. (manuscript), 2002.
[MOO10] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Ann. of Math. (2), 171(1):295-341, 2010.
[NS94] Noam Nisan and Márió Szegedy. On the degree of Boolean functions as real polynomials. volume 4, pages 301-313. 1994. Special issue on circuit complexity (Barbados, 1992).
[O'D14] Ryan O'Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.
[Wel20] Jake Wellens. Relationships between the number of inputs and other complexity measures of Boolean functions. arXiv, abs/2005.00566, 2020.

[^0]: ${ }^{1}$ Given an A-valued function f, write $f=\sum_{a \in A} a f_{a}$, where $f_{a}=\prod_{b \neq a} \frac{f-b}{a-b}$ is Boolean.

