The number e is transcendental ${ }^{1}$.

Proof. In the proof we shall use the standard notation $f^{(i)}(x)$ to denote the i th derivative of $f(x)$ with respect to x.

Suppose that $f(x)$ is a polynomial of degree r with real coefficients. Let $F(x)=f(x)+f^{(1)}(x)+$ $f^{(2)}(x)+\cdots+f^{(r)}(x)$. We compute $(d / d x)\left(e^{-x} F(x)\right)$; using the fact that $f^{(r+1)}(x)=0$ (since $f(x)$ is of degree r) and the basic property of e, namely that $(d / d x) e^{x}=e^{x}$, we obtain $(d / d x)\left(e^{-x} F(x)\right)=$ $-e^{-x} f(x)$.

The mean value theorem asserts that if $g(x)$ is a continuously differentiable, single-valued function on the closed interval $\left[x_{1}, x_{2}\right]$ then

$$
\frac{g\left(x_{1}\right)-g\left(x_{2}\right)}{x_{1}-x_{2}}=g^{(1)}\left(x_{1}+\theta\left(x_{2}-x_{1}\right)\right), \quad \text { where } \quad 0<\theta<1 .
$$

We apply this to our function $e^{-x} F(x)$ which certainly satisfies all the required conditions for the mean value theorem on the closed interval $\left[x_{1}, x_{2}\right]$ where $x_{1}=0$ and $x_{2}=k$, where k is any positive integer. We then obtain that $e^{-k} F(k)-F(0)=-e^{-\theta_{k} k} f\left(\theta_{k} k\right) k$, where θ_{k} depends on k and is some real number between 0 and 1 . Multiplying this relation through by e^{k} yields $F(k)-F(0) e^{k}=-e^{(1-\theta k) k} f\left(\theta_{k} k\right)$. We write this out explicitly:

$$
\begin{align*}
& F(1)-e F(0)=-e^{\left(1-\theta_{1}\right)} f\left(\theta_{1}\right)=\epsilon_{1} \\
& F(2)-e^{2} F(0)=-2 e^{2\left(1-\theta_{2}\right)} f\left(2 \theta_{2}\right)=\epsilon_{2} \tag{1}\\
& \vdots \\
& F(n)-e^{n} F(0)=-n e^{n\left(1-\theta_{n}\right)} f\left(n \theta_{n}\right)=\epsilon_{n}
\end{align*}
$$

Suppose now that e is an algebraic number; then it satisfies some relation of the form

$$
\begin{equation*}
c_{n} e^{n}+c_{n-1} e^{n-1}+\cdots+c_{1} e+c_{0}=0 \tag{2}
\end{equation*}
$$

where $c_{0}, c_{1}, \ldots, c_{n}$ are integers and where $c_{0}>0$.
In the relations (1) let us multiply the first equation by c_{1}, the second by c_{2}, and so on; adding these up we get $c_{1} F(1)+c_{2} F(2)+\cdots+c_{n} F(n)-F(0)\left(c_{1} e+c_{2} e^{2}+\cdots+c_{n} e^{n}\right)=c_{1} \epsilon_{1}+c_{2} \epsilon_{2}+\cdots+c_{n} \epsilon_{n}$.

In view of relation (2), $c_{1} e+c_{2} e^{2}+\cdots+c_{n} e^{n}=-c_{0}$, whence the above equation simplifies to

$$
\begin{equation*}
c_{0} F(0)+c_{1} F(1)+\cdots+c_{n} F(n)=c_{1} \epsilon_{1}+\cdots+c_{n} \epsilon_{n} . \tag{3}
\end{equation*}
$$

All this discussion has held for the $F(x)$ constructed from an arbitrary polynomial $f(x)$. We now see what all this implies for a very specific polynomial, one first used by Hermite, namely,

$$
f(x)=\frac{1}{(p-1)!} x^{p-1}(1-x)^{p}(2-x)^{p} \cdots(n-x)^{p}
$$

Here p can be any prime number chosen so that $p>n$ and $p>c_{0}$. For this polynomial we shall take a very close look at $F(0), F(1), \ldots, F(n)$ and we shall carry out an estimate on the size of $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$.

