Khintchine-Kahane using Fourier Analysis

Yuval Filmus

September 2011

Latała and Oleszkiewicz [1] gave a simple proof of the following theorem.
Theorem 1. Let $\mathbf{X}=X_{1}, \ldots, X_{n}$ be a vector of non-negative real numbers. Define a random variable S by

$$
S=\left|\sum_{i} s_{i} X_{i}\right|, \quad s_{i} \in_{R}\{ \pm 1\}
$$

We have

$$
\frac{1}{\sqrt{2}}\|\mathbf{X}\|_{2} \leq \mathbb{E}[S] \leq\|\mathbf{X}\|_{2}
$$

We rephrase their proof in terms of Fourier analysis.
Proof. The upper bound follows from $\mathbb{E}[S]^{2} \leq \mathbb{E}\left[S^{2}\right]=\|\mathbf{X}\|_{2}^{2}$. For the lower bound, define a function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}_{+}$by

$$
f\left(s_{1}, \ldots, s_{n}\right)=\left|\sum_{i} s_{i} X_{i}\right| .
$$

Note $\hat{f}(\mathbf{0})=\mathbb{E}_{\mathbf{s}} f(\mathbf{s})=\mathbb{E}[S]$. Let \mathbf{s}^{i} denote the vector obtained from \mathbf{s} by flipping coordinate i. Define the total derivative $\mathrm{D} f$ of f by

$$
\mathrm{D} f(\mathbf{s})=\frac{1}{2} \sum_{i}\left(f(\mathbf{s})-f\left(\mathbf{s}^{i}\right)\right) .
$$

It is well-known that $\widehat{\mathrm{Df}}(\mathbf{t})=|\mathbf{t}| \hat{f}(\mathbf{t})$, and so

$$
\langle f, 2 f-\mathrm{D} f\rangle=\sum_{\mathbf{t}}(2-|\mathbf{t}|) \hat{f}(\mathbf{t})^{2} .
$$

As mentioned, $\hat{f}(\mathbf{0})=\mathbb{E}[S]$. Also, since f is invariant under flipping all coordinates, it is easy to see that $\hat{f}(\mathbf{t})=0$ when $|\mathbf{t}|=1$. Therefore

$$
\langle f, 2 f-\mathrm{D} f\rangle \leq 2 \mathbb{E}[S]^{2} .
$$

How big can $\mathrm{D} f(\mathbf{s})$ be? Assume, without loss of generality, that $\sum_{i} s_{i} X_{i} \geq 0$. If $s_{i}=-1$ then $f\left(\mathbf{s}^{i}\right)=$ $f(\mathbf{s})+2 X_{i}$, and so $f(\mathbf{s})-f\left(\mathbf{s}^{i}\right)=-2 X_{i}=2 s_{i} X_{i}$. If $s_{i}=+1$ then $f\left(\mathbf{s}^{i}\right)=\left|f(\mathbf{s})-2 X_{i}\right| \geq f(\mathbf{s})-2 X_{i}$, and so $f(\mathbf{s})-f\left(\mathbf{s}^{i}\right) \leq 2 X_{i}=2 s_{i} X_{i}$. We conclude that $\mathrm{D} f(\mathbf{s}) \leq f(\mathbf{s})$. Since $f \geq 0$, this implies that

$$
\langle f, 2 f-\mathrm{D} f\rangle \geq\langle f, f\rangle=\mathbb{E}\left[S^{2}\right]=\|\mathbf{X}\|_{2}^{2} .
$$

We conclude that $\|\mathbf{X}\|_{2}^{2} \leq 2 \mathbb{E}[S]^{2}$.

References

[1] Rafał Latała and Krzysztof Oleszkiewicz. On the best constant in the Khintchine-Kahane inequality. Studia Mathematica, 109(1):101-104, 1994.

