The number e s transcendental®.

Proof. In the proof we shall use the standard notation f®(z) to denote the ith derivative of
f(z) with respect to z.

Suppose that f(x) is a polynomial of degree r with real coefficients. Let F'(x) = ( )+ fO(2) +
f@@@)+- -+ (x). We compute (d/dz)(e~*F(x)); using the fact that f0+1(z) = (smce (7)is
of degree r) and the basic property of e, namely that (d/dz)e® = e*, we obtain (d/dzx)(e *F(x))
—e " f(x).

The mean value theorem asserts that if g(x) is a continuously differentiable, single-valued func-
tion on the closed interval [z, x| then

g(w1) — g(x2)

_ g(l)(jc1 + 0(xy — x1)), where 0<6<1.
X1 — T2

We apply this to our function e™*F(x) which certainly satisfies all the required conditions for
the mean value theorem on the closed interval [z;, z3] where z; = 0 and xs = k, where k is
any positive integer. We then obtain that e *F (k) — F(0) = —e %k f(0k)k, where ), depends
on k and is some real number between 0 and 1. Multiplying this relation through by e* yields
F(k) — F(0)e* = —e('=%)k £(9, k). We write this out explicitly:

F(1) = eF(0) = =" f(01) = &

F(2) — 2F(0) = —2¢217%2) £(20,) = ¢,
(1)

F(n)—e"F(0) = —ne"(l_e")f(n&l) = €,.
Suppose now that e is an algebraic number; then it satisfies some relation of the form
(2) cne” + Cu1€” T+ e+ ¢ =0,

where cg, c1, ..., ¢, are integers and where ¢y > 0.
In the relations (1) let us multiply the first equation by ¢, the second by ¢y, and so on; adding
these up we get ¢; F(1)+coF(2)+- - -+ c, F(n) —F(0)(cie+cae®+- - -+ cne™) = cre1+ e+ - -+ Cpép.
In view of relation (2), cie + coe? + -+ - + c,e™ = —cpy, whence the above equation simplifies to

(3) coF(0)+ 1 F(1)+ -+ ¢, F(n) =cre; + -+ + cpép.

All this discussion has held for the F'(x) constructed from an arbitrary polynomial f(x). We
now see what all this implies for a very specific polynomial, one first used by Hermite, namely,

flz)= P11 —z)P(2—2)P-- (n—z)P.

(@) = o =P (=)

Here p can be any prime number chosen so that p > n and p > ¢y. For this polynomial we shall
take a very close look at F(0), F'(1), ..., F(n) and we shall carry out an estimate on the size of

€1, €2, ..., €n.
When expanded, f(z) is a polynomial of the form

(n!)P -1 agz? N ayzP !
(p—1)! -1 (-1

where ag, ay, ..., are integers.
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When i > p we claim that f@(x) is a polynomial, with coefficients which are integers all of
which are multiples of p. (Prove!) Thus for any integer j, f9(5), for i > p is an integer and is a
multiple of p.

Now, from its very definition, f(x) has a root of multiplicity p at x = 1, 2, ..., n. Thus for
j = 17 2a <o, N f(]) = 07 f(l)(j) :Oa ) f(p_l)(j) = 0. HOWGVGI’, F(]) = f(])+f(1)<])++
FE DG + fPG) 4 - - + fO()); by the discussion above, for j = 1,2, ..., n, F(j) is an integer
and is a multiple of p.

What about F(0)? Since f(z) has a root of multiplicity p — 1 at z = 0, f(0) = fM(0) =--- =
f®=2(0) = 0. Fori > p, f(0) is an integer which is a multiple of p. But f®~Y(0) = (n!)? and
since p > n and is a prime number, p { (n!)? so that f®=1(0) is an integer not divisible by p.
Since F(0) = £(0) + fM(0) + -+ + f*=2(0) + fP=H(0) + f®(0) + - - - + f)(0), we conclude that
F(0) is an integer not divisible by p. Because ¢y > 0 and p > ¢y and because p 1 F'(0) whereas
p| F(1),p| F(2),...p| F(n), we can assert that coF'(0) + 1 F'(1) + - - - 4+ ¢, F'(n) is an integer and
s not divisible by p.

However, by (3), coF'(0) + 1 F(1) + -+ + ¢, F'(n) = c1e1 + - -+ + ¢p€6,. What can we say about
€;7 Let us recall that

—=00(1 —iB;)P .. . (n — i0;)P(i0;)P~ Y

€, —

(p— 1! ’
where 0 < 6; < 1. Thus
o P (nl)?
le;] <e
p—1)!
As p — o0,
npp(n])P
e"nP(n!) 0,
(p— 1!

(Prove!) whence we can find a prime number larger than both ¢y and n and large enough to force
lcrer 4+ -+ - 4 cpen| < 1. But ¢+ -+ + cpen = coF(0) + - - + ¢, F(n), so must be an integer; since
it is smaller than 1 in size our only possible conclusion is that cie; + - - - + c,€, = 0. Consequently,
coF(0) + -+ 4+ ¢, F(n) = 0; this however is sheer nonsense, since we know that p t (coF'(0) + -+ - +
¢, F'(n)), whereas p | 0. This contradiction, stemming from the assumption that e is algebraic,
proves that e must be transcendental.