When expanded, $f(x)$ is a polynomial of the form

$$
\frac{(n!)^{p}}{(p-1)!} x^{p-1}+\frac{a_{0} x^{p}}{(p-1)!}+\frac{a_{1} x^{p+1}}{(p-1)!}+\cdots,
$$

where a_{0}, a_{1}, \ldots, are integers.

[^0]When $i \geq p$ we claim that $f^{(i)}(x)$ is a polynomial, with coefficients which are integers all of which are multiples of p. (Prove!) Thus for any integer j, $f^{(i)}(j)$, for $i \geq p$ is an integer and is a multiple of p.

Now, from its very definition, $f(x)$ has a root of multiplicity p at $x=1,2, \ldots, n$. Thus for $j=1,2, \ldots, n, f(j)=0, f^{(1)}(j)=0, \ldots, f^{(p-1)}(j)=0$. However, $F(j)=f(j)+f^{(1)}(j)+\cdots+$ $f^{(p-1)}(j)+f^{(p)}(j)+\cdots+f^{(r)}(j)$; by the discussion above, for $j=1,2, \ldots, n, F(j)$ is an integer and is a multiple of p.

What about $F(0)$? Since $f(x)$ has a root of multiplicity $p-1$ at $x=0, f(0)=f^{(1)}(0)=\cdots=$ $f^{(p-2)}(0)=0$. For $i \geq p, f^{(i)}(0)$ is an integer which is a multiple of p. But $f^{(p-1)}(0)=(n!)^{p}$ and since $p>n$ and is a prime number, $p \nmid(n!)^{p}$ so that $f^{(p-1)}(0)$ is an integer not divisible by p. Since $F(0)=f(0)+f^{(1)}(0)+\cdots+f^{(p-2)}(0)+f^{(p-1)}(0)+f^{(p)}(0)+\cdots+f^{(r)}(0)$, we conclude that $F(0)$ is an integer not divisible by p. Because $c_{0}>0$ and $p>c_{0}$ and because $p \nmid F(0)$ whereas $p|F(1), p| F(2), \ldots p \mid F(n)$, we can assert that $c_{0} F(0)+c_{1} F(1)+\cdots+c_{n} F(n)$ is an integer and is not divisible by p.

However, by (3), $c_{0} F(0)+c_{1} F(1)+\cdots+c_{n} F(n)=c_{1} \epsilon_{1}+\cdots+c_{n} \epsilon_{n}$. What can we say about ϵ_{i} ? Let us recall that

$$
\epsilon_{i}=\frac{-e^{i\left(1-\theta_{i}\right)}\left(1-i \theta_{i}\right)^{p} \ldots\left(n-i \theta_{i}\right)^{p}\left(i \theta_{i}\right)^{p-1} i}{(p-1)!}
$$

where $0<\theta_{i}<1$. Thus

$$
\left|\epsilon_{i}\right| \leq e^{n} \frac{n^{p}(n!)^{p}}{(p-1)!}
$$

As $p \rightarrow \infty$,

$$
\frac{e^{n} n^{p}(n!)^{p}}{(p-1)!} \rightarrow 0
$$

(Prove!) whence we can find a prime number larger than both c_{0} and n and large enough to force $\left|c_{1} \epsilon_{1}+\cdots+c_{n} \epsilon_{n}\right|<1$. But $c_{1} \epsilon_{1}+\cdots+c_{n} \epsilon_{n}=c_{0} F(0)+\cdots+c_{n} F(n)$, so must be an integer; since it is smaller than 1 in size our only possible conclusion is that $c_{1} \epsilon_{1}+\cdots+c_{n} \epsilon_{n}=0$. Consequently, $c_{0} F(0)+\cdots+c_{n} F(n)=0$; this however is sheer nonsense, since we know that $p \nmid\left(c_{0} F(0)+\cdots+\right.$ $c_{n} F(n)$), whereas $p \mid 0$. This contradiction, stemming from the assumption that e is algebraic, proves that e must be transcendental.

[^0]: ${ }^{1}$ Herstein, Topics in Algebra, p. 176-178.

