
The number e is transcendental 1.

Proof. In the proof we shall use the standard notation f (i)(x) to denote the ith derivative of
f(x) with respect to x.

Suppose that f(x) is a polynomial of degree r with real coefficients. Let F (x) = f(x)+f (1)(x)+
f (2)(x)+ · · ·+f (r)(x). We compute (d/dx)(e−xF (x)); using the fact that f (r+1)(x) = 0 (since f(x) is
of degree r) and the basic property of e, namely that (d/dx)ex = ex, we obtain (d/dx)(e−xF (x)) =
−e−xf(x).

The mean value theorem asserts that if g(x) is a continuously differentiable, single-valued func-
tion on the closed interval [x1, x2] then

g(x1)− g(x2)
x1 − x2

= g(1)(x1 + θ(x2 − x1)), where 0 < θ < 1.

We apply this to our function e−xF (x) which certainly satisfies all the required conditions for
the mean value theorem on the closed interval [x1, x2] where x1 = 0 and x2 = k, where k is
any positive integer. We then obtain that e−kF (k) − F (0) = −e−θkkf(θkk)k, where θk depends
on k and is some real number between 0 and 1. Multiplying this relation through by ek yields
F (k)− F (0)ek = −e(1−θk)kf(θkk). We write this out explicitly:

F (1)− eF (0) = −e(1−θ1)f(θ1) = ε1

F (2)− e2F (0) = −2e2(1−θ2)f(2θ2) = ε2

...

F (n)− enF (0) = −nen(1−θn)f(nθn) = εn.

(1)

Suppose now that e is an algebraic number; then it satisfies some relation of the form

(2) cnen + cn−1en−1 + · · ·+ c1e + c0 = 0,

where c0, c1, . . . , cn are integers and where c0 > 0.
In the relations (1) let us multiply the first equation by c1, the second by c2, and so on; adding

these up we get c1F (1)+c2F (2)+· · ·+cnF (n)−F (0)(c1e+c2e2+· · ·+cnen) = c1ε1+c2ε2+· · ·+cnεn.
In view of relation (2), c1e + c2e2 + · · ·+ cnen = −c0, whence the above equation simplifies to

(3) c0F (0) + c1F (1) + · · ·+ cnF (n) = c1ε1 + · · ·+ cnεn.

All this discussion has held for the F (x) constructed from an arbitrary polynomial f(x). We
now see what all this implies for a very specific polynomial, one first used by Hermite, namely,

f(x) =
1

(p− 1)!
xp−1(1− x)p(2− x)p · · · (n− x)p.

Here p can be any prime number chosen so that p > n and p > c0. For this polynomial we shall
take a very close look at F (0), F (1), . . . , F (n) and we shall carry out an estimate on the size of
ε1, ε2, . . . , εn.

When expanded, f(x) is a polynomial of the form

(n!)p

(p− 1)!
xp−1 +

a0xp

(p− 1)!
+

a1xp+1

(p− 1)!
+ · · · ,

where a0, a1, . . ., are integers.
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When i ≥ p we claim that f (i)(x) is a polynomial, with coefficients which are integers all of
which are multiples of p. (Prove!) Thus for any integer j, f (i)(j), for i ≥ p is an integer and is a
multiple of p.

Now, from its very definition, f(x) has a root of multiplicity p at x = 1, 2, . . . , n. Thus for
j = 1, 2, . . . , n, f(j) = 0, f (1)(j) = 0, . . . , f (p−1)(j) = 0. However, F (j) = f(j) + f (1)(j) + · · · +
f (p−1)(j) + f (p)(j) + · · · + f (r)(j); by the discussion above, for j = 1, 2, . . . , n, F (j) is an integer
and is a multiple of p.

What about F (0)? Since f(x) has a root of multiplicity p− 1 at x = 0, f(0) = f (1)(0) = · · · =
f (p−2)(0) = 0. For i ≥ p, f (i)(0) is an integer which is a multiple of p. But f (p−1)(0) = (n!)p and
since p > n and is a prime number, p - (n!)p so that f (p−1)(0) is an integer not divisible by p.
Since F (0) = f(0) + f (1)(0) + · · ·+ f (p−2)(0) + f (p−1)(0) + f (p)(0) + · · ·+ f (r)(0), we conclude that
F (0) is an integer not divisible by p. Because c0 > 0 and p > c0 and because p - F (0) whereas
p | F (1), p | F (2), . . . p | F (n), we can assert that c0F (0) + c1F (1) + · · ·+ cnF (n) is an integer and
is not divisible by p.

However, by (3), c0F (0) + c1F (1) + · · · + cnF (n) = c1ε1 + · · · + cnεn. What can we say about
εi? Let us recall that

εi =
−ei(1−θi)(1− iθi)p . . . (n− iθi)p(iθi)p−1i

(p− 1)!
,

where 0 < θi < 1. Thus

|εi| ≤ en np(n!)p

(p− 1)!
.

As p →∞,
ennp(n!)p

(p− 1)!
→ 0,

(Prove!) whence we can find a prime number larger than both c0 and n and large enough to force
|c1ε1 + · · ·+ cnεn| < 1. But c1ε1 + · · ·+ cnεn = c0F (0) + · · ·+ cnF (n), so must be an integer; since
it is smaller than 1 in size our only possible conclusion is that c1ε1 + · · ·+ cnεn = 0. Consequently,
c0F (0) + · · · + cnF (n) = 0; this however is sheer nonsense, since we know that p - (c0F (0) + · · · +
cnF (n)), whereas p | 0. This contradiction, stemming from the assumption that e is algebraic,
proves that e must be transcendental.
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