Information complexity of AND

Yuval Filmus

June 27, 2017

Let π be a protocol for the AND function which is correct with probability at least $1-\epsilon$ on each input. The goal of this section is to lower bound the information complexity of π with respect to the distribution μ given by $\mu(0,0)=\mu(0,1)=\mu(1,0)=1 / 3$.

For a transcript t, let $p(t \mid x y)$ be the probability that the transcript of π is t if the inputs are x, y. We will also use the similar notations $p(t \mid X=x)$ and $p(t \mid Y=y)$.

Our starting point is an application of Pinsker's lemma, which states that $D(Q \| R) \geq$ $\frac{1}{2}\|Q-R\|^{2}$, where $\|Q-R\|$ denotes total variation distance.

Lemma 1. Suppose that

$$
\sum_{t}|p(t \mid 00)-p(t \mid 01)|+|p(t \mid 00)-p(t \mid 10)| \geq \delta
$$

Then $\mathrm{IC}_{\mu}(\pi)=\Omega\left(\delta^{2}\right)$.
Proof. Suppose without loss of generality that $\sum_{t}|p(t \mid 00)-p(t \mid 01)| \geq \delta / 2$. Expressing $I(Y ; \Pi \mid X)$ using Kullback-Leibler divergence, we get

$$
I(Y ; \Pi \mid X) \geq \frac{2}{3} I(Y ; \Pi \mid X=0)=\frac{2}{3} D(Q \| R)
$$

where Q, R are distributions on pairs (y, t) given by

$$
\begin{aligned}
& Q(y, t)=\operatorname{Pr}[Y=y, \Pi=t \mid X=0]=\operatorname{Pr}[Y=y \mid X=0] p(t \mid 0 y)=\frac{p(t \mid 0 y)}{2}, \\
& R(y, t)=\operatorname{Pr}[Y=y \mid X=0] p(t \mid X=0)=\frac{p(t \mid 00)+p(t \mid 01)}{4} .
\end{aligned}
$$

Pinsker's inequality implies that

$$
\begin{aligned}
& I(Y ; \Pi \mid X) \geq \frac{1}{3}\|Q-R\|^{2} \geq \frac{1}{3}\left(\sum_{t}|Q(0, t)-R(0, t)|\right)^{2}= \\
& \frac{1}{48}\left(\sum_{t}|p(t \mid 00)-p(t \mid 01)|\right)^{2} \geq \frac{\delta^{2}}{192} .
\end{aligned}
$$

We can lower-bound the quantity in Lemma 1 using the cut-and-paste property $p(t \mid 00) p(t \mid 11)=$ $p(t \mid 01) p(t \mid 10)$, which follows from the rectangular property of protocols.

Lemma 2. It holds that

$$
\sum_{t}|p(t \mid 00)-p(t \mid 01)|+|p(t \mid 00)-p(t \mid 10)|=\Omega\left((1 / 2-\epsilon)^{2}\right)
$$

Proof. Denote by T_{0} the set of transcripts that cause π to output 0 . Since π is correct with probability at least $1-\epsilon$ on input $(0,0)$, we have

$$
\begin{equation*}
\sum_{t \in T_{0}} p(t \mid 00) \geq 1-\epsilon \tag{1}
\end{equation*}
$$

Let δ be a constant to be determined. Let B denote the set of transcripts in T_{0} which satisfy

$$
|p(t \mid 00)-p(t \mid 01)|+|p(t \mid 00)-p(t \mid 10)| \leq \delta p(t \mid 00)
$$

If $t \in B$ then

$$
p(t \mid 00) p(t \mid 11)=p(t \mid 01) p(t \mid 10) \geq(1-\delta)^{2} p(t \mid 00)^{2}
$$

and so $p(t \mid 11) \geq(1-2 \delta) p(t \mid 00)$. Since $t \in T_{0}$ and π is correct with probability at least $1-\epsilon$ on input (1,1), we must have

$$
\begin{equation*}
\epsilon \geq \sum_{t \in T_{0}} p(t \mid 11) \geq(1-2 \delta) \sum_{t \in B} p(t \mid 00) \geq \sum_{t \in B} p(t \mid 00)-2 \delta \tag{2}
\end{equation*}
$$

Equations (1) and (2) together imply that

$$
\sum_{t \in T_{0} \backslash B} p(t \mid 00) \geq 1-2 \epsilon-2 \delta,
$$

and so

$$
\sum_{t \in T_{0} \backslash B}|p(t \mid 00)-p(t \mid 01)|+|p(t \mid 00)-p(t \mid 10)| \geq(1-2 \epsilon-2 \delta) \delta .
$$

Choosing $\delta=(1 / 2-\epsilon) / 2$ completes the proof (with a hidden constant of $1 / 2$).
Combining both parts, we get the desired lower bound.
Theorem 1. Let π be a randomized communication protocol for AND, which is correct with probability at least $1-\epsilon$ on every input. Let μ be the inputs distribution $\mu(0,0)=\mu(0,1)=$ $\mu(1,0)=1 / 3$. Then

$$
\mathrm{IC}_{\mu}(\pi)=\Omega\left((1 / 2-\epsilon)^{4}\right)
$$

